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Abstract 
The present paper demonstrates the possibility of replacing indium tin oxide (ITO) with heavily 
boron-doped diamond (BDD). Plasma Enhanced Chemically Vapor Deposited BDDs of various 
thicknesses were prepared containing various boron concentrations in a gas phase. The dependence 
of the above-mentioned parameters on the optical and electrical properties of each BDD was studied 
in order to achieve optimal conditions for the effective application of diamond electrodes in organic 
electronics as a replacement for ITO. Bulk-heterojunction polymer-fullerene organic solar cells were 
fabricated to test the potency of BDD application in photovoltaic devices. The obtained results 
demonstrated the possibility of the aforementioned application. Even though the efficiency of BDD-
based devices is lower compared to those using regular ITO-based architecture, the relevant issues 
were explained. 
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1. Introduction 
 
Today, the development potential of organic electronics can hardly be overestimated [1]. In an age of 
silicon devices, it is worth noting that, although silicon is inexhaustible, its purification, processing 
and utilization are not as ecologically friendly as could be desired. Organic electronic devices, 
meanwhile, are beginning to enter many fields of science and technology due to their many clear 
advantages. Owing to its low production temperatures, organic electronics does not require large 
energy consumption, which makes such electronics, along with the non-toxicity of its component 
materials, much more environmentally friendly in comparison with commonly used inorganic 
semiconductors. Similarly to silicon, organic materials are practically unlimited, but much easier to 
utilize. Specifically, due to their particular properties, they are flexible, adaptive to many types of 
surfaces, and virtually unbreakable. 
In spite of the fact that organic electronics seems to be the technology of the future, some 
technological steps remain un- or underdeveloped, which significantly thwarts the infusion of this 
technology. Considering organic solar cells, which seem to have particular potential, one of the 
limiting factors is the development of transparent electrodes. At first glance, the widely-used 
compound indium tin oxide (ITO) seems to be the perfect candidate as a material for transparent 

electrode, as it exhibits superior transparency and a sheet resistance of below 100 Ω/□. However, 
the declining availability of indium compels us to look for an alternative solution. 
One possibility is to substitute ITO with carbon-based electrodes such as heavily boron-doped 
conductive diamond polycrystalline films [2]. Polycrystalline diamond films can be produced by a 
large variety of chemical deposition techniques, such as hot filament deposition [3], bias enhanced 
deposition [4], and Plasma-Enhanced Chemical Vapor Deposition (PECVD) with linear antenna 
delivery, where precursor gases are ionized to enhance their chemical reaction rates [5,6]. One of the 
advantages of the PECVD technique is the possibility to operate on a large variety of substrates at 
low deposition temperatures, which can be a crucial condition in the manufacture of 
semiconductors. With respect to photovoltaic devices, light-harvesting materials can be directly 
manufactured by the PECVD process [7,8]. Diamond is recognized to be a remarkable material due to 
its particularly attractive properties combining chemical resistance, optical transparency, thermal 
conductivity [9-13], and electrochemical properties [14-18]. Once successfully doped, diamond, 
which is generally recognized as an insulating material, becomes a wide-band gap semiconductor 
material with excellent potential due to the unique combination of its physical and electronic 
properties. The boron atom seems to be the only efficient dopant atom in diamond, which can be 
incorporated with high reproducibility and at a concentration high enough to be useful for electronic 
devices [15-19]. The physical properties of lightly-doped semiconductors are described in terms of 
band structures and impurity levels – the phenomenon of the formation of an impurity band was 
observed even at room temperature [17, 18]. In the present paper, the possibility of replacing ITO 
with boron-doped diamond is described. 
The addition of boron has a strong influence on the electrical conductivity of diamond layers [19-27]. 
For moderate boron concentrations - below 3 x 1020 cm-3 - standard conductivity values for diamond 
layers were found [19,28]. Higher boron concentrations typically result in conductive systems with 
electrical properties comparable to metallic materials; also, superconductivity was reported by 
Ekimov et al [13] in heavily B-doped diamond. There are also other parameters which influence 
boron-doped diamond layer charge transport properties – namely, the electronic structures of boron 
defects, the morphology of the nanodiamond layer (the addition of boron has a strong influence on 
the morphology of the layers grown [12-14, 20]), and the relative amount of sp2 and sp3 hybridized 
carbon in the nanodiamond layer [29-31]. The optimization of growth conditions at high 
boron/carbon ratios (up to 8000ppm in the gas phase during growth) can lead to low sheet 
resistance comparable to, or even lower than the best ITO samples. 
 



2. Experimental 
 

2.1. Diamond electrodes fabrication 

 
One of the main tasks was the proper patterning of the glass substrates for the subsequent 
measurements of the solar cells’ power conversion efficiency (PCE). Prior to the growth of the 
diamond layer, glass substrates were screened with a pattern mask, which enabled the area on top 
of the substrates to be covered with electrode channels 8mm in width. The substrates were then 
seeded with a nanodiamond particle solution which was sonicated before seeding in order to break 
up large clusters in dispersion. The mean size of the nanodiamond seeds in the solution was 5–10 nm 
as measured by dynamic light scattering (DLS) after sonication. Then, the glass substrates were 
cleaned in isopropyl alcohol (IPA) and subsequently dipped into the diamond dispersion. In order to 
produce a monolayer of nanodiamond seeds on the glass substrate surface, the seeding solution was 
deposited by spin coating for 30 seconds at 3000 rpm. This procedure resulted in homogenous 
coverage of the patterned substrates with a nucleation seed density of approximately 1010 cm-2 as 
measured by Atomic Force Microscopy (AFM). 
After the patterned seeding on glass substrates was prepared, boron-doped diamond (BDD) 
nanocrystalline films were grown by a chemical vapor deposition technique. A SEKI ASTeX 5010 
Microwave Plasma Enhanced CVD reactor was used to grow the BDD layers. Growth was performed 
in CH4/H2 plasma with a respective gas concentration ratio of 5%/95%. Boron doping was achieved by 
adding trimethylboron (TMB) to the gas mixture. The substrate temperature (700°C) during the BDD 
growth process was monitored by a Williamson Pro 92-38 dual-wavelength infrared pyrometer. By 
varying the B/C concentrations (from 2000 to 8000 ppm) during the growth process, layers with 
different doping levels were obtained. In order to obtain optically transparent electrodes, BDD layers 
with various thicknesses were produced.  
 
2.2. Diamond film characterization techniques 

 
Several characterization techniques were applied to investigate the properties of the boron-doped 
diamond films. In order to reveal the sp3/sp2 ratio (the presence of amorphous and graphitic phases) 
throughout the layer, Raman spectroscopy measurements were carried out. Spectra were taken at 
room temperature using a Renishaw InVia Raman microscope under the following conditions: 
wavelength – 488 nm (25 mW); objective – ×50 Olympus; slit size – 65μm; type of focus – spot focus; 
grating – 2400 l/mm. 
The conductivity and Hall constant were measured by the differential van der Pauw method using a 
Keithley 6221 current source and two electrometers, a Keithley 6514 with nano-voltmeter, and a 
Keithley 2182A, which recorded the voltage difference between the electrometers. A pulsed (quasi-
DC) measuring mode was used to compensate for parasitic thermoelectric signals. All electrical 
measurements were performed in the dark at room temperature (296±1 K). In all films investigated, 
the resistivity was measured with an error not exceeding 1–2%, while the Hall constant and mobility 
were determined with an accuracy of about 5%. For the electrical characterization of BDD films, 
titanium (20 nm)/gold (100 nm) triangle contacts were evaporated.  
Surface roughness, morphology, and film thickness were investigated by AFM using an NTEGRA 
Prima NT-MDT system under ambient conditions. Samples were scanned using an HA_NC Etalon tip 
in semi contact mode. A local contrast (LC) filter was applied to all images to better visualize each 
film’s morphology. 
The transmittance spectra of samples were characterized by a Varian Cary Probe 50 UV-VIS 
spectrometer (Agilent Technologies Inc., Santa Clara, CA, U.S.A.). The integral value of transmittance 
was determined by integrating spectral data in the range 300 – 850 nm. Commercially available 
ITO/glass reference substrates were purchased from Sigma Aldrich. The thickness of the reference 



ITO samples was 60-100 nm, with an electrical conductivity of ~50 Ω/□, as measured by the 4 probe 
method. 
 
2.3. Materials 

 
P3HT (Luminescence Technology Corp.), PC60BM (Solenne, 99 %), o-dichlorobenzene (Aldrich, 99.9 
%), ZnO nanoparticles dispersed in IPA (Gene’s Ink), Ca (Aldrich, 99.995 %), MoO3 (Aldrich, 99.98 %) 
and Ag (Aldrich, 99.99 %) were used as received without further purification. The active layer films 
were prepared from a P3HT:PC60BM solution (1:0.8 by weight) in o-dichlorobenzene and were stirred 
for 12 hours at 80°C until complete dissolution. The concentrations of the pure P3HT and PC60BM 
solutions in o-dichlorobenzene solvent were 17 mg mL-1 and 13.6 mg mL-1, respectively. All 
manipulations were carried out in a glove box under a nitrogen atmosphere unless otherwise stated. 
 
2.4. Device fabrication 

 
Inverted architecture P3HT:PC60BM devices were fabricated using the regular procedure [32-34]. 
After boron-doped diamond electrodes were grown, substrates were cleaned ultrasonically in 10% 
NaOH solution for 5 min, in deionized water for 15 min, and finally in IPA for 10 min to remove 
residual impurities. The cleaned substrates were covered by a ZnO suspension by spin-coating at 
2000 rpm for 40s at ambient atmosphere, and further annealed at 75°C for 45 seconds. Prior to 
deposition, the ZnO was filtered through a 0.45 mm nylon filter. 

100 nm polymer-fullerene heterojunction layers were prepared by spin coating 55 µl of P3HT:PC60BM 

solution at 1200 rpm for 15 seconds in a nitrogen atmosphere and then immediately placed into a 

closed petri dish for 60 minutes for solvent annealing. The devices were further thermally annealed 

at 130°C for 10 minutes. Top electrodes (7 nm of MoO3 and the subsequent evaporation of 100 nm of 

Ag) were deposited by vacuum evaporation. 

2.5. Solar cell characterization techniques 

Current density-voltage measurements were carried out under illumination using an Abet Sun 2000 
solar simulator with an air mass (AM) 1.5G filter. The simulated light intensity was adjusted to 1000 
Wm-2 by using a NREL-calibrated Si solar cell. 
Capacitance-voltage and impedance spectroscopy data were acquired using an Autolab PGSTAT-30 

equipped with a frequency analyzer module. 

  



3. Results and Discussion 
 

3.1. Diamond layers characterization 

 
Table 1: Diamond layer growth parameters: 
Sample 

№ 

B/C, 
ppm 

Time, 
min 

d[nm] ρ [Ω/□] 

1 2000 30 71 50000 

2 2000 60 148 910 

3 2000 120 281 50 

4 2000 240 466 48 

5 4000 30 65 1100 

6 4000 60 167 140 

7 4000 120 300 39 

8 4000 240 416 26 

9 8000 30 90 185 

10 8000 60 114 240 

11 8000 120 219 80 

12 8000 240 481 21 

 
Electrical measurements revealed that the conductivity of the BDD layers is correlated to the size of 
the grains in the layer. Indeed, for the same B/C ratio, thicker layers are less resistive, as can be seen 
from Table 1 and S1. This effect is attributed to the size of the grains [30], as confirmed by AFM scans 
(Figure 1.). The magnitude of the sheet resistance, measured by the four point probe technique, was 

in the range from 21 Ω/□ for the 481 nm thick sample prepared at an 8000 ppm B/C ratio to 

5x105 Ω/□ for the thin 70 nm diamond grown at the 2000 ppm B/C ratio (Table 1). Notably, the sheet 

resistance of the reference ITO sample was 50 Ω/□. Conductivity was found to be higher for thicker 
films with the same B content. One of the factors affecting conductivity is grain size. It has been 
reported [30] that films with a larger grain size possess higher conductivity due to the higher amount 
of boron atoms incorporated into the diamond lattice, while, in the case of smaller grain size films, a 
large amount of boron is located at the grain boundaries, which is consistent with previously 
reported theoretical predictions [35]. Although in the present case, metallic conductivity is highly 
desired; in the case of larger diamond grains a high degree of roughness can adversely affect the 
further processes of organic layer preparation. 
Of all of the grown samples (table 1), sample № 3 (the ~290 nm thick diamond) exhibited good 

conductivity with a sheet resistance of 50 Ω/□ and a decent integral transparency value in the 
measured wavelength range of around 40%, which is promising for ITO replacement applications. 
Thicker heavily boron-doped samples, i.e. those possessing better conductivity (a sheet resistance of 

up to 21 Ω/□ for sample № 12), were much less transparent, and were not considered suitable for 
the desired application. Detailed data are shown in table S1. 
All layers were investigated by AFM (see Figure 1.) and were found to be free of pinholes. The layers 
exhibited a distinct crystalline structure with grains showing a mixture of orientations. 
  



A B 
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Figure 1: AFM images of BDD layers (grown at 4000 ppm) with Local Contrast filtering showing the 
change in morphology with increasing layer thickness. A) 65 nm; B) 167 nm; C) 300 nm; D) 416 nm. 

 
Using Raman spectroscopy, peaks related to diamond (sp3) and graphitic or amorphous carbon (sp2) 
were detected for all layers investigated (Figure 2). A diamond peak was observed at 1322 cm−1 as 
well as broad features at 1150cm−1 and 1490cm−1, generally accepted as originating from 
transpolyacetylene at grain boundaries. Additional features were seen upon an increase in 
deposition time and TMB content, i.e. the appearance of broad peaks centered at 500 and 1225 cm−1, 
which were related to a locally distorted lattice structure induced by the addition of boron atoms. 
The crystalline diamond peak frequency exhibited a shift towards a lower wavenumber (∼1295 cm−1) 
upon increasing B content. The shift in frequency towards lower wavenumbers was also seen for the 
broad 500 cm−1band. Samples grown for longer deposition times exhibited an asymmetry 
(1250-1328 cm-1) in the spectra due to Fano-type interference between the discrete zone-center 
phonon and the continuum electronic states [36]. Notably, the Fano resonance just quenches the 
diamond line and does not mean a worsening of diamond quality. 
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Figure 2: Raman spectra of boron-doped diamond layers grown with different amounts of TMB 
(4,8,12) and for different deposition times (2,3,4). The spectra were excited by 488 nm laser radiation 
and offset for clarity. 



Table 2 Electrical properties of the samples, measured at 300K. 
Sample 

№ 

B/C 

ratio 

(ppm) 

d(µm) ρ (Ωcm) Carrier density 

(cm
-3

) 

Carrier 

mobility 

(cm
2
/Vs) 

4 2000 0.466 9.07·10
-3

 1.031·10
21

 0.6674 

8 4000 0.416 4.35·10
-3

 2.061·10
21

 0.6959 

12 8000 0.481 5.98·10
-3

 2.060·10
21

 0.5064 

 
From table 2, which shows the electrical properties of the diamond samples grown at various B/C 
concentrations, it can be seen that, at the 4000 ppm B/C ratio, the concentration of carriers saturates 
its maximum value, which can be explained by the dominant formation of boron-boron centers, as 
discussed in [37] as well as observed on the Raman spectra (figure 2) – the B-B peak increases both 
with B/C concentration and layer thickness. The drop in carrier mobility for sample № 12 can be 
explained by the increasing concentration of scattering centers (defects) different from the regular B 
acceptors. All the samples under study had a carrier density exceeding 1021 cm-3, which is 
characteristic of metallic conductivity. Compared to the carrier mobility of ITO (10-50 cm2/Vs 
[38,39]), that for diamond was determined to be two orders of magnitude lower. 
 

 
Figure 3: Transmittance spectra of diamond electrodes depending on thickness (left) and B/C ratio 
(right). 
 
Figure 3 depicts the dependences of diamond layer transmittance on layer thickness and B/C ratio. 
One can notice that the transmittance in the UV and visible spectra decreases with both the 
augmentation of boron during diamond growth and increasing layer thickness. The interpolated 
dependence of transmittance on conductivity is shown in figure 4. As can be observed, highly 
transparent diamond samples do not exhibit good conductivity; the most conductive sample with a 

transmittance of over 70% had a resistance >103 Ω/□. For highly conductive BDD samples, the best 
transparency values achieved were about 40%. 
 



 
Figure 4: Dependence of transmittance on the conductivity of the considered diamond electrodes 
 
Considering further aspects of the transparency vs. conductance issue, it can be noted that an 
increase in crystallite size, which can be controlled during the CVD process [40], will significantly 
decrease the proportion of grain boundaries in BDD films; thus, conductivity will significantly 
increase, although grain boundaries affect the transparency of the films due to the high sp2 ratio. In 
this case, the problem of greater diamond roughness caused by larger crystallite sizes can be solved 
by the previously reported process of plasma diamond polishing [41]. 
 
3.2. Solar cells characterization 
 

A) B) 

   
 
Figure 5: A) Scheme of the P3HT:PC60BM organic solar cell; B) equivalent circuit of the solar cell used 
in the impedance spectroscopy analysis, where Rs – series resistance corresponding to the 
BDD(ITO)/ZnO interface; R1 – parallel (recombination) resistance; and CPE1 – constant phase element 
corresponding to the capacitance of the cell. 
 



Bulk-heterojunction solar cells were fabricated according to the aforesaid procedure with the 
inverted architecture (see Figure 5A). As is shown in table S1, out of all the prepared diamond 
samples the best efficiency was achieved by the solar cell based on sample № 3 possessing 0.91% of 
PCE, which was about 40% of that of the reference ITO-based BHJ solar cell. From table 3 and figure 
4, it can be seen that the main losses in efficiency were due to lower transparency resulting in lower 
current density in comparison with the reference cell; this also resulted in slightly lower Voc. 
 
Table 3: Main parameters of the reference ITO and Diamond-based BHJ solar cells: 

Device Jsc Voc FF Eta Rshunt 

 
[mA/cm2] [mV] [%] [%] [Ohm·cm2] 

Reference ITO 7.32 565.62 56.74 2.35 9705 

Diamond№ 3 3.34 533.82 50.68 0.90 1122 

 
One of probable reasons for the reduction in PCE could also be the roughness of the BDD electrodes, 
which was an order of magnitude higher than the roughness of commercially available ITO. As 
suggested by AFM measurements, this effect could have resulted in high-series resistance, even 
though the 4 point method revealed superior conductivity. Large surface roughness of the BDD 
substrate could have induced layer inhomogeneity [42] due to the fact that the measured surface 
roughness of the BDD samples was comparable with the thickness of the P3HT:PC60BM layer (~100 
nm). In addition, and in general, the too close proximity of the diamond electrode to the Al layer can 
cause the appearance of conductive channels, which significantly reduces the fill factor of solar cells. 
Moreover, high roughness of the diamond electrodes hinders carrier transfer from the diamond 
cathode to ZnO nanoparticles.  
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Figure 6: JV curve in the dark for P3HT:PC60BM solar cells based on diamond and reference ITO 
electrodes. 
 
Figure 6 shows that a solar cell based on diamond electrodes possesses clear diode behavior. 
However, as already mentioned, due to higher diamond roughness and higher resistance, one can 
observe a slightly lower current density at forward diode characteristics as well as a higher leakage 
current at -1.0V. From the J-V curve under 1 sun illumination (Figure 7.), it can be observed that the 
current density is much lower, which, as already mentioned, is because of the lower transparency of 
the BDD layers, and that the series resistance is notably higher, which results in a lower fill factor. 
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Figure 7: J-V curves of P3HT:PC60BM devices based on diamond and reference ITO electrodes. 
 
The abovementioned devices were characterized by means of impedance spectroscopy in order to 
observe more closely the internal device structure and resistive contributions. As can be seen from 
table S1, the conductivity of sample № 3 was comparable with that of the reference ITO sample; 
however, the series resistance, measured by means of impedance spectroscopy [43,44] using the 
equivalent circuit depicted in figure 5B, was approximately 3.3 times higher (264 Ohm vs. 79 Ohm). In 
this case, the series resistance represents the BDD(ITO)/ZnO interface of the device, and, in the 
considered example, any significant increase in the resistance in comparison with direct 
measurements made by the 4 probe method determines the abovementioned resistive contributions 
at the interface. Even for samples whose conductivity exceeded that of ITO, the series resistance was 
higher. For example, the series resistance of the device based on sample № 8, which possessed a 
sheet resistance twice lower than the reference ITO, was found to be as high as 156 Ohm. This 
confirms the suggestion that significant roughness of the diamond layer plays a significant role in 
solar cell efficiency and can hinder electron transition at the diamond-ZnO interface. In light of this, a 
future step in this research area could be the use of electron/hole selective electrodes deposited on 
the diamond surface, which would not impede charge carrier transfer from the diamond to the 
selective contact. Several cross-linkable materials for hole-transport have been published, which 
could be useful in this respect [45, 46]; in-situ polymerized PEDOT:PSS [47] could be another option. 
However, in the present study, regular architecture devices with standard PEDOT:PSS as a hole 

selective layer did not present any advantages in PCE.Conclusion: 
 
In this paper, the possibility of replacing ITO with boron-doped diamond was described. However, 
the obtained PCE values were much lower than the ones using ITO as a transparent electrode. 
Therefore, diamond could be considered to be a prospective material for electrodes as soon as the 
issue of transparency vs. conduction is resolved. The values of efficiency achieved can be compared 
with those obtained using graphene electrodes in organic BHJ solar cells [48]; however, the applied 
material is much cheaper and easier to produce. Nevertheless, “the golden mean” between such 
parameters as B/C ratio and layer thickness still has to be found, as well as effective means of 
modifying such devices in order to increase PCE, e.g. by reducing diamond roughness and improving 
the purity of the diamond surface etc. In addition, the issues of low transparency and low carrier 
mobility still need to be resolved. Impedance spectroscopy, being a powerful tool for the 



characterization of solar cells, helped to reveal uncertainties in the device properties, which are 
caused mainly by the greater roughness of the diamond surface resulting in higher series resistance. 
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Supplementary materials 

 

Table S1. Summary of obtained sample parameters  

Sample / 
B/C ratio 

RMS [nm] thickness[n
m] 

R [Ohm/sq] T [%] η [%] 

Reference ITO 
1-2 60-100 50 >75 2.35 

1. / 2000 ppm 
8,8 71 50000 80,4 -- 

2.  / 2000 ppm 
9,2 148 910 75,6 -- 

3. / 2000 ppm 
13,3 281 50 39,0 0.91 

4. / 2000 ppm 
15,3 466 48 25,1 0.68 

5. / 4000 ppm 
7,6 65 1100 65,4 0.52 

6. / 4000 ppm 
8,9 167 140 37,2 0.67 

7. / 4000 ppm 
14,4 300 39 17,4 -- 

8. / 4000 ppm 
18 416 26 6,4 0.52 

9. / 8000 ppm 
7,7 90 185 62,2 0.55 

10. / 8000 ppm 
8,8 114 240 34,8 0.61 

11. / 8000 ppm 
12,9 219 80 13,7 -- 



12. / 8000 ppm 
23,3 481 21 3,9 -- 

 


