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Abstract: Background/Objectives: Hepatitis E virus (HEV) is an RNA virus recognized to be spread
mainly by fecal-contaminated water. Its infection is known to be a serious threat to public health
globally, mostly in developing countries, in which Africa is one of the regions sternly affected. An
African-based vaccine is necessary to actively prevent HEV infection. Methods: This study developed
an in silico epitope-based subunit vaccine, incorporating CTL, HTL, and BL epitopes with suitable
linkers and adjuvants. Results: The in silico-designed vaccine construct proved immunogenic, non-
allergenic, and non-toxic and displayed appropriate physicochemical properties with high solubility.
The 3D structure was modeled and subjected to protein docking with Toll-like receptors 2, 3, 4, 6,
8, and 9, which showed a stable binding efficacy, and the dynamics simulation indicated steady
interaction. Furthermore, the immune simulation predicted that the designed vaccine would instigate
immune responses when administered to humans. Lastly, using a codon adaptation for the E. coli
K12 bacterium produced optimum GC content and a high CAI value, which was followed by in
silico integration into a pET28 b (+) cloning vector. Conclusions: Generally, these results propose
that the design of an epitope-based subunit vaccine can function as an outstanding preventive
vaccine candidate against HEV, although validation techniques via in vitro and in vivo approaches
are required to justify this statement.
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1. Introduction

Hepatitis E virus (HEV) has become a significant public health concern [1] and an agent
of viral hepatitis in various countries of the world where there are inadequate resources—
especially developing countries with few cases of acute hepatitis. HEV was discovered
in Afghanistan in 1983 [2], and is a positively stranded, non-enveloped RNA genome of
icosahedral symmetry of about 20–30 nm, belonging to the Hepevirus genus and Hepeviridae
family [3]. It encodes open reading frames (ORFs), which are three in number: ORF1 codes
for nonstructural proteins, which involves viral genome replication; ORF 2 for the viral
capsid protein; and ORF 3 is for multifunctional small proteins [4]. HEV is classified into
four genotypes—1, 2, 3, and 4 [5]. Genotypes 1 and 2, which infect only humans, spread
through the fecal–oral route [6,7], while genotypes 3 and 4 are mostly found in animals
but also in humans, and are easily contracted by feeding on raw or undercooked meat [8].
Major outbreaks have occurred in several developing countries in Africa and Asia because
of contaminated food or water intake, which is commonly correlated with genotypes 1
and 2 of HEV [9]. About 20 million people are at risk of infection caused by HEV, among
which 3.3 million are cases, and 44,000 die annually across the globe [9]. Among the regions
suspected to be greatly affected, Africa is amongst them [10], and its outbreak was first
confirmed in Cote d’Ivoire in 1986 [11]. It has infected the human population in 28 of
56 African countries, taking an elevated toll, especially on pregnant women and their
fetuses [11].

HEV infection, when accompanied by pregnancy or underlying chronic liver problems,
causes considerable mortality [8,10]. In healthy individuals, the disease is self-limiting but
can become chronic and lead to severe liver damage in patients with deficient immune
systems [12]. In preventing viral diseases, the most effective method is vaccine construction,
and scientists have been able to recognize effectual epitopes to use in the development of
effective subunit vaccines facilitated by available software algorithms used for genomic
studies and immunologic data [13,14]. This subunit vaccine constitutes fragments of
immunogenic proteins that can induce an immune response against the target pathogen
and imitate the appearance of the natural pathogen [15,16].

In the development of the HEV vaccine, only ORF2 of the genome has proven to be
effective because it encodes the viral capsid protein, which is immunogenic by nature
and produces neutralizing antibodies [5]. In constructing the HEV vaccine, early efforts
have centered on the truncated or short forms of the capsid protein; the reason being
that the expression of the whole-capsid protein’s immunogenic characteristics was said to
be veiled due to insolubility [5,17]. The currently developed vaccine candidates against
HEV have been truncated forms of the ORF2 protein. These include the trpE-C2, pE2,
HEV 239, 53 kDa, 56 kDa, 62 kDa, rHEV VLP, and T1-ORF2 vaccines [18]. The only
assessed vaccines in human clinical trials have been the HEV 239 and 56 kDa vaccines [3].
Among all those vaccine candidates stated, only the HEV 239 vaccine in China qualified
to reach a phase III trial, which was licensed by the SFDA China (China’s State Food
and Drug Administration) in 2011. Currently, there is no available vaccine worldwide to
prevent hepatitis E virus infection aside from the one developed and licensed in China [19].
Therefore, an effort was made in this study to construct an effective hepatitis E vaccine
with a focus on hepatitis E isolates from African countries, exploiting the diverse tools of
bioinformatics and immunoinformatics.

2. Methods
2.1. Retrieval of HEV Protein Sequences

The process of retrieving the sequences of hepatitis E virus (HEV) proteins involved
accessing the National Center for Biotechnology Information (NCBI) database Figure 1.
These sequences were obtained in protein FASTA format. Specifically, seven capsid protein
sequences were retrieved. Among these, one sequence originated from Sudan (AOT06116),
one from Nigeria (AF173232), two from Chad (AAW78754, AAW78755), and three from
Burkina Faso (QEE82931, QEE82930, and QEE82925).
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2.2. Antigenicity Testing

The VaxiJen 2.0 server, referenced as [20], is an online computational tool designed
for predicting the antigenicity of protein sequences. It utilizes sophisticated algorithms to
analyze the physicochemical properties of proteins, thereby predicting their potential to
induce an immune response. Widely employed in vaccine development and immunoinfor-
matic research, this tool plays a pivotal role in identifying candidate antigens for vaccine
design. Specifically, it serves the purpose of testing the antigenicity of sequences.
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2.3. Epitope Predictions

The protein sequences were utilized to predict the epitopes capable of eliciting a
response from T-cells and B-cells. This involved analyzing the sequences to identify specific
regions or segments that are likely to interact with receptors on T-cells and B-cells, thus
triggering an immune response. By predicting these inducing epitopes, we can gain insights
into the potential immunogenicity of the protein and its suitability for vaccine development.

2.3.1. T-Cell Epitope Predictions

The Immune Epitope Database (IEDB) [21] was utilized to generate HTL (helper T
lymphocyte) epitopes referencing the H2IAd, H2IAb, and H-2-IEd major histocompatibility
complex II panel for the production of 15-mer T-cell epitopes at the highest binders, which
were selected based on the percentile ranks. The CTL (cytotoxic T lymphocyte) epitope
prediction of the retrieved sequences was performed using the NetCTL 1.2 server, which
identified 9-mer T-cell epitopes [22]. Parameters such as weight on the proteasomal C-
terminal cleavage, weight on the TAP (transporter associated with antigen processing)
transport efficiency, and epitope identification were set at 0.15, 0.05, and 0.75, respectively,
in the NetCTL-1.2 database.

2.3.2. B-Cell Epitope Predictions

B-cell epitopes were predicted by an online tool BepiPred-2.0, which indicated 14-mer
B-cell epitopes for all HEV proteins. The setting of the minimum epitope threshold value
was 0.5 [23].

2.4. Peptide Immunogenicity Predictions

VaxiJen v2.0, a web-based bioinformatics software, was used to evaluate the T-cell
and B-cell epitopes’ antigenicity [24]. The epitopes that were exactly on or surpassed the
threshold value (0.4) were selected while non-antigenic epitopes (below the threshold
value) were excluded.

2.5. HEV Vaccine Construction

For vaccine construction, HTL epitopes, CTL epitopes, and B-cell epitopes were
employed. The adjuvant and first B-cell epitope were combined by the linker EAAAK,
between one B-cell and the other GPGPG was used as the linker, likewise, between the
B-cell and HTL the linker used was GPGPG, while AAY was used in linking HTLs and
CTLs [25,26].

2.6. Different Physicochemical Properties Prediction of Vaccine Constructs

To find out the physicochemical properties of the vaccine, the ExPASy ProtParam
tool was utilized [27,28]. This tool predicted different physicochemical features such as
the molecular weight, instability index theoretical pI, half-life, aliphatic index, number of
amino acids, and GRAVY (grand average of hydropathicity).

2.7. Predictions of the Secondary Structures for Vaccine Constructs

To determine the secondary structures for vaccine constructs, SOPMA was used [29].
The levels of alpha helices, extended strands, beta-turns, and random coils were assessed
by SOPMA. The results retrieved show two graphs, one indicating the prediction and the
other expressing the score curves.

2.8. Predictions and Refinement of the Tertiary Structures for Vaccine Constructs

The I-TASSER server is an online server that uses I-TASSER-based algorithms for the
predictions of protein structure and function [30–32]. This server was used to illustrate
the tertiary structure arrangement of the predicted vaccine. The Galaxy Refine server
was utilized to polish the structure, showing different models. The refined model was
confirmed using the PROCHECK server to produce the Ramachandran plot [33].
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2.9. Predictions of Antigenicity, Allergenicity, and Toxicity

The prediction of vaccine antigenicity was also performed on the VaxiJen server [20].
To evaluate whether the vaccine was allergenic, the AllerTOP V2.0 online server was
used [34]. Likewise, toxicity was predicted by ToxinPred.

2.10. Protein Docking of the Immune Receptor

To produce an immune reaction, there is a need for an interaction between the immune
receptor and antigenic molecule, so the vaccine construct (ligand) and immune receptor
(TLR 2: 2z82; TLR 3: 3CIG; TLR 4: 2Z64; TLR 6: 3A79; TLR 8: P58882; TLR 9: 3WPF.)
interaction was analyzed by protein–protein docking; the online server used for this was
the ClusPro server [35].

2.11. Molecular Dynamics (MD) Simulation

The process of determining the direction and movement of molecules within the
vaccine–receptor complex, including the covariance, B-factor, eigenvalues, and deformabil-
ity, was conducted using the iMODs online server in molecular dynamics (MD) simulation.
Deformability is contingent upon the molecule’s ability to undergo deformation at its
residues. Eigenvalues indicate the rigidity of motion, with lower eigenvalues suggesting
structures that are easily deformable. This information was derived from studies by [36],
and adopted by many scientific research papers, including [26].

2.12. In Silico Cloning

To improve the expression of genes by the translation machinery of the host, opti-
mization should be performed. Optimization of the codons and reverse translation—using
the Java Codon Adaptation Tool—were examined in order to make a fitting expression
prediction in vector translation and cloning effectiveness [37]. The organism that was the
expression host for the vaccine construct was identified to be Escherichia coli (K-12 strain).

2.13. Immune Simulation

The immune response simulation was carried out on the C-ImmSim server [38]. The
random seed, simulation volume, and steps were set at 12345, 50 micro–L, and 1000,
respectively; likewise, the Host HLA selections for MHC classes I and II were AO101 and
DRB1_0101, respectively, while a single injection time step was used in this simulation.

3. Results
3.1. Protein Targets

From the antigenicity prediction output of the target protein set at threshold value—
which acts as a predetermined standard for evaluation at a base value of 0.4—the capsid
protein identified by the accession number QEE82931.1 demonstrates the highest degree
of antigenicity. Subsequently, other proteins, namely QEE8230, QEE82925, AF173232,
AOT06116, AAW78754, and AAW78755, follow in descending order of antigenic potency,
with the respective values of 0.7528, 0.6825, 0.6250, 0.5672, 0.5317, 0.5214, and 0.5139.

3.2. Predictions of T-Cell Epitopes

Epitopes that were antigenic in the protein sequences were selected. For the seven
sequences stated earlier, there were 126 HTL epitopes in total, and for CTLs, 28 epitopes,
out of which 88 epitopes and 11 epitopes were found to be antigenic, respectively; these
antigenic epitopes were then subjected to advanced study.

3.3. Predictions of B-Cell Epitopes

Out of the seven sequences mentioned previously, a total of 41 B-cell epitopes were
subjected to analysis. Among these, 29 epitopes were identified as antigenic and were
deemed suitable for more in-depth study.
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3.4. HEV Vaccine Sequence Construction

The epitopes that qualified for the final design of T-cell and B-cell epitopes were
merged with the AAY and GPGPG linkers, respectively, to form a vaccine construct. Fol-
lowing the addition of linkers and adjuvant, the final design consisted of 232 amino acids
and included a total of 14 cell epitopes left after the downstream analyses of antigenicity,
allergenicity, and toxicity prediction. Figure 2 below illustrates the HEV vaccine sequence,
which consists of an adjuvant (red) at the N-terminal joined with an HEV sequence through
an EAAAK linker (sky blue). B-cell lymphocyte (BCL) epitopes are connected by GPGPG
linkers (blue), HTL epitopes are linked by GPGPG linkers (blue), and CTL epitopes are
connected by AAY linkers (green).
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3.5. Physicochemical Properties of the Vaccine

The physicochemical properties below provide valuable insights into the characteris-
tics of the vaccine construct (Figure 2). A theoretical pI (Isoelectric Point) of 8.70 suggests
that the vaccine is likely to carry a net positive charge under typical physiological con-
ditions. The total number of amino acids present in the vaccine construct is 232, with
a molecular weight of 22,863.32 g/mol. The aliphatic index reflects the relative volume
of aliphatic side chains (valine, isoleucine, and leucine) in a protein sequence. A higher
aliphatic index, such as the value of 52.80 provided, suggests greater thermostability, as
aliphatic residues contribute to protein stability. The estimated half-life values provided
(4.4 h in mammalian reticulocytes, >20 h in yeast, and >10 h in Escherichia coli) give insights
into the protein’s stability and degradation rates in different cellular environments as
well as the best compartment to store the vaccine. The instability index value of 22.37
suggests that the protein is relatively stable, as it falls below the threshold value of 40,
where II values greater than 40 indicate potential instability. The GRAVY (grand average of
hydropathicity) score of −0.23 suggests that the vaccine construct is overall hydrophilic,
which may influence its solubility and interactions with other molecules. These properties
are crucial for understanding the stability, solubility, and potential immunogenicity of the
vaccine construct. They help ensure that the vaccine maintains its structural integrity and
efficacy throughout storage, formulation, and administration.

3.6. Predictions of Antigenicity, Allergenicity, and Toxicity

The antigenicity, allergenicity, and toxicity of the vaccine construct show that the
nature of the vaccine was antigenic with a score of 0.6831 when the base threshold value
was set at 0.4, non-allergenic, and non-toxic.

3.7. Predictions of the Secondary Structures

Among 232 amino acids, 21 amino acids took part in the formation of an α-helix, which
represents 9.05% of the structure; 16 in β-strands, which constitute 6.90%; and 141 amino
acids produced a random coil, which was 60.78% of the entire vaccine construct (as shown
in Figure 3). The formation of secondary structures, such as α-helices and β-strands,
can potentially hinder epitope recognition by the host’s immune system, especially if the
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epitopes are linear; however, the impact on epitope recognition depends on the specific
structure–function relationship of the protein and the nature of the epitopes involved.
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3.8. Three-Dimensional Structure Prediction

In 3D structure prediction, templates of known protein structures are used as references
to predict the structure of a target protein with a similar sequence. They provide crucial
information about the possible arrangement of amino acids. Out of 10 templates, 7 showed
good alignment, with 7bv0, 3jacA, 7bvoA, 4n16A, and 2pffB having the best Z-score values
(ranging from 1.21 to 6.08). The C-score values of the top five models (referring to a
predicted 3D structure of the target protein) ranged from −4.43 to −2.69, with higher
values indicating higher confidence. These models are based on the alignment of the target
protein’s sequence with known protein structures (templates) and are used to estimate
the protein’s structural characteristics. The model with a C-score of −2.86, a TM-score of
0.39 ± 0.13, and an estimated RMSD of 12.3 ± 4.3 Å was chosen for further analysis.

3.9. Three-Dimensional Refinement and Validation

The structure refinement process was conducted using the Galaxy Refine server
(Figure 4). Out of the five refined models, Model 4 was selected as the best for further study,
as indicated in Figure 5a. Model evaluation metrics: The chosen Model 4 was evaluated
using various metrics, including GDT-HA (Global Distance Test–High Accuracy), RMSD
(Root Mean Square Deviation), Molprobity, clash score, poor rotamers, and Rama favored.
These metrics provide information about the overall quality and accuracy of the model;
PROCHECK server: The refined Model 4 was further verified using the PROCHECK server,
which generated a Ramachandran plot. This plot displayed the distribution of residues in
the favored, allowed, and outlier regions of the Ramachandran plot, with 98.0% of residues
in the favored region, 2.0% in the allowed region, and 0.0% outliers, as shown in Figure 5b.
This indicates that the majority of residues in the model have favorable backbone torsion
angles; ProSA-web server: Finally, the structure was validated using the ProSA-web server,
which generated a Z-score of −3.17 (Figure 5c). The Z-score assesses the overall quality
of the model in comparison to experimental structures, with negative scores indicating
higher confidence in the model’s accuracy. Overall, the figure demonstrates the thorough
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validation process conducted on the refined Model 4 of the vaccine construct, ensuring its
structural quality and reliability for further analysis and study.
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3.10. Protein–Protein Docking of the Toll-like Receptors (TLRs) and Vaccine Construct

The ClusPro server was used to dock the vaccine construct (ligand) with six different
immune receptors (TLRs), which are TLR 2, TLR 3, TLR 4, TLR 6, TLR 8, and TLR 9. A total
of 30 models were generated for each immune receptor. Out of the 30 models generated for
each of the six TLRs selected, only the lowest-energy-score model was chosen for each of
the TLRs (Figure 4). The energy score obtained for TLR 2 was found to be −1172.2, which
is of the model 0; the energy scores for TLR3, TLR4, TLR6, TLR8, and TLR 9 are −1259.8,
−1262.6, −1276.6, −1182, and −1713.9, respectively (shown in Figure 6a–f).
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Figure 6. HEV vaccine construct with (a) TLR2, (b) TLR3, (c) TLR4, (d) TLR6, (e) TLR8, and (f) TLR9
docked complexes. Vaccine Construct (Viridian Green).

3.11. Dynamics Simulation

Dynamics simulation was carried out by the iMODS server. The docked files were
uploaded to this server in the space for uploading PDB files and the results were shown
within a few seconds when keeping all the parameters constant. The results of the dy-
namics simulation of the vaccine receptor complex of the HEV vaccine were shown in
Figures S1a–f–S6a–f in the Supplementary Materials. The eigenvalues provide insights
into the dynamic behavior and flexibility of the vaccine–receptor complex, with each value
representing a distinct vibrational mode or type of motion within the system. Smaller
eigenvalues indicate slower or more localized motions, while larger eigenvalues indicate
faster or more global motions. Variances in protein structures denote deviations from
average atomic positions, revealing mobility levels; high variances signify flexibility, while
low variances indicate rigidity, assessable via methods like PCA or NMA. Deformability
measures a molecule’s capacity to change shape in response to external factors, with higher
values suggesting enhanced flexibility and adaptability to different conformations. The
residual index assesses individual residue mobility within a protein, elucidating its relative
flexibility; residues with elevated indices exhibit greater mobility, while those with lower
values are more constrained. The B-factor, or temperature factor, quantifies thermal atomic
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motion, with higher values indicating increased mobility and flexibility, typically depicted
visually through color-coded representations on protein structures.

3.12. Codon Adaptation and In Silico Cloning

The Java Codon Adaptation Tool, an online server, was utilized in this study for codon
adaptation prediction. The codon sequence optimization had a length of 696 nucleotides.
The improved sequence exhibited a Codon Adaptation Index (CAI) value of 0.91, with a
GC content of 62.36%. These findings suggest efficient expression of the vaccine construct
in E. coli, albeit through in silico predictions. Finally, SnapGene software (Version 7.2) was
employed to design the recombinant plasmid sequence for the insertion of adapted codon
sequences into the pET28b(+) vector, as depicted in Figure 7a,b.
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3.13. Immune Simulation

The initial response to the vaccine was observed within the first fifty days, charac-
terized by high levels of IgM + IgG. Subsequently, there was a rise in IgM, IgG1 + IgG2,
and IgG1 levels, coinciding with a rapid decline in antigen concentration, as illustrated in
Figure 8a. B-cell activity, particularly B Mem (y2), remained high throughout, indicating the
formation of prominent memory cells, while B isotypes showed less memory-cell formation,
as depicted in Figure 8b. Similarly, an increased response was observed in the population
of Th (helper) and Tc cells, accompanied by memory development, as shown in Figure 8c–i.
Additionally, immunization stimulated the production of IFN-y and IL-2.
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Figure 8. Immune simulation prediction: (a) antigen and immunoglobulins—antibodies are sub-
divided per isotype; (b) lymphocyte B total count memory cells; (c) B lymphocyte population per
entity state (i.e., showing counts for active, presenting on class II, internalizing Ag, duplicating,
and anergic); (d) CD4 T-helper lymphocyte count—total and memory counts are shown on the
plot; (e) CD4 T-helper lymphocyte count sub-divided per entity state (i.e., active, resting, anergic,
and duplicating); (f) plasma B lymphocyte count sub-divided per isotype; (g) CD4 T-regulatory
lymphocyte count; (h) CD8 T-cytotoxic lymphocyte count—total and memory shown; (i) CD8 T-
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(m) epithelial cells; (n) cytokines (concentration of cytokines and interleukins with D signifying danger).

4. Discussion

The hepatitis E virus (HEV) is a self-limiting virus that can lead to chronic liver infec-
tion, increasing disease burden, especially in developing countries like Africa. Developing
a preventive method against HEV is important to prevent the occurrence of HEV epidemics,
which can be disastrous. Vaccination has been the most desirable means of fighting infec-
tious diseases throughout the globe [10], and researchers have been involved in vaccine
development, targeting epitope-based subunit vaccines among others because they are
related to enhanced safety profiles and are more achievable [39]. Epitope vaccines, in
contrast to traditional vaccines that worsen the state by causing allergic reactions with
little advantage, offer increased safety, reduced cost, and a chance for the logical engi-
neering of epitopes for increased effectiveness [40]. Subunit vaccines can concentrate the
immune response on conserved epitopes [39]. Antibody epitope estimation, with the use
of computational tools, signifies one of the noticeable phases of constructing a vaccine [41].

This study concentrated on the in silico construction of a potential epitope-based sub-
unit vaccine against HEV from ORF 2, which encodes the capsid protein. ORF 2 is specially
targeted in vaccine development approaches because it is immunogenic and can stimulate
the generation of neutralizing antibodies [5,42,43]. Therefore, immunoinformatic methods
were used for this study. Immunoinformatic methods have been used by researchers as
a tool to provide advanced models of epitope-driven vaccines against the Ebola virus,
Chikungunya, hepatitis C virus, and Dengue virus [44,45]. A total of seven HEV capsid
protein sequences from African countries (Sudan, Chad, Nigeria, and Burkina Faso) were
retrieved from the NCBI database. These sequences were used to project T-cell and B-cell
epitopes, and the derived epitopes were assessed for their antigenic capacity. Hepatitis
E (HE) immunity is described to depend on both B-cells and T-cells [45]. Using different
immunoinformatic tools, we predicted our CTL, HTL, and B-cell epitopes and evaluated
their antigenicity and allergenicity tendencies.
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The antigenic competency of a vaccine in instigating immune response is very crucial,
likewise, the allergenic potential of the epitopes is necessary in vaccine development;
therefore, the epitopes used were antigenic and non-allergenic in nature in that they
can induce an antigenic response but are not able to provoke any allergenic reaction in
an individual.

For the construction of vaccines, B-cell and T-cell epitope prediction is a necessary
step, B-cells are mainly responsible for retaining humoral defense, generating certain cy-
tokines, and presenting antigens to CD4+ T-cells and T-cells involved in cell-mediated
immunity [46]. Both cellular and humoral immunities can be stimulated by epitope vac-
cines, which are beneficial over the monovalent vaccine [47]. This vaccine candidate fits
into these criteria of vaccine development. The epitopes chosen were amalgamated using
AAY and GPGPG linkers; and the adjuvant was joined to the N-terminal of the vaccine.
The essence of this adjuvant in the designed vaccine was to boost immunogenicity and
stimulate different mediators and innate immunity, thereby enhancing the intensity, ac-
tivation, or prolonged existence of the antigen-specific immune responses if utilized in
combination with specific vaccine antigens [48]. GPGPG linkers play two roles in the
structure, firstly, the role in preventing junctional epitope generation [49]—which is a key
concern in constructing epitope-based subunit vaccines—and secondly, it enhances HTL
epitopes’ immunization and presentation [49,50]. The linker AAY was used to link the
CTL epitopes and GPGPG for intra-HTL epitopes. APHAALS and EAAAK linkers were
the connectors between the adjuvant from the N-terminal and the remaining components
of the vaccine [51,52]. The EAAAK is a functional peptide, which acts as a rigid spacer
among proteins [53] to promote a high level of expression and enhanced bioactivity of the
merged protein.

The epitope of the subunit vaccine construct was examined for its antigenicity, aller-
genicity, and toxicity; it was observed to be antigenic, not allergenic, and not toxic—this is
in accordance with other vaccine designs of SARS CoV2 by [54,55]. The pI was estimated
to be 8.70—this signifies that the final protein is alkaline; the GRAVY score was −0.23—the
negative score value signifies that the protein nature is hydrophilic and can relate with
water molecules, as suggested by [56,57] in a related study. The protein’s stability can be
effectively predicted using the instability index, which is calculated based on its amino
acid composition. In this study, the obtained value of 22.37 indicates that the protein is
relatively stable. This value is notably below the established threshold of 40, beyond which
higher instability is suggested. This finding aligns with previous research findings reported
by [26,41], further reinforcing its potential for use. Also, the aliphatic index revealed that
the protein comprises aliphatic side chains. The whole of these parameters signify that the
protein is stable thermally and thus fit to be used in developing countries like Africa.

In vaccine design, the fundamental aspects to know are the secondary and tertiary
structures of the aim protein [58]. The analysis of the secondary structure predicted that
the final protein involved a 9.05% alpha helix, 23.28% extended strands, and a 60.78%
random coil. After the refinement, the vaccine candidate 3D structure was enhanced
distinctly, and based on Ramachandran plot forecasts, the properties displayed were
apposite [41]. Based on the Ramachandran plot, 85.9% of the refined predicted residues
in the model were in favored regions, with an additional 12.2% in allowed regions, 1.3%
in generously allowed regions, and 0.6% in disallowed regions, consistent with findings
reported by [59]. The ClusPro server was utilized in achieving vaccine-receptor docking [60]
and validated by PatchDock [61], which was performed to verify the interaction complex.
Toll-like receptors (TLRs) are important receptor proteins in activating the innate immune
response [62]. So far, findings have revealed that TLRs found on immune cells are liable
to mediate immune responses against RNA viruses, and there are many of these TLRs.
Nevertheless, this vaccine was docked against six TLRs, namely TLR2, TLR3, TLR4, TLR6,
TLR8, and TLR9, and the vaccine overlapped with mostly all the TLRs. The low binding
energy score observed suggests a robust affinity between the molecules [63]. Through the
recognition of TLRs, the host’s innate immune system spots microorganisms and reacts
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to their stimuli. We conducted an in silico prediction of the atomic stability of the vaccine
with Toll-like receptors (TLRs) using molecular dynamics simulation techniques. Our
findings indicate favorable stability, which is consistent with the results reported by [64].
The B-factor/mobility values of deformability, variance, eigenvalues, co-variance map, and
elastic network were provided by this server. The deformability of a protein complex rests
on its ability to deform at each of its amino acids. When the eigenvalue—which is allied
with the energy that is needed to deform the given structure—is lower, the deformation
becomes easier. To determine and measure the protein’s flexibility, the iMODS server is
easy and has been a fast tool to use [36,65–68]. Protein docking and molecular dynamics
simulation gave clues and understanding about the stability, dynamics, and interaction of
the vaccine–receptor complex [69]. Immunoreactivity testing through serological testing is
one of the first steps in authenticating a designed vaccine [70]. Also, in any vaccine design,
its expression in a suitable host is important; therefore, codon adaptation of the designed
vaccine was carried out in E. coli k 12 to achieve a high expression and the outcome showed
that codon optimization resulted in efficacious expression [71].

The immune system simulation creates a possibility of examining how immunogenic
generic protein sequences can be and how steady the results are with typical immune
responses [72]. After first exposure to the antigen, there was a universal increase in the
produced immune responses. Memory B-cell and T-cell development was obvious, with
memory B-cells lasting several days. Both Th cells and T cytotoxic cells increased at first
and then dropped around day 50 to maintain a range within 50 to 150, and from the
cytokine simulation plot, there was an increase noted in amounts of IFN-γ and IL-2 after
immunization that were sustained at climaxes for many days.

This study presents a novel approach to combat the hepatitis E virus (HEV) by design-
ing an epitope-based subunit vaccine targeting the capsid protein, utilizing immunoinfor-
matic methods to predict antigenic epitopes. The incorporation of adjuvants and linkers
enhances vaccine stability and immunogenicity, while molecular dynamics simulation
provides insights into vaccine–receptor interactions. Codon optimization ensures efficient
expression in E. coli, and immune system simulations indicate robust immune responses,
suggesting the potential effectiveness of the designed vaccine. However, the progression of
this vaccine to the pre-clinical and clinical phases is limited by the need to demonstrate its
efficacy and safety. Ongoing work aims to address these limitations and further optimize
the vaccine before seeking approval.
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