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ABSTRACT

Coevolutionary algorithms are helpful computational abstractions

of adversarial behavior and they demonstrate multiple ways that

populations of competing adversaries in�uence one another. We

introduce the ability for each competitor’s mutation rate to evolve

through self-adaptation. Because dynamic environments are fre-

quently addressed with self-adaptation, we set up dynamic problem

environments to investigate the impact of this ability. For a simple

bilinear problem, a sensitivity analysis of the adaptive method’s pa-

rameters reveals that it is robust over a range of multiplicative rate

factors, when the rate is changed up or down with equal probability.

An empirical study determines that each population’s mutation

rates converge to values close to the error threshold. Mutation

rate dynamics are complex when both populations adapt their rates.

Large scale empirical self-adaptation results reveal that both reason-

able solutions and rates can be found. This addresses the challenge

of selecting ideal static mutation rates in coevolutionary algorithms.

The algorithm’s payo�s are also robust. They are rarely poor and

frequently they are as high as the payo� of the static rate to which

they converge. On rare runs, they are higher.

CCS CONCEPTS

• Theory of computation → Evolutionary algorithms; Adver-

sary models; • Security and privacy → Vulnerability manage-

ment.
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1 INTRODUCTION

Coevolutionary algorithms are useful for abstractly modeling real

world contexts such as cyber security. In these contexts, one sees

large scale numbers of attackers and defenders engaged in an arms

race or driving one side to extinction. This phenomena aligns well

with the coevolutionary algorithm’s competing populations, selec-

tion, variation, and coevolutionary dynamics. Given how intelli-

gently cyber adversaries can adapt, it is arguable they do not simply

adapt, but they also change their e�ective rate of adapation. In evo-

lutionary algorithms (EAs), self-adaptation is a parameter control

mechanism where mutation rates, or other parameters, are encoded

and evolved within genomes. It has been shown to be e�ective in

classical EA, i.e., those with only one population [22]. The argument

for self-adaption is stronger for dynamic environments, intuitively

because their non-stationarity requires more rate �exibility. In one

sense, in a competitive coevolutionary algorithm (CCA) each popu-

lation’s adversaries are similarly non-stationary, so they mimic a

dynamic environment. This raises the question of how one or both

populations using self-adapation changes overall behavior (e.g.,

rates and payo�s)? The question of the consequences of dynamic

variations of the competition environment, e.g., optima or budget

changes, within the context of self-adaptation, also arises.

In this contribution we speci�cally investigate the impact of

self-adapting mutation rates for CCAs. Self-adaptation o�ers the

advantage that a schedule of changes devised prior to a run is

unnecessary. The genome encoding behavior is extended with a

gene that encodes the rate. The self-adapting gene/rate is passed

from parent to o�spring through inheritance, hence it is subject

to selective pressure. It undergoes mutation each generation after

replication, and is then used when mutating the rest of the genome.

This e�ectively tunes the gene to an ideal rate relative to the �tness

function. Consider that in a classical EA, in di�erent areas of the

search space, some mutation rates can be more helpful than others

in optimizing payo�s or time to convergence. Additionally, non-

elitist EAs need to use mutation rates below the error threshold [17,

24]. An error threshold is an attribute of a non-elitist EA. Informally,

the threshold describes how the performance of the algorithm

degrades when the level of mutation is increased beyond a point

which overwhelms the selective pressure. In a problem where the

optima changes, there is added value to being able to change a rate.

The central challenge of self-adaptive EAs however, has been to

�nd a robust adaptation mechanism [6]. Next, consider that in a

CCA, given its competitive (minimax) paradigm, the competing
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Figure 1: Overview of a self-adaptive CCA called the SA-PDCoEA. There are
two populations (called Predator and Prey). A solution contains both a strategy
and a mutation rate. The �tness depends only on the strategy. All o�spring
are produced identically and independently. The mutation rate of a selected
solution is �rst randomly changed and then the strategywith the newmutation
rate. This creates a new solution with changed mutation rate and strategy.

population constantly changes. Regardless of a static or dynamic

environment, there is thus value to being able to change a rate.

When the environment also changes, the value of changing the rate

of mutation increases even more [19]. Meanwhile, mutation rates

are mostly static [16, 18, 19] in CCA designs and it remains unclear

how to chose the correct mutation rate [18, 19]. Arguably, a self-

adapting gene/mutation rate in a CCA could advantageously hone

into both the other population’s behavior and the environment and

resolve the di�cult requirement for a schedule.

In this study we transfer a theoretically-sound method of self-

adaptating mutation rates from EA research to a competitive coevo-

lutionary algorithm called SA-PDCoEA [6, 18], see Figure 1. Predict-

ing or theoretically analyzing what will happen with SA-PDCoEA is

extremely challenging. On top of the intrinsic complexity of CCAs,

a self-adapting adversary poses further challenges because how

much the solutions change is in �ux. We formulate the following

questions and undertake an empirical analysis to answer them:

RQ-1 Can the mutation rates self-adapt to within the empirical

error threshold? This has implications for the SA-PDCoEA runtime.

RQ-2 What are the dynamics of the mutation rates when one or

both populations self-adapt their mutation rates? RQ-3What are

the payo� impacts of self-adaptive mutation rates?

Our contributions are the following: • We introduce a self-adap-

tation method for mutation rates in CCAs, by way of SA-PDCoEA.

This method is demonstrated to support the mutation rate adapting

to suit the environment of each problem we study.

• In combination, we analyze two parameters of the adaptive

mutation rate method: probability of incrementing (or decrement-

ing) the rate, ?8=2 , and the multiplicative factor by which the rate is

changed,�. We �nd that their impact di�ers depending the problem

environment. With a Bilinear problem environment, within the

?8=2 × � parameter space, results are best when an incremental

change to the mutation rate is equally likely as a decrement, i.e.,

?8=2 = 0.5. For ?8=2 = 0.5 many change factors are equally e�ective,

making their selection less critical.

• We analyze the SA-PDCoEA on the Bilinear problem and

observe that each population’s mutation rates converge to values

close but below the error threshold. This suggests that the mutation

rate can adapt to the problem without previous knowledge.

•Mutation rate dynamics are very complex when both popula-

tions adapt their rates. In both the problem environments we study,

we observe that mutation rates of the two populations co-adapt

with each other. Empirical results on DefendIt-B reveal that, with

self-adaptation, both reasonable solutions (in this case high payo�s)

and rates can be found by the algorithm. This showcases that self-

adaptation can address the very challenging problem of selecting

appropriate static mutation rates in coevolutionary algorithms.

• We observe that mutation rates coevolve to mutation rates

giving highest payo�. The attacker mutation rate depends on the

adversary’s mutation rate. On DefendIt-B SA-PDCoEA can obtain

similar or better payo�s as PDCoEA when PDCoEA’s mutation

rate has been chosen well. Thus the algorithm’s payo�s are robust.

They are rarely poor and often as high, and sometimes higher, as

the payo�s of runs using the static rate to which they converge.

The paper is structured as follows. Section 2 presents related

work. Section 3 describes SA-PDCoEA and the problem environ-

ments we investigate. Section 4 presents the empirical experiments

and results. Finally, Section 5 draws conclusions and future work.

2 RELATED WORK

We brie�y present work related to competitive coevolution and

self-adaptation. Biological coevolution refers to the in�uences two

or more species exert on each other’s evolution [9, 27]. Coevolution

can be mutually bene�cial (cooperative) or adversarial (competi-

tive). The competition can arise from e.g., constrained and shared

resources or predator-prey relationships.

An EA typically evolves individual solutions, e.g., �xed length bit

strings as in Genetic Algorithms (GAs) [12] with an a-priori de�ned

�tness function to evaluate an individual’s quality. In contrast,

in coevolutionary algorithms an individual’s �tness is based on

interactions with other individuals or a dynamic environment to

mimic coupled biological species-to-species interactions.

We extend a growing body of work on coevolutionary algo-

rithms [2, 13, 16, 23, 25–27, 29]. Our focus is on Competitive Coevo-

lutionary Algorithms (CCAs). In a basic CCA at each generation

an individual’s �tness score is based on its performance outcomes

in its competitions. E.g., the sum of the performance outcomes or

the average, maximum, minimum, or median outcome [3].

Variations of the CCA have been de�ned for many speci�c prob-

lem domains, e.g., [1, 5, 11, 20, 21, 30]. Di�erent games or simpli�ed

problems have been studied [3, 10, 15, 16]. The extension to CCAs

of FlipIt to DefendIt was motivated by application of CCAs that

model security scenarios such as in cyber-networks [14, 19].

There is some theoretical and empirical analysis of coevolution-

ary algorithms regarding error thresholds [17, 18, 24]. The runtime

of non-elitist EAs can drastically increase from polynomial to ex-

ponential when the mutation rate is increased above the error

threshold [17]. Error thresholds have been studied theoretically in

CCAs [18], and also recently been estimated empirically [14].

Self-adaptation has a long history in evolutionary computation

(see [22] for a survey) [4, 28]. In a �rst runtime analysis demon-

strating the bene�t of self-adaptation in population-based EAs, it

was shown that an EA with (`, _)-selection and self-adaptation

can escape a local optimum, while the same algorithm with a �xed

mutation rate below the error threshold does not escape the local

optimum in polynomial time, or with a �xed mutation rate above

the error threshold cannot reach the global optimum in polynomial

time [7]. This analysis showed that when the algorithm chooses be-

tween two mutation rates, it selects a high mutation rate to escape

the local optimum, and a low mutation rate when close to the opti-

mum. In subsequent work it was shown that a non-elitist EA with
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(`, _)-selection and the same self-adaptation mechanism as used in

this paper can adapt the mutation rate to a problem with unknown

structure. Other work has investigated a self-adaptive (1, _) EA [8],

showing asymptotically better runtime than the classic (1, _) EA.

The (1, _) EA has a parent population size of one, and the adaptive

mutation rate therefore becomes a global parameter inherited by

all o�spring. We investigate the impact of self-adaptation in CCAs

with large parent and o�spring population sizes.

3 PRELIMINARIES

3.1 Self-Adaptive Pairwise Dominance CoEA

We now describe a self-adaptive CCA called SA-PDCoEA, see also

Algorithm 1 and Figure 1. Informally, each individual has its own

mutation rate inherited from its parent, i.e., evolvingwith the search

points, which is used to mutate its genome. SA-PDCoEA follows

the mechanism described by [6].

Algorithm 1 Self-adaptive Pairwise Dominance CoEA [18]

Require: Population size _ ∈ N.

Require: Payo� function 6 : X ×Y → R with X = Y = {0, 1}= .

Require: Parameters ?inc ∈ (0, 1), � ∈ (1,∞), and jmin ∈ (0, =).

Require: Initial populations (%0, &0) ∈ (X×(0, =))_×(Y×(0, =))_

1: for C ∈ N until termination criterion met do

2: for 8 ∈ [_] do

3: Sample (G1, j1), (G2, j2) ∼ Unif (%C )

4: Sample (~1, i1), (~2, i2) ∼ Unif (&C )

5: if (G1, ~1) ⪰6 (G2, ~2) then

6: (G, j) := (G1, j1) and (~, i) := (~1, i1)

7: else (G, j) := (G2, j2) and (~, i) := (~2, i2)

8: j ′ :=

{
min(�j,=) with probability ?inc

max(j/�, jmin) otherwise.

9: i ′ :=

{
min(�i,=) with probability ?inc

max(i/�, jmin) otherwise.

10: Obtain G ′ by �ipping each bit in G with prob. j ′/=.

11: Obtain ~′ by �ipping each bit in ~ with prob. i ′/=.

12: Set %C+1 (8) := (G ′, j ′) and &C+1 (8) := (~′, i′).

More precisely, the algorithm assumes maximin-optimization of

a payo�-function 6 : X ×Y → R, i.e., �nding a “predator” G which

maximizes the function 5 (G) := min~∈Y 6(G,~), i.e., its payo�

against its worst-case prey. Each individual (G, j) in the predator

population % consists of a search point (or genotype) G ∈ X and

a mutation rate j ∈ (0, =). Similarly, each individual (~, i) in the

prey population & consists of a search point ~ ∈ Y (or genotype)

and a mutation rate i ∈ (0, =). Note that we use the term mutation

probability in bitwise mutation to denote the probability of �ipping

a single bit. Given a bitstring of length = and a mutation probability

j/=, then we call the value j the mutation rate. In order for j/= to

be a probability, the mutation rate must satisfy j ∈ [0, =].

In each generation, see Figure 1, the algorithm produces _ pairs

of predators and prey identically and independently as follows.

Two predators are �rst selected by sampling uniformly at random ,

(G1, j1) and (G2, j2). Two prey (~1, i1) and (~2, i2) are similarly se-

lected. Similarly to PDCoEA, (G1, ~1) is kept if it dominates (G2, ~2),

Figure 2: DefendIt-B on a single resource. Initially, the resource is held by the
defender. At time step 1, both the defender and the attacker attempt to acquire
the resource, and ownership remains with the defender. At time step 4, the
attacker acquires the resource. The defender re-acquires the resource at time
step 6 and keeps it until time step 9 when the attacker regains ownership. The
resource changes hand a �nal time at time step 11. At the end of the game,
the defender has owned the resource for 8 time steps, while the attacker has
owned it for 4 time steps. Note, in DefendIt-B, in contrast to DefendIt, if the
defender was over budget the attacker could acquire the resource at step 8.

otherwise (G2, ~2). The domination relation ⪰6 is not the Pareto

dominance, instead we say that (G1, ~1) ⪰6 (G2, ~2) if and only if

6(G1, ~2) ≥ 6(G1, ~1) ≥ 6(G2, ~1). Informally, this means that the

predator G1 is better than predator G2 when evaluated against prey

~1, and at the same time, prey ~1 is better than prey ~2 when eval-

uated against predator G1. See [18] for further discussion on the

dominance relation. The selected pair is then mutated in two steps.

First, the algorithm “mutates” the mutation rates j and i of the

selected individuals, by either increasing the mutation rate by a fac-

tor� > 1 (with probability ?inc), or decreasing the mutation rate by

multiplying by a factor 1/� < 1 (with probability 1 − ?inc). Finally,

the new search points G ′ and ~′ are obtained by mutating G and

~ with their new respective mutation rates j ′ and i ′. Compared

to the PDCoEA, there are three additional parameters: � which is

the mutation rate increment factor, ?inc which is the probability to

increase the mutation rate, and jmin which is the minimal mutation

rate allowed of any individual.

3.2 Problem environments

3.2.1 Bilinear. This is a simple class of maximin-optimization prob-

lems with a clear structure [18] de�ned for U, V ∈ (0, 1) by

�8;8=40A (G,~) := |~ | ( |G | − V=) − U= |G |, (1)

where for any bitstring I ∈ {0, 1}=, |I | :=
∑=
8=1 I8 denotes the num-

ber of 1-bits in I. Assuming that the prey always responds with an

optimal decision for every G ∈ X, the predator gets the unimodal

function 5 which has maximum when |G | = V=

5 (G) := min
~∈{0,1}=

6(G,~) =

{
|G | (1 − U=) − V= if |G | ≤ V=

−U= |G | if |G | ≥ V=
(2)

3.2.2 DefendIt-B. We modify the NP-hard DefendIt game from

[19] to prevent actions when the budget is overspent and call it

DefendIt-B. Note that the di�erence lies in the calculation of re-

source ownership in scenarios where the opponent’s budget sur-

passes its limit. Figure 2 shows an example of DefendIt-B.

An instance of the DefendIt-B game is given by a tuple

(:, ℓ, E, 2, �� , ��) where : ∈ N is the number of resources, ℓ ∈ N is

the number of time-steps, E = (E (1) , . . . , E (: ) ) where E ( 9 ) ∈ [0,∞)

is the value of resource 9 ∈ [:], 2 = (2 (1) , . . . , 2 (: ) ) where

2 ( 9 ) ∈ [0,∞) is the cost of resource 9 ∈ [:], �� ∈ [0,∞) is the

defender’s budget, and �� ∈ [0,∞) is the attacker’s budget.

Defender and attacker strategies are represented by bit-

strings of length = := : · ℓ . We adopt the notation G =

(G
(1)
1 , . . . , G

(1)
ℓ , . . . , G

(: )
1 , . . . , G

(: )
ℓ ) ∈ {0, 1}= for the defender’s

strategy, where G
( 9 )
8 = 1 for 9 ∈ [:] and 8 ∈ [ℓ] means that

the defender attempts to acquire resource 9 at time 8 . Analogously,
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we denote ~ = (~
(1)
1 , . . . , ~

(1)
ℓ , . . . , ~

(: )
1 , . . . , ~

(: )
ℓ ) ∈ {0, 1}= for the

attacker’s strategy, where ~
( 9 )
8 = 1 for 9 ∈ [:] and 8 ∈ [ℓ] means

that the attacker attempts to acquire resource 9 at time 8 .

We de�ne the payo� of strategies in terms of the resources owner-

ship. In particular, I
( 9 )
8 ∈ {0, 1} is the ownership of resource 9 ∈ [:]

at time 8 ∈ {0} ∪ [ℓ], where I
( 9 )
8 = 1 indicates that the defender

owns resource 9 at time 8 , and I
( 9 )
8 = 0 means that the attacker owns

resource 9 at time 8 . For all 9 ∈ [:], we de�ne I
( 9 )
0 (G,~) := 1, which

corresponds to the assumption that the defender is in possession

of all resources at the beginning of the game.

In DefendIt-B when a player attempts to acquire the resource

while the opponent does not, the player obtains the resource. If

neither the defender or attacker move, the ownership does not

change. If both the defender and the attacker attempt to acquire

the resource, the ownership does not change. The ownership of a

resource 9 is de�ned inductively for 8 ∈ [ℓ] as follows

I
( 9 )
8 (G,~) :=





I
( 9 )
8−1 (G,~) if G

( 9 )
8 = ~

( 9 )
8 and � (G) ≤ �� ,

I
( 9 )
8−1 (G,~) if G

( 9 )
8 = ~

( 9 )
8 = 0,

1 if G
( 9 )
8 = 1 and ~

( 9 )
8 = 0 and � (G) ≤ �� ,

0 if G
( 9 )
8 = 0 and ~

( 9 )
8 = 1 and � (~) ≤ �� .

The overall cost of a defender or an attacker strategy G is

� (G) :=
∑:

9=1 2
( 9 ) ∑ℓ

8=1 G
( 9 )
8 ,i.e., the number attempts of acquir-

ing a resource weighted by the cost of that resource. A defender

strategy G is called over-budget if� (G) > �� . Similarly, an attacker

strategy ~ is called over-budget if � (~) > �� . Finally, the payo�

function 61 (62) for the defender (attacker) are de�ned as

61 (G,~) :=

{∑:
9=1 E

( 9 ) ∑ℓ
8=1 I

( 9 )
8 (G,~) if � (G) ≤ ��

−
∑:

9=1

∑ℓ
8=1 G

( 9 )
8 otherwise

62 (G,~) :=

{∑:
9=1 E

( 9 ) (ℓ −
∑ℓ
8=1 I

( 9 )
8 (G,~)) if � (~) ≤ ��

−
∑:

9=1

∑ℓ
8=1 ~

( 9 )
8 otherwise.

Informally, if the overall cost of a strategy exceeds the player’s

budget (over-budget strategy), the payo� is negative and corre-

sponds to the number of times the player attempts to acquire any

resource. Note that the payo� function for an over-budget defender

strategy is independent of the attacker strategy and similarly for

over-budget attacker strategies. In the original DefendIt from [19]

an over-budget strategy could still a�ect the possession of the re-

source. This would not a�ect their payo� as it would still be negative

for each attempt the player makes to acquire any resource, but it

could a�ect their opponent’s payo�. In this work we prevent any

actions taken after an individual exceeded their budget to a�ect the

possession of the resource. If the overall cost of a strategy is within

the budget (within-budget strategy), then the payo� is the number

of time steps the player is in possession of the resource multiplied

by the value of the resource. We only consider DefendIt-B instances

where the cost of an item is identical to the value of the resource.

4 EXPERIMENTS

Table 1 shows the experimental design for comparing ’static’ runs

without mutation rate adapation (baseline, S-S), runs where only

one population adapts the mutation rate (S-A and A-S), and runs

Table 1: Self-adaptation experiment design. This is repeated for the problem environments.

Name Predator mutation rate Prey mutation rate

S-S Static Static
A-A Adaptive Adaptive
A-S Adaptive Static
S-A Static Adaptive

when both populations adapt the mutations rate, inducing rate

co-adaptation (A-A). We run the design on two di�erent problem

environments. To directly match the classical EA’s dynamic mo-

tivation for self-adaptation, we make the problem environment

non-stationary. Twice after initialization, each time after some

equal quantity of �tness evaluations, we change the optimum or

the resource budget . This also allows us to observe the ability of

the SA-PDCoEA to adapt over three di�erent conditions.

To study the self-adapting mutation rate, we set ?inc = 1/2,

� = 1.05 and jmin = 0.001 following the results from Section 4.1.1.

Bilinear. The experiments in Section 4.1.1 compare the PDCoEA

with and without self-adaptation on the static Bilinear problem

with problem size = = 300. To ensure that the problem instance has

a unique maximin-optimum, we chose problem parameters U = 0

and V = 1 − 1/=, where the optimal predator is any bitstring with

exactly one zero-bit and all other bits set to one, and the optimal

prey is the all-zero bitstring. To choose a population size _, we draw

inspiration fromTheorem 3 in [18] which requires _ = Ω(log=). We

conjectured that _ = 300 would be su�cient. We chose mutation

rates j and i in the interval [0.01, 1.2] with step size 0.05. The

range of the interval was chosen such that the extreme values

satisfy 1.20 > ln(2) > 0.01. Each experiment was repeated 50 times.

We recorded the number of function evaluations until the algorithm

obtained the maximin-optimum or 107, whichever was the smallest.

The experiments in Section 4.1.1 consider whether good muta-

tion rates can be obtained through self-adaptation. We used SA-

PDCoEAwith population size _ = 300.We initialized the individuals

at generation C = 0 with di�erent mutation rates in di�erent runs.

We used the same problem instance of Bilinear as described above.

The experiments in Section 4.1.2 investigate the dynamics of

SA-PDCoEA with an emphasis on the potential bene�ts of using

di�erent mutation rates throughout the optimization. Therefore,

we change the optima of Bilinear during the run, by changing U

and V over three phases. Each run is comprised by 6 · 107 �tness

function evaluations, and the phase (U and V) changes every 2 ·

107 �tness function evaluations. The values of (U, V) used in each

phase are, respectively: (1/=, 1/=), (1/2, 1/2), (1− 1/=, 1− 1/=). For

these experiments we choose = = 400 and _ = 500 to match the

experimental setup of DefendIt-B from [19]. When self-adaptation

is used, we initialize all j := 0.1 and all i := 0.1. All strategies are

initialized sampling from {0, 1}= uniformly at random. We repeat

each experiment at least 50 times.

DefendIt-B. Following Lehre et al. [19], for all experiments on

DefendIt-B we use : = 10 number of resources and ℓ = 40 time

steps. Hence, the strategies are represented by bitstrings of length

= = :ℓ = 400. Di�erent from [19] we set all resource costs to a

uniform value of 140. The resource values and cost are identical.

In [19] it was shown that the budgets for the attacker and de-

fender a�ected the error threshold for the mutation rates. Hence,

in three phases, we change the budgets during the run to be:

{�low := 280, �med := 2, 800, and �high := 28, 000} respectively.
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This, combined with the cost of the resources, mean that for �low
only two actions are possible before exceeding the budget, 20 ac-

tions are possible for �med and 200 for �high.

Like Bilinear, the number of games (�tness function evalua-

tions) in a run is 6 · 107 and there are three phases of 2 · 107 �tness

evaluations each. Over the phases, the budget changes from �low
to �med and �nally to �high. This range was determined by experi-

mental observation that payo�s and mutation rates were relatively

steady for a long duration in each phase. As in [19] for all exper-

iments on DefendIt-B we choose _ = 500. Initial strategies are

sampled uniformly at random from {0, 1}= . When self-adaptation

is used, we initialize all j := 0.1 and all i := 0.1 and use the �xed

adaptation parameters� = 1.05, ?inc = 0.5, and jmin = 0.001 unless

stated otherwise. We repeat each experiment at least 50 times.

SA-PDCoEA. When working with SA-PDCoEA, we use popula-

tion size _ = 300. We initialize the individuals at generation C = 0

with di�erent mutation rates in di�erent runs. The experiments

of Section 4.1.2 choose = = 400 and _ = 500, as in [19]. When

self-adaptation is used, we initialize all j := 0.1 and all i := 0.1.

All strategies are initialized sampling uniformly at random from

{0, 1}= . We repeat each experiment at least 50 times.

4.1 Results & Discussion

We address RQ-1, as well as parameter sensitivity of the method of

mutation rate self-adaptation in Section 4.1.1 by using Bilinear.

We address RQ-2 in in Section 4.1.2 and use both Bilinear and

DefendIt-B. RQ-3 is addressed in Section 4.1.3 with DefendIt-B.

The experiments of Section 4.1.2 investigate the dynamics of

SA-PDCoEA with an emphasis on the potential bene�ts of using

di�erent mutation rates throughout the optimization.

4.1.1 Adaptation Towards Empirical Error Threshold Values (RQ-1).

Figure 3a shows how the runtime of the PDCoEA (static mutation

rates, S-S) applied to the Bilinear problem (U = 0, V = 1 − 1/=) de-

pends on the predator and prey mutation rates. The color indicates

the runtime (number of �tness evaluations) for static mutation val-

ues to reach the optima, with dark blue having the lowest average

runtime and dark red having an average runtime greater than 107.

In Figure 3b (overlaying Figure 3a) we show mutation rate tra-

jectories of two SA-PDCoEA runs under experimental design A-A

(both populations adapt mutation rate) for the same Bilinear prob-

lem instance but di�erent initiatlizations of the mutation rate. Each

run is of a di�erent color: yellow or white. Arrows are added to as-

sist with tracing. A1 and B1: showmutation rates at the start of each

run. C: shows mutation rates in the middle of the run. D: shows

mutation rates at the end of the run. They are lying within the

parameter region (dark blue that exhibits low runtime, as observed

by the static PDCoEA. We repeated the experiment 50 times for

both initial mutation rates to analyze the distribution of predator

mutation rates as a function of time. Figure 3c shows the analysis.

For both initialization values, the predator mutation rate converges

towards values consistent with the optimal values observed for the

PDCoEA. This provides empirical evidence that SA-PDCoEA is able

to adapt the mutation rate to the values found by the empirical

error threshold with PDCoEA. According to the non-parametric

test (Wilcoxon rank-sum with Bonferroni correction) applied to

(a) Left: Runtime of PDCoEA with static predator and prey mutation rates on Bilinear

(U = 0 and V = 1 − 1/=). Each pixel is the average runtime over 50 runs for a �xed pair of
predator (j on X-axis) and prey mutation rates (i on Y-axis). Dark blue is lowest average

runtime, dark red, highest average runtime > 107 . Mutation rates ranged from 0.1 to 1.2.

(b) Right: Mutation rate dynamics in two runs (yellow run and white run) of SA-PDCoEA
applied to Bilinear (U = 0 and V = 1 − 1/=). The yellow run was initiated with mutation
rates j = 3 and i = 0.1, and the white run was initiated with j = 1 and i = 1. Lines plot
maximummutation rates in the populations. The X-axis is the predator mutation rate (j ),
and the Y-axis is the prey mutation rate (i). The background shows the runtime of the
PDCoEA with static mutation rates (see (a) above). A1 and B1: Mutation rates at the start
of the run. C: Mutation rates in the middle of the run. D: Mutation rates at the end of the
run lying within the parameter region giving low runtime of PDCoEA.
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(c) Predator mutation rate dynamics of SA-PDCoEA over 100 runs, starting with mutation
rates j = i = 1 and with j = 3, i = 0.1.

Figure 3: PDCoEA runtime and SA-PDCoEA mutation dynamics.

the predator mutation dynamics, during the �rst 12000 evaluations,

the mutation rate shows no signi�cant variation. After that, the

mutation rates signi�cantly change every 6000 evaluation functions.

The mutation rate trajectories also show that di�erent mutation

rates can be bene�cial for di�erent parts of the search space.

Self-Adaptation Method Evaluation. We evaluate the self-

adapation method on two factors. First, we can con�rm that the

method is �exible enough that, for each of the two problem envi-

ronments, the dynamics of the rate are unique to each one. Second,

we investigate how method parameters ?inc and � in�uence the

performance of Bilinear, see Figure 4. We observe that perfor-

mance favors setting the probability of increasing or decreasing

the mutation rate to ?inc≤ 0.5 when the change factor � is large,

i.e., ≥2.25. With ?inc>0.6 both �≤1.05 and �≥7.25 perform poorly.

Performance is also poorer with ?inc≤0.4 and �≤1.25. From within

the narrow zone of better performance we choose the combination

of ?inc=0.5 and �=1.05 for our experiments.

4.1.2 Adaptation Dynamics (RQ-2). We analyze the dynamics of

SA-PDCoEA in two dynamic problem environments using four

di�erent self-adaptation designs (Table 1).

Bilinear. Figure 5 shows the median worst-payo� in the pop-

ulations and mutation value dynamics for Bilinear for di�erent

experimental designs. Table 2 shows the payo� of the maximin-

optima for reference.

We �rst consider the most complex experiment (A-A) where

both populations adapt mutation rates. Figure 5a shows that the
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Figure 4: Heatmap of� and ?inc parameter sensitivity on the Bilinear problem. Y-axis is�
values in range [1.01, . . . , 32.25]. X-axis is ?inc values in range [0.0, . . . , 1.0]. Cell shows
the number of �tness evaluations to reach the optima U = V = 1/=.

Table 2: Payo� for the maximin-optimal solutions on Bilinear.

Bilinear parameters Predator Prey

U = 1/= V = 1/= −1/=2 ≈ 0 1/=2 ≈ 0
U = 1/2 V = 1/2 −1/4 1/4
U = 1 − 1/= V = 1 − 1/= −1 − 1/=2 + 2/= ≈ −1 1 + 1/=2 − 2/= ≈ 1

payo� converges to the maximin-optimal values. In addition, at the

beginning of the optimization, and twice when the environment’s

optimum changes (parameters U and V), the mutation rate readjusts.

It initially spikes but later settles down towards the minimum value.

A possible explanation is that while the algorithm is searching the

optimum, a larger mutation rate appropriately favors exploration.

Once the maximin-optima has been reached, evolution reduces the

mutation rate to maintain the optimal solutions.

We make a comparison to the baseline experimental design, see

Figure 5b, where neither population adapts the mutation (Static-

Static, S-S). Di�erent combinations of static mutation rates lead to

di�erent payo�s and convergence times. We note that, in the �rst

and third phase when mutation rates (e.g., j = 0.8, i = 0.8) are too

high, the result is payo�s that are not the maximin-optimal values.

We believe that this is because in these phases the maximin-optimal

solutions need to have exactly one 1-bit or 0-bit and highermutation

rates “destroy” good solutions. On the other hand, higher mutation

rates converge faster in the second phase than smaller mutation

rates. This indicates that there is no unique optimal mutation rate

for the whole optimization process. Instead, it is bene�cial to use

di�erent mutation rates at di�erent times.

When only one population adapts its mutation rate, i.e., experi-

mental designs A-S and S-A, the dynamics shed the complexity of

rate co-adaptation. In Figure 5d (A-S) we see more di�erences in

the adaptive mutation rate when the adversary has di�erent static

values. We see that low and high static mutation rates for the prey

instigate small adaptive mutation rates for the predator andmedium

static mutation rates for the prey instigate high adaptive mutation

rates for the predator. In contrast this is not observed in Figure 5c (S-

A). We conjecture that this is because of a unique dynamic when

optimizing Bilinear with U = V = 1/= and U = V = 1 − 1/=. We

will explain the hypothesized dynamic for U = V = 1/= but we

believe that there is a similar dynamic for U = V = 1 − 1/=.

If U=V=1/= and there is a su�ciently large proportion of solu-

tions in the prey population with more than one 1-bit, it is pro�table

for the predator population to increase the number of 1-bits and the

opposite is true when there is a large proportion of solutions with

less than one 1-bit. In turn solutions with more than one 1-bit in the

predator population increase the evolutionary pressure for the prey

population to reduce the number of 1-bits and vice versa. Then, our

hypothesis is that for high static mutation rates in Figure 5d (A-S)

the prey population cannot create solutions with exactly or less

than one 1-bit and the predators always want to increase the num-

ber of 1-bits; once the all-ones bitstring is reached the mutation

rate decreases to keep this solution. A similar thing happens for

high static mutation rates in Figure 5c (S-A).

The hypothesis for medium mutation rates in Figure 5d (A-S) is

that the prey population can create solutions with less or exactly

one 1-bit, but also some solutions with more than one 1-bit. Most of

the time this proportion is small so the predator population bene�ts

from reducing the number of 1-bits and most of the population

have small number of 1-bits and low mutation rates to keep these

solutions. However, this proportion of solution in the prey popu-

lation is sometimes large enough for the predator population to

tend to increase the number of 1-bits; since there are many 0-bits

high mutation rates are bene�cial. Then, the predator population

switches between increasing and decreasing the number of 1-bits

which in turn increases and decreases the mutation rates sharply.

On the other hand, for medium mutation rates in Figure 5c (S-A)

when the predators (with static mutation) create a large proportion

of solutions with more than one 1-bit the prey are pushed to reduce

the number of 1-bits but since they already have few 1-bits the

mutation rates stay small. Finally, for low static mutation rates in

the runs of Figures 5d (A-S) and 5c (S-A), the algorithm may be able

to maintain most solutions with exactly one 1-bit for both predator

and prey populations avoiding this dynamic.

DefendIt-B. Figure 6 shows the median worst-payo� and muta-

tion value dynamics for DefendIt-B for each experimental design.

For adaptive adversaries (A-A), Figure 6a, the payo� decreases for

the defender as the budget increases. This could be explained by the

attacker having access to more actions and using them to acquire

more resources. The payo� seems to converge for �low and �high.

The larger payo� �uctuations in �med could come from the impact

of infeasible solutions. The mutation rate values converge for �low
and �uctuate for �med and �high. The mutation rate dynamics for

attacker and defender look quite similar.

In the non-adaptive baseline, S-S, see Figure 6b, we see that dif-

ferent combinations of mutation rates lead to di�erent payo�s, e.g.,

mutation rates (j = 0.8, i = 0.8) that are too high lead to lower

payo� when the budget is �low or �med. When the budget is �low or

�med several mutation rate combinations result in the median solu-

tions in the population going over-budget. This highlights that the

selection of mutation rates is challenging, while the self-adaptation

of SA-PDCoEA can �nd reasonable solutions and mutation rates.

When one adversary’s mutation rate is static, we observe that

there are di�erences in the adaptive mutation rate and payo�. The

di�erences for di�erent static values are large (S-S). Figure 6d (A-S)

shows high variance for the static attacker payo� when compared

to the adaptive defender, specially for i ∈ {0.3, 0.4, 0.5}. This dif-

ference could come from these mutation rates having di�culties

in maintaining feasible solutions. In addition, we note that the

adaptive mutation rate not only adapt to the current budget but

also adapt to their opponent’s mutation rates, i.e., co-adaptation of

mutation rates. The S-A case in Figure 6c behaves similarly.

We observe that the mutation rate depends on the budget due to

the DefendIt-B problem. With �low there are fewer feasible solu-

tions, so too much change may render a strategy infeasible. With
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Figure 5: The Bilinear problem for di�erent mutation rate adaptation combinations: (a) A-A, (b) S-S, (c) S-A, and (d) A-S. X-axis shows the number of �tness evaluations (C ) and the location of
the optima. Y-axis for top row shows the median maximin payo�. Y-axis for bottom shows j /i , note the scale.

�med there are more feasible solutions, and changing a strategy

can thus provide more advantage. For �high there are even more

feasible strategies, and changing is a even more advantageous.

4.1.3 Adaptation Performance (RQ-3). This section analyzes the

performance of SA-PDCoEA in each problem environments and

experimental design, see Figure 7. Static predator and adaptive prey

mutation rate (S-A) at the end of each budget regime in DefendIt-

B (Low budget Figure 7a, medium budget Figure 7b, and high budget

Figure 7c). Note that the full trajectory is shown in Figure 6d and

these are snapshot at di�erent �tness evaluations C = 1.9847, C =

3.9847 and C = 5.9847. The 3rd quantile payo� values for static

and adaptive runs is shown as well as the i (prey mutation rate).

We observe that the adaptive mutation values roughly correspond

to the good values seen from the static (S-S) settings. The self-

adaptive payo� and mutation rates avoid poor payo� and mutation

rates when compared to the static values. We observe signi�cant

di�erences in payo� for some mutation values, see A. The Bilinear

results (omitted by page limit) con�rm the problem dependency

of the mutation rate and further demonstrate the ability of SA-

PDCoEA to adapt to an empirically good mutation rate.

5 CONCLUSION

We investigated the impact of self-adaptingmutation rates for CCAs

by introducing a new algorithm, SA-PDCoEA. One motivation is

that prior work has shown the mutation rates to be important

to algorithm performance and self-adapting rates avoid the chal-

lenge of selecting ideal ones. An intuition is that the inherent non-

stationarity of an evolving adversarial population bears some simi-

larity to the dynamic environments in classical EAs that are well

served by self-adaption. We observed the performance and dynam-

ics of SA-PDCoEA in in two problem environments that we changed

to be dynamic.The broad take-away is that self-adapation avoids

bad results that would follow from poor mutation rate choices.

It allows the mutation rate to hone in on an optimal setting and

adjust to environmental change. The price for this �exibilty and

“customize-ability” is lower payo�s leading up to �nding a good

rate. If an ideal rate was feasible and the algorithm run with it,

payo�s would usually be higher. The cost of �exibility is the �tness

evaluations and low performance incurred in the course of adap-

tation. Stepping out, beyond the technical details, self-adaptation

introduces more complexity to an already very complex algorithm

making analysis very challenging. Future work will investigate ad-

ditional parameter settings and problems. We will also investigate
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Figure 6: The DefendIt-B problem for di�erent mutation rate adaptation combinations: (a) A-A, (b) S-S, (c) S-A, and (d) A-S. X-axis shows the number of �tness evaluations (C ) and the allowed
budget� . Y-axis for top row shows the median maximin payo�. Y-axis for bottom shows j /i , note the scale. Left column is defender and right is attacker.
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Figure 7: Static predator and adaptive prey mutation rate (S-A) at the end of each budget regime in DefendIt-B and j = 0.1 (predator mutation rate). Y-axis is the 3rd quantile payo�, leftmost
is the static and right most is the adaptive. X-axis is the i (prey mutation rate), top is for static i values and bottom is a boxplot of the adaptive i values.

how well the solutions generalize to unseen adversaries, not only

compare the subjective payo� values.
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