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ABSTRACT

The high quality of Hipparcos data in position, proper motion, and parallax has allowed for studies about stellar
kinematics with the aim of achieving a better physical understanding of our galaxy, based on accurate calculus of
the Ogorodnikov–Milne model (OMM) parameters. The use of discrete least squares is the most common
adjustment method, but it may lead to errors mainly because of the inhomogeneous spatial distribution of the data.
We present an example of the instability of this method using the case of a function given by a linear combination
of Legendre polynomials. These polynomials are basic in the use of vector spherical harmonics, which have been
used to compute the OMM parameters by several authors, such as Makarov & Murphy, Mignard & Klioner, and
Vityazev & Tsvetkov. To overcome the former problem, we propose the use of a mixed method (see Marco et al.)
that includes the extension of the functions of residuals to any point on the celestial sphere. The goal is to be able to
work with continuous variables in the calculation of the coefficients of the vector spherical harmonic developments
with stability and efficiency. We apply this mixed procedure to the study of the kinematics of the stars in our
Galaxy, employing the Hipparcos velocity field data to obtain the OMM parameters. Previously, we tested the
method by perturbing the Vectorial Spherical Harmonics model as well as the velocity vector field.
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1. INTRODUCTION

The Hipparcos catalog (ESA 1997; for more details, see
Perryman et al. 1997) provided a huge number of astrometrical
data that have enhanced different fields of study. One of them
consists of the definition of a sustainable reference frame
which, at the same time, provides a link between the visible
wavelengths in the Hipparcos Celestial Reference Frame
(HCRF) and the non-visible wavelengths (radio sources, for
instance), which must be referred to the International Celestial
Reference Frame (currently the ICRF2). The development of
new catalogs, such as Tycho-2, UCAC2, UCAC4, PPMXL,
XPM, and others (in visible wavelengths) and LQAC and
XMM (in non-visible wavelengths) in addition to the future
GAIA catalog, aims to extend and improve the HCRF and
ICRF2 frames. Other partial catalogs, such as Rio in Assafin
et al. (2013) and that in Zacharias & Zacharias (2014) with a
few data sets, aim to increase the number of “reference
sources” that are suitable for use in linking both reference
frames.

A second line of work is the study of the kinematics of the
stars in our galaxy, employing Hipparcos, UCAC4, PPMXL,
and XPM.

On solving both problems, progress has been made using
physico-mathematical functional models with increasing
complexity (infinitesimal rotations, rotations+deformations,
Surface Spherical Harmonics, Fourier–Legendre–Hermite
functions, and Vectorial Spherical Harmonics (VSH)), whose
parameters may be determined using different procedures. To
this aim, it must be assumed that the searched function fulfills
the analytical properties that confirm that it has a unique
functional development series. In addition, it is commonly
assumed that only relatively low order harmonics are included
in the series. In our opinion, this assumption is not necessary
and can even lead to wrong results, as we see in Section 2.1.
In practice, one works with discrete data, and the parameters

are usually estimated using the discrete least squares
method (DLS).
Moreover, VSH have been widely used in both lines of work

and for several sub-objectives. See, in particular, the primary
contribution of Mignard & Morando (1990) and their further
update of that paper, Mignard & Klioner (2012), within the
context of the Hipparcos-FK5 comparison. This issue was also
studied by us in Marco et al. (2004), where we truncate the
VSH development up to the first order, which is enough to
determine the rotational and deformation parameters. We also
used VSH in the frame of ICRF in Martinez et al. (2009).
Within the context of stellar kinematics, VSH are used by
Vityazev & Shustsko (2004, 2005), Vityazev & Tsvetkov
(2009, 2011, 2012), and Makarov & Murphy (2007), among
others. Vityazev & Tsvetkov (2013) extended this study with
stellar velocities from the UCAC4 catalog introducing VSH in
a zonal catalog (ZVSF) and in Vityazev & Tsvetkov (2014) in
UCAC4, PPMXL, and XPM. The common methodology of all
these papers is the choice of a particular mathematical model
(VSH) to develop the stellar velocity fields, the identification
of the link among the coefficients of the development and the
physical parameters included in the Ogorodnikov–Milne-
Model (OMM), and their subsequent determination using
DLS (including some possible modifications taking weights
into account). We should first point out that even though we
could choose any of the two former frameworks (reference
frames and stellar kinematics), in this paper we merely try to
determine the OMM parameters using VSH and kernel
regression. This choice, though it is not the only one, may
vary depending on the data of the considered problem. Other
authors using Hipparcos data with a different mathematical
model are Dehnen & Binney (1998), Famaey et al. (2005),
Mignard (2000), Yuan et al. (2008), Zhu & Jin (2000), and du
Mont (1977) for the FK4/FK4 Sup stars and Hanson (1987) for
the Lick northern Proper Motion program.
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At this point, it is necessary to supply explanation of the
following.

1. Why a new approximation to the problem may be helpful.
2. What involves this new approximation.

From a mathematical point of view, there are two aspects to
consider: the mathematical modeling itself (we have already
mentioned this issue) and the practical implementation of the
model when we use a discrete set of data. The implementation
of the model is not a minor topic if we want to obtain
trustworthy results. Evidently, we must be very careful when
working with a discrete set of points (abscissas) not necessarily
homogeneously distributed and with data associated with these
points (such as errors in positions, proper motions, radial and
tangential velocities, etc.). In addition, the observed values can
be affected by random noise. This noise may or not be normal
(this question, though very interesting, is out of the scope of
this paper). The data are usually processed by means of the
classical DLS method. The Gauss–Markov theorem states that
this method provides the unbiased estimator of minimum
variance if the data are not biased, and provided that the
residuals behave as a normal random variable of null mean. If
we assume that the data to be fit can be properly
mathematically modeled by means of development in a certain
functional basis, we must note that the main interesting
properties of these functions come from their continuous
nature. The spatial distribution of the data may affect the
preservation of these good properties when we apply DLS. For
example, if the spatial distribution is not homogeneous,
orthogonality is not preserved when dealing with the discrete
problem, and this influences the reliability of the computed
results for the coefficients. We begin the second section with an
elementary example of this problem. In this example we see
that if we use the DLS, the coefficients are accurately computed
only if the order of DLS matches the order of the development
in the functional basis. In general, this order of development is
not known, so if instability exists, whenever the order of the
development is increased the coefficients of lower orders are
useful. If higher order harmonics are present in the real
problem, even more difficulties arise when we use DLS. On
one hand, we cannot choose a priori an arbitrarily high order
and, on the other, the higher the order, the more possibilities
that an “ill-conditioned” problem appears.

Focusing on the problem of the determination of the OMM
parameters, it should be emphasized that the discrete method
may lead to contradictory results. For instance, in the
determination of the OMM parameters carried out by Makarov
& Murphy (2007), the authors compute the components of the
solar velocity relative to the average motion of the local stars,
then these components are removed from the function to adjust,
and they carry out a new adjustment. They obtain a surprising

-s1 1 value (denoted as -e1
1). The -s1 1 value results in being

related to the vy component of the Sun velocity that had already
been subtracted, and it should have been null if orthogonality
was preserved. The authors explain this result because the
sampled vector harmonics are not independent due to the lack
of uniformity in the number density of stars.

We raise an alternative method, which we can consider a
mixed method (MM) in the following sense.

1. Given the discrete data, we can obtain an adjustment in the
whole domain of the definition. We remark that we are not
dealing with interpolation methods, but with smoothing

regression adjustment methods. This regression can be
evaluated on as many points as desired. In particular, it is
possible to set a homogeneous network, with equispaced
grid points, where we can obtain an estimation of the
function that represents the discrete data. So, we have the
adjustment of the function or vector field in a set of well-
distributed points, which allow us to obtain the coefficients
of the function one by one, independently from one
another, and up to the desired order. All of this appears as
an elementary consequence of the orthogonality, which is
verified in the continuous case in which we work.

2. We highlight that we work with the continuous problem
and only when necessary do we discretize. We will
consider this topic in Section 2.3, including the theoretical
justification.

The structure of the paper is as follows. In Section 2 we deal
with the so-called MM. We note in Section 2.1 the problems
that may appear in the DLS method. To this aim, we use 1000
samples of 40 nonhomogeneously distributed points where a
selected function is perturbed with a normal with a null mean
and standard deviation of 0’25, and we apply DLS to obtain the
coefficients for the development in Legendre polynomials of
this function. In Section 2.2, we perform the same test
employing the MM. Then, in Section 2.3 we describe a brief
guideline about the use of smoothing methods as intermediaries
in the context of the parametrical adjustments. In Section 2.4
we introduce the treatment of the VSH to obtain a decoupled
equation to compute the OMM parameters. This last issue is
treated in Section 3 for the case of the Hipparcosstellar
velocity field. We conclude Section 2 by noting the advantages
of the method in Section 2.5.
In Section 3 we present the OMM model and describe how

to apply our method to obtain the coefficients of this model. In
Section 3.1, we carry out 2 simulations of the method with
1000 samples of 42,763 points. First, a systematic component
of the form å å é

ë + ù
û= =- T St sl m l

l
l m l m l m l m1

2
, , , , with an amplitude

of 200*N(0,1) km s−1 kpc−1 is introduced into the model
proper motions. Second, a large random component with a
perturbation of 20*N(0,1) km s−1 is introduced into the model
tangential velocities. Finally, in Section 3.2 we compute the
OMM parameters from the tangential velocities of 42,763
selected Hipparcos stars and compare the values obtained by us
with those of other authors.
To end the paper, there is a summary of results and

conclusions as well as possible improvements, followed by
three appendices where we describe the Local Polynomial
Kernel Smoothing Method, provide an extension of the

Figure 1. Example of one of the random samples with 40 points used. We
represent the function obtained using DLS (dotted line), the function obtained
using CLS (solid line), both of them computed up to the third order, and the
real function (dashed line).

2

The Astronomical Journal, 149:129 (11pp), 2015 April Marco, López, & Martínez



practical elementary formulation of the method to a spherical
case, and give an expression of spheroidal and toroidal
vectorial non-normalized spherical harmonics.

2. THE MIXED METHOD

2.1. Problems in the Discrete Least Squared Method

With the aim of highlighting potential problems using DLS,
we present an example using a function that is merely a sum of
Legendre polynomials (its coefficients are listed in the last row
of Table 1), which are the basis of the surface and vector
spherical harmonics developments. We generate 1000 random
samples of 40 abscissas. For each of these 1000 samples, we
consider the values of the exact function on these points and
then we perturb these values with a random normal noise with a
null mean and standard deviation of 0.25 (see Figure 1). Then
we apply DLS to obtain the coefficients of the development,
and finally we compute their mean and the standard deviation
(see Table 1).

We assume that these data come from an orthogonal function
series development defined in -[ 1, 1]. As we do not know the
order of the development, which order do we use for the DLS?
For instance, if we choose the order of 1, we obtain

+ x0.151 0.545 , for the order of 2 we get +0.087
+ -x x0.501 0.216(3 1) 22 , and so forth. Note that no

computed kth-order coefficient can be used for the computation
of the (k+1)th order coefficients. Only when we match the real
order (which, let us remember, is a priori unknown) are the
coefficients valid. In Table 1 we see the values of the obtained
results for the mean and standard deviation of the coefficients
of the developments of the order of 0, 1, 2, 3, 4, and 5. We can
see the instability of the computations when the order does not
match the correct value.

Next, we propose an alternative method that overcomes the
errors that, as we have seen, may appear.

2.2. The One-dimensional Mixed Method

To simplify, let f be a one-dimensional function,
Î -f L [ 1, 1]2 , then = å ⩾f x a P x( ) ( )i i i0 , where Pi(x) are the

Legendre polynomials. As these polynomials are orthogonal in

the -L [ 1, 1]2 Hilbert space of functions, we have =a ,j
f P

P P

,

,

j

j j

where ò=
-

f g f x g x dx, ( ) ( )
1

1
.

The f values are only known on some discrete and generally
not homogeneously distributed points. In addition, the values
of f at such points could be affected by random noise. In order
to efficiently estimate the coefficients of f, we can obtain

reliable results considering an estimation of f, let us denote it as
= å  ⩾f x a P x( ) ( )i i i0 , defined on an equispaced grid. We

obtain each coefficient using

=


a
f P

P P

,

,
, (1)j

j

j j

where the integrals , are discretized using a grid of
equispaced points. This grid selection preserves the functional
orthogonality in the discretization. Different methods to obtain
f can be seen in Berlinet & Thomas-Agnam (2004), Simonoff
(1996), and Wand & Jones (1995).
Bearing all of that in mind, our proposed MM (henceforth)

consists of the following.

1. A selection of the estimation of f by means of a non-
parametrical method.

2. The computation of f -values on an equispaced
selected grid.

3. The application of Equation (1) discretizing the integrals
to obtain the searched coefficients of a parametrical model.
This parametrical model is given by a series development
in a complete and orthogonal basis in a certain Hilbert
space.

In this subsection, the estimation of f on the grid points is
carried out using Kernel Non-parametric Local Polynomial
Regression (KNPL henceforth; see Appendix A) and we can
obtain the coefficients using a nonlinear MM that is also easy to
implement. For the particular problem described in Section 2.1,
we consider the 1000 samples already mentioned and we carry
out computations to calculate the coefficients of the development
for each sample, then we obtain the mean and the standard
deviation. More specifically, we use a KNPL of 6th order
considering the formulation given by Wand & Jones (1995),
where the integrals have been computed using the Simpson rule.
These values appear in bold in Table 1. We can remark that, in
our MM, the coefficients have been computed one by one,
independently of each other, and with no selection a priori of the
order of the development. On the contrary, in the DLS we have
considered successive orders of development and all the
coefficients had to be recalculated for each new higher order.

2.3. Discrete Versus Continuous Formulation: Smoothing
Methods as Intermediaries, Unidimensional Case

DLS regression on discrete data ⩽ ⩽x y i n( , ), 1i i is carried
out as a finite and linear up to the order of r combination of

Table 1
Results for the Mean and Standard Deviation of the Coefficients Obtained using 1000 Samples of 40 Points,

for DLS of the Order of 0, 1, 2, 3, 4, and 5 and for CLS (Continuous Least Squares Method)

Order/Coef a0 a1 a2 a3 a4 a5

0 0.16 ± 0.11 ¼ ¼ ¼ ¼ ¼
1 0.15 ± 0.09 0.54 ± 0.20 ¼ ¼ ¼ ¼
2 0.09 ± 0.06 0.50 ± 0.20 0.22 ± 0.21 ¼ ¼
3 0.09 ± 0.06 0.10 ± 0.12 0.21 ± 0.11 0.28 ± 0.11 ¼ ¼
4 0.09 ± 0.06 0.12 ± 0.12 0.21 ± 0.15 0.22 ± 0.16 0.002 ± 0.116 ¼
5 0.08 ± 0.05 0.11 ± 0.08 0.21 ± 0.09 −0.25 ± 0.09 −0.000 ± 0.047 0.15 ± 0.03
5 (CLS) 0.08 ± 0.04 0.11 ± 0.08 0.21 ± 0.09 −0.25 ± 0.09 −0.00 ± 0.06 0.15 ± 0.04
5 (True) 0.08 0.11 0.21 −0.25 0 0.15

Note. “True” are the real values used in the test function.
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orthogonal functions in a certain domain with respect to an
inner product , . It involves obtaining a ⩽ ⩽j r, 1j values
minimizing:

å åa f
é

ë

ê
ê
ê

-
ù

û

ú
ú
ú= =

y x( ) . (2)
i

n

i
j

r

j j i
1 1

2

These values are the solution of the normal system of
equations:

å

å

a f f

f

=


=

=

=

=

A b a x x b

x y

, ( ) ( ),

( ) . (3)

rs
i

n

r i s i r

i

n

r i i

1

1

The number of condition of the matrix may be a problem when
solving the system of equations. This problem appears unless
the abscissas are homogeneously distributed and the order of
the development matches the real case, as we have already
stated. Evidently, this statistical approach is discrete and
parametrical.

Alternatively, we can assume the general definition of a
unidimensional regression curve (see Simonoff 1996) from the
data and then suppose that a generic but unknown relationship
is fulfilled:

e= +y m x( ) , (4)i i i

where the errors e s~ N (0, )i . By definition, the regression
curve is given by

ò

ò

= = = =

=

=m x E Y X x yf y X x

dy y
f x y

f x
dy

( ) [ ] ( )

( , )

( )
, (5)

Y X x

X Y

X

( , )

where f x f x y( ), ( , )X , and ∣f y x( ) are the marginal density of X,
the joint density of X and Y, and the conditional density of Y
given X, respectively. A kernel estimate of f x( )X is

å=
æ

è
çççç

- ö

ø
÷÷÷÷=

f x
nh

K
x x

h
( )

1
(6)X

x i

n

x
i

x1

and a kernel estimate of f x y( , ) is

å=
æ

è
çççç

- ö

ø
÷÷÷÷

æ

è
çççç

- ö

ø

÷÷÷÷÷=

f x y
nh h

K
x x

h
K

y y

h
( , )

1
, (7)

x y i

n

x
i

x
y

i

y1

where K(x) is called a kernel function if ⩾K 0,

ò ò= =K u du uK u du( ) 1, ( ) 0, and ò < ¥u K u( )2 . Applying
these kernel properties together with formula (6) and (7), we
obtain a linear function of y called the Nadaraya–Watson
kernel estimator:

å åv=
å

º
=

-

=
-

=


( )

( )
m x

K y

K
y( ) , (8)

i

n x
x x

h i

j
n

x
x x

h
i

n

i iNW
1

1
1

i

x

j

x

where the vi are weights given by

v =

-


( )

nh

K

f x

1

( )
. (9)i

x
x x

h

X

i

x

This expression has been obtained by direct application of the
properties of a general kernel K and the general properties of
the continuous density functions. Further, this kind of method
is called the Kernel Non-parametric (KNP) method.
With a small change in the notation, it is evident that the

solution of the problem

åb b-
æ
è
ççç

- ö
ø
÷÷÷

=
( )

nh
z K

z z

h
min 1

(10)
i

n

i
i

1

2

is, depending on each point x, the minimizing value b x( ). This
is a discrete solution of a more general problem consisting of
the minimization of the variance:

òa d b b

b

= - -

=

  
Var Z z z f z dz

E Z

( ( , )) ( ) ( ). ( )

[ ]. (11)

S

t
Z

infinitesimal pdf element

2

At this moment, we have an estimator m x( ) of the unknown
function that may be computed on any point of the domain. On
this basis, it is possible to obtain an estimate for each
coefficient a j provided that, on one hand, the function to
adjust is approximated by means of the m x( ) continuous
estimation and, on the other, that this function can be
developed in the series of the orthogonal functions f

⩽ ⩽{ }j
j r1

:

a
f

f f
=

m ,

,
. (12)j

j

j j

The integrals included in the previous formula as the inner
product are computed by means of a numerical method. To this
aim, a grid of equally spaced points is used. The values of the
function to adjust using the regression m x( ) are calculated on
these same points of the grid. To implement the method on a
certain set of discrete points, all we need to do is choose a
kernel, for instance, the Epanechnikov kernel, defined by

=
ì

í
ïïï

î
ïïï

-

>

⩽( )K x
x x

x
( )

3

4
1 1

0 1.
(13)

2

The selection of this kernel is justified on the basis that this is
the most efficient kernel among a large range of kernels (see
again Simonoff 1996). Finally, the selection of the h value,
called bandwidth, is carried out using expressions that
minimize the Asymptotic Mean Integrate Square Error over
the whole domain (see Fan & Gijbels 1996; Simonoff 1996;
Berlinet & Thomas-Agnam 2004, or Wand & Jones 1995 for a
more detailed exposition of the regression non-parametrical
methods). In the former references, detailed and more
sophisticated studies are made, always in the context of the
kernel regression. These studies go well beyond the require-
ments of our paper.

2.4. Implementation of the OMM on the Sphere

In this section, we consider x y z( , , )i i i not to be a necessary
homogeneous distributed discrete set of points on the sphere,
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and we suppose that e+ ( )z m l b,i i i i, as in Equation (4).
We also assume that m fulfills certain analytical properties in
order to express it as a series development using a set of
orthogonal and complete functions fi, with ai being the
coefficients of the development. Then, the MM method
consists of the following steps.

1. Generate an equally spaced set of points in the domain of
the original set of data (the sphere, in our case).

2. Obtain a smoothing function considering the initial
discrete points using any method. In particular, we
consider a non-parametrical method given by a kernel
regression method (see Appendix B). We evaluate the
function on the grid points generated in the previous step.

3. Obtain the estimation for each coefficient as a =
f

f f



i

f ,

,

i

i i

,

assuming that we want to estimate f, a function on the
sphere, and that this function allows series development
using an orthogonal and complete basis fi, a f= å ⩾f i i i0 .
We emphasize that each coefficient can be computed
independently of the others.

In the case of a vector field on the sphere, the generalization
is immediate, because the components of the vector field are
scalar fields.

2.5. Treatment of the VSH to Obtain Decoupled Equations

Let us consider the vector field on the celestial sphere taking
the radius r = 1:

D º = +

= D + D( ) ( )
μ μ V μ μ V μ μ

μ b μ

X V e e

e e

( , ) ( , ) ( , )

cos ,

l b
μ

l b l
μ

l b b

l l b b

l b

where V μ μ V μ μ( , ), ( , )μ
l b

μ
l b

l b are the scalar fields of the
vector field and e e,μ μl b

the unitary vectors in the tangent plane
and in the directions of the galactic longitude and latitude,
respectively. Their expressions in, for example, Cartesian
coordinates, are

=
¶
¶

=
é

ë

ê
ê
ê
ê

- ù

û

ú
ú
ú
ú

= = ´ =
é

ë

ê
ê
ê

-
-

ù

û

ú
ú
ú

¶
¶

b μ

μ
μ

l b
l b

b

e
X

e X e

1

cos

sin
cos

0

,

cos sin
sin sin

cos
.

l
l

l

l

b μ l
X

b

On the other hand, provided that we are on the surface of the
unitary sphere, the only vector spherical harmonics involved
are the spheroidal spherical harmonics =

+
rS Yl m l l l m,

1

( 1) ,

and the spherical toroidal harmonics = - ´T r Sl k l k, , (we use
r instead of X because this is the common notation, though
obviously they represent the same thing).

We suppose that the field V has a mathematical development

å å= é
ë + ù

û
=-⩾

μ μ t sV T S( , ) , (14)l b
l m l

l

l m l m l m l m
1

, , , ,

with the toroidal and spheroidal harmonics, respectively, given by

=
+

é

ë

ê
ê
ê

¶

¶
-

¶

¶

ù

û

ú
ú
ú

=
+

é

ë

ê
ê
ê

¶

¶
+

¶

¶

ù

û

ú
ú
ú

l l

Y

μ b

Y

μ

l l b

Y

μ

Y

μ

T e e

S e e

1

( 1)

1

cos
;

1

( 1)

1

cos
(15)

l m
l m

b
μ

l m

l
μ

l m
l m

l
μ

l m

b
μ

,
, ,

,
, ,

l b

l b

and where { }Yk l, are the surface spherical harmonics. Due to the
functional orthogonality, we have

ò òs s
= =t

d
s

dV · T

T

V · S

S
; . (16)l m

S l m

l m

l m
S l m

l m

,
,

,
2 ,

,

,
2

2 2

The denominators are exactly calculated, whereas for the
numerators an estimation is obtained using the MM that we
have proposed: for the calculation of the components of the
vector field V at regularly spaced points on the sphere we can use
the kernel regression method, which is computationally efficient
and, in addition, is rather accurate for the problem we are
discussing. It is important to emphasize that once the adjustment
has been established for V on the set of points of the sphere, this
same set can be used for the numerical integration of the
numerators up to any order of the development. Thus, we can
easily independently calculate the estimations for the coefficients
of higher order harmonics.

2.6. Advantages of the MM Exposed in the Previous Subsection

The main advantages of the proposed procedure are as
follows.

1. We can calculate the estimation at equally spaced points
on the sphere. These computations are carried out with the
initial points (obtained from the catalogs and not necessary
homogeneously distributed). The grid of equally spaced
points employed in the KNP is used in the adjustment.
Functional orthogonality becomes algebraic orthogonality,
ensuring stability for the adjustment. We assume that we
are using the common inner product in the space of
functions of integrable squares on the sphere:

ò=f g
π

fgdS,
1

4
. (17)

S2

2. The property in (1) allows an increase in the order of
harmonics without having to recalculate the coefficients of
lower orders because they are fixed. The usefulness of this
approach is evident because it enables a sequential increase
of the order while it approaches the power of the function
to adjust.

3. Any additional assignation of weights is not required
because they are included in the method itself via the
properties of the density estimation using a kernel method.
In addition, this kernel uses information from the area
around the point where we pretend to adjust (equivalent to
a projection of the plane tangent to the point in the
surroundings of the point, in practical terms).

4. The calculation of each coefficient requires the computa-
tion of integrals on the sphere, which can be carried out
with sufficient accuracy and low computational cost
(because the orthogonality is preserved).
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3. OMM PARAMETERS FROM THE
HIPPARCOSSTELLAR VELOCITY FIELD

Let us consider the equations of the OMM, given by du
Mont (1977):

= +V V rM , (18)o

where V is the stellar velocity field, =V U V W( , , )o
t is the

translation motion of the Sun with respect to the stars (note that
the heliocentric velocity of the Sun would be given by the
reflex motion -Vo), M is the stress tensor, i.e., the matrix of
partial derivatives of the velocity components with respect to
the galactic coordinates (for a rigorous explanation of the
employed reference frames see Section 3 of Mignard 2000),
with unitary vectors e e e, ,x y z, and r the heliocentric position
vector of the star. The stress tensor matrix is usually split out
into a symmetrical part +M and an antisymmetrical part -M .

+M represents the deformation tensor and -M the galactic
rotation:

w w
w w
w w

w w w

=

é

ë

ê
ê
ê
ê
ê
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-
-

ù

û

ú
ú
ú
ú
ú

= ´ =

-r

r

M

Ω Ω

0

0

0

, ( , , ) . (19)

z y

z x

y x

x y z
t

The relationship between Oort parameters and the different
matrix coefficients of -M and +M are given by (Torra et al.
2000)

w= = - = = -

= + +

+ - + +

+ + +

( )

( )

A M B M C M M

K M M M

, ,
1

2
,

1

2
. (20)

z12 12 11 22

33 11 22

Other interesting magnitudes that we can obtain from the
former are (see Makarov & Murphy 2007) the slope of the
rotation curve = - +μ A B( )l , the local angular velocity

q = -A B˙
0 , and the local circular velocity q rQ = ˙

0 0 0, where
we take r = 8.50 kps for an approximate distance of the Sun
from the center of the galaxy and the systemic outward motion

r= +a C K( )0 0 .
In order to obtain the previous parameters from VSH

developments, let us consider the velocity field V on the
sphere, referred to as the vector trihedral:

=
æ

è

ççççç
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- -

ö

ø
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e e e

l b l b b
l l

l b l b b
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(21)r l b
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μ

V r Kμ b r Kμ

V rKμ b rKμ

˙

cos

( , , ) , cos , , (22)

l b

r r l l b b

r l b r l b
t

where Vr is the radial velocity, μ μ,l b are the proper motions in
galactic longitude l and latitude b, and K = 4.738 is the factor
of conversion from mas year−1 into km s−1kpc−1. We project
the vectorial equation, determined by the OMM, on the unitary
vectors in the galactic system of coordinates and then we divide
by r. Then, we obtain the equations
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3.1. Numerical Results: Simulation

Before applying our MM to the real Hipparcos data,
following Vityazev & Tsvetkov (2009), we have carried out
2 simulations of the method with 1000 samples of 42,763
points. These points were chosen considering non-binarity,
s <π( ) 5, and tangential velocity less than 150 km s−1 in
modulus.

1. A systematic component of the form å å= =-l m k
k

1
2

é
ë + ù

ûT St sl m l m l m l m, , , , (plus two higher order terms with no
zero estimation: -s3 1 and s42) with an amplitude of 200*N
(0,1) km s−1 kpc−1 was introduced into the model proper
motions (see Table 2).

2. A large random component with a perturbation of 20*N
(0,1) km s−1 was introduced into the model tangential
velocities (see Table 3).
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The results from Table 3 may be compared with those in
Table 4, where we have listed the discrete and real solutions
obtained for the real Hipparcos data. The values s1,0, -s ,1, 1 and
s1,1 are provided, taking into account the average total parallax

P =¹
-3.12 masR 0

1.

3.2. Numerical Results: Real Stellar Hipparcos Velocity Field

We have worked with 42,763 stars from Hipparcos fulfilling
the following conditions: a parallax with s P <( ) 5 and a
modulus of tangential velocity smaller than 150 km s−1. We
have avoided binary stars. To apply our mixed method, we
have built a grid of 101 × 51 equispaced in both galactic
longitude and latitude points on the sphere. The regression of
the local field of the stellar tangential velocities has been
carried out using the Nadaraya–Watson method with

=h 0.12,l =h 0.06bsin . To obtain the components of the
solar velocity, we take into account the value of the average
parallax of the considered stars to obtain the spheroidal and
toroidal components of the development in VSH. We provide
the values relative to the mean motion of the stars (as they are
obtained directly, using the methods described in previous
sections). Note that provided the orthogonality remains, it is
irrelevant to subtract or not the solar velocity from the initial
vector field adjustment. The obtained values for the different
physical parameters (see Tables 5 and 6 for a comparison with
the results from other authors. Note that in Table 4 we have
included the individual errors; the formal errors could be easily
obtained by considering the maximum of the corresponding
errors in Tables 2 and 3. This note applies also to our results in
Tables 5 and 6).

=U 8.120 (MGD= 10.11, MK= 10.5), =V 16.790
(MGN= 15.18, MK= 18.5), and =W 6.870 (MGN= 7.1,

MK= 7.3) km s−1. These values are computed with respect to
the average total parallax P =¹

-3.12 masR 0
1.

Table 2
Values Obtained for the Different Physical Parameters with 1000 Samples of

42,763 Points Using Continuous and Discrete Approximations

Input Data Discrete Solution Mixed Method Solution

s1,0 −6.87 −8.02 ± 0.10 (±1.15) −6.97 ± 0.16 (±0.19)

-s1, 1 −16.79 −24.55 ± 0.37 (±7.77) −17.32 ± 0.25 (±0.59)

s1,1 −8.12 −10.23 ± 0.39 (±2.15) −8.61 ± 0.26 (±0.55)

s2,0 0.72 0.62 (±0.34) (±0.33) 0.81 ± 0.28 (±0.29)

-s2, 1 0.37 2.08 ± 0.16 (±1.72) 0.34 ± 0.03 (±0.04)

-s2, 2 −1.65 −1.82 ± 0.07 (±0.18) −1.67 ± 0.07 (±0.07)

s2,1 −0.14 −0.14± 0.16 (±0.16) −0.18 ± 0.03 (±0.05)

s2,2 −0.37 −1.27 ± 0.07 (±0.90) −0.34 ± 0.03 (±0.04)

t1,0 −13.74 −14.15 ± 0.08 (±0.42) −13.79 ± 0.12 (±0.13)

-t1, 1 2.59 2.90 ± 0.39 (±0.50) 1.88 ± 0.28 (±0.76)

t1,1 1.32 2.85 ± 0.41 (±1.58) 1.64 ± 0.30 (±0.44)

t2,0 −0.57 −0.29 ± 0.27 (±0.39) −0.52 ± 0.35 (±0.35)

-t2, 1 −0.95 −2.45 ± 0.16 (±1.51) −0.99 ± 0.04 (±0.06)

-t2, 2 0 −0.03 ± 0.08 (±0.09) 0.00 ± 0.08 (±0.08)

t2,1 −0.19 −0.49 ± 0.16 (±0.34) −0.26 ± 0.01 (±0.07)

t2,2 0.07 0.20 ± 0.08 (±0.15) 0.06 ± 0.02(±0.02)

-s3, 1 −0.01 −0.11 ± 0.16 (±0.19) −0.06 ± 0.17 (±0.18)

s4,2 −0.13 −0.69 ± 0.25 (±0.61) −0.26 ± 0.26 (±0.29)

Note. In parenthesis are the sigma deviations with respect to the input data. A
systematic component of 200*N(0,1) km s−1 kpc−1 was introduced into the
model proper motions. s1,0, -s1, 1, and s1,1 are in km s−1 and the rest of the

parameters are in km -s 1 kpc−1.

Table 3
Values Obtained for the Different Parameters with 1000 Samples of 42,763

Points Using Continuous and Discrete Approximations

Input Data Discrete Solution Mixed Method Solution

s1,0 −6.87 −6.70 ± 0.10 (±0.20) −6.83 ± 0.12 (±0.13)

-s1, 1 −16.79 −17.90 ± 0.18 (±1.12) −17.76 ± 0.18 (±0.99)

s1,1 −8.12 −8.99 ± 0.18 (±0.89) −8.61 ± 0.18 (±0.52)

s2,0 0.72 0.59 ± 0.15 (±0.20) 0.89 ± 0.15 (±0.23)

-s2, 1 0.37 0.14 ± 0.07 (±0.24) 0.48 ± 0.03 (±0.11)

-s2, 2 −1.65 −2.27 ± 0.03 (±0.62) −2.11 ± 0.03 (±0.46)

s2,1 −0.14 −0.16 ±0.07 (±0.07) −0.15 ± 0.01 (±0.01)

s2,2 −0.37 −0.51 ± 0.01 (±0.14) −0.47 ± 0.03 (±0.10)

t1,0 −13.74 −12.61 ± 0.28 (±1.16) −14.32 ± 0.12 (±0.59)

-t1, 1 2.59 2.87 ± 0.60 (±0.66) 2.79 ± 0.23 (±0.30)

t1,1 1.32 1.00 ± 0.25 (±0.41) 1.37 ± 0.22 (±0.22)

t2,0 −0.57 −0.85 ± 0.12 (±0.30) −0.72 ± 0.12 (±0.19)

-t2, 1 −0.95 −2.00 ± 0.07 (±1.05) −1.46 ± 0.08 (±0.51)

-t2, 2 0 −0.07 ± 0.03 (±0.08) 0.00 ± 0.07 (±0.07)

t2,1 −0.19 −0.11 ± 0.07 (±0.11) −0.22 ± 0.02 (±0.04)

t2,2 0.07 0.18 ± 0.03 (±0.11) 0.05 ± 0.08(±0.08)

-s3, 1 −0.01 −0.01 ± 0.07 (±0.07) 0.02 ± 0.07 (±0.07)

s4,2 −0.13 −0.02 ± 0.11 (±0.16) −0.18 ± 0.11 (±0.12)

Note. In parenthesis are the sigma deviations with respect to the input data. A
perturbation of 20*N(0,1) km s−1 was introduced into the model tangential
velocities. s1,0, -s1, 1, and s1,1 are in km s−1 and the rest of parameters are in km
-s 1 kpc−1.

Table 4
Values Obtained for the Real Hipparcos Data of the Different Parameters

Using Continuous and Discrete Approximations

Discrete Solution Mixed Method Solution

s1,0 −6.71 ± 0.06 −6.87 ± 0.05

-s1, 1 −17.08 ± 0.06 −16.79 ± 0.06

s1,1 −8.49 ± 0.06 −8.12 ± 0.06

s2,0 0.44 ± 0.09 0.72 ± 0.10

-s2, 1 0.12 ± 0.06 0.37 ± 0.05

-s2, 2 −1.77 ± 0.03 −1.65 ± 0.03

s2,1 −0.16 ± 0.02 −0.15 ± 0.06

s2,2 −0.39 ± 0.01 −0.37 ± 0.03

t1,0 −15.03 ± 0.06 −13.74 ± 0.15

-t1, 1 3.42 ± 0.06 2.25 ± 0.06

t1,1 0.71 ± 0.06 1.10 ± 0.06

t2,0 −0.67 ± 0.09 −0.57 ± 0.01

-t2, 1 −1.38 ± 0.03 −0.97 ± 0.05

-t2, 2 −0.06 ± 0.06 0.00 ± 0.07

t2,1 −0.24 ± 0.02 −0.24 ± 0.05

t2,2 0.17 ± 0.03 0.07 ± 0.06

-s3, 1 −0.10 ± 0.17 −0.02 ± 0.07

s4,2 −0.02 ± 0.08 −0.19 ± 0.17

Note. s1,0, -s1, 1, and s1,1 are in km s−1 and the rest of the parameters are in km
-s 1 kpc−1. The physical parameters induced are discussed in Section 3.2.
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The rest of parameters are given in km s−1 kpc−1 and the
values are = L 2.11 0.0413 =(MK 6.21), = =L B12

- 13.74 0.15 (MK=−13.36, Hanson=−13.91), =L23

1.32 0.06 (MK=−1.36), = = +M A 9.90 0.0612 (MK=
13.83, Hanson= 11.3), = +M 1.14 0.0623 (MK = 0.76),

= - +M 0.45 0.2413 (MK=−2.13), =K - 2.16 0.03
(MK= 1.02), and = - C 2.22 0.04 (MK=−3.03). Other
coefficients are = - -t 0.95 0.022, 1 (MK=−1.2), =-s3, 1

- 0.010 0.012 (MK= 0.8), and =s4,2 - 0.133 0.031

(MK=−0.1). Finally, the residual value of =-e 11.251
1 is null

in our case, because the functional orthogonality is preserved.
Other interesting values are the slope of the rotation curve
= - + = μ A B( ) 3.84 0.21l (MK= −1.0) km s−1 kpc−1,

the local angular velocity w = - = A B 23.64 0.210

(MK = 27.1) km s−1 kpc−1, and the local circular velocity
Q = 200.940 km s−1 (MK = 214), where we have considered
that the estimated distance of the Sun to the center of the galaxy
is r = 8.50 kps (Q = 236.40 if r = 100 kps, in accordance
with other authors). The systemic inward motion obtained is

r= + = -a C K( ) 37.230 0 km s−1 (MK = −42; = -a 43.80

if r = 100 kps).
Summing up, we have to take into account that the set of

stars taken in each of the studies is different from those
considered by Makarov, since he eliminated sources with more
than 150 km s−1 in any tangential velocity component. In our
case, we rejected those sources with a velocity in modulus
greater than 150 km s−1. This difference in the data set (only a
0.5% in the number of data) should not imply such a
substantial change (more than 200%) in the estimation of the
parameters with the greatest discrepancies, for example, the
-t1 1 value. We have calculated this value many times

(performing different tests, with the inclusion of perturbations)
without appreciating significant changes in the order of
magnitude. We cannot explain, therefore, the reason for this
discrepancy.

4. CONCLUSIONS

In this paper we focused on the instability and inaccuracy
that may appear in the implementation of the DLS for a data

Table 5
Values Obtained for the Different Physical Parameters

U0 V0 W0 A

F1 10.24 ± 0.66 20.51 ± 0.43 7,77 ± 0.34 ¼
H ¼ ¼ ¼ 11.3 ± 1.06
MGN 10.11 15.18 7.11 ¼
Y2 8.78 ± 0.43 19.03 ± 0.44 6.97 ± 0.43 16.91 ± 1.3
Z3 9.66 ± 0.31 21.45 ± 0.32 7.95 ± 0.26 15.51 ± 0.93
MK 10.5 ± 0.1 18.5 ± 0.1 7.3 ± 0.1 13.83 ± 1.42
This paper 8.12 ± 0.06 16.79 ± 0.06 6.87 ± 0.05 9.90 ± 0.06

B C K

F1 ¼ ¼ ¼ ¼
H −13.91 ± 0.92 ¼ ¼ ¼
MGN ¼ ¼ ¼ ¼
Y2 −14.6 ± 1.0 ¼ ¼ ¼
Z3 −14.14 ± 0.75 ¼ ¼ ¼
MK −13.36 ± 1.16 −3.03 ± 1.43 1.02 ± 1.81 ¼
This paper −13.74 ± 0.15 −2.22 ± 0.04 −2.16 ± 0.03 ¼

Note. The missing data are not given by other authors. Solar velocity components are in km s−1. The other parameters are in km -s 1 kpc−1. F represents Famaey et al.
(2005), H: Hanson (1987), MGN: Mignard & Morando (1990), MK: Makarov & Murphy (2007), Y: Yuan et al. (2008), and Z: Zhu & Jin (2000). Superindices 1, 2,
and 3 refer to K-M giants from the Hipparcos catalog with possibly a different data set.

Table 6
Values for Several Parameters Compared with the Values Obtained by Makarov & Murphy (2007)

t1,0 -t1, 1 t1,1 -s2, 2 -s2, 1

Makarov −13.36 ± 1.16 6.21 ± 0.94 0.36 ± 0.89 2.31 ± 0.24 −0.50 ± 0.24
This paper −13.74 ± 0.15 2.25 ± 0.06 1.32 ± 0.06 1.65 ± 0.03 −0.14 ± 0.08

s2,0 s2,1 s2,2 -t2, 2 -t2, 1

Makarov 0.33 ± 0.60 0.71 ± 0.42 −2.31 ± 0.24 L −1.20 ± 0.41
This paper 0.72 ± 0.01 0.38 ± 0.02 −1.65 ± 0.01 −0.08 ± 0.01 −0.95 ± 0.02

t2,0 -t2, 1 -t2, 2 -s3, 1 s4,2

Makarov L L L 0.80 ± 0.22 −0.100 ± 0.037
This paper −0.57 ± 0.02 0.19 ± 0.02 −0.08 ± 0.01 −0.010 ± 0.012 −0.133 ± 0.031

Note. All parameters are in km s−1 kpc−1. The values are computed using data from the Hipparcos catalog with possibly a different data set.
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set on the celestial sphere. A natural treatment of the
adjustments to the sphere may be carried out using vector or
surface spherical harmonics, with the necessary assumption
of certain regularity hypotheses about the function to be
developed. In addition, the management of the discrete case
must preserve the orthogonality properties of the considered
harmonics as much as possible. This does not evidently
happen when the data are not homogeneous distributed.
The importance of Legendre polynomials is evident in the
construction of the vector and surface spherical harmonics.
We have set an example where the application of the classical
DLS method leads to incorrect results when estimating the
coefficients of a finite sum of Legendre polynomials, with an
exception when the degree of the real development matches.
In contrast, greater accuracy and efficiency may be reached
using the continuous least squared formulation, discretized
using our proposed mixed method. This method does not
need to predetermine an order for the adjustment, so it is a
nonlinear method. We could consider for DLS and the
continuous method a stop criterion consisting in retrieving a
percentage of the power function (the power function is
the value of the integral of the square of the function). In
contrast, DLS may be highly inefficient, and with each
increment in the order of the adjustment, all the coefficients
must be recalculated again. We have successfully tested
the solidity of the method with two tests: the first with a
systematic component introduced into the model proper
motions and the second with a large random component
introduced into the model tangential velocities. In both
cases, the DLS analysis resulted in substantially larger
disagreement with the input truth values than the mixed
method (compare the values of σ inside the parenthesis in
Tables 2 and 3).

We have also carried out the computation of the OMM
parameters with non-perturbed Hipparcos data and we have
compared them with the results provided by other authors. In
some cases, the magnitudes of the more usual coefficients are
confirmed, and in other cases, we obtain better results in
the sense given by Makarov & Murphy (2007). Different
authors have taken into account the dependence of the
parameters in functions of the types of stars and also of the
galactic latitude. The main differences are found in the values
depending on the z-axis (V0 and A) and also on the number of
K-M giant reference stars. Our results show great agreement
with those obtained using K-M giants and a distance of 0.3
kpc (for example, Hanson 1987). In fact, our data set has a
mean distance of 0.32 kps, which is consistent with the
results.

Three possible improvements in the working line are as
follows.

1. The consideration in the MM of a variable bandwidth
depending on the zone of the sphere, with the aim of
solving the problems caused by the different densities of
stars in such zones. In this sense, stellar homogeneity of
the data depends on the spatial distribution because the
stellar density decreases with the latitude. The combination
of bandwidth variable in bsin can be very useful and may
help to calculate V0 and A with greater precision.

2. All the calculations have been carried out projecting on the
celestial sphere with a radius corresponding to the inverse
of the average parallax, 3.12 mas (approximately 0.32
kpc). The results that different authors, such as Yuan et al.

(2008) and Zhu & Jin (2000), obtained for these distances
are of the same magnitude as the ones we found. It is
possible to work with concentric spheres of radii
< < < ¼ <r r r r ,k0 1 2 projecting on them the positions

of stars included in the spherical sectors that the radii
delineate. In this case it is possible to obtain a kernel
adjustment in three variables r l b, , and the development
in radial, spheroidal, and toroidal VSH. To this aim, it is
necessary that the spatial distributions do not have low
densities. In this case, we should carry out a comparison
with the results of Vityazev & Tsvetkov (2013) for the
UCAC4 data and Vityazev & Tsvetkov (2014) for
UCAC4, PPMXL, and XPM. This method has already
been applied in Martinez et al. (2014).

3. The function to adjust and the result of the adjustment will
provide residues that can be distributed as a normal or, in a
more general way, as a gaussian mixture. In the latter case,
care must be taken in the management of the correspond-
ing populations, using suitable weights (see Marco et al.
2013) in such a way that we can effectively obtain final
normal residuals.

Part of this work was supported by a grant P1-1B2012-47
from UJI.

APPENDIX A
THE LOCAL POLYNOMIAL KERNEL

SMOOTHING METHOD

A local approach can be useful when there are important
discrepancies among the statistical parameters of the variables
determined by their zonal position. Local polynomial estima-
tions are based on finding the solution to a natural weighted
least squares problem (Simonoff 1996):
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x x (t denotes transposition) is invertible, we
obtain

b =
- ( )M W M M W y (A.4)x

t
x x x

t
x

1

and the estimator mp for the desired random variable is given by

=
- ( )m x e M W M M W y( ) , (A.5)p i

t
x
t

x x x
t

x
1

with er being a + ´p( 1) 1 vector with a value of i in the rth
entry and zero elsewhere. We can see that the case for p = 0 is

the KNP model. The
-( )e M W M M W yi

t
x
t

x x x
t

x
1

, < +⩽i p1 1
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values are estimations of derivatives of mp(x). It is important to
point out that these are not the derivatives of the estimation
function.

APPENDIX B
THE KNP MODEL ON THE SPHERE

Next, we describe the two-dimensional KNP method on the
sphere. Throughout this paragraph, we use the μ bcosl and μb
notation, which would be analogous if we worked with n
positions instead of proper motions either in ecliptic,
equatorial, or galactic systems of coordinates. The use of
μ bcosl and μb for the calculation of the coefficients of the
model is commonly carried out employing n individual
residuals to estimate the parameters of the selected adjustment
models mμl

, mμb
:

å
ì
í
ïï
îïï
é
ëê

- ù
ûú
+

é
ëê

- ù
ûú

=

}
( ) ( )

( )

μ b m l b

μ m l b

cos ,

( ) , . (B.1)

i

n

l i μ i i

b i μ i i

1

2

2

l

b

If necessary, it is also possible to introduce weights depending
on the statistical characteristics of the data.

In Sections 2.1–2.3 we have seen two different (discrete in
Section 2.1 and continuous in Sections 2.2 and 2.3) approaches
to the problem and we have obtained results for a simple
example. Following the work line presented in Section 2.2 and
in order to give a sense of an adjustment by means of a
mathematical model, it is necessary to meet certain mathema-
tical hypotheses of regularity, depending on the characteristics
of the searched function. In this case, the vector field should
have an integrable square on the sphere L S( )2 2 . In this sense,
and once the selection of the hypothesis is made, we do not
have to disregard prematurely a continuous approach because it
may provide certain advantages, as we argue below. Thus, we
want to find

ò é
ëê

- ù
ûú

+ é
ëê

- ù
ûú{ }μ b m μ m dSmin cos . (B.2)

S
l μ b μ

2 2

l b2

Following the continuous approximation of the problem, we
are dealing with random variables and their corresponding
mathematical expectations (replacing means) and variances,
calculated as integrals. To this aim, the use of the probability
density function of each random variable is required. Let us
remember that nonparametric kernel adjustments compute the
conditional expectation of a certain random variable that
depends on others. For example, if X is the random variable
(μ bcosl or μb), the method consists of finding

ò

ò

= =

=

m l b E X l b xf x l b dx

x
f x l b

f l b
dx

( , ) [ ( , )] ( , )

( , , )

( , )
, (B.3)

X
D

D l b( , )

where D is the domain of X, f x μ μ( , , )l b is the joint density
function of the three random variables, and f μ μ( , )μ μ l b( , )l b

is
the marginal density. All these elements may be unknown so

they must be approximated using

å=
æ

è
çççç

- ö

ø
÷÷÷÷

´
æ

è
çççç

- ö

ø
÷÷÷÷

æ

è
çççç

- ö

ø
÷÷÷÷

=

f x l b
nh h h

K
x x

h

K
l l

h
K

b b

h

( , , )
1

sin sin
, (B.4)

x l b i

n

x
i

x

μ
i

l
μ

i

b

sin 1

sin
l b

and the condition

ò ò =
πμ D

f x l b bdxdldb
1

4 ( )
( , , ) cos 1 (B.5)

D S2

must be fulfilled. We proceed analogously for the marginal
density. Taking the same kernel for all the random variables
and considering their properties, we reach an expression similar
to the one-dimensional Nadaraya–Watson one, but on the
sphere:

å

å

w w=

=

æ

è
çççç
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ø
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çççç

- ö

ø
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=
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K
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K
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h

K
l l

h
K

b b

h

( , ) ,

sin sin

sin sin
. (B.6)

X
i

n

i i i

l
i

l
b

i

b

j
n

l
i

l
b

j

b

1

sin

1
sin

Note that wi are weights assigned by the method to each
discrete value xi of the r.v. X. The method also has the
following property: if we take h 0l and h 0bsin , then

m l b x( , ) i . In other words, the smaller h is, the more
steep the adjustment is. On the contrary, a large h
provides smoother results. The theoretical optimum of the
bandwidth values can be obtained from the expression

= S
+

+ -
+( )( )H ndiag

d

4

2

d
d

1
4 1

2
1
4 (Simonoff 1996), with H being

the vector of the different values of h, d = 2 the dimension, n
the number of points, and Σ the variance-covariance matrix
of the random variables of the joint spatial distribution for
μ b μ( cos , )l b , both of which can be considered random and
independent variables.

APPENDIX C
SPHEROIDAL AND TOROIDAL
SPHERICAL HARMONICS USED

We include a list of the spheroidal and toroidal spherical
harmonics used in this paper. The general formulation may be
seen in Morse & Feshbach (1953). For clarity, we have not
included the norms in these formulas.

=- +
=
= +
= -
=- -
=

-

-

-

e e

e

e e

e e

e e

e

S l l b

S b

S l l b

S l b l b b

S l b l b b

S b b

cos sin sin

cos

sin cos sin

6 cos 2 cos 6 sin 2 cos sin

3 cos sin 3 sin cos 2 sin

3 cos sin

l b

b

l b

l b

l b

b

1, 1

1,0

1,1

2, 2

2, 1

2,0
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= -
=- -

=- -

+ -
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- ( )
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e

e

e

e

S l b l b

S l b l b b
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l b b

S b b l

b b l

3 sin sin 3 cos cos 2

6 sin 2 cos 6 cos 2 cos sin

5 sin 1 cos

sin sin 15 sin 11

7 sin 1 cos sin 2

7 sin 4 sin 2 cos 2 (C.1)

l b

l b

l

b

l

b
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2,2

3, 1
2

2
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2

2
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=
= -
=- -
=- +
=
=- -
=- +

-

-

-

e e

e

e e

e e

e e

e

e e

e e

T l b l

T b

T l b l

T l b b l b

T l b l b

T b b

T l b l b

T l b b l b

sin sin cos

cos

cos sin sin

6 sin 2 cos sin 6 cos 2 cos

3 sin cos 2 3 cos sin

3 cos sin

3 cos cos 2 3 sin sin

6 cos 2 cos sin 6 sin 2 cos (C.2)

l b

l

l b

l b

l b

l

l b

l b

1, 1

1,0

1,1

2, 2

2, 1

2,0

2,1

2,2

REFERENCES

Assafin, M., Vieira-Martins, R., Andrei, A. H., Camargo, J. I. B., &
da Silva Neto, D. N. 2013, MNRAS, 430, 2797

Berlinet, A., & Thomas-Agnam, C. 2004, Reproducing Kernel Hilbert Spaces
in Probability and Statistics (Dordrecht: Kluwer)

Dehnen, W., & Binney, J. J. 1998, MNRAS, 298, 387
du Mont, B. 1977, A&A, 61, 127

ESA 1997, The Hipparcos and Tycho Catalogs, Tech. Rep. SP-1200
Fan, J., & Gijbels, I. 1996, Local Polynomial Modelling and Its Applications

(London: Chapman and Hall)
Famaey, B., Jorissen, A., Luri, X., et al. 2005, A&A, 430, 165
Hanson, R. B. 1987, AJ, 94, 2
Makarov, V. V., & Murphy, D. W. 2007, AJ, 134, 367
Marco, F., Martinez, M. J., & López, J. A. 2004, A&A, 418
Marco, F., Martinez, M. J., & López, J. A. 2013, A&A, 558
Martinez, M. J., Marco, F., & López, J. A. 2009, PASP, 121
Martinez, M. J., Marco, F., & López, J. A. 2014, AbApA, 2014, 917583
Mignard, F. M. 2000, A&A, 354, 522
Mignard, F., & Klioner, S. 2012, A&A, 547, A59
Mignard, F., & Morando, B. 1990, in Journées 1990, Systèmes de Référence

Spatio-Temporels, ed. N. Capitaine, 151
Morse, P. H., & Feshbach, H. 1953, Methods of Theoretical Physics, Vol. 2

(New York: McGraw-Hill)
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A,

323, L49
Simonoff, J. S. 1996, Smoothing Methods in Statistics (Berlin: Springer)
Torra, J., Fernandez, D., & Figueras, F. 2000, A&A, 359, 82
Vityazev, V. V., & Shuksto, A. K. 2004, in ASP Conf. Ser. 316, Order and

chaos in Stellar Planetary Systems , ed. G. Byrd et al. (San Francisco, CA:
ASP) , 230

Vityazev, V. V., & Shuksto, A. K. 2005, Vestn. Spb. Gos. Univ., Ser. 1, 1, 116
Vityazev, V. V., & Tsvetkov, A. S. 2009, AstL, 35, 2
Vityazev, V. V., & Tsvetkov, A. S. 2011, AstL, 37, 874
Vityazev, V. V., & Tsvetkov, A. S. 2012, AstL, 38, 411
Vityazev, V. V., & Tsvetkov, A. S. 2013, AN, 334, 760
Vityazev, V. V., & Tsvetkov, A. S. 2014, MNRAS, 442, 1249
Wand, M. P., & Jones, M. C. 1995, Kernel Smoothing (London: Chapman

and Hall)
Yuan, F., Zhu, Z., & Kong, D. 2008, ChJAA, 8, 6
Zacharias, M., & Zacharias, M. I. 2014, AJ, 147, 95
Zhu, Z., & Jin, W. 2000, in Proc. IAU Coll. 180, Towards Models and

Constants for Sub-Microarc second Astronomy, ed. K. J. Jonston et al.
(Washington, DC: US Naval Observatory), 110

11

The Astronomical Journal, 149:129 (11pp), 2015 April Marco, López, & Martínez


	1. INTRODUCTION
	2. THE MIXED METHOD
	2.1. Problems in the Discrete Least Squared Method
	2.2. The One-dimensional Mixed Method
	2.3. Discrete Versus Continuous Formulation: Smoothing Methods as Intermediaries, Unidimensional Case
	2.4. Implementation of the OMM on the Sphere
	2.5. Treatment of the VSH to Obtain Decoupled Equations
	2.6. Advantages of the MM Exposed in the Previous Subsection

	3. OMM PARAMETERS FROM THE HIPPARCOS&x000A0;STELLAR VELOCITY FIELD
	3.1. Numerical Results: Simulation
	3.2. Numerical Results: Real Stellar Hipparcos Velocity Field

	4. CONCLUSIONS
	APPENDIX ATHE LOCAL POLYNOMIAL KERNEL SMOOTHING METHOD
	APPENDIX BTHE KNP MODEL ON THE SPHERE
	APPENDIX CSPHEROIDAL AND TOROIDAL SPHERICAL HARMONICS USED
	REFERENCES

