
Bachelor’s Degree in
Computational Mathematics

End-of-Degree Project

Post-Processing Routines for
Long-Term Beam Stability in

Accelerators

Author:
Xavier Valls Pla

Supervisors:
Riccardo De Maria (CERN),

José Antonio López Ort́ı (UJI)

Reading date: 27th of November 2015
Academic course 2014/2015

I certify that this work has been carried out by the student Xavier Valls Pla,
under my supervision, and is presented to constitute an End-of-Degree Project for
the Bachelor’s Degree in Computational Mathematics.

Signed: José Antonio López Ort́ı.

Summary

Accelerator complexes require the collaboration of thousands of scientists and engi-
neers to be able to build wonders like the Large Hadron Collider (LHC) at CERN
and study all the information obtained with its operation.

One of the key aspects for the operation of accelerators is the study of charged-
particle beam optics and dynamics. For instance, the simulation of single-particle
trajectories is used to predict and optimize the long-term stability of particle beams
inside an accelerator, which can take several hours or about 400 billion revolutions
for the LHC.

SixTrack is one of the codes used for simulating single-particle dynamics for the
LHC and other accelerators. It has been in development for the past 25 years at
CERN together with an ecosystem of pre- and post-processing tools (SixDesk) to
prepare, launch and process the results of the simulations.

This project contributes to SixTrack clarifying the theoretical foundations of the
physics behind the post-processing, providing a reference for its code and rewriting
part of SixDesk’s post-processing routines with modern libraries and re-optimized
algorithms together with a critical analysis of the decisions taken in the design
process.

The results consist in an improvement in term of analysis speed, a simplification
of the code structure, a thorough documentation of the Fortran post-processing sub-
routines, the implementation of new features and an improvement in the exposition
of the mathematical and physical methods behind the post-processing routines.

Keywords

SixTrack, beam dynamics, accelerator physics, particle tracking, Python.

Contents

1 Introduction and Motivation 1

1.1 CERN . 2

1.2 Beam Dynamics and Particle Tracking 4

1.3 SixTrack and the LHC@Home Platform 4

1.4 Problem . 5

1.5 Motivation . 6

1.6 Method . 6

1.7 Project’s Structure . 7

2 Theory Foundations 9

2.1 Coordinate System . 9

2.2 Hamiltonian Mechanics . 11

2.2.1 Particle Motion in an Accelerator 13

2.3 Beam Optics . 14

2.3.1 The Symplectic Integrator . 14

i

ii CONTENTS

2.3.2 The Lattice of an Accelerator: Components 15

2.3.3 Transverse Dynamics and Phase-space 16

2.3.4 Beam Optics Parameterization 18

2.3.5 Non-Linear motion . 21

3 SixTrack Post-Processing 23

3.1 Particle Tracking . 24

3.2 SixTrack . 24

3.3 SixTrack’s Post-Processing: A Walkthrough 26

3.4 From SixTrack to SixDesk’s Post-Processing 52

4 A Post-Processing Module for SixDeskDB 55

4.1 SixDeskDB: SixDesk’s Database Port 56

4.2 The Post-Processing Run . 60

4.3 Design and Implementation . 62

4.4 Results and Plotting . 67

5 Discussion and Conclusions 75

5.1 On Post-Processing and documentation 75

5.2 A New SixDeskDB Post-Processing Implementation 76

5.3 Future Work and Possible Improvements 77

List of Tables

3.1 Fort.10 reference (1) . 27

3.2 Fort.10 reference (2) . 28

3.3 Relations between optics quantities 29

4.1 Variables tracked in the output fort files. 65

4.2 Output fort files’ variables reference 66

iii

List of Figures

1.1 The CERN accelerator complex . 3

2.1 Moving reference frame . 10

2.2 Phase space ellipse in the transverse x, x′ plane. 18

3.1 SixTrack build process . 25

4.1 SixDeskDB classes (1) . 57

4.2 SixDeskDB classes (2) . 58

4.3 SixDeskDB classes (3) . 58

4.4 SixDeskDB classes (4) . 59

4.5 SixDesk run post process . 60

4.6 SixDesk’s output file tree . 61

4.7 Dependencies diagram for the post-processing run 63

4.8 Plot: Average emmittance . 68

4.9 Plot: Smear in % . 69

v

vi LIST OF FIGURES

4.10 Plot: Distance in the phase-space of two initially close-by particles . . 70

4.11 Plot: Dynamic aperture vs. K . 71

4.12 Plot: Maximum slope of distance in the phase-space 72

4.13 Plot: Survival time . 73

Chapter 1

Introduction and Motivation

Accelerators have become a key tool for the study of experimental particle physics.
Today, thousand of physicists around the world depend on the results generated by
the Large Hadron Collider.

Having such a big amount of people relying on the results of one of the most
complex works of engineering ever created demands an extraordinary precision in
the computations and tuning of the path the beam will follow. For that purpose,
simulators like SixTrack were created.

This chapter introduces CERN as an accelerator complex (Section 1.1), describes
what is hoped to achieve by tracking particles (Section 1.2) and gives an overview
(Section 1.3) of SixTrack as a particle-tracking simulator, its SixDesk run environ-
ment and the distributed voluntary-based computing platform LHC@Home.

Then, Section 1.4 will outline the problem to attack and the motivation behind
this project will be explained in Section 1.5, followed by a description of the method
applied to approach this project in Section 1.6. Finally, a brief description of the
structure of this dissertation is given in Section 1.7.

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.1 CERN

A particle accelerator is a machine built out of a large number of magnets and
electromagnetic devices. This devices are the ones in charge of guiding the beam
through the path described by the accelerator.

CERN is a complex of accelerators created as an intergovernmental organization
in 1954 in order to spark the study of particle physics making use of the several
linear and circular accelerators built with the collaboration of the 21 state members
and the associate state members.

Not all accelerators are equals or have the same purpose. For example, at CERN,
linear accelerators (LINAC2, LINAC3) are mainly used to inject the beam into the
circular ones, and some of this circular accelerators require a previous pass through
other smaller circular accelerators just to be sure that the beam is injected at the
right speed.

There are two beams at a time circulating on this chain of accelerators, each
beam consisting of a large number of bunches of the order of 1011 protons. For the
Large Hadron Collider (LHC) the chain starts extracting protons from hydrogen gas
and injecting them into the LINAC2. LINAC2 will accelerate the protons to 50 MeV
and then inject them to the PS Booster, which will bring them up to 1.4 GeV.Then
both beams are injected into the PS (Proton Synchrotron) and accelerated to 25
GeV to the last link of the chain (and the second biggest accelerator at CERN)
before being injected to the LHC, the SPS (Super Proton Synchrotron), where they
will reach the required injection energy for the LHC, 460 GeV. Finally, in the LHC
the beams will be able to reach up to 7 TeV of Energy.

A schematic drawing of the CERN accelerator complex, including the LHC chain,
can be observed in Figure 1.1.

At CERN, particle physics are studied in several ways, being the study of the
optics and beam dynamics one of the most central parts of it. This is done, for
instance, tracking particles in the beam and observing them at the same point of
the synchrotron for each turn.

1.1. CERN 3

Figure 1.1: The CERN accelerator complex, including the LHC chain. The yellow
dots in the LHC represent each one of the four big experiments.

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.2 Beam Dynamics and Particle Tracking

Most of the effects and beam dynamics in an accelerator can be observed by tracking
a single particle instead of a whole bunch of them inside an electromagnetic field
that represents a combination of the diverse elements that conform the accelerator:
dipoles, quadrupoles, drift spaces...

We are able to define the equations of motion for each one of this devices and sim-
plifying them into a one-turn symplectic matrix, making good use of the properties
of Hamiltonians to describe the electromagnetic field of the circular accelerator.

Particle tracking is useful, for example, for studying the dynamic aperture or the
long-term stability of the beam, and because of this, particle tracking codes aimed
at different studies, configurations and accelerators started to appear. One of the
long-lived ones is SixTrack.

1.3 SixTrack and the LHC@Home Platform

Accelerators are incredibly complex machines that require a huge amount of energy
and time to make them run, and the slightest deviation on the calculus of the optics
or the energy needed, or even an error in its setup (not achieving the void, a loose
screw, millimeters of difference between the platforms it stands on..) can mean
months of delay for its operation.

At the same time, the energy required and produced, and the limitations of what
the materials can stand, suppose that the operation of the LHC can only be available
during a limited amount of time. This requires physicists to make a selection from
all the tests they would ideally like to run given infinite time and, knowing that
they will have a fixed time window to do their tests, to tune the beam as precisely
as they can to obtain their desired results.

In this context, simulation codes have become an essential tool. SixTrack, the
simulator this project is about, is a six-dimensional particle tracking code aimed at
analyzing single-particle effects in circular accelerators.

As said before, accelerators are too complex that even simulators like Sixtrack
depend on the flexibility of the parameters used to tune the simulations and studies

1.4. PROBLEM 5

to run on them. This flexibility makes this tools really powerful but, at the same
time, too complex to use. For the sake of simplicity, a run environment for SixTrack
called SixDesk [11] was developed, hiding most of the complications. The user then
would only need to tune a small set of the parameters in a specific file that will be
parsed and feed into SixTrack for running a study.

But as technology advanced other bottlenecks appeared. The construction of
new, bigger and more complex accelerators and the continuous growth of computer-
aided research fueled a scientific-advance never seen before. Soon the existing pro-
cessing power of traditional computers was not enough for the biggest simulations,
and the demand for more computational power continued to soar.

In this situation, the search for new ways to acquire that greatly needed com-
putational power lead to the implementation of the LHC@Home platform [7]: a
volunteer computing system for massive numerical simulations of beam dynamics
and high energy physics events, where volunteers from all around the world, cur-
rently more than 125.000 registered users, help running beam dynamics simulation
by contributing spare processing capacity on their home and laptop computers. Six-
Track was the first project to make use of distributed computing this way at CERN,
achieving a ten to hundredfold increase in computing capacity by implementing and
making use of the BOINC [1] libraries, which will split the work to do from the
binaries and sent each one of the pieces to the volunteer computers for its execution
when they are idle.

1.4 Problem

SixTrack and SixDesk’s code is a complex mixture of Fortran 77, C and various
shell scripts and utilities. SixTrack’s core code itself has more than 70.000 lines of
Fortran code and a complex structure of source files managed by a preprocessor.

The evolution of computational power and the rise of projects like the LHC@Home
platform have empowered SixTrack’s users to a point where the maximum number
of entries under a folder limitation of the distributed file system used at CERN,
the Andrew File System (AFS) [8], has been reached quite frequently. To overcome
this limitations, a Python database-centered port of SixDesk has been taken into
development during the past year.

The underlying physics behind Sixtrack have been traditionally not documented

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

and, while there has been some remarkable improvement on this lately [4], its oper-
ation required some background using similar tools and advanced knowledge of how
the physics models are usually implemented in this kind of programs.

This project is mainly centered on the different SixTrack post-processing pro-
cedures, and will involve documenting the Fortran subroutines, porting the post-
processing scripts to Python and integrating them in the new SixDesk database
port.

1.5 Motivation

This project aims at making SixTrack’s development easier, fast and more under-
standable by improving its physics documentation and providing an understandable
description of the analysis and computations made on its post-processing subrou-
tines.

The Python database-centered implementation of SixTrack will provide a faster
way to manage, obtain and display the results of the post-processing runs, providing
an interface for the results obtained instead of looking at the files. It also attempts to
stop the proliferation of SixTrack’s private branches, making the code more modular,
using a friendlier language, improving execution times and, most of all, eliminating
its reliance on a complex structure of interdependent Bash and Fortran scripts.

1.6 Method

The project will start documenting the basics of the beam dynamics parametrization
in 6 dimensions. A thorough walk through the post-processing subroutines will
follow, extracting from it all the theory, formulas and the process they follow.

Then, the run post script and all its interdependent Bash and Fortran code for
long runs will be adapted and ported to the new SixDesk’s database-centered imple-
mentation, guaranteeing the replication of the Fortran-generated files and ensuring
numerical reproducibility.

Finally, SixDesk’s port will be extended with an on-demand interface to obtain

1.7. PROJECT’S STRUCTURE 7

the plots generated by run post script.

1.7 Project’s Structure

A brief overview of the chapters in this project:

• Chapter 2 introduces the relevant theoretical framework for this dissertation
and lays the ground for the implementation. It will introduce topics like
Hamiltonian mechanics, symplectic integration, dynamic stabilities and the
contribution made to the SixTrack physics manual, the theoretical 6-D pa-
rameterization.

• Chapter 3 gives an introduction to SixTrack and particle tracking describing
its purpose, putting a spotlight on the Post-processing computations. Then,
it walks the reader through its post-processing subroutine.

• Chapter 4 describes the work done implementing the proposed improvements
to SixDesk’s database, describing the original and final structures and display-
ing the results.

• Chapter 5 exposes the conclusions of this project and reflects on its impact in
Sixtrack’s future development.

Chapter 2

Theory Foundations

This Chapter familiarizes the reader with the theory foundations used to program
SixTrack and its post-processing subroutines.

Section 2.1 describes the reference coordinate system employed to parameterize
the particle motion. Section 2.2 describes the three alternate approaches for classical
mechanics used in beam dynamics and applies them to describe the motion of a
particle in an accelerator.

Finally, Section 2.3 dives into the more advanced topic of Beam Optics, introduc-
ing the components of an accelerator and walking the reader through the process
followed to parameterize the motion in six dimensions and the description of the
phase-space and the symplectic condition as the key concepts behind it.

2.1 Coordinate System

While describing the motion of a particle inside an accelerator, it’s convenient to
carry out a change of coordinates to a Frenet-Serret coordinate system like the one
shown in Figure 2.1.

The coordinate system moves with the particle along a reference trajectory de-
fined by an ideal particle. This trajectory, the design orbit, represents the ideal
closed orbit a reference particle with constant energy follows in a uniform and con-

9

10 CHAPTER 2. THEORY FOUNDATIONS

~r(s)

x̂(s)

ŷ(s)

ẑ(s)

ρ = 1
hx

X̂

Ŷ
Ẑ

~Q(x, y, s, t)

Figure 2.1: Moving reference frame (x̂, ŷ, ẑ) parameterized by s(t). The trajectory
of a particle Q can be described by the coordinates (x, y, s, t).

stant magnetic field. That means an ideal particle would circulate in the machine
forever.

Assuming the design orbit exists, it is referenced in the Figure 2.1 by ~r0(s),
where the path length s measures the distance to a chosen origin along the design
orbit.This path is described by ~Q(x, y, s, t) where x and y are transverse coordinates
specified to the design orbit.

In this ideal orbit, the bending radius ρ(s) and its inverse h(s) remain constant,
and the inverse of the bending radius will be denoted as hx and hy depending on
which plane the bending is performed.

To describe the trajectory of the particle relative to the design orbit, three unit
vectors are used: the tangent vector ~es, the unit normal vector ~eN and the unit binor-
mal vector ~eB. However, is convenient to define two new unit vectors combination
of the last two:

~ex(s) =

{
+~eN(s), orbit in horizontal plane

−~eB(s), orbit in vertical plane

~ey(s) =

{
+~eN(s), orbit in horizontal plane

+~eB(s), orbit in vertical plane

(2.1)

that leads to ~ex(s)× ~ey(s) = ~es(s), what means that {~ex(s), ~ey(s), ~es(s)} is a right-
handed orthonormal system with ~ex(s) always in the horizontal plane and ~ey(s)
always on the vertical one.

2.2. HAMILTONIAN MECHANICS 11

Then, the equation of the movement of the tracked particle can become:

~Q(x, y, s, t) = ~r0(s(t)) + x · ~ex(s(t)) + y · ~ey(s(t)) (2.2)

2.2 Hamiltonian Mechanics

In accelerator physics, three alternate approaches to classical mechanics are used:
the Newtonian, Lagrangian and Hamiltonian mechanics.They differ on the way of
defining a dynamical system in its canonical form: Using the force, the Lagrangian
or the Hamiltonian, respectively.

The conventional, classic Newtonian mechanics can be summarized with the
equation ∑

i

Fi =
d(mv)

dt

which relates the sum of the forces of a system with the temporal evolution of
the mechanical momentum of said system.

For the Lagrangian mechanics approach, the Lagrangian L of a system is defined
as

L ≡ T − V

where T is the kinetic energy of the system, and V is the potential energy.

Given the Lagrangian as the function L(qj, q̇j, t), the equations of motion of a
system can be expressed as

d

dt

(
∂L

∂q̇j

)
− ∂L

∂ qj
= 0, (j = 1, ..., n) (2.3)

where qi are the components of q. This formulation is known as the Euler-Langrange
equations of motion.

The third formulation, the Hamiltonian mechanics, is the one used during the
rest of the project.

12 CHAPTER 2. THEORY FOUNDATIONS

From the same Lagrangian L(qj, q̇j, t), the conjugate momenta pi of the system
can be obtained by

pi ≡
∂L(qj, q̇j, t)

∂q̇i
, i = 1, ..., n (2.4)

The Hamiltonian of a system is defined in terms of a set of coordinates qi and their
corresponding momenta pi. This coordinate pairs (qi, pi) are known as canonical
variables, and the Hamiltonian is written

H =
∑
i

q̇ipi − l(q, q̇, t) (2.5)

If the forces acting on the system are conservative and the position in space does
not explicitly depend on time, the Hamiltonian follows the equation

H = T + V (2.6)

In this case, the Hamiltonian is an expression for the total energy in the system.

Given the Hamiltonian, the equations of motion for a dynamical system can be
expressed as

dx

dt
= +

∂H

∂px
,

dy

dt
= +

∂H

∂py
,

dz

dt
= +

∂H

∂pz
,

dpx
dt

= −∂H
∂x

,
dpy
dt

= −∂H
∂y

,
dpz
dt

= −∂H
∂z

(2.7)

Canonical transformation
In Hamiltonian mechanics, a canonical transformation is a mapping from one set of
canonical coordinates to another preserving the form of Hamilton’s equation.

This transformation is usually performed to simplify the problem at hand (For
example, map from cartesian coordinates to polar coordinates for phase-space anal-
ysis). In this case, the transformation (pi, qi)→ (Qi, Pi) performed is written

Qi = Qi(q, p, t)Pi = Pi(q, p, t), i = 1, ..., N (2.8)

2.2. HAMILTONIAN MECHANICS 13

where p and q are the old sets of canonical coordinates.

This mapping leads to express the new canonical coordinates (Qi, Pi) with the
new Hamiltonian K as

dQi

dt
= +

∂K

∂Pi
,

dPi
dt

= − ∂K
∂Qi

(2.9)

2.2.1 Particle Motion in an Accelerator

The motion of a charged relativistic particle in the electromagnetic field E and B is
governed by the Lorentz Force:

F + q(E + v×B), (2.10)

being the electric field E and the magnetic field B related to the electromagnetic
scalar potential φ and the electromagnetic vector potential A as

E = −∇φ− ∂A

∂t
,

B = ∇×A
(2.11)

The Lagrangian is expressed as follows [9]:

L = −m0c
2

√
1− |v|

2

c2
− qφ+ qv ·A (2.12)

and deriving from the equation 2.5 we obtain the Hamiltonian

H ≡ H(x, px, y, py, σ, pσ; s),

H = pσ − (1 + hxx)

(√
(1 + δ)2 − (px − ax)2 − (py − ay)2 + as

)
(2.13)

where hx describes the horizontal inverse bending radius, δ ≡ δ(pσ) is the momentum
deviation respect to the reference particle and ai represents the components of the
electromagnetic vector potential normalized :

ax =
q

P0

Ax, ay =
q

P0

Ay, as =
q

P0

As (2.14)

14 CHAPTER 2. THEORY FOUNDATIONS

The canonical momentum (px, py) is given by

px =
1

P0

 mvx√
1− |v|2

c2

+ qAx

 ,

py =
1

P0

 mvy√
1− |v|2

c2

+ qAy

 (2.15)

The longitudinal coordinates (σ, pσ) are defined by:

σ = s− β0ct,

pσ =
1

β0

E − E0

P0c

(2.16)

With this canonical variables and its Hamiltonian, the following Hamilton’s equa-
tions can be defined:

dx

ds
= +

∂H

∂px
,

dy

ds
= +

∂H

∂py
,

dσ

ds
= +

∂H

∂pσ
,

dpx
ds

= −∂H
∂x

,
dpy
ds

= −∂H
∂y

,
dpσ
ds

= −∂H
∂σ

(2.17)

2.3 Beam Optics

The motion of the particle inside an accelerator can be described in terms of the
set of coordinates z = {x, x′, y, y′, σ, δ}, where σ = s− v0 × t is the path length and
δ = ∆p−p0

p0
is the relative momentum deviation from the design orbit’s momentum

p0.

2.3.1 The Symplectic Integrator

A geometrical integrator maps or transform a given set of coordinates to a new one
by means of canonical transformations. A symplectic integrator is a geometrical
numerical integrator of differential equations, and the symplectic condition is stated
as follows:

MTSM = S, (2.18)

2.3. BEAM OPTICS 15

where

M =

∂X1

∂x1

∂X1

∂p1
· · · ∂X1

∂xN

∂X1

∂pN
∂X2

∂x1

∂X2

∂p1
· · · ∂X2

∂xN

∂X2

∂pN
...

...
. . .

...
...

∂XN

∂x1

∂XN

∂p1
· · · ∂XN

∂xN

∂XN

∂pN

 (2.19)

is the Jacobian matrix of the transformation from the set of coordinates (x1, p1, x2, p2, ..., xN , pN)
to the new one (X1, P1, X2, P2, ..., XN , PN) and S is the symplectic matrix

S =

0 1
−1 0

. . .

0 1
−1 0

 , (2.20)

its form depending on which order the coordinates are defined in.

An important property from this is that for any number of Jacobian matrices
M1,M2, ...,MN that satisfy the symplectic condition in Equation 2.18, the product

N∏
i=1

Mi = M1 ·M2 · · ·Mn = Mtotal (2.21)

also satisfies the symplectic condition.

2.3.2 The Lattice of an Accelerator: Components

An accelerator is a complex machine composed of thousand of smaller devices,
mainly magnets. All the magnets fall within the following categories:

• Dipole: Magnet used to bend the beam so it follows the path described by
the accelerator. In circular accelerators, the bending angle of all the dipoles
has to come to 2π.

• Quadrupole: Magnet used to focus the beam around the accelerator. Al-
though it focuses the beam in one plane, it the focuses it in the other plane.
That’s why they are usually bundled in sets combining Focusing and defo-
cusing quadrupoles with drift spaces, meaning by focusing a vertical focusing
quadrupole and by defocusing the horizontal focusing one.

16 CHAPTER 2. THEORY FOUNDATIONS

• Sextupoles: Used for chromaticity compensation.

• Higher order magnets: Octupoles, decapoles, dodecapoles...they are used
to correct or introduce nonlinear behaviors in the beam.

while other components include:

• Drift space: Field-free region of the accelerator, usually located between
elements. A particle moving inside a drift space doesn’t experience any change
in its momentum.

• Radio Frequency-cavity: Accelerates and focuses the beam longitudinally
to preserve the bunch structure of the beam.

The equations of motion for each one of this devices can be obtained as transfer
maps in the form of symplectic matrices that satisfy the symplectic condition stated
in the Equation 2.18.

The one-turn map of a circular accelerator is the set of functions that relate
the initial coordinates of the particle to the final coordinates after one turn. This
one turn map for a particular position in the ring can be obtained applying the
properties of symplectic matrices as shown in the Equation 2.21.

2.3.3 Transverse Dynamics and Phase-space

In theory, the dipoles in a circular accelerator define an ideal orbit for a particle with
the reference momentum p0. This orbit follows a perfect path through the center of
each element and closes itself after one complete turn along the circumference.

An orbit that closes in upon itself is referenced as a closed orbit. In practice
this dipoles around the ring have errors and, alongside other effects, will distort the
real closed orbit from the ideal design orbit and will require the use of quadrupoles
for focusing and defocusing.

In a circular accelerator, the focusing due to the quadrupoles is periodic along the
path, and therefore the motion of a particle in the transverse plane can be studied

2.3. BEAM OPTICS 17

with the linearized Hill’s equation

z′′ ± k(s)z = 0 z = x, y z′ =
dz

ds
' pz

1 + δ
, (2.22)

where k(s) is a periodic focusing coefficient determined by the properties of the
lattice. This equation can be derived by the solving the Hamilton equation for:

H =
1

2

(p2
x + p2

y)

1 + δ
+ k(s)

(x2 − y2)

2
(2.23)

which is a linear approximation (Equation 2.13) for a pure quadrupole and k =
∂Bx
∂y

= −∂By
∂x

.

The solutions for Hill’s equation take the form of

z =
√
βz(s)εz cos(φz(s) + φz0), z = x, y (2.24)

where φ is the phase angle and ε is a constant of motions called Courant-Snyder
invariant (or amplitude) which average over all particles in beam relates to the so-
called beam emittance, and represents the area a particle occupies in the phase-
space.

Under the influence of conservative forces the particle density in the phase space
stays constant (Liouville’s theorem). The phase ellipse in Figure 2.2 is described by:

γ(s)z2 + 2α(s)zz′ + β(s)z′
2

= ε, z = x, y (2.25)

where α, β and γ are called the Courant-Snyder lattice functions. β is the beta-
function of the accelerator that describes the variation of the oscillation envelope
around the ring, γ describes the envelope of oscillations in x′ and y′ and both are
related by the alpha function

αz = −1

2

d

ds
βz(s) =

√
γz(s)βz(s)− 1, z = x, y (2.26)

18 CHAPTER 2. THEORY FOUNDATIONS

x′

x

√
εxβx

√
εx
βx
αx

√
εxγx

Figure 2.2: Phase space ellipse in the transverse x, x′ plane.

2.3.4 Beam Optics Parameterization

The one-turn map M leads to stable motion whenever the eigenvalues λ±I,II,III =
exp(±i2πQI,II,III) are complex and conjugate and the tunes QI,II,III are real.

The one-turn map can be then decomposed in

M = TRT−1 (2.27)

where R is

R =

cos(2πQI) sin(2πQI) 0 0 0 0
− sin(2πQI) cos(2πQI) 0 0 0 0

0 0 cos(2πQII) sin(2πQII) 0 0
0 0 − sin(2πQII) cos(2πQII) 0 0
0 0 0 0 cos(2πQIII) sin(2πQIII)
0 0 0 0 − sin(2πQIII) cos(2πQIII)

2.3. BEAM OPTICS 19

the rotation matrix and

T =

x1 x′1 y1 y′1 σ1 δ1

x2 x′2 y2 y′2 σ2 δ2

x3 x′3 y3 y′3 σ3 δ3

x4 x′4 y4 y′4 σ4 δ4

x5 x′5 y5 y′5 σ5 δ5

x6 x′6 y6 y′6 σ6 δ6

has the eigenvectors ~zi = (xi, x
′
i, yi, y

′
i, σi, δi) for i = 1, . . . , 6 as rows.

The eigenvectors can be normalized in such a way

TST T =

 x1x
′
1 − x1x

′
1 + ... = 0 x1x

′
2 − x2x

′
1 + ... = 1 ...

x2x
′
1 − x1x

′
2 + ... = −1 x2x

′
2 − x2x

′
2 + ... = 0 ...

...

 = S

where S is the symplectic form in Eq. 2.20.

The optical properties of a lattice are conveniently described by a set of lattice
functions.

For a general six-dimensional case, including coupling, three distinct oscillation
modes I, II, III give rise to three sets of lattice functions [16].

Matrix T can be used to extract the coupled lattice functions by the following
steps.

A point in the 6-dimensional phase space ~z = (x, x′, y, y′, σ, δ) can be described
by 6 independent vectors ~zi = (xi, x

′
i, yi, y

′
i, σi, δi) for i = 1, . . . , 6

x1 =
√
βxI(s) cos ΦxI(s) x2 =

√
βxI(s) sin ΦxI(s)

x′1 =
√
γxI(s) cos Φ̃xI(s) x′2 =

√
γxI(s) sin Φ̃xI(s)

x3 =
√
βxII(s) cos ΦxII(s) x4 =

√
βxII(s) sin ΦxII(s)

x′3 =
√
γxII(s) cos Φ̃xII(s) x′4 =

√
γxII(s) sin Φ̃xII(s)

x5 =
√
βxIII(s) cos ΦxIII(s) x6 =

√
βxIII(s) sin ΦxIII(s)

x′5 =
√
γxIII(s) cos Φ̃xIII(s) x′6 =

√
γxIII(s) sin Φ̃xIII(s),

20 CHAPTER 2. THEORY FOUNDATIONS

and similarly for the yi, y
′
i, σi and δi coordinates, using the lattice functions for the

vertical and longitudinal planes and

Φ̃yI = ΦyI − arctan(1/αyI) (2.28)

~z =

√
εI
√
βxI cos(ΦxI + φI) +

√
εII
√
βxII cos(ΦxII + φII) +

√
εIII
√
βxIII cos(ΦxIII + φIII)√

εI
√
γxI cos(Φ̃xI + φI) +

√
εII
√
γxII cos(Φ̃xII + φII) +

√
εIII
√
γxIII cos(Φ̃xIII + φIII)√

εI
√
βyI cos(ΦyI + φI) +

√
εII
√
βyII cos(ΦyII + φII) +

√
εIII

√
βyIII cos(ΦyIII + φIII)√

εI
√
γyI cos(Φ̃yI + φI) +

√
εII
√
γyII cos(Φ̃yII + φII) +

√
εIII
√
γyIII cos(Φ̃yIII + φIII)√

εI
√
βσI cos(ΦσI + φI) +

√
εII
√
βσII cos(ΦσII + φII) +

√
εIII
√
βσIII cos(ΦσIII + φIII)√

εI
√
βδI cos(ΦδI + φI) +

√
εII
√
βδII cos(ΦδII + φII) +

√
εIII
√
βδIII cos(ΦδIII + φIII)

 ,

where φI , φII and φIII are initial phases for the I , II and III modes, and
√
εI ,√

εII , and
√
εIII are the amplitudes of mode I, II and III, respectively.

Under this definition the effect of the one-turn map can be also expressed as:

~z =
√
εI (~z1 cos(φI + 2πQI) + ~z2 sin(φI + 2πQI)) (2.29)

+
√
εII (~z3 cos(φII + 2πQII) + ~z4 sin(φII + 2πQII)) (2.30)

+
√
εIII (~z5 cos(φIII + 2πQIII) + ~z6 sin(φIII + 2πQIII)) (2.31)

The relation between T matrix and lattice functions can be found by:

βxI = x2
1 + x2

2 γxI = x′21 + x′22 αxI = −(x1x
′
1 + x2x

′
2) ΦxI = arctan(x2/x1)

βxII = x2
3 + x2

4 γxII = x′23 + x′24 αxII = −(x3x
′
3 + x4x

′
4) ΦxII = arctan(x4/x3)

βxIII = x2
5 + x2

6 γxIII = x′25 + x′26 αxIII = −(x3x
′
5 + x6x

′
6) ΦxIII = arctan(x6/x5)

βyI = y2
1 + y2

2 γyI = y′21 + y′22 αyI = −(y1y
′
1 + y2y

′
2) ΦyI = arctan(y2/y1)

βyII = y2
3 + y2

4 γyII = y′23 + y′24 αyII = −(y3y
′
3 + y4y

′
4) ΦyII = arctan(y4/y3)

βyIII = y2
5 + y2

6 γyIII = y′25 + y′26 αyIII = −(y3y
′
5 + y6y

′
6) ΦyIII = arctan(y6/y5)

βsI = s2
1 + s2

2 γsI = δ2
1 + δ2

2 ασI = −(σ1δ1 + σ2δ2) ΦσI = arctan(σ2/σ1)
βσII = σ2

3 + σ2
4 γσII = δ2

3 + δ2
4 ασII = −(σ3δ3 + σ4δ4) ΦσII = arctan(σ4/σ3)

βσIII = σ2
5 + σ2

6 γσIII = δ2
5 + δ2

6 ασIII = −(σ3δ5 + σ6δ6) ΦσIII = arctan(σ6/σ5)

(2.32)

where ai = ∂a
∂zi

, that is, x1 = ∂x
∂x
, x2 = ∂x

∂x′
, x3 = ∂x

∂y
, ... and

To obtain the lattice functions in another point of the circular accelerator it is
enough with transporting the generating vectors through the lattice.

2.3. BEAM OPTICS 21

2.3.5 Non-Linear motion

If the motion is linear and the one-turn map has stable eigenvalues, the motion of a
single particle is bounded for an infinity large number of turns and any phase-space
point can be associated with an linear invariant. However, the motion is perturbed
in case of the existence of a non-linear force, leading to chaotic motion with particle
trajectories that are not anymore bounded inside an ellipse of the phase space.

In case of weak-nonlinearities, the motion is still stable for a long time in a
relatively large area of the phase-space whose projection in the x,y plane is usually
comparable with the vacuum pipe cross-section of an accelerator. In fact, if it is
too small, not so many particles can circulate in the machine and most of them will
be lost quickly. The region is typically not very large, since non-linear elements are
added on purpose to compensate energy errors and provide a spread of the frequency
of the natural modes.

For weak non-linearities it still makes sense to calculate linear invariant like
amplitudes, tunes, lattice functions that this time will evolve turn-by-turn.

In addition it is also useful to track particles with very close coordinates to study
the sensitivity of the motion under a small variation of the initial conditions.

Instead of looking directly at the trajectory coordinates, the coefficient of the
linear parameterization (like ε, φ) offers a more stable and decoupled set of the
coordinates, whose unique source of variation comes from the non-linear motion
because in case of following an ideal linear motion they are invariant.

SixTrack computes both particle trajectories and linear lattice functions whose
combined analysis forms the foundation of the post-processing routines.

Chapter 3

SixTrack Post-Processing

SixTrack [17] is a single-particle six-dimensional symplectic tracking code optimized
for long-term tracking in high-energy rings. Based in RACETRACK [19] and pub-
lished for the first time in 1990 by Frank Schmidt, it has been used for several kinds
of studies for the LHC like dynamic aperture, tune optimization or collimation stud-
ies.

SixTrack has been in heavy development for the past 25 years [5], and it will
continue evolving in the near future with improvements like our database-based
post-processing port, new physics models, new particle parameters (mass, charge
state...) and the development of GPU libraries to delegate the computationally
heavy parts on them.

This chapter introduces SixTrack as a particle-tracking code and its post-processing
subroutine, describing the problems tackled with it, its relationship with the track-
ing routines and how does everything fit together with SixDesk’s post-processing
runs. Section 3.1 explains the motivation behind particle tracking, while Section
3.3 points specifically to SixTrack’s post-processing subroutines and provides a doc-
umented walk through their code and Section 3.4 gives an overview of the whole
simulation and study process as it is run by SixDesk.

23

24 CHAPTER 3. SIXTRACK POST-PROCESSING

3.1 Particle Tracking

Particle tracking has become a key tool for the simulation and study of the beam
behavior inside an accelerator. There are some interesting studies to be done with
the help of particle tracking [10]. We use it for the study of, among others, the
possibility of calculating and predicting the dynamic aperture (effective aperture of
the particle motion), its dependence on the nonlinearities, tunes, finding closed orbit
distortions or long-term beam stability.

During the past thirty years, simulation codes like SixTrack, MAD-X, RACE-
TRACK or PTC have been in development to apply particle tracking techniques
from different approaches. This codes run simulations of the movement of the parti-
cle inside the high-energy ring for thousands of turns, observing the characteristics
of the particle (amplitude, phase advance, coordinates,...) in the position s0 for each
one of this turns.

Tracking codes have traditionally had the problems of rounding precision and lim-
ited CPU-time. While the processing time has been improving over time and had the
help of new techniques like distributed computing (CPSS project [13], LHC@Home
project [7]), the problem of rounding-related differences between platforms appeared
for each one of the compilers available, until was finally solved in SixTrack with the
inclusion of the crlibm library [3], which corrected rounding error difference in a
portable way [12], the enforcement of strict ordering of the operation and specific
compiler flags, making the result numerically reproducible.

A typical SixTrack run for a DA study in the LHC involves the simulation of 5
different angles in the phase-space and 60 different representation of the magnetic
errors (seeds), in each of those cases tracking 30 pairs of particles for 1005 turns.
A study of that size can take several days, as each one of the cases needs around 2
hours of computing time to be finished.

3.2 SixTrack

SixTrack as a single-particle tracking code is being used to simulate the motion of
charged particles inside the LHC. SixTrack is written in Fortran 77 and takes more
than 70000 lines of code in a structure that requires the use of a pre-processor to
simplify the code and to substitute special expressions on the source files applying

3.2. SIXTRACK 25

the Differential Algebra extension for Fortran (DAFOR) [2].

This structure can be observed in the Figure 4.5.

make six
.ast

+ .s

new directory

.f SixTrack

Figure 3.1: SixTrack build process. The make six file generates an .ast file for each
Fortran file to be produced. The .ast files produce the Fortran files from the source
code in the three .s files, sixtrack.s, lielib.s and dabnew.s. The Fortran files
are linked and compiled to produce the SixTrack executable file.

make six has to be invoked with certain flags to choose which .ast mask files
are going to be used for selecting the blocks of code from the .s source files that
will appear on the final Fortran files.

While running the make six script, five Fortran files are generated:

• track.f File that contains the tracking maps for the lattice: dipoles, quadrupoles,
octupoles, RF cavities, higher-order magnets, crab cavities...although most of
the subroutines are adapted for both 4-D and the 6D case, for some specific
cases it’s only possible to use the 6D approach.

• sixve.f Main Fortran file. It defines the main program and most of the sub-
routines. The postpr post-processing subroutine is contained on this file.

• sixvefox.f Contains subroutines for the calculation of the closed orbit and the
lattice optics mapping using a differential algebra approach.

• lielib.f E. Forest subroutines for normal form calculations [6].

• dabnews.f DAFOR subroutines called by sixvefox.f during the close orbit
calculation.

This files will be compiled into a Fortran executable that will take as an input
the description of the accelerator in the fort.2 file and the settings and description

26 CHAPTER 3. SIXTRACK POST-PROCESSING

of the elements from the fort.3 file. Then, it will initialize all parameters and
variables, compute the six-dimensional close orbit as well as the Courant-Snyder
invariants and perform the tracking.

Finally, the tracking data is analyzed and post-processed as specified in the
fort.3 file.

3.3 SixTrack’s Post-Processing: A Walkthrough

SixTrack’s post-processing subroutine is the one in charge of and generating the
fort.10 file, among others.

Sixtrack post-processes the data in the routine called postpr(nfile). This
routine reads binary files (fort.90, fort.89, ...) produced by the turn-by-turn
tracking subroutine. This files contain data collected for a certain number of turns
specified by the field nwr(3).

The results of this post-processing are stored in the fort.10 file, each row rep-
resenting a measure and each column a variable. A detailed description of each one
of the columns of the final fort.10 can be found in Table 3.1 and Table 3.2, while
a reference for the beam optics involved can be found in Table 3.3.

What follows is a walk through the different sections of the subroutine and its
flow. Each one of this sections will be introduced by a descriptive title and will
contain a description of the most relevant lines of code and variables it contains.

Keep in mind that this walkthrough is not a line-by-line description of the code
and it is supposed to be followed while reading the original Sixtrack’ s Fortran source
code. It should be read sequentially and while most of the sections will be explained
in detail, some of them will just have a description of what is happening in that
portion of the code.

All the formulas expressed in this code have been obtained looking at the code
and double-checking them with the reference bibliography.

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 27

C Variable Description Formula

1 nnuml Maximum turn number
2 nlost Stability Flag (0=stable, 1=lost)
3 qwc(1) Horizontal Tune Qx
4 qwc(2) Vertical Tune Qy
5 bet0(1) Horizontal βfunction βxI = T1,1

2 + T1,2
2

6 bet0(2) Vertical βfunction βyI = T3,3
2 + T3,4

2

7 Horizontal amplitude 1st particle
√
βxI ∗ εI +

√
βxII ∗ εII

8 Vertical amplitude 1st particle
√
βyI ∗ εI +

√
βyII ∗ εII

9 Relative momentum deviation ∆p
p0

∆p
p0

- δ0

10 biav(i) Final distance in phase space
11 slope(i) Max. slope of distance in phase space

12 Horizontal detuning ψx −Qx
13 sdpx Spread of horizontal detuning

14 Vertical detuning ψy −Qy
15 sdpz Spread of vertical detuning
16 im1s Horizontal factor to nearest resonance
17 jm1s Vertical factor to nearest resonance
18 im1s+jm1s Order of nearest resonance
19 sevx Horizontal smear sevxi−1 + (εvxi − εvxi)2

20 sevz Vertical smear sevzi−1 + (εvxi − εvzi)2

21 sevt Transverse smear sevti−1 + (εvxi + εvzi − εvti)2

22 ia/ifipa Survived turns 1st particle
23 ia/ilapa Survived turns 2nd particle
24 dizu0 Starting seed for random generator
25 tph6 Synchrotron tune

26 Horizontal amplitude 2nd particle
√
βxI ∗ εvx2 +

√
βxII ∗ εvy2

27 Vertical amplitude 2nd particle
√
βyI ∗ εvy2 +

√
βyII ∗ εvx2

28 Minimum horizontal amplitude
√
βyI ∗ |min εx|

29 Mean horizontal amplitude
√
βxI ∗ εx

30 Maximum horizontal amplitude
√
βxI ∗max εx

Table 3.1: Description of the entries in the fort.10 results file, with the corresponding
variable the Fortran source code when present.

28 CHAPTER 3. SIXTRACK POST-PROCESSING

C Variable Description Formula

31 Minimum vertical amplitude
√
βyI ∗ |min εy|

32 Mean vertical amplitude
√
βyI ∗ εy

33 Maximum vertical amplitude
√
βyI ∗max εz

34 Minimum horizontal amplitude ld
√
βyI ∗ |min εvx|

35 Mean horizontal amplitude ld
√
βxI ∗ εvx

36 Maximum horizontal amplitude ld
√
βxI ∗max εvx

37 Minimum vertical amplitude ld
√
βyI ∗ |min εvy|

38 Mean vertical amplitude ld
√
βyI ∗ εvz

39 Maximum vertical amplitude ld
√
βyI ∗max εvy

40 Minimum horizontal amplitude nld
√

(βxI ∗ |min εvt|) ∗ εx
εx+εy

41 Mean horizontal amplitude nld
√

(βxI ∗ εvt) ∗ εx
εx+εy

42 Maximum horizontal amplitude nld
√

(βxI ∗max εvt) ∗ εx
εx+εy

43 Minimum vertical amplitude nld
√

(βyI ∗ |min εvt|) ∗ εy
εx+εy

44 Mean vertical amplitude nld
√

(βyI ∗ εvt) ∗ εy
εx+εy

45 Maximum vertical amplitude ld
√

(βyI ∗max εvt) ∗ εy
εx+εy

46 emi Emittance Mode I εI =
(
x
∑6

i=0
∂zi
∂x

)2
+
(
x̃′
∑6

i=0
∂zi
∂x̃′

)2

47 emii Emittance Mode II εII =
(
y
∑6

i=0
∂zi
∂y

)2
+
(
ỹ′

2∑6
i=0

∂zi
∂ỹ′

)2

48 bet0x2 Secondary horizontal βfunction βxII = T1,3
2 + T1,4

2

49 bet0z2 Secondary vertical βfunction βyII = T3,1
2 + T3,2

2

50 chrom(1) Q’x Q′x
51 chrom(2) Q’y Q′y
52 ttot SixTrack Version
53 clo(1) Closed Orbit x z01 = x0

54 clop(1), Closed Orbit x′ z02 = x0
′

55 clo(2) Closed Orbit y z03 = y0

56 clop(2) Closed Orbit y′ z04 = y0
′

57 clo(3) Closed Orbit σ z05 = σ0

58 clop(3) Closed Orbit δ z06 = δ0

59 dnms The number of the Random Set
60 trttime Tracking CPU time in seconds

Table 3.2: Description of the column entries in the fort.10 results file, with the
corresponding variable the Fortran source code when present. ld stands for linear
decoupled, nld for nonlinear decoupled.

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 29

Symbol Description Formula
N Number of particles
z Particle characteristics z = {x, x′, y, y′, σ, δ}
x, y x and y coordinates
px, py x and y momenta
σ Path length σ = s− v0 × t
δ Relative momentum deviation δ = ∆P

p0

M One-turn tracking Matrix Tij = ∂zi
∂zj

z0 Closed Orbit parameters z0 = {x0, x0
′, y0, y0

′, σ0, δ0}
z̃ Charact. respect to the closed orbit z̃ = {x̃, x̃′, ỹ, ỹ′, σ̃, δ̃}, z̃i = zi − z0

x̃′, ỹ′ Canonical momentums x̃′, ỹ′ {x̃′, ỹ′} = {x′, y′} ∗ ((1 + δ) + δ0)
Qx, Qy Horizontal and vertical tunes
Q′x, Q

′
y Horizontal and vertical chromaticities

ψ, ψ Phase advance, Mean phase advance

εx Horizontal emittance εx = c2 + βxI∗x̃′+αxI∗x̃
βxI

εy Vertical emittance εy = c2 +
βyI∗ỹ′+αyI∗ỹ

βyI

ε Averaged emittance
εI , εII Mode I and Mode II emittances εI = εvx, εII = εvy

εvx Linear decoupled horizontal emittance εvx =
(
x̃
∑6

i=0 Ti,1
)2

+
(
x′
∑6

i=0 Ti,2
)2

εvy, Linear decoupled vertical emittance εvy =
(
ỹ
∑6

i=0 Ti,3
)2

+
(
ỹ′
∑6

i=0 Ti,4

)2

εvt Emittance sum... εvt = εx + εy
βxI Primary horizontal βfunction βxI = T1,1

2 + T1,2
2

βxII Secondary horizontal βfunction βxII = T1,3
2 + T1,4

2

βyI Primary vertical βfunction βyI = T3,3
2 + T3,4

2

βyII Secondary vertical βfunction βyII = T3,1
2 + T3,2

2

Table 3.3: Relations between optics quantities

30 CHAPTER 3. SIXTRACK POST-PROCESSING

Format of the Binary Data

For reference, the first thing to describe will be the binary data taken from the input
files, specifying the units in which the variables are expressed:

Name Description
ia Turn number
ifipa Particle number
b Angular distance in phase space (<= 1)
c x(mm)
d x’(mrad)
e y(mm)
f y’(mrad)
g Path-length (σ = s− v0 × t) (mm)
h Relative momentum deviation δ = p

p0

p Energy (MeV)

Initialization and Reading the Header

First of all the code imports all the common blocks it needs and sets up the variables,
including the start time ones:

Name Description
cdate date
ctime time

Then it reads the following initial coordinates and parameters from the file unit
specified as argument:

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 31

Name Description
ifipa first particle in the file
ilapa last particle in the file
itopa total number of particles
icode Dimensions of phase space (4D, 5D, 6D).
numl Projected number of turns
qwc(1) Horizontal Tune
qwc(2) Vertical Tune
qwc(3) Longitudinal Tune
ta(6,6) 6x6 transfer matrix e.g. ta(i,j) = Ti, j in SI unit
clo(i) Closed Orbit vector (space)
clop(i) Closed Orbit vector (momentum)
di0(i) Dispersion vector (space)
dip0(i) Dispersion vector (momentum)

At this point, the 5th and 6th columns of the fort.10 file (βxI , βyI) can be
computed right away and the values of the closed orbit coordinates can be written
to file:

Variable Content Description
sumda(5) ta(1,1)**2+ta(1,2)**2 Horizontal β-function
sumda(6) ta(3,3)**2+ta(3,4)**2 Vertical β-function
sumda(53) clo(1) closed orbit x —x0

sumda(54) clop(1) closed orbit x’ —x′0
sumda(55) clo(2) closed orbit y —y0

sumda(56) clop(2) closed orbit y’ —y′0
sumda(57) clo(3) closed orbit σ —σ0

sumda(58) clop(3) closed orbit δ —δ0

This section of the code starts transforming the physical coordinates in normal-
ized coordinates by using the T matrix (Equation 2.27).

The following identities are defined:

ta(i,1) rcw1(i) Ti1
ta(i,3) rcw2(i) Ti3
ta(i,2) ycw1(i) Ti2
ta(i,4) ycw2(i) Ti4

32 CHAPTER 3. SIXTRACK POST-PROCESSING

The matrix T can be calculated by either the routine matrix that calls umlauf

using the 4D formalism or the routine qmodda(3,qwc) using the 6D formalism (qwc
are the three tunes), which computes the one-turn matrix M from the lattice ele-
ments defined in fort.2 input file.

Once the T matrix is obtained, the initial lattice functions (see Equation 2.32)
at the initial point can be defined:

Variable Description
bet0(1) Horizontal β-function
bet0x2 Secondary horizontal β-function
bet0x3 Tertiary horizontal β-function
gam0x1 Horizontal γ-function
gam0x2 Secondary horizontal γ-function
gam0x3 Tertiary horizontal γ-function
alf0(1) Horizontal α-function
alf0x2 Secondary horizontal α-function
alf0x3 Tertiary horizontal α-function
bet0(2) Vertical β-function
bet0z2 Secondary vertical β-function
bet0z3 Tertiary vertical β-function
gam0z1 Vertical γ-function
gam0z2 Secondary vertical γ-function
gam0z3 Tertiary vertical γ-function
alf0(2) Vertical α-function
alf0z2 Secondary vertical α-function
alf0z3 Tertiary vertical α-function
bet0(3) Longitudinal β-function
bet0s2 Secondary longitudinal β-function
bet0s3 Tertiary β-function
gam0s1 Longitudinal γ-function
gam0s2 Secondary longitudinal γ-function
gam0s3 Tertiary longitudinal γ-function
alf0(3) Longitudinal α-function
alf0s2 Secondary longitudinal α-function
alf0s3 Tertiary longitudinal α-function
bet04(1) Horizontal β-function
bet04(2) Vertical β-function
alf04(1) Horizontal α-function
alf04(2) Vertical α-function

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 33

and computed:

Code expression Relating formula
bet0(1)=ta(1,1)**2+ta(1,2)**2 βxI = T1,1

2 + T1,2
2

bet0x2 =ta(1,3)**2+ta(1,4)**2 βxII = T1,3
2 + T1,4

2

bet0x3 =ta(1,5)**2+ta16**2 βxIII = T1,5
2 + T1,6

2

gam0x1 =ta(2,1)**2+ta(2,2)**2 γxI = T2,1
2 + T2,2

2

gam0x2 =ta(2,3)**2+ta(2,4)**2 γxII = T2,3
2 + T2,4

2

gam0x3 =ta(2,5)**2+ta26**2 γxIII = T2,5
2 + T2,6

2

alf0(1)=-(ta(1,1)*ta(2,1)+ta(1,2)*ta(2,2)) αxI = −(T1,1T2,1 + T1,2T2,2)
alf0x2 =-(ta(1,3)*ta(2,3)+ta(1,4)*ta(2,4)) αxII = −(T1,3T2,3 + T1,4T2,4)
alf0x3 =-(ta(1,5)*ta(2,5)+ta16*ta26) αxIII = −(T1,5T2,5 + T1,6T2,6)
bet0(2)=ta(3,3)**2+ta(3,4)**2 βyI = T3,3

2 + T3,4
2

bet0z2 =ta(3,1)**2+ta(3,2)**2 βyII = T3,1
2 + T3,2

2

bet0z3 =ta(3,5)**2+ta36**2 βyIII = T3,5
2 + T3,6

2

gam0z1 =ta(4,3)**2+ta(4,4)**2 γyI = T4,3
2 + T4,4

2

gam0z2 =ta(4,1)**2+ta(4,2)**2 γyII = T4,1
2 + T4,2

2

gam0z3 =ta(4,5)**2+ta46**2 γyIII = T4,5
2 + T4,6

2

alf0(2)=-(ta(3,3)*ta(4,3)+ta(3,4)*ta(4,4)) αyI = −(T3,3T4,3 + T3,4T4,4)
alf0z2 =-(ta(3,1)*ta(4,1)+ta(3,2)*ta(4,2)) αyII = −(T3,1T3,1 + T3,2T4,2)
alf0z3 =-(ta(3,5)*ta(4,5)+ta36*ta46) αyIII = −(T3,5T4,5 + T3,6T4,6)
bet0(3)=ta(5,5)**2+ta56**2 βsI = T5,5

2 + T5,6
2

bet0s2 =ta(5,1)**2+ta(5,2)**2 βsII = T5,1
2 + T5,2

2

bet0s3 =ta(5,3)**2+ta(5,4)**2 βsIII = T5,3
2 + T5,4

2

gam0s1 =ta65**2+ta(6,6)**2 γsI = T6,5
2 + T6,6

2

gam0s2 =ta61**2+ta62**2 γsII = T6,1
2 + T6,2

2

gam0s3 =ta63**2+ta64**2 γsIII = T6,3
2 + T6,4

2

alf0(3)=-(ta(5,5)*ta65+ta56*ta(6,6)) αsI = −(T5,5T6,5 + T5,6T6,6)
alf0s2 =-(ta(5,1)*ta61+ta(5,2)*ta62) αsII = −(T5,1T5,2 + T6,1T6,2)
alf0s3 =-(ta(5,3)*ta63+ta(5,4)*ta64) αsIII = −(T5,3T6,3 + T5,4T6,4)
bet04(1)=bet0(1) βxI = T1,1

2 + T1,2
2

bet04(2)=bet0(2) βyI = T3,3
2 + T3,4

2

alf04(1)=alf0(1) αxI = T1,1T2,1 + T1,2T2,2

alf04(2)=alf0(2) αyI = T3,3T4,3 + T3,4T4,4

Setting up of the parameters

In this section is where the titles of the plots are determined and where the variables
are set to zero. The most interesting part in this section of the code is the inversion

34 CHAPTER 3. SIXTRACK POST-PROCESSING

of the matrix of the generating vectors, where the vector

Variable Description Formula
t(i,j)=ta(j,i) Transposed of the one-turn transfer matrix T Tj,i

is computed and its inversion is achieved by placing a call to the subroutine
dinv(n,a,idim,ir,ifail), where in this case n is 6, a is the transposed (also
inverse as it is symplectic) of the one turn transfer matrix, idim is 6, ir gets a
dummy value and ifail is the error retrieving variable:

parameter value Description
n 6
a t Transposed/inverse of the one turn transfer matrix
idim 6
ir dummy

ifail error Error retrieving variable

Finally, the 6D flag is set if the variable

Variable Description Formula

tasum Summation
∑6

i=1(T5,i + T6,i) +
∑4

i=1(Ti,5 + Ti,6)− 4

is not zero.

Find minimum value of the distance in the phase space

Here it calls the soubroutine distance(x,clo,di0,t,dam) to calculate the mini-
mum value of the distance in the phasespace for two twin particles.

Param Value Description
x x concatenated array of coordinates for both twin particles
clo cloau Closed orbit vector (space)
di0 di0au Dispersion vector (space)
t t Transposed (also inverse) of the one turn transfer matrix
dam b Angular distance in phase space (<= 1)

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 35

Get first data point as a reference

This section is where the actual post processing starts. Sequentially it:

• Reads the first binary record of the file (first data point) and prints it as the
initial coordinates.

• Detects the onset of chaotic motion and thereby the long-term dynamic aper-
ture by evaluating the Lyapunov exponent. Calls the subroutine distance as
described above.

• Saves the number of turn ia as the first turn (ia0), initializes variables and
computes the deviations respect to the closed orbit of the particle (z̃i) and the
twin particle (z̃′i) :

Line Formula
ia0 = ia

xxr(1) = c

xxi(1) = zero

zzr(1) = e

zzi(1) = zero

c = c-clo(1) x̃

d = d-clop(1) x̃′

e = e-clo(2) ỹ

f = f-clop(2) ỹ′

g = g-clo(3) σ̃

h = h-clop(3) δ̃
c1 = c1-clo(1) x̃2

d1 = d1-clop(1) x̃′2
e1 = e1-clo(2) ỹ2

f1 = f1-clop(2) ỹ′2
g1 = g1-clo(3) σ̃2

h1 = h1-clop(3) δ̃2

• Performs the calculation of the emittances in the x and y phase:

36 CHAPTER 3. SIXTRACK POST-PROCESSING

Variable Description
xp0 intermediate variable
zp0 intermediate variable
emx Horizontal emittance
emz Vertical emittance
emt Emittance sum
emax Initialization of the maximum horizontal emittance variable
emix Initialization of the minimum horizontal emittance variable
emxa Initialization of the averaged horizontal emittance variable
emaz Initialization of the maximum vertical emittance variable
emiz Initialization of the minimum vertical emittance variable
emza Initialization of the averaged vertical emittance variable
emat Initialization of the maximum composed emittance variable
emit Initialization of the minimum composed emittance variable
emta Initialization of the averaged composed emittance variable
emx0 Initialization of the initial horizontal emittance variable
emz0 Initialization of the initial vertical emittance variable

...following the formulas:

Expression Formula

xp0=bet0(1)*d+alf0(1)*c xp0 = βxI ∗ x̃′ + αxI ∗ x̃
zp0=bet0(2)*f+alf0(2)*e yp0 = βyI ∗ ỹ′ + αyI ∗ ỹ
emx = (c**2+xp0**2)/bet0(1) εx = x̃2+(βxI∗x̃′+αxI∗x̃)2

βxI

emz =(e**2+zp0**2)/bet0(2) εy =
ỹ2+(βyI∗ỹ′+αyI∗ỹ)2

βyI

emt = emx+emz εvt = εx + εy
emax = emx max εx = εx
emix = emx min εx = εx
emxa = emx εx = εx
emaz = emz max εy = εy
emiz = emz min εy = εy
emza = emz εy = εy
emat = emt max εt = εt
emit = emt min εt = εt
emta = emt εt = εt
emx0 = emx εx0 = εx
emz0 = emz εy0 = εy

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 37

• Initializes the Courant-Snyder array with the coordinates from the first particle
and makes the conversion to canonical variables:

Variable Description
xyzv vector initialized to z̃
txyz(iq) Courant-Snyder array

Code Formula
xyzv xyzv(i) = z̃i
txyz(iq) = txyz(iq)+t(jq,iq)*xyzv(jq) txyz(i) = z̃i

∑6
j=1 Tj,i

• Prints the angular distance in the phase-space.

• Computes the horizontal and vertical emittances with linear coupling.

Variable Description
evx Horizontal linear coupled emittance
evx Vertical linear coupled emittance

Code Formula

evx = txyz(1)**2+txyz(2)**2) εvx =
(
x̃
∑6

j=1 Tj,1

)2

+
(
x̃′
∑6

j=1 Tj,2

)2

evx = txyz(3)**2+txyz(4)**2 εvy =
(
ỹ
∑6

j=1 Tj,3

)2

+
(
ỹ′
∑6

j=1 Tj,4

)2

• Does the conversion to canonical variable as it did above, this time for the
twin particle.

• If the 6-D approach is the one being used, computes the third linear coupled
emittance.

emiii = txyz(5)**2*cma2**2+txyz(6)**2*cma1**2

εIII =
(
σ̃
∑6

j=1 Tj,5

)2

+
(
δ̃
∑6

j=1 Tj,6

)2

• Multiplies the Courant-Snyder array by rbeta.

• Initializes the variables used to represent the mı́nimum and máximum values
of the coordinates, energy and angular distance in the phase space.

38 CHAPTER 3. SIXTRACK POST-PROCESSING

Variable Description
pmin(2) Minimum value for the angular distance in phase space parameter
pmax(2) Maximum value for the angular distance in phase space parameter
pmin(3) Minimum value for the x parameter
pmax(3) Maximum value for the x parameter
pmin(4) Minimum value for the x’ parameter
pmax(4) Maximum value for the x’ parameter
pmin(5) Minimum value for the y parameter
pmax(5) Maximum value for the y parameter
pmin(6) Minimum value for the y’ parameter
pmax(6) Maximum value for the y’ parameter
pmin(9) Minimum value for the σ parameter
pmax(9) Maximum value for the σ parameter
pmin(10) Minimum value for the δ parameter
pmax(10) Maximum value for the δ parameter
pmin(16) Minimum value for the energy parameter
pmax(16) Maximum value for the energy parameter

Code Formula
pmin(2) = b pmin(2) = θinitial
pmax(2) = b pmax(2) = θinitial
pmin(3) = c0 pmin(3) = xinitial
pmax(3) = c0 pmax(3) = xinitial
pmin(4) = d0 pmin(4) = x′initial
pmax(4) = d0 pmax(4) = x′initial
pmin(5) = e0 pmin(5) = yinitial
pmax(5) = e0 pmax(5) = yinitial
pmin(6) = f0 pmin(6) = y′initial
pmax(6) = f0 pmax(6) = y′initial
pmin(9) = g0 pmin(9) = σinitial
pmax(9) = g0 pmax(9) = σinitial
pmin(10) = h0 pmin(10) = δinitial
pmax(10) = h0 pmax(10) = δinitial
pmin(16) = p pmin(16) = Einitial
pmax(16) = p pmax(16) = Einitial

• Initializes the maximum/minimum linear decoupled emittances and the angle
variables.

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 39

Code Description Formula
emi = evx Initialize εI εI = εvx
emii = evz Initialize εII εII = εvy
angi = zero Initialize θI θI = 0
angii = zero Initialize θII θII = 0
angiii = zero Initialize θIII θIII = 0
evt = evx+evz Computes εvt εvt = εvx + εvy
evxma = evx Initialize the maximum of εvx max εvx = εvx
evzma = evz Initialize the maximum of εvy max εvy = εvy
evtma = evt Initialize the maximum of εvt max εvt = εvt
evxmi = evx Initialize the minimum of εvx min εvx = εvx
evzmi = evz Initialize the minimum of εvy min εvy = εvy
evtmi = evt Initialize the minimum of εvt min εvt = εvt

If(abs(txyz(5)).gt.pieni.or.abs(txyz(6)).gt.pieni):

angiii = atan2 rn(txyz(6)*cma1,txyz(5)*cma2)

if any of {abs(σ
∑l

i=1 Tj,5), abs(δ
∑l

i=1 Tj,6)} > 0 then :

θIII = call atan2 rn(σ
∑l

i=1 Tj,5 δ
∑l

i=1 Tj,6)

• Performs a coordinate-angle conversion with the subroutine caconv(a,b,c),
which computes the arc tangent (round near) between b and c and stores it in
a. Then it adds the new angle to the initial one:

line call caconv(dpx,d0,c0)

call caconv(dpz,f0,e0)

dpxp=tpi+dpx

dpzp=tpi+dpz

• Computes the two invariants that define the elliptical boundary with the sub-
routine cinv.
cinvar(dpx,dphix,dpz,dpzp,nuex,emz,zinv,invz) adds ninv∗εmy to zinv

and ninv to invz.
For the other invariant, cinvar(dpz,dphiz,dpx,dpxp,nuez,emx,xinv,invx)
adds ninv ∗ εmx to xinv and ninv to invx.

40 CHAPTER 3. SIXTRACK POST-PROCESSING

Get Data Points

Once the first data points are obtained and processed, the subroutine proceeds to
get all the other data points and transports them to the circular phase space. Most
of the code will be replicated from the previous section of the code:

• Retrieves the parameters of the new particle and increments the counter of
binary records in one.

• Detects the onset of chaotic motion and thereby the long-term dynamic aper-
ture by evaluating the Lyapunov exponent. Calls the subroutine distance as
described above.

• Works on the calculation of the emitances in the x and y phase spaces:

Code Description
emt Emittance sum
emxa Averaged horizontal emittance variable
emza Averaged vertical emittance variable
emta Averaged composed emittance variable
emax Maximum horizontal emittance variable
emix Minimum horizontal emittance variable
emaz Maximum vertical emittance variable
emiz Minimum vertical emittance variable
emat Maximum composed emittance variable
emit Minimum composed emittance variable

Code Formula
emt = emx+emz εvt = εx + εy
emxa = emx εx = εx + εx
emza = emz εy = εy + εy
emta = emt εt = εt + εt
emax = emx max εx = max(εx,max εx)
emix = emx min εx = min(εx,min εx)
emaz = emz max εy = max(εy,max εy)
emiz = emz min εy = min(εy,min εy)
emat = emt max εt = max(εt,max εt)
emit = emt min εt = min(εt,min εt)

• Initializes the Courant-Snyder array and converts it to canonical variables 1.

1Dissected in previous subsections

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 41

• Computes the horizontal and vertical emittances with linear coupling1.

• Updates the variables for the mı́nimum and máximum values of the coordi-
nates, energy and angular distance in the phase space:

Code Formula
pmin(2) = min(pmin(2),b) pmin(2) = min(pmin(2), θ)
pmax(2) = max(pmax(2),b) pmax(2) = max(pmax(2), θ)
pmin(3) = min(pmin(3),c0) pmin(3) = min(pmin(3), x)
pmax(3) = max(pmax(3),c0) pmax(3) = max(pmax(3), x)
pmin(4) = min(pmin(4),d0) pmin(4) = min(pmin(4), x′)
pmax(4) = max(pmax(4),d0) pmax(4) = max(pmax(4), x′)
pmin(5) = min(pmin(5),e0) pmin(5) = min(pmin(5), y)
pmax(5) = max(pmax(5),e0) pmax(5) = max(pmax(5), y)
pmin(6) = min(pmin(6),f0) pmin(6) = min(pmin(6), y′)
pmax(6) = max(pmax(6),f0) pmax(6) = max(pmax(6), y′)
pmin(9) = min(pmin(9),g0) pmin(9) = min(pmin(9), σ)
pmax(9) = max(pmax(9),g0) pmax(9) = max(pmax(9), σ)
pmin(10) = min(pmin(10),h0) pmin(10) = min(pmin(10), δ)
pmax(10) = max(pmax(10),h0) pmax(10) = max(pmax(10), δ)
pmin(16) = min(pmin(16),p) pmin(16) = min(pmin(16), E)
pmax(16) = max(pmax(16),p) pmax(16) = max(pmax(16), E)

• Maintains a log of the distances of the phase-space and saves the difference in
the number of turns per data entry

Code Description
ia=ia-nstart difference in turns since the beginning of the analysis
ia=idnt=ia-ia0 difference in turns since the beginning of the analysis

• Performs the computation of the emittances.

42 CHAPTER 3. SIXTRACK POST-PROCESSING

Code Description Formula
evt1 = evt1+evz1 Computes εvt1 εvt1 = εvx1 + εvy1

evxma = evx Saves the maximum of εvx max εvx = max(max εvx, εvx1)
evzma = evz Saves the maximum of εvy max εvy = max(max εvy, εvy1)
evtma = evt Saves the maximum of εvt max εvt = max(max εvt, εvt1)
evxmi = evx Saves the minimum of εvx min εvx = min(min εvx, εvx1)
evzmi = evz Saves the minimum of εvy min εvy = min(min εvy, εvy1)
evtmi = evt Saves the minimum of εvt min εvt = min(min εvt, εvt1)
evx = evx+evx1 Computes εvx εvx = εvx + εvx1

evz = evz+evz1 Computes εvy εvy = εvy + εvy1

evt = evt+evt1 Computes εvt εvt = εvt + εvt1

• Performs the adding of the phase advances using the subroutine cphase, whose
arguments in order would be (replace x with y and 6/s for the other dimen-
sions):

Argument Description
1 Row of the phase matrix to use
dphx Variable to write on
sx sx = x ∗ x′initial − xinitial ∗ x′
cx sy = xinitial ∗ x+ x′initial ∗ x′
qx0 Horizontal tune qx0

ivox switch for the Qx-value close to a half-integer
iwarx set to one if sx and cx < 1038 (below minimum precision)
iapx iapx+1 if sx or cx > 1038

• Data is averaged in samples of IAV turns.

• The coordinate-angle conversion is performed by the subroutine caconv(a,b,c),
which performs the arc-tangent (round near) between b and c and stores it in
a. Then it adds the new angle to the initial one1.

• Computes with the subroutine cinv the two invariants that define the elliptical
boundary1.

• Resets the coordinates by taking the actual particle as a reference for the next
one: zinitial = z.

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 43

Analyzing Data

Here the program analyzes the data, gets the necessary variables(phase advance,
emittances) and ports them back to the circular phase space.

• First, it fits the distance in the phase space calling the two fitting functions
[14].

Call Description
lfitwd(x,y,w,l,key,a,b,e) Fits a straight line y=a*x+b to l points

with s**2 estimator e.
lfitd(x,y,w,l,key,a,b,e) Fits a straight line y=a*x+b to l points

with error e.

where weights are in w and l is the number of points. If key=0, points with

y=0 are ignored .

The call

lfitwd(x,y,w,l,key,a,b,e)

applies the operations:

a =

∑l
j=1 wj

2xjyj −
∑l

j=1 wj
2xj∗

∑l
j=1 wj

2yj∑l
j=1 wj

2∑l
j=1wj

2xj2 − (
∑l

j=1 wj
2xj)2∑l

j=1 wj
2

b =

∑l
j=1 wj

2yj − a
∑l

j=1wj
2xj∑l

j=1wj
2

e =

∑l
j=1 wj

2yj
2 −

∑l
j=1 wj

2yj∑l
j=1 wj

2
− a

(∑l
j=1 wj

2xjyj −
∑l

j=1 wj
2xj∗

∑l
j=1 wj

2yj∑l
j=1 wj

2

)
n

while calling

lfitd(x,y,w,l,key,a,b,e)

44 CHAPTER 3. SIXTRACK POST-PROCESSING

answers to

a =

∑l
i=1(xi − x)(yi − y)∑l

i=1(xi − x)2

b = y − ax

e =

∑l
i=1(yi − y)− a

(∑l
i=1(xi − x)(yi − y)

)
n− 2

• After the distance fitting it computes the averaged phase advances:

Code Formula

tphx=dphx/dble(iapx) ψx
tphz=dphz/dble(iapz) ψy
tph6=dph6/dble(iap6) ψs

where tphx, tphz and tph6 are respectively the averaged phase advance on
the x coordinate, the averaged phase advance on the y coordinate and the
averaged phase advance on the longitudinal coordinate.

• For obtaining the standard deviation of the phase advances, it loops from i=1

to iapx, iapz and iaps, respectively computing (example for the x case):

sdpx=sdpx+(phase(1,i)-tphx)**2.

and after the loop :

sdpx=sqrt(sdpx)/dble(iapx).

or, expressed as an equation (for the three coordinates):√∑iapx
i=1 (φx,i − ψx)2

iapx√∑iapy
i=1 (φy,i − ψy)2

iapy√∑iaps
i=1 (φs,i − ψs)2

iaps

• Then it looks for the averaged emittances. Being n the number of particles
retrieved and knowing that all the average variables have been just summations
until now:

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 45

Code Description Formula
emxa=emxa/di11 Averages the εx emittances εx = εx

n

emza=emza/di11 Averages the εy emittances εy = εy
n

emta=emta/di11 Averages the εt emittances εt = εt
n

evxm=evx/di11 Averages the εvx emittances εvx = εvx
n

evzm=evz/di11 Averages the εvy emittances εvy = εvy
n

evtm=evt/di11 Averages the εvt emittances εvt = εvt
n

• Performs the smear and 4-D smear calculations. Starts a new loop retrieving
the particles parameters since the beginning.

• Obtains the mean emittances2.

• Initializes the Courant-Snyder array with the coordinates from the first parti-
cle2.

• Ports the Courant-Snyder array to Canonical Variables2.

• Computes the horizontal and vertical emittances with linear coupling2.

• Multiplies the Courant-Snyder array by rbeta2.

• Obtains the transverse emittance and the smear for all three dimensions:

Code Description Formula
evt=evx+evz Computes εvt εvt = εvx + εvy
sevx=sevx+(evx-evxm)**2 Horizontal smear sevxi−1 + (εvxi − εvxi)2

sevz=sevz+(evz-evzm)**2 Vertical smear sevzi−1 + (εvxi − εvzi)2

sevt=sevt+(evt-evtm)**2 Transverse smear sevti−1 + (εvti − εvtmi
)2

• Calls the subroutine sinpro(a,b,c,d,e) to get the smear in percentage. This
function expresses d and e in terms of percentages of a.

Call
call sinpro(emxa,di11,emxs,emax,emix)

call sinpro(emza,di11,emzs,emaz,emiz)

call sinpro(emta,di11,emts,emat,emit)

call sinpro(evxm,di11,sevx,evxma,evxmi)

call sinpro(evzm,di11,sevz,evzma,evzmi)

call sinpro(evtm,di11,sevt,evtma,evtmi)

2 Formulas and variables involved dissected in previous subsections

46 CHAPTER 3. SIXTRACK POST-PROCESSING

Printing

Then it proceeds to build a summary of the post-processing to write it in the fort.10
file (See Tables 3.1 and 3.2).

• Gets the difference in the number of turns per data entry (tidnt) and saves
columns 2,10,11,22 and 23 for all the rows in the fort.10 output file.

Variable Content Alternative content
sumda(22) dble(nnumxv(ifipa)) dble(ia)

sumda(23) dble(nnumxv(ilapa)) dble(ia)

sumda(2) dble(nlost) dble(nlost)

sumda(10) biav(i2-1) biav(i2-1)

sumda(11) slope(i2-1) slopem

Variable Description
sumda(22) Number of survived turns of the first particle
sumda(23) Number of survived turns of the twin particle
sumda(2) Stability Flag (0=stable, 1=lost)Number of lost particles
sumda(10) Final distance in phase space
sumda(11) Maximum slope of distance in phase space

• Performs the calculation of the averaged phase-advances and saves the follow-
ing columns to the variables to write on the fort.10 file:

Variable Content Description
sumda(12) tphx-qwc(1) Horizontal detuning
sumda(13) sdpx Spread of horizontal detuning
sumda(14) tphz-qwc(2) Vertical detuning
sumda(15) sdpz Spread of vertical detuning
sumda(25) tph6 Synchrotron tune

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 47

Variable Content Formula

sumda(12) tphx-qwc(1) ψx −Qx

sumda(13) sdpx σψx−Qx
=

√∑iapx
i=1 (φx,i−ψx)2

iapx

sumda(14) tphz-qwc(2) ψy −Qy

sumda(15) sdpz σψy−Qy
=

√∑iapy
i=1 (φy,i−ψy)2

iapy

sumda(25) tph6

• Obtains the distance of the Q-values (averaged phase-advances) to the reso-
nances and saves the columns:

Variable Content Description
sumda(16) dble(im1s) Horizontal factor to nearest resonance
sumda(17) dble(jm1s) Vertical factor to nearest resonance
sumda(18) sumda(16)+sumda(17) Order of nearest resonance

• Computes the Q-values by an FFT routine. Calls the soubroutine

fft(xxr,xxi,ifp,ife),

where xxr is the sequence of x positions to analyze and decompose in the
complex array given by xxr, xxi. ifp and ife are the start and the end
of the interval where the analysis is performed. The same is done for the
vertical positions. Then it stores the maximum and minimum values of the
tune interval for the Horizontal and vertical tune:

Variable Description
pmax(21) Maximum values of the horizontal tune interval
pmin(21) Minimum value of the horizontal tune interval
pmax(23) Maximum value of the vertical tune interval
pmin(23) Minimum value of the vertical tune interval

This values depend on the variable ifh:

ifh = 0 : 0 ≤ Q ≤ 1

ifh = 0 : 0 ≤ Q ≤ 0.5

ifh = 00.5 ≤ Q ≤ 1

Finally, the maximum and minimum values of the norm for each number of
the arrays is computed in each of the extremes of the interval given by ifh.

48 CHAPTER 3. SIXTRACK POST-PROCESSING

Variable Description
xxmax Maximum norm of the numbers in the xx complex array
zzmax Maximum norm of the numbers in the xx complex array
xxmin Minimum norm of the numbers in the xx complex array
zzmin Minimum norm of the numbers in the xx complex array

Variable Content Formula

xxmax max(xxmax,sqrt(xxr(i)**2+xxi(i)**2)) max
√
xx2 + xxi2

zzmax max(zzmax,sqrt(zzr(i)**2+zzi(i)**2)) max
√
zz2 + zzi2

xxmin min(xxmin,sqrt(xxr(i)**2+xxi(i)**2)) min
√
xx2 + xxi2

zzmin min(zzmin,sqrt(zzr(i)**2+zzi(i)**2)) min
√
zz2 + zzi2

• Computes the distance of the Q− values (this time the ones generated by the
FFT routine) to the resonances.

• Prints the 4-D invariants with linear coupling: writes on the screen the val-
ues of emi, emii, emiii,angi,angii, angiii, evxm, sevx, evxma, evxmi,
evzm,sevz, evzma, evzmi, evtm, sevt, evtma and evtmi.

• Saves the emittances and the smear:

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 49

Variable Description
sumda(46) Emittance Mode I
sumda(47) Emittance Mode II
sumda(48) Secondary horizontal β-function
sumda(49) Secondary vertical β-function
sumda(7) Horizontal amplitude 1st particle
sumda(8) Vertical amplitude 1st particle
sumda(26) Horizontal amplitude 2nd particle
sumda(27) Vertical amplitude 2nd particle
sumda(19) Horizontal smear
sumda(20) Vertical smear
sumda(21) Transverse smear
sumda(59) The number of the Random Set
sumda(24) Starting seed for random generator
sumda(28) Minimum horizontal amplitude
sumda(29) Mean horizontal amplitude
sumda(30) Maximum horizontal amplitude
sumda(31) Minimum vertical amplitude
sumda(32) Mean vertical amplitude
sumda(33) Maximum vertical amplitude
sumda(34) Minimum horizontal amplitude (linear decoupled)
sumda(35) Mean horizontal amplitude (linear decoupled)
sumda(36) Maximum horizontal amplitude (linear decoupled)
sumda(37) Minimum vertical amplitude (linear decoupled)
sumda(38) Mean vertical amplitude (linear decoupled)
sumda(39) Maximum vertical amplitude (linear decoupled)
sumda(40) Minimum horizontal amplitude (nonlinear decoupled)
sumda(41) Mean horizontal amplitude (nonlinear decoupled)
sumda(42) Maximum horizontal amplitude (nonlinear decoupled)
sumda(43) Minimum vertical amplitude (nonlinear decoupled)
sumda(44) Mean vertical amplitude (nonlinear decoupled)
sumda(45) Maximum vertical amplitude (nonlinear decoupled)

50 CHAPTER 3. SIXTRACK POST-PROCESSING

Variable Content
sumda(46) emi

sumda(47) emii

sumda(48) bet0x2

sumda(49) bet0z2

sumda(7) sqrt(bet0(1)*emi)+sqrt(bet0x2*emii)

sumda(8) sqrt(bet0(2)*emii)+sqrt(bet0z2*emi)

sumda(26) sqrt(bet0(1)*evx2)+sqrt(bet0x2*evz2)

sumda(27) sqrt(bet0(2)*evz2)+sqrt(bet0z2*evx2)

sumda(19) sevx

sumda(20) sevz

sumda(21) sevt

sumda(59) dnms

sumda(24) dizu0

sumda(28) sqrt(bet0(1)*abs(emix))

sumda(29) sqrt(bet0(1)*emxa)

sumda(30) sqrt(bet0(1)*emax)

sumda(31) sqrt(bet0(2)*abs(emiz))

sumda(32) sqrt(bet0(2)*emza)

sumda(33) sqrt(bet0(2)*emaz)

sumda(34) sqrt(bet0(1)*abs(evxmi))

sumda(35) sqrt(bet0(1)*evxm)

sumda(36) sqrt(bet0(1)*evxma)

sumda(37) sqrt(bet0(2)*abs(evzmi))

sumda(38) sqrt(bet0(2)*evzm)

sumda(39) sqrt(bet0(2)*evzma)

sumda(40) sqrt((bet0(1)*abs(evtmi))*ratemx)

sumda(41) sqrt((bet0(1)*evtm)*ratemx)

sumda(42) sqrt((bet0(1)*evtma)*ratemx)

sumda(43) sqrt((bet0(2)*abs(evtmi))*ratemz)

sumda(44) sqrt((bet0(2)*evtm)*ratemz)

sumda(45) sqrt((bet0(2)*evtma)*ratemz)

3.3. SIXTRACK’S POST-PROCESSING: A WALKTHROUGH 51

Variable Formula

sumda(46) εI =
(
x
∑6

i=0
∂zi
∂x

)2
+
(
x̃′
∑6

i=0
∂zi
∂x̃′

)2

sumda(47) εII =
(
y
∑6

i=0
∂zi
∂y

)2

+
(
ỹ′

2∑6
i=0

∂zi
∂ỹ′

)2

sumda(48) βxII = T1,3
2 + T1,4

2

sumda(49) βyII = T3,1
2 + T3,2

2

sumda(7)
√
βxI ∗ εI +

√
βxII ∗ εII

sumda(8)
√
βyI ∗ εI +

√
βyII ∗ εII

sumda(26)
√
βxI ∗ εvx2 +

√
βxII ∗ εvy2

sumda(27)
√
βyI ∗ εvy2 +

√
βyII ∗ εvx2

sumda(19) sevxi = sevxi−1 + (εvxi − εvxi)2

sumda(20) sevzi = sevzi−1 + (εvxi − εvzi)2

sumda(21) sevti = sevti−1 + (εvxi + εvzi − εvti)2

sumda(59)

sumda(24)

sumda(28)
√
βyI ∗ abs(min εx)

sumda(29)
√
βxI ∗ εx

sumda(30)
√
βxI ∗max εx

sumda(31)
√
βyI ∗ abs(min εy)

sumda(32)
√
βyI ∗ εy

sumda(33)
√
βyI ∗max εz

sumda(34)
√
βyI ∗ abs(min εvx)

sumda(35)
√
βxI ∗ εvx

sumda(36)
√
βxI ∗max εvx

sumda(37)
√
βyI ∗ abs(min εvy)

sumda(38)
√
βyI ∗ εvz

sumda(39)
√
βyI ∗max εvy

sumda(40)
√

(βxI ∗ abs(min εvt)) ∗ εx
εx+εy

sumda(41)
√

(βxI ∗ εvt) ∗ εx
εx+εy

sumda(42)
√

(βxI ∗max εvt) ∗ εx
εx+εy

sumda(43)
√

(βyI ∗ abs(min εvt)) ∗ εy
εx+εy

sumda(44)
√

(βyI ∗ εvt) ∗ εy
εx+εy

sumda(45)
√

(βyI ∗max εvt) ∗ εy
εx+εy

• Stores the chromaticity values in the correct units in the variables to write in
the fort.10 file.

52 CHAPTER 3. SIXTRACK POST-PROCESSING

Variable Content Description Formula
sumda(50) chromc(1)*c1e3 Q′x Q′x
sumda(51) chromc(2)*c1e3 Q′y Q′y

• Writes the data for the summary of the post-processing, the sumda vector, in
the fort.10 file.

• Performs the calculation of the invariances of the 4-D transverse motion3.

Plotting

Finally, it generates several kinds of plots and writes the summary built in the
previous section in the fort.10 file.

• Sets up the variables for plotting

• Calls several functions for the generation of histogram and other kind of plots
(1/2).

• Works out the detection of the onset of chaotic motion and thereby the long-
term dynamic aperture by evaluating the Lyapunov exponent.

• Converts the results to canonical variables.

• Calls several functions for the generation of histogram and other kind of plots
(2/2).

• Writes the data for the summary of the post-processing on the fort.10 file.

• Rewinds the used files.

• Obtains the time count.

3.4 From SixTrack to SixDesk’s Post-Processing

SixDesk, the running environment for SixTrack, will take the results of the analysis
made with SixTrack and will apply its own post-processing.

3Look above for the calculations of the invariants for a thoroughly understanding of this section

3.4. FROM SIXTRACK TO SIXDESK’S POST-PROCESSING 53

By default, SixDesk’s scripts automatically tar all of the Sixtrack run output files
and store them in CASTOR [15]. Between this tars can be found the file fort.6,
which describes all operations made and the possible failures that may have occurred
during the SixTrack run; or the binary files fort.90, fort.89,..., fort.59, used for
further analysis and properly described in SixTrack’s manual [18].

As for the main output file, fort.10, running the script run join10 gathers the
results of the completed jobs and combines the output files. After this, the combined
fort.10 files can be post-processed to find chaotic boundaries and particle losses,
as will be described in detail in the following chapter.

SixDesk also provides a couple of options for plotting, defined by the sixdeskenv
variables iplot and kvar specific to run post. If iplot=1 a plot is produced for
each seed and the results can be found in the plot directory. Setting iplot to 1 may
produce a huge amount of data, even if it is compressed with gzip. The variable
kvar should be set to 1 (the default) to obtain the dynamic aperture as a function of
angles for a long study, and the dynamic aperture over all seeds and angles is plotted
for each angle even if iplot=0. Notice that this is an extremely time consuming
procedure. For special post-processing of the fort.10.gz files, the set of fort.15 files
are produced and saved when iplot = 1.

Chapter 4

A Post-Processing Module for
SixDeskDB

SixDesk has been a working environment for Sixtrack for the last 25 years. During
this time it has proved to be a great and poweful tool to tune SixTrack for the
study of accelerator physics and even more with the appearance of the LHC@Home
platform.

However, the rise of computer power has led to reaching computational limita-
tions and new advances in physics push the need for adding new studies and physic
models to SixDesk’s current analyses. This led to the implementation of SixDeskDB:
a database-centered Python and SQL port of SixDesk.

This Chapter will be focused in the main post-processing studies implementation
port from SixDesk to this new implementation.

Section 4.1 introduces SixDesk’s new database-centered implementation, while
Section 4.2 summarizes SixDesk’s post-processing run and its structure.

Then, the process of design and implementation of both the post-processing
scripts for SixDeskDB is described in Section 4.3.

Finally, in Section 4.4 the results and plots generated are discussed.

55

56 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

4.1 SixDeskDB: SixDesk’s Database Port

During 2014, and specially during summer 2014 with the help of Google’s Sum-
mer of Code1 provided students, a database-centered Python port for SixDesk was
developed.

Using this database approach has several benefits:

• Reduces Complexity: Replaces a design consisting in several interdepen-
dent Bash, AWK, GNUPlot and Fortran scripts, with a Python implementa-
tion using SQL for queries.

• Solves AFS limitations: AFS can hold, at maximum, around two thousand
entries in a single directory, but longer SixTrack simulations demand more
entries for all the files generated. Making use of a database as a file or data
server removes this limitations.

• No need to know Fortran: Implemented with Python and SQL, which are
languages less complex and more flexible and widely used than Fortran.

• Improves execution times: Removing all operations that require to write
on disk a huge amount of files improves dramatically the execution time.

• Introduces Object-Oriented programming: and its benefits (and trade-
offs) applied to SixTrack.

• Adds Flexibility: The generation of all files and plots in a rigid file-system
tree is no longer required and can be accessed on request, which helps manip-
ulating them and allows more flexibility at the time of extending or changing
the code.

• Allows the use of modern, popular, state-of-the-art scientific li-
braries: The use of the popular fast-growing Numpy and Scipy libraries
provides and without as much impact as expected in the performance while
substituting Fortran with an interpreted language like Python.

On the other hand, it adds a new language needed to work with SixTrack and
it will require a future adaptation for its use with the LHC@Home platform. An

1Google Summer of Code’s project: SixDesk library for managing massive SixTrack simulations
http://www.google-melange.com/gsoc/project/details/google/gsoc2014/monisjaved/

5649050225344512

http://www.google-melange.com/gsoc/project/details/google/gsoc2014/monisjaved/5649050225344512
http://www.google-melange.com/gsoc/project/details/google/gsoc2014/monisjaved/5649050225344512

4.1. SIXDESKDB: SIXDESK’S DATABASE PORT 57

Figure 4.1: Classes that conform the new SixDeskDB (1/4). The classes and func-
tions this project has been involved in are marked in red.

overview of the classes that conform the program is shown from Figure 4.1 to Figure
4.4.

58 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

Figure 4.2: Classes that conform the new SixDeskDB (2/4). The classes and func-
tions this project has been involved in are marked in red.

Figure 4.3: Classes that conform the new SixDeskDB (3/4). The classes and func-
tions this project has been involved in are marked in red.

4.1. SIXDESKDB: SIXDESK’S DATABASE PORT 59

Figure 4.4: Classes that conform the new SixDeskDB (4/4). The classes and func-
tions this project has been involved in are marked in red.

60 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

4.2 The Post-Processing Run

SixDesk post-processing run makes use of several interdependent Bash, AWK, GNU-
Plot and Fortran scripts alongside a series of configuration files and SixTrack’s track-
ing output files.

The structure would be the shown in Figure 4.5. The main script to run is
run post, after running run join10 and run awk, which will prepare on request the
files taken as an input for their manipulation.

The important functions to be called during the post-processing runs are read10b
and readplotb, where the core of the post-processing calculations are made. This
are the Fortran functions to include in SixDeskDB, integrating into them the man-
agement and looping done now between several Bash scripts.

run join10

fort.10
files

run awk

plot
files

run post

joint
fort.10

+

Output files

forts plots

Figure 4.5: SixDesk run post process with plots. First, run join10 is run to com-
bine all the fort.10 files into one. Then run awk will take the joint fort.10 file
as an imput and parse it to generate the files needed for the plot. Finally run post

will run with the generated files to produce SixDesk’s output files and the actual
plots.

After the post-processing run, the results are obtained in a file tree structure as
shown in Figure 4.6. Some of the binary output files with further information of the
process will be stored automatically in CASTOR [15].

Notice how the mentioned typical SixTrack run for a DA study in the LHC
involving the simulation for 5 different angles in the phase-space and 60 seeds would
exceed then AFS limitations fast and it will take a long time to compute and write
on disk. Hence the need for a new implementation.

4.2. THE POST-PROCESSING RUN 61

Figure 4.6: SixDesk’s output file tree for a long run. The output files are gener-
ated in a path following the stucture /<seed>/simul/<tune range>/<amplitude

range>/<order of the number of turns>/<angle>/outputFiles.

62 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

4.3 Design and Implementation

The code developed aims to fully reproduce the physics part of the post-processing
run of SixDesk, which corresponds to the code in read10b and readplotb Fortran
files and its launching/looping Bash scripts. That means, for example, performing
dynamic aperture analysis or finding particle losses and chaotic boundaries. For
this, the first decision taken is to move this analysis out of the main class, in a class
of its own and rethinking the software architecture.

It must be taken into observation that this is still an unfinished project. Ev-
erything described here answers to the state of the project at this moment. Once
finished, this new class will implement SixDesk’s post-processing in a modularized
way, including the plotting capabilities, both for the short and the long run.

A pseudo-dependencies diagram of the relevant SixDeskDB classes for this project
is exposed in Figure 4.7.

There’s some interesting things to see in how this classes work and their inter-
relation:

• SixDeskDB: SixDesk’s python implementation main class. It does almost
everything SixDesk can do, and although at this stage its role is not to do all
the operations but to be in charge of the reading of the input files, OS and
file management and to serve as an interface for the user to run each one of
the different modules and analysis SixDesk’s provide. This project works with
the mk da function (it stands for make dynamical aperture analysis), that will
invoke the post-processing run. Theread10b function of this class remains to
be ported to the PostProcessing class.

• Fort: A new, auxiliary class that serves as an interface to retrieve the different
Fort files from the database, hiding the SQL queries from the physics code
(and even from the Fort class, as they are defined in the queries.py file)
and providing a better and more intuitive way to explore the data in the files:
each one of the fields of the data for each fort file is named for ease of access,
filtering and manipulation. This way of working with the database has been
fully integrated in the PostProcessing and Post Plot classes and it is making
its way to the SixDeskDB class.

4.3. DESIGN AND IMPLEMENTATION 63

Figure 4.7: Dependencies between classes and functions in this project’s implemen-
tation of the post-processing run.

64 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

• PostProcessing: Class in charge of the physics computations and the gen-
eration of the output/results fort files. Currently it implements SixDesk’s
readplotb function.

• Post Plot: Plotting class. Defines the mechanisms needed to generate the
plots (just for long runs at the moment) and answers to PostProcessing’s
plot() call. A description of the plots it generates will be exposed in Section
4.4.

The described structure adds another layer of complexity to SixDeskDB, but in
return provides the following advantages:

• Fort files on request: The Fort class implemented allows to obtain all the
Fort files generated on-request indexed by angle and seed, with no need of
writing redundant files on disc. A reference for what is contained in each fort

file and what each variable written on them stands for can be found in Tables
4.1 and 4.2 respectively. It also provides a way to obtain all post-processing
intermediate files that were deleted in the original run post execution.

• Plots on Request: Instead of generating all plots during the run we access
them on-request. This eliminates unnecessary information.

• Clarity: Python characteristics such as the mandatory indentation, specially
if used with object-oriented programming, and the use of just one language
to code (and SQL to query) makes the code easier to structure, maintain and
understand.

• Easily modifiable queries: Having the queries for the fort files data re-
trieving and generation in a separate file allows a faster modification an ma-
nipulation of their results and makes it easier to implement the generation of
a new one.

• Control over the output: The Fort class provides an interface to access
the data from SixDesk’s Fortran-generated files structured in the same way as
SixDesk’s output, adding useful features like variable indexing on top of that.

• Faster manipulation and scripting: Features like the clarity and modu-
larization of the code, having an interface to obtain plots and fort files on
request with variable indexing or just the fact of having a database with all the
information stored makes it easier to gather the data needed in a structured
way for simplifying manipulation of the code and the scripting to work with
its functions and modules.

4.3. DESIGN AND IMPLEMENTATION 65

File Columns
fort.11 achaos, al, amin, amax, achaos1

fort.12 rad, distp

fort.13 rad, dist

fort.14 achaos, alost3, turn max, f14

fort.15 rad, sturns1, sturns2

fort.16 deltap, qx, qy

fort.17 deltap, qx, qy

fort.18 rad, smearx

fort.19 rad, smeary

fort.20 rad, qx det

fort.21 rad, qy det

fort.22 rad, rad1*sigxminnld

fort.23 rad, rad1*sigxavgnld

fort.24 rad,rad1*sigxmaxnld

fort.25 qx det,qy det,qx det+qx,qy det+qy

fort.26 achaos, alost2, amax

fort.27 al

fort.28 al

fort.40 achaos, al amin, amax

Table 4.1: Reference table for the output fort files and the variables tracked on
them.

66 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

Column Description
achaos the chaotic boundary with slope method
achaos1 distance in the phase space with slope method
al aperture lost
amin minimum aperture
amax maximum aperture
rad ratio between εI/ε

a

rad1 same quantity as rad but evaluated differentlyb

dist distance in the phase-space
distp maximum slope of distance in the phase-space
alost1 average initial condition, average corrected, of a lost particle
alost2 initial condition of lost particle
alost3
turn max maximum number of turns
f14
sturns1 survived turns of the first particle
sturns2 survived turns of the second particle
deltap relative momentum deviation
qx horizontal tune
qy vertical tune
qx det horizontal detuning
qy det vertical detuning
qx det+qx
qy det+qy
smearx horizontal smear
smeary vertical smear
rad1*sigxminnld
rad1*sigxavgnld
rad1*sigxmaxnld

aratio between εI/ε (or εII/ε if rat > 1) if ε = ε2I +ε2II normalized with the real emittance of the
beam specified by the user. If emitI is small then emitI is estimated using the initial conditions;

brad1 evaluate as rad using the average amplitudes if emitI is small otherwise using the average
amplitudes and the secondary beta functions

Table 4.2: Output fort files column names (variables) reference.

4.4. RESULTS AND PLOTTING 67

4.4 Results and Plotting

All the results have been proved to match the originals up to a precision of ten
decimals, which is more than enough taking into account that the values are being
stored as a string in the database.

With the results generation, a plotting module has been developed for their
visualization, aiming to replace the entangled web of Bash and AWK scripts that
conformed SixDesk’s plotting functionality.

All the plots from the long run have been reproduced, matching the originals for
each one of the cases. This also shows the accuracy of the results. Examples for
each one of the plots to generate will be shown from Figure 4.8 to Figure 4.13. It
is needed to point out that due to a bug in the Matplotlib library for the Numpy
version used at CERN, the logarithmic scales for the axis can’t be adopted.

68 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

5

6

7

8

9

10

11

12

13

14

6 7 8 9 10 11 12 13 14

Av
er

ag
ed

 A
m

pl
itu

de
 [s

ig
m

a]

Initial Amplitude [sigma]

job_tracking/1/simul/62.31_60.32/6-14/e5/.11/fort.10.gz Average Amplitude (6d), 100000 Turns

Mon Dec 01 10:43:07 2014

Minimum
Mean

Maximum
No Errors

(a) SixDesk

(b) SixDeskDB

Figure 4.8: Average emmittance. seed=1, angle=15.

4.4. RESULTS AND PLOTTING 69

0

10

20

30

40

50

60

70

6 7 8 9 10 11 12 13 14

Sm
ea

r [
%

]

Initial Amplitude [sigma]

job_tracking/1/simul/62.31_60.32/6-14/e5/.15/fort.10.gz Smear (6d), 100000 Turns

Mon Dec 01 10:44:05 2014

Horizontal
Vertical

(a) SixDesk

(b) SixDeskDB

Figure 4.9: Smear in %. Horizontal and vertical smear as a function of initial
amplitude. seed=1, angle=15.

70 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

0.1

1

6 7 8 9 10 11 12 13 14

D
is

ta
nc

e
in

 P
ha

se
 S

pa
ce

 o
f 2

 in
iti

al
ly

 c
lo

se
-b

y
Pa

rti
cl

es

Initial Amplitude [sigma]

job_tracking/1/simul/62.31_60.32/6-14/e5/.7/fort.10.gz Distance (6d), 100000 Turns

Mon Dec 01 10:42:11 2014

Range from Chaos to Loss

(a) SixDesk

(b) SixDeskDB

Figure 4.10: Distance in the phase-space of two initially close-by particles.
End value of the distance in phase space d(turns) of 2 initially closeby particles as
a function of initial amplitude. seed=1, angle=7.

4.4. RESULTS AND PLOTTING 71

6

7

8

9

10

11

12

13

14

0 10 20 30 40 50 60 70 80 90

D
yn

am
ic

 A
pe

rtu
re

 in
 [s

ig
m

a]

K = ATAN(SQRT(Ez/Ex)) in [Degree]

job_tracking/1/simul/62.31_60.32/6-14/e5/.5/fort.10.gz, D.A. vs K (6d), 100000 Turns

Mon Dec 01 10:41:40 2014

100’000 Turn Loss
10’000 Turn Loss

1000 Turn Loss

(a) SixDesk

(b) SixDeskDB

Figure 4.11: Dynamic aperture vs. K. seed=1, angle=5.

72 CHAPTER 4. A POST-PROCESSING MODULE FOR SIXDESKDB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6 7 8 9 10 11 12 13 14

M
ax

im
um

 S
lo

pe
 o

f D
is

ta
nc

e
in

 P
ha

se
 S

pa
ce

Initial Amplitude [sigma]

job_tracking/1/simul/62.31_60.32/6-14/e5/.11/fort.10.gz Slope (6d), 100000 Turns

Mon Dec 01 10:43:07 2014

Range from Chaos to Loss

(a) SixDesk

(b) SixDeskDB

Figure 4.12: Maximum slope of distance in the phase-space. Fitted slope of
log d(turns) versus log (turns) of the distance in phase space of 2 initially close-by
particles as a function of initial amplitude. seed=1, angle= 11.

4.4. RESULTS AND PLOTTING 73

1000

10000

100000

1e+06

6 7 8 9 10 11 12 13 14

Su
rv

iv
al

 T
im

e

Initial Amplitude [sigma]

job_tracking/1/simul/62.31_60.32/6-14/e5/.17/fort.10.gz Survival (6d), 100000 Turns

Mon Dec 01 10:44:34 2014

Chaotic Border

(a) SixDesk

(b) SixDeskDB

Figure 4.13: Survival Time. Survival plot, i.e. survival time versus initial ampli-
tude. seed=1, angle=1.

Chapter 5

Discussion and Conclusions

This project results in a step forward for the development of SixTrack: simplifying
and speeding it up and, at the same time, providing new, improved and assem-
bled technical documentation; developing a new, clearer, faster implementation for
SixDesk’s post-processing; and even building new interfaces and tools to analyze
and extract the results.

The present Chapter discusses the impact of this whole project on SixTrack and
SixDesk’s post-processing flow, and states how an improved documentation helps
SixTrack’s development. Section 5.2 exposes and discusses the benefits of the new
SixDeskDB post-processing routines implemented and, finally, Section 5.3 outlines
the future stream of work and possible improvements to the code developed.

5.1 On Post-Processing and documentation

Post-processing is the key feature of SixDesk and one of the core parts of SixTrack.
We’ve documented it so it’s easy to trace back in a precise fashion what SixTrack
is doing in each one of the steps the post-processing takes. This will improve the
development speed, as the firsts collaborators of SixTrack were the only ones who
completely understood how it worked, and they stopped working in the project 10
years ago.

Now, a thorough documentation for SixTrack’s post-processing routines has been

75

76 CHAPTER 5. DISCUSSION AND CONCLUSIONS

made available, describing each step in the analysis and providing the theory behind
them. This will speed up the development and will help understanding the whole
process done after tracking: Sixtrack and SixDesk’s post-processing, becoming a
powerful tool for new scientists to use for the development of new analysis and
studies.

Other than the code documentation, what was needed the most was an adapta-
tion of the 4-Dimensional theoretical foundations for the 6-D phase space SixTrack
works in. This adaptation has been obtained by thoroughly inspecting the Fortran
code and its program flow, double-checking the results with the derivation of the
original 4-D formulas and the theory foundations for better confidence. The fact
that this is finally documented opens a whole new range of possibilities for the evo-
lution of SixTrack, and its inclusion in the physics manual published with Sixtrack
will solve and clarify doubts that had been there for years.

5.2 A New SixDeskDB Post-Processing Implemen-

tation

SixTrack’s post-processing is the result of years of research and programming. SixDesk
runs made the analysis of the results easier to develop and program. With SixDeskDB,
that improvement has been taken several steps forward, using a modern, scientifi-
cally relevant, widely-used and clear language as Python.

As Python is one of the most, if not the most, used programming languages
at CERN, this implementation opens the development of new SixDesk’s analysis
to a wider audience, capable of making the most of it. The post-processing anal-
ysis implemented in SixDeskDB is the core part of SixDesk, and porting it takes
SixDeskDB a step closer to being able to fully substitute the original SixDesk.

This implementation proves to be faster and easier to develop, efficient using disk
space and faster in execution time. On top of that, it adds new invaluable features
like obtaining the plots and the Fort files on request through a friendly interface,
hiding the SQL logic behind the queries and saving huge amounts of disk space by
not auto-generating everything even if it is not needed.

5.3. FUTURE WORK AND POSSIBLE IMPROVEMENTS 77

5.3 Future Work and Possible Improvements

Further work in SixDeskDB involves implementing the to post-process short runs
and integrate them in the program flow, refactoring the readplot function to share
most of its code with the new read10b function to implement in SixDeskDB’s Post-
Processing module.

It would be interesting to integrate the functionality provided by the new Fort

class in the rest of SixDeskDB’s code and to provide a documentation for SixDeskDB
and its variables specifically and not depend on SixDesk’s one.

More future work could include implementing new physics models, integrating
SixDeskDB in the LHC@Home platform, integrating all the homegrown alternative
versions of SixTrack or improving the precision and use of floating point arithmetic.

Bibliography

[1] David P Anderson. Boinc: A system for public-resource computing and stor-
age. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International
Workshop on, pages 4–10. IEEE, 2004.

[2] M Berz. The differential algebra fortran precompiler dafor. Los Alamos National
Laboratory Technical Report AT-3: TN-87-32, 1987.

[3] Catherine Daramy, David Defour, Florent de Dinechin, and Jean-Michel Muller.
Cr-libm: a correctly rounded elementary function library. In Optical Science
and Technology, SPIE’s 48th Annual Meeting, pages 458–464. International
Society for Optics and Photonics, 2003.

[4] R De Maria and M Fjellstrom. Sixtrack physics manual (draft). cern.
ch/sixtrack-ng/doc/physics manual/sixphys. pdf, 2013.

[5] R De Maria, V Previtali, Y Levinsen, L Lari, F Schmidt, H Renshall, J Bar-
ranco, A Mereghetti, R Appleby, V Vlachoudis, et al. Recent developments and
future plans for sixtrack. Technical report, 2013.

[6] Etienne Forest, John Irwin, and M Berz. Normal form methods for complicated
periodic systems. Part. Accel., 24:91–107, 1989.

[7] Massimo Giovanozzi, Igor Zacharov, and Leonid Rivkin. Lhc@ home: A volun-
teer computing system for massive numerical simulations of beam dynamics and
high energy physics events. In IPAC2012 Proceedings, number EPFL-CONF-
181616, 2012.

[8] John H Howard et al. An overview of the andrew file system. Carnegie Mellon
University, Information Technology Center, 1988.

[9] John David Jackson. Classical electrodynamics, volume 3. Wiley New York
etc., 1962.

79

80 BIBLIOGRAPHY

[10] H Mais, G Ripken, A Wrulich, and F Schmidt. Particle tracking. 1986.

[11] E McIntosh and R De Maria. The sixdesk run environment for sixtrack. CERN-
ATS-Note-2012-089 TECH, 2012.

[12] Eric Mcintosh, F Schmidt, F de Dinechin, et al. Massive tracking on heteroge-
neous platforms. In 2006 ICAP Conference in Chamonix, France, 2006.

[13] Eric McIntosh and Andreas Wagner. Cern modular physics screensaver or using
spare cpu cycles of cerns desktop pcs. In Computing in High Energy and Nuclear
Physics, page 1055, 2004.

[14] Donald H Menzel. Fundamental formulas of physics, volume 2. Courier Cor-
poration, 1960.

[15] Giuseppe Lo Presti, Olof Barring, Alasdair Earl, Rosa Maria Garcia Rioja, Se-
bastien Ponce, Giulia Taurelli, Dennis Waldron, and Miguel Coelho Dos Santos.
Castor: A distributed storage resource facility for high performance data pro-
cessing at cern. In MSST, volume 7, pages 275–280. Citeseer, 2007.

[16] Gerhard Ripken and Ferdinand Willeke. Methods of beam optics, 1988.

[17] F Schmidt. Sixtrack. Technical report, CM-P00049314, 1990.

[18] Frank Schmidt. Sixtrack, users reference manual. Technical report, CERN
SL/94-56 (AP), 1994.

[19] Albin Wrulich. Racetrack-a computer code for the simulation of nonlinear
particle motion in accelerators. 1984.

	Introduction and Motivation
	CERN
	Beam Dynamics and Particle Tracking
	SixTrack and the LHC@Home Platform
	Problem
	Motivation
	Method
	Project's Structure

	Theory Foundations
	Coordinate System
	Hamiltonian Mechanics
	Particle Motion in an Accelerator

	Beam Optics
	The Symplectic Integrator
	The Lattice of an Accelerator: Components
	Transverse Dynamics and Phase-space
	Beam Optics Parameterization
	Non-Linear motion

	SixTrack Post-Processing
	Particle Tracking
	SixTrack
	SixTrack's Post-Processing: A Walkthrough
	From SixTrack to SixDesk's Post-Processing

	A Post-Processing Module for SixDeskDB
	SixDeskDB: SixDesk's Database Port
	The Post-Processing Run
	Design and Implementation
	Results and Plotting

	Discussion and Conclusions
	On Post-Processing and documentation
	A New SixDeskDB Post-Processing Implementation
	Future Work and Possible Improvements

