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Abstract 

Team sports games are recognized as dynamic systems of interaction, where 

individual and collective patterns of behavior emerge from a confluence of multiple 

organismic, environmental and task-related constraints on the players. Researchers have 

been interested in studying the dynamic interaction of these many degrees of freedom 

for at least two decades considering various methods, approaches and techniques. In this 

thesis we aimed to provide a fruitful contribution in this area of research presenting 

innovative methods of analysis that overcome some identified methodological 

limitations in measures that are often considered to (1) assess the complexity of 

behavioral dynamic systems (ApEn) and (2) to describe the spatial interaction behavior 

of a team. 

Regarding the first issue, we have defined normalized measures of the original 

ApEn to measure, and compare, the regularity of signals generated from any behavioral 

system. These were tested and validated using two well-known data series of regular 

(sine) and irregular (random) behavior. As for the second issue, we developed two new 

models, Voronoi diagram (VD) and Superimposed Voronoi Diagram (SVD), from 

which strong candidates to collective variables were derived: from the VD model we 

defined the size of the dominant region (DR) and, from the SVD model, the percentage 

of free area (%FA) and the maximum percentage of overlapped area (Max%OA). Given 

that %FA that is largely dependent on the distance between each pair of exclusive 

opponents, we have conjectured SVD patterns for two specific rules of dyadic 

interaction: (1) exclusive pairing and (2) random interaction. While the former rule was 

thought to be associated with a specific defensive method, the man-to-man defense, the 

second rule is associated with a reference spatial pattern used for analysis purposes. 

Patterns simulated under each of these two rules, and according to the settings in the 
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observed tasks (5 vs 4+GK in a limited play area of 20×20m2), were considered to 

generate reference values of %FA. As for the Max%OA, data from simulated SVD 

patters have shown that this variable is inversely associated with the number of 

opponent neighbors, i.e., the more the opponents the smaller the Max%OA.  

Results from formal applications of the described methods have suggested the 

following: (1) having considered data signals from the collective variable that describes 

the dyadic sub-system in rugby union, we found that the physical contact between the 

players (tackle) increases the complexity of the emergent behavior, making this more 

predictable in try situations; (2) in Futsal (5 vs 4+GK in a limited play area of 

20×20m2), the size of the DR was measured to assess how teams manage space – the 

attacking team has presented greater DR than the defending team throughout the task, 

also, the attackers presented a more regular spatial behavior, which means spatial 

behavior of the team defending is more unpredictable; (3) the %FA has captured the 

presence of low levels of exclusive dyadic interaction when the defense team has 

numerical disadvantage; (4) the Max%OA was able to identify the attacker under more 

pressure. 

 

Key words: ApEn, Voronoi diagrams, Superimposed Voronoi diagrams, team 
interaction behavior, collective variables 
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Resumo 

Jogos desportivos colectivos podem ser considerados como sistemas dinâmicos 

de interação, onde padrões de comportamento individual e coletivo emergem de uma 

confluência de vários constrangimentos (indivíduo, ambiente e tarefa) na acção dos 

joagadores. Há pelo menos 20 anos, os investigadores têm-se interessado pelo estudo da 

interação dinâmica desta multiplicidade de graus de liberdade, considerando para tal 

vários métodos de análise, abordagens e técnicas. Pretende-se que o trabalho 

apresentado nesta tese constitua uma contribuição frutífera para esta área de 

investigação, sendo aqui apresentados métodos inovadores de análise que pretendem 

superar algumas limitações metodológicas identificadas nas medidas que são muitas 

vezes consideradas (1) para avaliar a complexidade de sistemas dinâmicos (ApEn) e (2) 

para descrever o comportamento de interação espacial entre equipas. 

Quanto à primeira questão, foram aqui propostas medidas normalizadas de 

entropia aproximada (ApEn) para medir e comparar a regularidade de sinais gerados por 

qualquer sistema comportamental. Estas medidas foram testadas e validadas 

considerando séries de referência para comportamento regular (função seno) e irregular 

(função geradora de números aleatório). Quanto à segunda questão, foram considerados 

dois novos modelos de análise, os diagramas de Voronoi (DV) e os Diagramas de 

Voronoi Sobrepostos (DVS), dos quais foram derivadas medidas candidatas a variáveis 

coletivas: a partir do modelo DV definimos a área da região dominante (RD) e, a partir 

do modelo DVS, a percentagem de área livre (AL%) e máxima percentagem de área 

sobreposta (Max%AS). Dado que a AL% dependente da distância interpessoal de diades 

exclusivas, conjecturamos padrões DVS de acordo com duas regras de interacção 

diádica: (1) emparelhamento exclusivo e (2) interacção aleatória. A primeira regra está 

teoricamente associada ao método de defesa homem-a-homem e a segunda regra está 

associado a um padrão de referência espacial utilizado para análise. Foram simulados 

padrões de distribuição espacial sob estas duas regras, e de acordo com as características 

da tarefa em estudo (5 vs 4 + GR numa área de 20×20m2), para gerar valores de 

referência da AL% para as duas situações. Quanto à Max%AS, os dados simulados 

evidenciaram uma relação inversa com o número de adversário vizinhos, ou seja, quanto 

maior o número de vizinhos adversários, menor a Max%AS. 
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Os resultados de aplicações formais dos métodos descritos sugeriram o seguinte: 

(1) considerando a variável colectiva que descreve o sub-sistema diádico de no Rugby, 

verificou-se que o contacto físico entre os jogadores (placagem) aumenta a 

complexidade do comportamento emergente, tornando-o mais previsível em situações 

em que o Ensaio é marcado, (2) no Futsal (5 vs 4 + GK numa área de 20×20m2), o 

tamanho da RD foi medida para avaliar como as equipas gerem o espaço – a equipa que 

ataca apresenta uma RD maior do que a equipa que defende, e os atacantes apresentam 

um comportamento espacial mais regular, o que significa que o comportamento espacial 

da equipa que defende é mais imprevisível; (3) a %AL permitiu detectar baixos níveis 

de interação diádica exclusiva quando a equipa que está a defender se encontra em 

desvantagem numérica; e (4) a Max%AS permite identificar o atacante que se encontra 

sob mais pressão. 

 

Palavras-chave: ApEn, diagramas de Voronoi, diagramas de Voronoi sobrepostos, 
comportamento de interação entre as equipas, variáveis colectivas  
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 Chapter 1: General introduction 

Framework 

Team sports of an invasive nature are those sports where each of the two competing 

teams tries, simultaneously, to gain possession of an object, e.g. the ball, in order to move it 

across a field toward the goal of the other team, and to prevent the opposing team from doing 

the same thing (Bayer, 1994). Thus, during a game, the two teams act concurrently and their 

behavior alternates between attempting to score, if they are in possession of the ball, and 

preventing the other team to score, if they are not in possession of the ball.  

During a game, players from both teams act continuously according to game rules and 

principles, but fundamentally according to their perception of, and interaction with, the 

information available in the environment (Araújo, Davids & Hristovskic, 2006). According to 

the same author, behavior in team sports ecologically emerges from a confluence of multiple 

organismic (e.g. fatigue), environmental (e.g. size of the field) and task-related (e.g. defend) 

constraints on the players (Newell, 1986; Handford, Bennet & Button, 1997). Given these 

many degrees of freedom, behavior in team sports can then be seen as a dynamic system 

(Gréhaigne, Bouthier & David, 1997; McGarry et al., 2002). 

In general, dynamical systems have nonlinear properties, and therefore they cannot be 

studied using linear methods of analysis. Hence, dynamical system has been approached by 

means of synergetic and nonlinear equations (Haken, 1987; Davids et al., 2003), which are 

defined based on order and control parameters, the ‘yin and yang’ of the synergetic approach 

(Kelso, 1995). An order parameter, or collective variable, is a low-dimensional variable that 

capture the dynamic behavior of the system, and a control parameter are properties that 

constrain the behavior of the dynamical system. At some critical values of the control 
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parameter, the order parameter can change from one state to another, with fluctuations during 

transition between states (Kelso, 1995; Stergiou, 2004). Thus, the choice of a collective 

variable is a critical step for characterizing a dynamic system, and depending on the level of 

analysis to be undertaken, this could be quite difficult to accomplish (Thelen & Smith, 2006).  

Studying behavior in sports games by mean of collective variables was first 

considered in a dyadic level of interaction, specifically, in individual sports, such as squash 

(McGarry & Franks, 1996; McGarry, Khan & Franks, 1999; McGarry, 2005) and tennis 

(Palut & Zanone, 2005; Lames, 2006) and in dyads from team sports, such basketball (Araújo 

et al., 2004; Cordovil et al., 2009) and rugby (Passos et al., 2006; Passos et al., 2008). The 

collective variables suggested to describe the behavioral dyadic system were mainly distance 

related measures, as suggested by Schmidt, O’Brien & Sysko (1999). Results from these 

innovative studies have contributed greatly for a better understanding of the dynamical 

interaction behavior in sports. Nevertheless, a comprehension of interaction behavior at a 

higher level, i.e., team level, could not be inferred from the former, neither those collective 

variables could be effectively applied in systems with multi-players (McGarry, 2009).  

Following this, some ideas were developed regarding holistic measures that could be 

considered for describing team behavior, at a collective level, as a dynamical system 

(Schöllhorn, 2003). It is commonly accepted among researchers and coaches that teams’ 

positioning and distribution in the field is often associated to strategic decisions, principles 

and prescriptions (Garganta, 2009), which are likely to be printed in the behavioral patterns 

observed during a game. Hence, some quantitative measures extracted from the positioning of 

all teammates have, in theory, potential to be considered collective variables. The covered 

area, the geometric shape formed by team members and the common centre of gravity were 
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putted forward by Schöllhorn (2003) and somehow adapted in posterior studies, as those 

described next.  

Some of the variables currently considered as capable of capturing the dynamics of 

team behavior during a game are the convex hull (Frencken et al., 2011), the stretch index 

(Bourbousson, Sève, & McGarry, 2010a) and simple measurements derived from the average 

position (centroid) of the whole team (Frencken & Lemmink, 2008; Bourbousson, Sève, & 

McGarry, 2010b; Frencken et al., 2011; Sampaio & Maças, 2012). Despite the ability of these 

variables of describing some characteristics of the underlying dynamical system, they are 

calculated neglecting one of the major characteristics of the structural dimension, this being 

the boundaries which establish the frontiers of the system (McGarry, 2009). This is illustrated 

using a simple example in Figure 1.  

 

Figure 1: Three players of a team at the same interpersonal distances but placed in different locations 
form the same geometric shape as it does not account for the boundaries of the field (the black dots are 
the 2D spatial representation of the players). 

Another drawback is that those measures are often calculated for each team 

separately, not considering information regarding the distribution characteristics of the other. 

This limits the analysis of intra- and inter- team interaction behaviors as, conceptually, 

interaction between and among groups assumes a global interaction, where all players play a 

role.  
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There are, however, spatial construction, named Voronoi diagram (Dirichlet, 1850, 

Voronoi, 1908), that partition the area of interest, the field, into as many cells as the existing 

points, players, taking into account the position of all players and the limits of the field. 

These diagrams have already been successfully applied in a variety of game settings, namely, 

real soccer games (Taki, Hasegawa & Fukumura, 1996), electronic soccer games (Kim, 

2004), robotic soccer (Law, 2005) and real hockey games (Fujimura & Sugihara, 2005), in 

which the authors suggested some variables to characterize players individual and collective 

behavior. However, this was not approached under the theory of the dynamical systems.  

As this particular partition of space captures some essential details of players’ 

distribution, which are neglected in other more popular methods (Figure 2 in opposition to 

Figure 1), it is possible to recognize the potential of the Voronoi diagrams for studying the 

spatial characteristics of the team behavior and for deriving from these diagrams some strong 

candidates to collective variables. 

 

Figure 2: Three players of a team at the same interpersonal distances but placed in different locations 
form a very different spatial pattern as assessed by a Voronoi diagram, which partitions the field taking 
into account its boundaries (the black dots are the 2D spatial representation of the players). 

When the collective variable(s) of a dynamical system is defined, it is possible to 

capture its behavior by measuring that variable across time. The characteristics of the 

observed dynamical system, such as self-organization, perturbations, critical fluctuations, 

etc., will be printed in that signal. In addition to these, the level of complexity of the system 
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can also be assessed by studying the characteristics of the generated data series. The 

regularity of a signal relates to the complexity of the system generating it (Pincus, 1995), 

thus, by quantifying regularity it is possible to measure complexity.  

The Approximate Entropy (ApEn) is a nonlinear measure of regularity in behaviors of 

complex systems (Pincus, 1991) and it was much applied in the analysis of physiological 

time series such as heart rate variability, electrocardiogram measures, respiration, anesthesia, 

gene sequences, pulse waveform and electroencephalography (Xu, Wang & Wang, 2005). 

Such systems can be observed in a fixed time window, often rather long, so that each of their 

realizations produces a signal of a pre-determined fixed length, which is a requirement for 

applying the ApEn measure. Unlike these, team sports’ dynamical systems cannot be framed 

temporally as they evolve across time towards a certain goal and finish whenever that goal is 

achieved by one of the two parties involved, being possible to vary between very short and 

very long series. Clearly, this is a limitation that needed to be addressed as dynamical system 

has become a dominant approach to the analysis of team sports’ behavior in different levels 

and dimensions.  

Some authors have already suggested modified measures of the original ApEn, such 

as the sample entropy (Richman, & Moorman, 2000), which are less dependent on record 

length and more stable for short series, however, these do not allow, for example, revisiting 

studies where the old ApEn was applied and compare their complexity with the complexity of 

other systems.  
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Aims 

In aim of the present research work was, firstly, to address the identified limitations 

on applying the ApEn measure to quantify the regularity of time series data from collective 

variables measured in team sports dynamical systems. Secondly, to develop models for 

formally describing behavioral patterns of spatial interaction in team sports using Voronoi 

diagrams. From these models, we aimed to derive reliable collective variables for assessing 

inter- and intra-team interaction behavior at different levels, and to establish reference values 

for specific patterns of interaction in order to distinguish modes of spatial interaction 

behavior during a game.  

Outline 

The thesis is constituted by four chapters, the first two (Chapter 2 and Chapter 3) are 

articles that were submitted, revised and accepted for publication in the course of this 

process.  

Chapter 2 presents normalized measures of approximate entropy (ApEn) which allow 

quantifying the complexity of a system responsible for a given time series signal. This work 

emerged from an identified limitation on using the original ApEn measure in team sports’ 

data given that, in the majority of situations, the signals under study are of varying lengths 

and are likely to be small (less than 50 data points). Thus, in order to measure and compare 

the regularity of team and players’ behavior across a game, plays or trials, we suggest these 

normalized measures. In this study we have consider an application of the new ApEn 

measures in rugby union attacker-defender system.  

Chapter 3 describes the results from an application of Voronoi diagrams (VD) to 

Futsal data under a dynamical systems approach. This work is based on the assumption that 
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the spatial distribution of players in the field relates with the spatial interaction behavior 

established at player and team levels, and hence, this will vary according to the modes of 

interaction assumed. We suggest collective spatial variables, derived from the mentioned 

spatial tessellation, for describing intra-team interaction behavior in invasive team sports. 

Chapter 4 presents a paper recently submitted for publication to the journal of 

Behavior Research Methods and it is, to date, waiting a revision. Here is presented a novel 

conceptual spatial model for assessing spatial configuration patterns in invasive team sports 

based on the previously introduced VD. This Superimposed Voronoi diagram (SVD) model, 

as it was named, was applied to Futsal data and the collective variables suggested for 

measuring spatial interaction at team and player levels were then tested. Additionally, for this 

particular data, reference values for two modes of spatial interaction modes were calculated 

using data from simulated spatial patterns and used for identifying patterns of spatial 

behavior in Futsal. 

Finally, in Chapter 5, a general discussion of the main results from the three articles is 

presented, along with some final considerations about the contribution of this work to both 

sport and scientific communities. 
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Abstract 

When considering time series data of variables describing agent interactions in social 

neurobiological systems, measures of regularity can provide a global understanding of such 

system behaviors. Approximate entropy (ApEn) was introduced as a nonlinear measure to 

assess the complexity of a system behavior by quantifying the regularity of the generated 

time series. However, ApEn is not reliable when assessing and comparing the regularity of 

data series with short or inconsistent lengths, which often occur in studies of social 

neurobiological systems, particularly in dyadic human movement systems. Here, we present 

two normalized, non-modified, measures of regularity derived from the original ApEn which 

are less dependent on time series length. The validity of the suggested measures is tested in 

well-established series (random and sine) prior to their empirical application, describing the 

dyadic behavior of athletes in team games. We consider one of the ApEn normalized 

measures to generate the 95th percentile envelopes that can be used to test whether a 

particular social neurobiological system is highly complex, i.e., generates highly 

unpredictable time series. Results demonstrated that suggested measures may be considered 

as valid instruments for measuring and comparing complexity in systems that produce time 

series with inconsistent lengths. 

Keywords: analysis of regularity, entropy measures, social neurobiological systems, time 
series 
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Introduction 

Approximate Entropy (ApEn) was first introduced in 1991 by Pincus as a nonlinear 

measure to quantify regularity in the behaviors of complex systems (Pincus, 1991). The 

regularity of a signal relates to the complexity of the system generating it (Pincus, 1995), 

thus, the greater the value of ApEn, the lower the regularity of the time series, and the greater 

the complexity of the system under study. ApEn values vary between 0 and 2, with high 

values identifying data series with less regular and predictable patterns, and low values 

associated with data series containing many repetitive patterns, i.e., data which are more 

regular and more predictable. Since its introduction, ApEn has been established as a measure 

of regularity in a time series, with numerous applications in analysis of physiological time 

series such as heart rate variability, electrocardiogram measures, respiration, anesthesia, gene 

sequences, pulse waveform and electroencephalography (Xu, Wang & Wang, 2005).   

A major interest when analyzing the complexity of physiological systems is to 

compare the regularity of a given time series between different groups, for instance, compare 

the ApEn of pulse data records in healthy persons, inpatients with cardiovascular disease and 

inpatients without any cardiovascular disorder (Wang, Xu, Li, Zhang, Li & Wang, 2003). 

However, given that ApEn values are highly dependent on times series length, and are 

particularly unstable for short time series (e.g. Pincus & Golberger, 1994; Xu et al., 2005; 

Richman, 2007), the application of such a regularity measure is only recommended when 

considering signals of the same length, preferably with at least 50 data points (Stergiou, 

Buzzi, Kurz, & Heidel, 2004). To ensure such conditions, when considering physiological 

time series (e.g. heart rate variability, pulse), individuals are monitored during a fixed amount 
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of time and data are collected at the same rate (Pincus, & Viscarello, 1992; Ryan, 

Goldberger, Pincus, Mietus, & Lipsitz, 1994; Pincus, Padmanabhan, Lemon, Randolph, & 

Midgley, 1998; Wang et. al, 2003). 

When the conditions above cannot be guaranteed, modified measures of the original 

ApEn can be applied, e.g. sample entropy (Richman, & Moorman, 2000), Gaussian Kernel 

approximate entropy (Xu et al., 2005), modified sample entropy (Xie, He, & Lui, 2008) and 

Fuzzy approximate entropy (Chen, Zhuang, Yu, & Wang, 2008). These measures have been 

shown to be less dependent on record length and more stable for short series.  

In the study of social neurobiological systems, such as flocking birds, schooling fish, 

herding animals, human societies and sports teams (Couzin, 2007; Sumpter, 2006), unlike 

physiological systems, it may not be possible to ensure that all system output samples are of 

the same length. This is particularly difficult in studying social neurobiological systems 

because of the continuous interactions of system agents in tasks where a specific performance 

goal has to be achieved. Since the length of the captured time series is dependent on the time 

required by the agents to conclude a particular performance task (as exemplified by an 

attacking or defending performance sub-phase in a team game), the use of ApEn for assessing 

regularity is not advisable. Modified measures of regularity, such as those mentioned above, 

could be applied here however, we suggest in this paper two normalized measures of the 

original ApEn. By applying these new measures one can compute a straightforward 

normalization of any ApEn value where the original ApEn was used, which allows a reliable 

comparison of time series regularity in different complex systems. 
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Material and Methods 

Given a data series with N points, say {x1, x2, …, xN}, ApEn (m, r, N) can be used to measure 

the logarithmic likelihood that runs of patterns with m points that are close, remain close 

within a tolerance factor r in ensuing incremental comparisons (Pincus, 1991), i.e., to 

measure the predictability of the data series. In order to compute ApEn (m, r, N), the 

parameters m, the length of compared runs, and r, the tolerance factor, need to be fixed for all 

calculations to ensure reliable analysis (Pincus, & Goldberger, 1994).  In our analysis, as 

suggested in studies of other neurobiological systems, we considered m = 2 and r = 0.2. All 

calculations were performed in Matlab (7.6.0) using routines written for this purpose 

(Kaplan, & Saffin, 2009). 

The techniques for normalization considered here are based on the ratio between an 

observed ApEn value and a threshold reference ApEn value, for a specific data series length. 

This normalization allows the regularity of data series of different lengths to be compared.  

Our first normalized measure, designated ApEnRatioRandom, is given by 

100),2.0,2(ApEn
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Here, the regularity of the data series X={x1, x2, …, xN} is quantified by means of the 

ratio between its original ApEn value, ApEn (2, 0.2, N)X , and the mean ApEn calculated in 

100 random series Ui with the same length N. Note that for each generated random series, Ui, 

the corresponding approximate entropy, 
iUN),2.0,2(ApEn , represents a maximum value of 

approximate entropy for that particular length. Hence, ApEn (2, 0.2, N)X  is normalized with 

respect to a maximum value of ApEn of a series of length N. 



Modeling intra- and inter-team spatial interaction in team sports 2012 

   27 

 

Our second normalized measure, designated ApEnRatioShuffle, is given by 
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Here, the regularity of the data series X={x1, x2, …, xN} is given by the ratio 

between its original ApEn value, ApEn (2, 0.2, N)X , and the mean ApEn calculated in 100 

shuffled replicas Si of the original data. Note that for each shuffled replica of X, Si, the 

corresponding approximate entropy, 
iSN),2.0,2(ApEn , represents a maximum value of 

approximate entropy for that particular set of points.  Hence, ApEn (2, 0.2, N)X  is normalized 

with respect to a maximum value of ApEn of that particular set of points. In both methods 

described here, low values of the corresponding measures will indicate that the time series 

under study is generated by a social neurobiological system that is less predictable than 

random time series of the same length. 

For testing the methods presented in this paper, we considered data from a dyadic 

human movement system; more precisely, a rugby union attacker-defender system where the 

attacker aims to score and the defender tries to prevent it.  Results should be in accordance 

with findings in the literature that suggest that physical contact between an attacker and 

defender increases the complexity of this system (Passos et al., 2009), making the dyadic sub-

system behaviors that emerge in try situations (success for the attacker) more predictable than 

in tackle situations (success for the defender) where players do experience physical contact. 

In this regard, the interactive behaviors that emerges in each trial of this social 

neurobiological  system is accurately measured, across its duration, by a one-dimensional 

variable X defined in previous work by Passos et al. (2009) and designated as collective 

variable. This variable represents the vector connecting the agents in the dyad, and is 
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formally given by the value of the angle between the defender–attacker vector and a 

horizontal line parallel to the try line with the origin in the defender. The values of X range 

from -90º to 90º, which occur when an attacker and defender are in the same vertical position, 

being 90º when the defender is closer to the try line and -90º when the attacker is closer to the 

try line. X is zero when attacker and defender are in the same horizontal position.  

To assess the regularity of this collective variable, we considered 47 experimental 

dyadic trials in which participants were male rugby players aged 11–12 years, with an 

average of 4.0 ± 0.5 years of rugby practice. Treatment of participants was in accordance 

with the ethical standards of American Psychological Association (APA). Trials were 

performed on a field of 5 m width × 10 m depth and two fixed digital video cameras at 25 Hz 

were used to capture players’ movements. The angle given by the variable X was calculated 

from players’ trajectory motion data extracted from the videos using the methodology 

described in detail in Passos et al. (2009). Figure 3 displays two examples of these data, one 

from a successful situation (try scored) and the other from an unsuccessful situation (try not 

scored). 

 

Figure 3: Example data for the collective variable X measured in a successful trial (Try scored) and in a 
unsuccessful trial (Try not scored)  
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The 47 data series analyzed, try scored (n=20) and try not scored (n=27), had a record 

length ranging from 69 to 230 data points (112 ± 36.3). Both normalized measures of ApEn 

were calculated and comparative statistical analyses were performed using non-parametric 

tests (Mann-Whitney test) due to lack of normality in the data and the small sample size.  The 

level of statistical significance was fixed at 5%.  

Results 

The normalized measures of ApEn suggested in this paper, ApEnRatioRandom and 

ApEnRatioShuffle were tested in regard to the series length effect. An application of these two 

well-known data series (sine and random) with different lengths, has shown the advantages of 

these (Figure 4a) in comparison to the original ApEn measure (Figure 4b). 

 

(a)                                                                                                     (b) 

Figure 4: (a) Normalized entropy measures and (b) original entropy measure calculated for sine and 
random series data of different lengths (N) 

Both normalized measures appeared to be less dependent on record length for both 

data series, reaching stability for small lengths. This observation reinforces the need of 

considering more reliable measures for analyzing complexity in systems that produce time 

series with inconsistent lengths, a typical occurrence when studying social neurobiological 

systems. Nevertheless, a minimum of 50 data points is also advised to allow reliable 
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approximate entropy comparisons (Stergiou et al., 2004). In a specific application of these 

measures to a dyadic sub-system (1v1) interaction in the team sport of rugby union, where 

physical contact is associated with less regular interaction behaviors, both ApEn normalized 

measures indicated, accordingly, greater unpredictability in situations with effective contact 

between the players, i.e. an attacker was tackled by an opposing defender (try not scored) (see 

Figure 5). 

 

Figure 5: Mean approximate entropy for each of the two task outcomes using ApenRatioRandom and 
ApEnRatioShuffle 

Using the non-parametric Mann-Whitney test, significant differences were found 

between the two task outcomes for ApEnRatioRandom(p=0.0196) and ApEnRatioShuffle (p=0.0185), 

confirming that behavioral outcomes in try situations are more regular than tackle situations. 

Given the similarity of both measures, we considered the ApEnRatioRandom to determine 

the 95th percentile envelope of this normalized measure, calculated from 100 simulations of 

random data series of length from 50 to 1000 (Figure 6). 
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Figure 6: 95th percentile envelopes of ApEnRatioRandom for random series of different lengths (N) and the 
fitted logarithm curves for the upper and lower bounds 

The logarithm curves fitted to the upper (U) and lower (L) bounds of the 95th 

percentile of the ApenRatioRandom for random time series with length greater than 50 are given 

by 

( )95

RatioRandomApEn 0.09ln 1.6089
th

U
N= − +

  

 

( )95

RatioRandomApEn 0.0845ln 0.4233
th

L
N= +

   

with a corresponding R2 for the logarithm fitting of 0.752 and 0.742, respectively. 

Given these, deviations from complete behavioral randomness, i.e., high 

unpredictability, observed in a specific social neurobiological system could be tested by 

computing the median ApEnRatioRandom for a sample of time series of that system to verify 

whether the obtained value is within the envelopes estimated for N equal to the median of 

dimension of the time series considered. For the social neurobiological system considered in 

this study, the median of the time series dimension is 98 and 105 for try and no-try situations 

and therefore the respective envelopes are [0.81, 1.2] and [0.82,1.19], respectively. The 

median ApEnRatioRandom in try and no-try situations were 0.23 and 0.33, being both below the 
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respective lower reference value. This finding suggests that, regardless of the outcome, the 

dyadic system behavior under study is more predictable than would be expected in the case of 

complete randomness. Nevertheless, results suggested that the level of system output 

regularity was significantly different between the try and no-try performance situations, being 

more predictable for try situations. 

Conclusion and Discussion 

In this paper we presented two normalized measures based on the original 

Approximate Entropy (ApEn) for quantifying and comparing regularity in the interactions of 

agents in social neurobiological systems, particularly in those that produce time series with 

inconsistent lengths. The limitations associated with the application of the original ApEn to 

time series of varying lengths, have been previously addressed by other authors (Richman & 

Moorman, 2000; Xu et al., 2003; Xie, He & Lui, 2008; Chen et al., 2008) introducing 

modified measures of the original ApEn. Alternatively, the measures here presented consider 

the same limitations but are based on the use of the original ApEn.  

We considered two well-known data series (sine and random) with different lengths, 

for testing the advantages of these normalized measures in comparison to the original ApEn 

measure. For the normalized measures we calculate the 95th percentile envelopes which can 

be interpreted as reference values for testing deviations from complete randomness, i.e. low 

predictability, in social neurobiological time series of any length greater than 50. An 

application of these measures to empirical data from a dyadic system behavior in rugby union 

suggested that the emergent behavior of this particular social neurobiological system is more 

regular than expected in the case of complete randomness, given that the agents in this system 

have a specific performance goal. Additionally, the analysis of regularity indicates that the 
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complexity of this system was significantly lower when physical contact between the two 

players occurred, as suggested by Passos et al. (2009). Overall, the application of the 

normalized ApEn measures to both theoretical (sine and random) and empirical data suggest 

that they can be regarded as reliable measures for quantifying and comparing regularity of 

time series with different lengths. These findings could be used to re-interpret previous work 

on behaviors of social neurobiological systems (e.g., Araújo, Davids, Bennett, Button, & 

Chapman, 2004) with criteria to compare the regularity of time series of different lengths, 

something that was not possible previously beyond simple visual inspection.  Moreover, an 

exciting possibility for future research is to study complex daily social interaction behaviors 

to identify different patterns, without concerns over the possible loss of explanatory power. 
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Abstract  

Team sports are complex systems, where the players interact continuously during a 

game, forming patterns of interaction that, once identified, can describe their behavior in both 

individual and collective levels. In order to identify these interaction patterns, we considered 

Voronoi diagrams to describe the spatial dynamics of players’ behavior in Futsal plays.  

We considered 19 plays of a sub-phase of a Futsal game played in a reduced area 

(20×20m2) from which the trajectories of all players were extracted. Results from a 

comparative analysis of player’s Voronoi area (dominant region) and nearest teammate 

distance, show that there are different patterns of interaction between attackers and defenders, 

at both player and team levels. Namely, we found that, in comparison with the defender team, 

attacker players have larger dominant regions.  In addition, these regions are more variable in 

size among players from the same team but, at a player level, the attackers’ dominant regions 

are more regular during performance than those associated to each of defender players. These 

findings support a formal description of the dynamic spatial interaction of the players, in this 

sub-phase of the game.  

This approach may be extended to other team behaviors where the actions taken at 

any instant by each of the involved agents are associated with the space they occupy at that 

very time.    

Keywords: Interaction patterns, Team sports, Voronoi diagrams 
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Introduction 

Team sports can be seen as complex systems where players, the agents of the system, 

interact continuously during a game (Davids, Araújo & Shuttleworth, 2005, McGarry, 

Anderson, Wallace, Hughes, & Franks, 2002) and it is their interaction behavior what 

determines the occurrence of specific events during a game (Passos et al., 2008). Therefore, 

having a good understanding of this dynamic behavior would allow not only a better 

characterization of these systems but also could help coaches to anticipate some outcomes or 

events. 

Players’ interaction behavior can be assessed in a spatial perspective. For instance, 

players change their location continuously during a game as they adjust their relative position 

according to the information that they can perceive (Passos et al., 2008; Travassos, Araújo, 

Vilar, & McGarry, 2011), acting collectively as a result of phenomena such as cooperation 

and competition. Thus, players collective behavior cannot be explained by the simple 

addition of behaviors from each player (Gréhaigne, Bouthier, & David, 1997), instead, 

players’ behaviors could be considered within the whole dynamic system that they form 

(Glazier, 2010; McGarry, 2009; Passos et al., 2009), where both time (Araújo et al., 2006) 

and space (Davids, Handford and Williams, 1994; Schöllhorn, 2003) need to be brought into 

the equation. Considering both space and time, it is possible to evaluate the spatial 

configuration that players present during a game.  

To illustrate, spatial configurations can be classified as random, regular or clustered. 

A random classification can be defined when players are at random distances from each other 

in the field, regular, when players are equally distant from each other in the field, or 

clustered, when we can identify different groups of players aggregated in different parts of 

the field (Figure 7). These spatial distribution patterns can be easily identified by measuring 
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interpersonal distances, in particular the minimum interpersonal distance, or nearest neighbor 

distance (Clark, & Evans, 1954).  

 

 (a)                                               (b)                                            (c) 

Figure 7: Example of spatial distribution patterns (a) random, (b) regular and (c) clustered. 

The spatial distribution of the players in a field, and hence the space that a players has 

to act, is dependent on a large number of constraints that change continuously throughout a 

game, being ball possession an obvious one. In principle, the attacker team normally tries to 

free-up space while the defender team tries to tie-up space (McGarry et al., 2002, Gréhaigne, 

Bouthier, & David, 1997). Therefore, in terms of nearness, it is expected that the 

interpersonal distance between players is kept greater for the attacker team and smaller for 

the defender team, which results in more space for the attack. This relationship was already 

observed using surface area (Frencken, Lemmink, Delleman, & Visscher, 2011) and stretch 

index variables (Bourbousson, Sève, & McGarry, 2010).  

An alternative method to study the spatial relation established between players at each 

instant of a game is the Voronoi diagram (Dirichlet, 1850, Voronoi, 1908), which is a spatial 

construction that allows a spatial partition of the field area into cells, each associated to each 

of the players, according to their positions (Figure 8). These cells result from applying a very 

simple nearest-neighbor rule: each player, represented by the coordinates of his/her location 

in the field, is associated to all parts of the field that are nearer to that player than it is to any 

other player (see Okabe et al., 2000).  
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(a)                                               (b) 

Figure 8: Example of a Voronoi diagram generated for the set of points represented in the figure.  

Voronoi diagrams have already been suggested by other authors in the study of 

players’ spatial distribution in team sports and to define players’ and teams’ dominant 

regions, having been applied in a variety of game settings, namely, real soccer games (Taki, 

Hasegawa & Fukumura, 1996), electronic soccer games (Kim, 2004), robotic soccer (Law, 

2005) and real hockey games (Fujimura & Sugihara, 2005). When real games were 

considered, dominant regions were calculated considering more than just players’ location, in 

particular, Taki, Hasegawa & Fukumura (1996) has considered players’ direction and speed, 

whereas Fujimura & Sugihara (2005) has taken into account players’ distance from ball and 

distance to goal. In all these studies it was shown that the position of the ball influences the 

location of the players and hence the size of their respective dominant regions.   

Besides the advances of the work mentioned above towards the analysis of spatial 

patterns of behavior in team sports, an important dimension has not been considered. In fact, 

when analyzing systems of interacting agents, it is necessary to measure its degree of 

complexity (Stergiou, Buzzi, Kurz, & Heidel, 2004, Harbourne, & Stergiou, 2009), as this is 

a key issue to understand the emergence of successful performances in dynamical movement 

systems (Bartlett, Wheat & Robins, 2007, Davids, Glazier, Araújo, & Bartlett, 2003). To 

assess the complexity of a system, one can consider a nonlinear measure suggested by Pincus 

in 1991, the Approximate Entropy (ApEn), which quantifies the regularity (predictability) of 
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signal from a variable measured in the system under study. When this variable expresses the 

state of the system (Harbourne, & Stergiou, 2009), its regularity is directly proportional to the 

system’s complexity, i.e., lower values of ApEn indicate more regularity and hence low 

complexity. 

Thus, the main goal of the present paper was to characterize the spatial interaction 

dynamics of players in team sports, by understanding how players from two opposite teams 

coordinate their location in the field during a game and how they define and adjust their 

dominant regions throughout the game. We expect that players from the attacker team present 

greater interpersonal distances, greater dominant regions, and greater regularity overtime in 

terms of space area as they are with the ball. 

Material and Methods 

In this study were considered 19 experimental plays of Futsal, in which participants 

were 15 male senior players (23.25 ± 1.96 years old), treated in agreement with the ethical 

standards of American Psychological Association (APA). Plays represent the sub-phase of 

Futsal of 5 vs 4+GK performed in half field (20 m width × 20 m depth) where all players 

occupied fixed initial positions. This is a common scenario in Futsal when the team losing the 

game has ball possession and aims to score where, due to numerical disadvantage, the 

defender team retract their positions to their half field. Accordingly, in each play, the aim of 

the attacker team is to score while the defender team tries to avoid it, and each play ends 

whenever the attack loses ball possession.  

Two fixed digital video cameras at 25 Hz were used to capture players’ movements 

during each play. The trajectory of each player was extracted from the recorded videos using 

TACTO software (see more in Duarte et al., 2010; Fernandes, & Malta, 2007) and 
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transformed into real coordinates (x,y) using a direct linear transformation method (2D-DLT) 

(Abdel-Aziz, & Karara, 1971). The 19 plays had, on average, 848 (± 374) frames 

(corresponding to approximately 34.2 (± 14.94) seconds), minimum of 315 and maximum of 

1558 frames (approximately 12.6 and 62.4 seconds, respectively).  

In the present work two variables were considered to describe this system, players’ 

dominant region, as defined by the respective Voronoi cell, and the minimum interpersonal 

distance between teammates. The minimum interpersonal distance between all teammates 

(N), here designated nearest teammate distance (DistNT), was calculated at each frame (f), 

considering the Euclidean distances between all pairs of players of a team (A), as described 

below.  
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As for players’ individual dominant region, we considered the respective Voronoi 

cells and calculated their area (AreaDR) as described next.  

The field was mapped with a grid of 20×20 positions. At each frame (f), the area of 

the DR of player k (k∈[1,M]) is the sum of all grid positions (i,j) (where i=1,..,20 and 

j=1,…,20) that are closer to that player than it is to any other player. This can be 

mathematically defined as presented below,  
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where I(i,j) is a Boolean function that takes value 1 if player k is the closest player to 

the grid position (i,j) and 0 otherwise: 
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Grid points that are equidistant to two or more players constitute the boundaries of 

their respective regions and therefore are not added to the corresponding areas.  

For each player and team we investigated how the size of their dominant regions 

changes over time and how the size of such regions relates to each other. MATLAB routines 

were written to generate, at each frame, the Voronoi diagram associated to the spatial 

distribution of the players, and to calculate the size of the dominant region (AreaDR) 

according to descriptions above.  

The regularity of time series data from AreaDR and DistNT was measured using the 

ApEnRatioRandom (Fonseca et al., 2012), which is a normalized measure of Pincus (1991) 

approximate entropy (ApEn), obtained by dividing the ApEn of the original series, Y, by the 

average ApEn of 100 random series of the same size of Y. This measure allows the 

comparison of entropy values calculated in series of varying lengths. A value of 

ApEnRatioRandom of approximately 0.2 indicates regularity (high predictability), whereas 1 

indicates low regularity (high unpredictability) (Fonseca et al., 2012). 

We used descriptive statistics (Mean (M) ± Standard Deviation (SD)) and inferential 

statistics (ANOVA, t-test and paired t-test) to compare the spatial behavioral complexity 

between players, teams, and teams by play, respectively. 

Reliability 

From all the plays, one of them was randomly selected and the data trajectories of the 

players re-digitized by the same researcher. Data were then assessed for accuracy and 
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reliability using technical error of measurement (TEM) and coefficient of reliability (R), 

respectively (Goto & Mascie-Taylor, 2007). The TEM yielded values of 0.137 meters 

(0.23%) and the coefficient of reliability was equal to 0.984. 

Results 

When looking at changes on the minimum interpersonal distance between teammate 

players (DistNT) and area of the dominant region (AreaDR) across each play, we found that, on 

average, players from the attacker team tend to be further from each other in comparison with 

players from the defender team, as expected (Figure 9: exemplar single play). Consequently, 

the space occupied by each player is, on average, greater for the team with the ball (attacker 

team) in comparison with the defender team (Figure 10: exemplar single play).  

 

Figure 9: Mean distance to nearest teammate distance, across time, for the attacker and defender teams 
in a randomly selected play (error bars represent the standard deviation). 
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Figure 10: Mean area of the dominant region, across time, for the attacker and defender teams in a 
randomly selected play (error bars represent the standard deviation). 

When comparing the amount of variability within each team for both variables, it is 

clear that the attacker team shows less variability than the defender team in the DistNT and 

more variability than the defender team in the AreaDR, as shown by the error bars in Figure 9 

and Figure 10, respectively, This tendency was observed in all plays, suggesting that, in 

comparison to what was found in the defender team, the area occupied by the attacker team is 

much more variable within each frame, whereas the minimum interpersonal distance is less 

variable. In Figures 9 and 10, the moment captured at time 10 s. corresponds to the exact 

moment (observed by visual inspection) when the ball is received by an attacker inside the 

defensive structure, which is, according to Futsal’s literature, a critical occurrence for the 

defender team (Lucena, 2007).  As a consequence, all defenders were trying to close the 

space around the ball carrier and avoid the attacker team to score, and both DistNT and 

AreaDR, presented particularly low variability. 

To better understand and characterize the system under study, we measured the 

regularity of DistNT and AreaDR, at both player and team levels and within each play, using a 

normalized measure of the ApEn due to presence of signals with varying lengths (for more 

detail see Fonseca et. al, 2012). At a player level, the regularity of the DistNT and AreaDR was 
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calculated separately for each player in all plays. We found that the regularity of both 

variables is significantly different between at least two players (DistNT: F(9,180)=9.5, 

p<0.001; AreaDR: F(9,180)=12.5, p<0.001), being this difference only found between 

opponent players. This means that players within a team have similar behavioral patterns 

regarding proximity to their teammates and management of their dominant regions. At a team 

level, the regularity of the same two variables was compared between the teams (Defender vs 

Attacker) and significant differences were found in both variables (DistNT: 0.165 ± 0.048 vs 

0.106  ± 0.043, p<0.001; AreaDR: 0.264 ± 0.135 vs 0.114  ± 0.061, p<0.001). In addition, and 

having shown a team effect, we tested the effect of the play in the spatial interacting behavior 

between teams. Hence, for the same two variables, we considered, for each play and for each 

team, the median entropy. Our results were consistent with what was shown above, 

suggesting  that, within a play, DistNT and AreaDR were significantly more regular for the 

attacker team in comparison with the defender team ( t(18)=8.26, p<0.001; t(18)=8.86, 

p<0.001, respectively) (Figure 11). 

  

Figure 11: Comparison of the mean entropy of the distance to nearest teammate (DistNT) and area of the 
dominant region (AreaDR) between teams in the same play. Error bars represent the standard deviation 

(*** p<0.001). 

Discussion 

The aim of this study was to characterize the spatial dynamics of players and teams in 

Futsal using Voronoi diagrams. We considered the minimum interpersonal distance between 
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teammates (DistNT) and the area of the dominant region of each player (AreaDR) as variables 

that can be considered to characterize the individual and collective behavior of the players. 

Both variables mentioned above appear to capture some interesting characteristics of this 

system of interactions, namely, players from the team with the ball, are further apart from 

each other whereas defenders are closer from each other. This spatial organization has direct 

influence on the dominant region defined by each player. These individual dominant regions 

were defined using Voronoi diagrams and they appear to be greater for the attacker team and 

smaller for the defender team. These results are in agreement with what was theoretically 

expected (McGarry et al., 2002). The spatial behavior assessed by these two variables did not 

present significant differences between players of the same team as their actions are, to some 

extent, regulated by their goal as a team, which is scoring and avoiding a score for the 

attacker and defender teams respectively. 

Moreover, we found that the AreaDR and DistNT present, across time, lower regularity 

in the defender team being their behavior more unpredictable that the interaction behavior 

observed in the attacker team. This greater unpredictability associated to the defender team 

may be justified by the fact that the players on this team are constantly adjusting their spatial 

organization to protect the goal in function of what the attacker team does (Frencken, 

Lemmink, Delleman, & Visscher, 2011). On the other hand, the attacker team explores the 

free space in a more regular way, possibly acting according to the trained coordination 

patterns that are assumed to increase chances of scoring. 

Voronoi diagrams can then be considered to measure individual and team dominant 

regions. The observed signals of this variable appear to capture particular phases of the game, 

such as when the ball is received by an attacker inside the defensive structure, presenting 

behavioral patterns that may be used to describe and explain the performance outcome 
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(Glazier, 2010; McGarry, 2009). Unlike other authors, in this paper, we did not consider any 

factor to weight players’ Voronoi regions, so their areas were simply based on the position of 

the players which, according to our results, are naturally influenced by ball possession. 

However, there are other factors, such as players’ individual characteristics (Cordovil et al., 

2009), distance from ball (Fujimura & Sugihara, 2005), motion direction, speed and 

acceleration (Taki, Hasegawa & Fukumura, 1996; Fujimura & Sugihara, 2005), that are likely 

to determine players’ actions and hence their spatial distribution in the field. In future work, 

some of the mentioned constraints could be considered to weight the distances used in the 

calculation of the dominant regions. 

In addition, future research in this topic could consider other sub-phases of the game 

(e.g. 5 vs 5, counter-attack, corners) and study players’ spatial configurations (e.g. attacker 

team vs defender team) in order to formally describe their spatial behavior and compare these 

with the principles that regulate them. With the same reasoning, the definition of players’ 

spatial profiles for different game scenarios could be of much interest to the training 

processes (Travassos et al., 2010).  

Conclusion 

In conclusion, we showed that Voronoi diagrams can be used to characterize players’ 

spatial interaction behavior in Futsal. The interpersonal relationship between players and 

teams is well described by the variables considered and the quantification of their 

predictability was able to capture the interaction behavior between and within teams during 

performance. 



Modeling intra- and inter-team spatial interaction in team sports 2012 

   48 

 

This analysis can be further applied to other team sports to describe individual and 

collective behavior, identify patterns of coordination in different sub-phases of a game, and 

compare spatial patterns of coordination between teams of different levels of expertise. 
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Abstract 

In team sports, the spatial distribution of players in the field is determined by the 

interaction behavior established at both player and team levels. The distribution patterns 

observed during a game emerge from specific technical and tactical methods adopted by the 

teams, and from individual, environmental and task constraints that influence players’ 

behavior.  By understanding how specific patterns of spatial interaction are formed, one can 

characterize the behavior of the respective teams and players. Thus, in the present work we 

suggest a novel spatial method for describing teams’ spatial interaction behavior, which 

results from superimposing the Voronoi diagrams of two competing teams. 

We considered theoretical patterns of spatial distribution in a well-defined scenario (5 

vs 4+ GK played in a field of 20×20m2) in order to generate reference values of the variables 

derived from the superimposed Voronoi diagrams (SVD).  These variables were tested in a 

formal application to empirical data collected in 19 Futsal trials with identical playing 

settings.  

Results suggest that it is possible to identify a number of characteristics that can be 

used to describe players’ spatial behavior at different levels, namely the defensive methods 

adopted by the players. 
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Introduction 

Team sports are considered dynamic systems of interaction, where players from both 

teams continuously change, adapt, adjust and coordinate their position and actions in order to 

win the game (Davids, Araújo & Shuttleworth, 2005; Passos et al., 2009). Pre-determined 

tactical and technical methods, along with individual, environmental and task constraints 

(Newel, 1986), regulate players’ spatial behavior and are responsible for a continuous 

emergence of patterns of intra-and inter-team interaction. Research on this subject should 

therefore assume a holistic character considering a time and space continuous approach, 

which is accomplished when defining variables capable of describing the collective behavior 

of a team (Davids et al., 2005; Schölhorn, 2003, McGarry, 2009).  

When considering the space dimension, players’ trajectories during a game are a 

relevant source of information but they only provide a measure of team behavior when 

considered simultaneously. Following this reasoning, spatial team variables, such as the 

convex hull (Frencken et al., 2011), the stretch index (Bourbousson, Sève, & McGarry, 

2010a) and simple measurements derived from the average position (centroid) of the whole 

team (Frencken & Lemmink, 2008; Bourbousson, Sève, & McGarry, 2010b; Frencken et al., 

2011), have been considered to describe the behavior of a team. These variables are 

illustrated in Figure 12 a), b) and c), respectively. 

The mentioned variables became popular for describing the spatial behavior of each 

team across the duration of a game (or task). Typically, the area of the geometric shape 

(Figure 12 a) and b)) is calculated for each team or, in case of using the centroid (Figure 

12c)), its distance or angle to the aimed target (e.g. goal) is considered as a measure of 

individual team behavior.  
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(a)                            (b)                             (c) 

Figure 12: Variables for describing team spatial organization of two opponent teams (players of each 
team are represented by black dots and triangles, respectively, grey players on the top and bottom of the 
field are the goalkeepers) – (a) convex hull, (b) horizontal and vertical stretch and (c) centroid position 

(red dots). 

For the analysis of these data series, researchers consider the use of entropy measures 

to quantify and compare the complexity of the spatial behavior of the teams (Passos et al., 

2009; Fonseca et al., 2012a, Sampaio & Maças, 2012) and, for assessing teams’ coordination, 

a relative phase analysis is considered (Bourbousson, Sève, & McGarry, 2010a; Travassos et 

al., 2011). While these approaches are a step forward towards the understanding of players’ 

behavior in team sports, some limitations can be identified, as illustrated in Figure 13.  

 

(a)                                   (b)                                    (c) 

Figure 13: The same spatial configuration of two teams 5+ GK vs 5+GK (players of each team are 
represented by black dots and triangles, respectively, grey players on the top and bottom of the field are 

the goalkeepers) measured using the area of the respective convex hull (shaded areas) in three very 
different scenarios (a, b and c).  
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Figure 13 shows the same spatial configuration of two teams in three very different 

scenarios of team interaction, which would present no differences if, for example, the area of 

the convex hull of each team is considered. This limitation can be found in some variables 

currently used to describe spatial behavior in invasive team sports as they are calculated for 

each team ignoring the spatial distribution of the opponent team and the dimension of the 

field. Given that the spatial organization of one team is much influenced by the spatial 

organization of its opponent, it seems reasonable to consider the position of all players in the 

field, as well as its dimension, to define variables that describe teams’ spatial arrangement. 

Thus, some authors have suggested measures of spatial organization based on a geometric 

partition of space called Voronoi diagram (see Okabe et al., 2000), in which parts of the field, 

the Voronoi cells, are associated to each of the players. Figure 14 shows an example of a 

Voronoi diagram generated for a set of 10 points in a limited square area. 

 

(a)                                             (b) 

Figure 14: Example of a set of points in a plane (a) and respective Voronoi diagram (b). 

The application of this spatial tessellation in team sports has been welcomed as the 

points can represent the position of the players and the associated Voronoi cells can be 

interpreted as the dominant region of each player within the limits of the playing area (field). 

Not surprisingly, such approach has been considered in a variety of settings, namely, 

electronic soccer games (Kim, 2004), robotic soccer (Law, 2005), on-field hockey games 

(Fujimura & Sugihara, 2005), on-field soccer games (Taki, Hasegawa, & Fukumura, 1996) 
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and on-field futsal (Fonseca et al., 2012b). Although some principles of the game are fully 

capture in these studies (e.g., the idea that the attack team has to free-up space and the 

defense team has to tie-up space), it is still unknown how relationships established at a player 

level relate to this. 

Hence, we suggest a novel spatial method for describing inter-teams spatial 

interaction patterns of behavior in invasive team sports, which also allows characterizing the 

type of play of defending teams. Results from an application of this approach in futsal task 

situations are presented. 

Method 

The spatial method suggested here, illustrated in Figure 15, results from 

superimposing the Voronoi diagrams (VD) of the two teams competing (VD of team A - 

black, over VD of team B - white), hereafter named Superimposed Voronoi Diagram (SVD). 

 

Figure 15: Construction of the superimposed Voronoi diagram (at bottom) from considering, separately 
the Voronoi diagrams for team A (black dots) and team B (white dots). 

Given this graphical construction, we defined two measures of spatial interaction: the 

maximum percentage of overlapped area (Max%OA) and percentage of free area (%FA). The 

former (Max%OA) is calculated for each player and it represents the maximum percentage of 

the player’s Voronoi cell that is covered by the cell of an opponent; as for the latter (%FA), it 
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is a measure that summarizes the degree of similarity between the overlapped diagrams, and 

is calculated by extracting from the play area the sum of the Max%OA calculated for players 

of a team. A representation of these measures is presented in Figure 16. 

 

(a)                                                            (b) 

Figure 16: Measures from the superimposed Voronoi diagram (SVD): (a) shaded grey areas are the 
maximum Overlapped Area for each player of the team represented with black dots; (b) the sum of the 

shaded black area is the Free Area. 

The fitting of the two diagrams, VD of team A and VD of team B, is clearly 

dependent on the spatial distribution of the players from both teams, and a perfect fit would 

only occur if players of a team could be in the exact same position of the players from the 

other team, which in a sports context would make no sense (note that in this case the 

Max%OA would be equal to 100% to all players and hence the %FA would be null). 

A more likely scenario in invasive team sports is having players exclusively paired, 

i.e., matched one-to-one as in a man-to-man defensive method, in which case the two VD 

would be similar, but not identical. Alternatively, in case players are not so tightly coupled, 

one would expect a weaker match of the two diagrams. Having described these two 

possibilities, we recognize the importance of understanding how these two measures of 

interaction (%FA and Max%OA) differ in these two scenarios. Thus, simulated spatial 

patterns of exclusive pairing and random interaction were performed to derive the properties 

of the SVD. Note that random interaction was considered as a reference model for spatial 
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patterns assessment. The simulation settings matched those in the empirical data considered 

for application purposes (5 vs 4+ GK players in a limited region of 20×20m2), nevertheless, it 

is supported that this can be adjusted to other scenarios. 

Random interaction: 1000 SVDs were generated for random interaction, i.e., all players 

except GK are randomly allocated in the field, the GK is fixed at location (10,18) – example 

of one simulated pattern is shown in Figure 17a. 

Exclusive pairing: Given the numerical advantage for the attack in the present setting (5 

vs 4+GK), each defender, except GK, was paired with one of the 4 attackers closer to the 

center of the goal. The GK remains fixed at location (10,18). Thus, 1000 SVDs were 

generated for exclusive pairing at different maximum distances between pairs, from 0.5 to 7 

meters with increments of 0.5 meters – example of one simulated pattern is shown in Figure 

17b. 

           

(a)                                                                               (b) 

Figure 17: Example of a generated SV in a situation where (a) players from both teams (grey and black 
dots) are randomly distributed in the field and (b) defender players, grey dots, are exclusively paired with 

the attacker players, black dots, that are closer to the goal. The GK (red dot) is in both cases fixed at 
position (10, 18). The arrow indicates the direction of the attack. 
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Inter-Team interaction assessment 

For measuring inter-team interaction the %FA was considered. In case of random 

interaction, this measure is, on average, equal to 36 ± 7.2% and the corresponding 95% 

confidence interval is (0.22, 0.50)%. As for the exclusive pairing patterns, given that in this 

case the %FA calculated for each of the 14 distances was not normally distributed, we have 

computed the 95% confidence envelopes. These are compared with the values expected in the 

presence of random interaction in Figure 18. 

 

Figure 18: 95% confidence envelopes for simulated patterns of exclusive pairing at different maximum 
pairing distances (solid lines) and 95% confidence interval for simulated patterns of random interaction 

(dashed lines). 

As expected, when opponent dyads are tightly paired, i.e., for very small pairing 

distances, the %FA is smaller than what is expected by chance (random interaction). As this 

distance increases, the pairing becomes weaker and the %FA increases towards the values 

observed under complete randomness. In fact, results suggest that for the specific settings 

considered in this study, 5 vs 4+GK played in a field of 20×20m2, it is only possible to 

identify exclusive pairing at a team level when the distance between all pairs is below two 

meters (dotted vertical line in Figure 18). 
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Opponent interaction assessment 

For assessing spatial interaction at a player level we consider the maximum 

percentage of overlapped area (Max%OA) for each player. As illustrated in Figure 19, we 

found that this variable is associated with the number of opponents within the player’s 

Voronoi area – the more the number of opponents the smaller the value of Max%OA of the 

attacker (p<0.001).  

 

Figure 19: Mean of the maximum percentage of Overlapped Area (Max%OA) calculated for a player in 
situations where the number of players inside his Voronoi area varies from 1 to 5. The error bars 

represent the standard deviation. 

Hence, this variable can be used to characterize the interaction of one player with the 

opponents, in particular, the density of opponents in his vicinity. According to the simulated 

data results presented in Figure 19, values of the maximum percentage of overlapped area 

(Max%OA) below 0.4 indicate that the attacker is in a situation of clear numerical 

disadvantage (dotted horizontal line).  

Results 

The described methodology was applied to empirical data collected from 19 Futsal 

attack trials, 5 vs 4+GK played in a limited region of 20×20m2. Data results are shown for 

four randomly selected trials. The observed patterns of behavior, assessed by means of the 
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%FA (see Figure 20), indicate more towards low levels of exclusive dyadic interaction (%FA 

values inside the interval (0.22, 0.50)%), which was expected as defense players were playing 

in a zone defense fashion due to their numerical disadvantage. 

 

 

Figure 20: Observed %FA (percentage of Free Area) in a sample of 4 trials (solid black line) and the 95% 
confidence interval for absence of interaction (dashed grey lines). Values within the dashed lines (0.22, 

0.50) indicate low levels of exclusive dyadic interaction. 

In addition, for testing for the opponent interaction, and according to what was 

described above, it was considered the Max%OA for each attacker. Figure 21 (see next page) 

shows the Max%OA for each of the five attackers across the duration each selected trials. 

This variable allows identifying the attackers that are under more pressure during the task, 

i.e., the attackers that have a greater number of opponents in the vicinity (greater density). 

In each of the sampled trials, the periods of the task highlighted in Figure 21 are 

related with two kinds of situations: 1) when the corresponding attacker enters in the 

defensive structure with the intention of receiving a pass from the ball carrier or 2) when the 

attacker is the ball carrier and is positioned very close to the goal. In both situations, players 

from the defense team tend to protect the goal and gain ball possession, which leads to a 

pressure towards these attackers and hence lower values of their Max%OA. 
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Figure 21: Observed Max%OA (maximum percentage of Overlapped Area) for each of the 5 attackers in 
each of the 4 sampled trials. The shaded rectangles indicate periods during the task when values of this 

variable for one of the attackers indicate that the player was surrounded by more than one opponent (see 
text for details). 

Discussion 

The Superimposed Voronoi Diagrams method presented in this paper is a novel 

approach for studying spatial interaction in invasive team sports. Although the reference 

values considered here were generated for the specific futsal scenario under study, it is 

possible update them according to other settings of interest.  

Results from a formal application of this method to empirical data suggest that it is 

possible to identify a number of characteristics that can be used to describe players’ spatial 

behavior at different levels. In one hand, it is possible to describe the interaction between the 

two teams by comparing the spatial pattern formed by the respective players, which is much 

dependent on the interaction established among pairs of opponents, i.e., if players are 

exclusively paired, as they would be in a man-to-man defensive method, the % FA will be 
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below the reference values calculated for situations when such interaction is not imposed 

(random interaction). On the other hand, and by means of a different variable extracted from 

the same superimposed graphical construction, Max%OA, it is possible to describe, across 

the duration of the game (or task), the type of interaction established between each attacker 

and his opponents, in particular to distinguish between different types of numerical relation, 

for example, situations of more or less pressure, which corresponds to having many or few 

opponents in his vicinity, respectively.  

In this work, the areas defined by the VD for each player of a team are solely based 

on players’ position and limits of the playing area. Other factors likely to influence the size of 

these areas such as ball position, distance from ball, distance from goal, direction and speed 

of the displacement as well as players’ skills were not considered, but we intend to add these 

in future work on this area. 

Importantly, the fact that the described methodology considers the superimposition of 

opponent teams’ dominant regions adds value to the introduced measures making them more 

appealing than those that are calculated for each team separately, ignoring the interaction 

context. 
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Chapter 5: General discussion 

Under a dynamical system approach to team sports behavior, and with the aim of 

ascertain the dynamic characteristics of the interaction behavior established at a collective 

level, researchers have suggested spatial measures to describe inter-team and/or inter-player 

interaction behavior across the duration of games, plays or trials. Some examples are the 

convex hull (Frencken et al., 2011), the stretch index (Bourbousson, Sève, & McGarry, 

2010a) and simple measurements derived from the average position (centroid) of the whole 

team (Frencken & Lemmink, 2008; Bourbousson, Sève, & McGarry, 2010b; Frencken et al., 

2011; Sampaio & Maças, 2012).  

Concerns about the adequacy of the measures mentioned above have arisen after 

identifying a couple of drawbacks on their conception, namely, the limits of the playing area 

are neglected and variables are calculated for each team ignoring the spatial information of 

the other. Accordingly, the models presented in this thesis were specifically designed to 

address these problems and, consequently, define strong candidates to collective variables for 

such interacting dynamic behavioral systems. 

Pertinence of a Voronoi diagrams’ approach 

Team sports games are recognized as dynamic systems of interaction, where players 

from both teams continuously interact, taking measures and countermeasures in order to 

overcome the opponent (Lames & McGarry, 2007). Deciding where to be (position) and what 

to do (action), at each moment of the game, emerges from a decision-making process (Araújo 

et al., 2006), in which players: (a) perceive essential information from the playing 

environment, e.g. the position of the other players, (b) correctly interpret it and (c) act 

accordingly (Baker, Côté & Abernethy, 2003). Thus, the spatial organization of a team, 
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assessed throughout a game, play or trial, mirrors what teammates have individually 

perceived to be the best collective distribution at each moment, according to the present 

characteristics of the environment, in particular the spatial distribution of the opponent 

players.  

For example, in an offensive play, the attacking team will try to create/find space by 

avoiding the defenders and positioning themselves in the field according to this intention. 

More space affords more possibilities of action and by doing so players will be able to have 

more chances to decide  what is best to do at each moment (e.g., pass, run, shoot, etc.) in 

order to maintain ball possession and progress in the field towards the goal. As expected, the 

defending team will want to close this space and they will position themselves in the field in 

order to do so.  

Given this, team sports behavior was here approached using Voronoi diagrams as 

these basic laws of spatial interaction are present in such spatial tessellations: for each point, 

the size of respective Voronoi cell is related with the closeness to other points, the closer the 

points the greater the cells’ area.  

The models 

The spatial models here suggested imply that games, plays or trials, of interest are 

video recorded and that the positional data from all players are available in real world 

metrics. 

Model 1: Voronoi Diagrams (VD) 

In the first model was considered a straightforward application of VD to the set of 

players from both teams. The collective variable here suggested was the size of the dominant 
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regions (area of the Voronoi cells), which allows describing intra- and inter-team spatial 

behavior. Results from an application to empirical data from Futsal tasks of a 5 vs 4+GK 

suggested that the area of the dominant region (DR), as well as the distance to nearest 

teammate, can capture the tactical behavior of both teams. Specifically, the team that is 

attacking is more spread out, presenting a greater dominant region’s area during the whole 

trial, whereas the team defending is more concentrated, presenting, instead, smaller dominant 

regions. In addition, as a result of a formal application of a normalized measure of ApEn to 

these data, we concluded that the size of the DR defined by players is more regular for the 

attacker team in comparison with the defender team, which means that the spatial interaction 

behavior of the team defending is more complex.  

Model 2: Superimposed Voronoi Diagrams (SVD) 

The second model represents a new approach to spatial interaction behavior. This 

model results from superimposing the VD generated for each of the two competing teams. 

From this novel spatial construction, were derived two collective variables, %FA and 

Max%OA. According to how they were defined, %FA is largely dependent on the distance 

between each pair of exclusive opponents, whereas Max%OA, it is largely dependent on the 

number of opponent neighbors, and they can be used to identify modes of dyadic interaction 

and quantify pressure, respectively. 

An exploratory application of this model to empirical data from Futsal tasks of a 5 vs 

4+GK, allowed to: (a) identify the type of defense method applied, which in this case 

presented low levels of dyadic interaction due to the numerical advantage of the attack, and 

(b) to identify the attacker that was under more pressure.  
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Theoretical contributions 

According to our results, these models appear to have potential to study the dynamic 

characteristics of the spatial interaction behavior established between players and teams in 

invasive team sports, such as soccer, basketball, handball, etc. The specificity of each team 

sports is considered in this approach as it allows determining reference values of some 

collective variables according to the characteristics of the game, play or trial under study, 

e.g., the number of players and the dimensions of the play area. In this context, reference 

values can be used as a tool to identifying specific individual and collective characteristics of 

a dynamic behavioral system of this nature. 

Tuned with an ecological approach to decision making in team sports (Araújo et al., 

2006), these models can serve constrain-led approaches to team sports behavior (Araújo et 

al., 2004; Renshaw et al., 2004; Chow et al., 2006; Davids, Button & Bennett, 2008) in order 

to understand how certain constraints influence the emergent patterns of interaction behavior. 

Results from a recent study (Celikkaya, Fonseca & Travassos, 2012) have shown that 

limitation on the number of ball touches has an effect on the spatial interaction behavior 

established between the attackers. In particular, their minimum interpersonal distance 

increased significantly in the presence of that specific constraint, which is thought to be a 

result of players’ attempt to increase space. In this context, more space affords more time to 

decide what to do, when the possibilities of action are limited. 

Finally, considering the dynamic nature of these behavioral systems, the collective 

variables here suggested to describe behavior at different levels of interaction can be 

considered to evaluate the properties of such systems, for example, visually inspecting the 

behavior of a specific collective variable, measuring its regularity, identifying eventual 
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qualitative transitions in the system state, perturbations, critical fluctuations, among other 

properties.  

Methodological considerations 

Despite the encouraging results from an exploratory application of the two models to 

Futsal data, they should be applied to data from a variety of different invasive team sports 

(e.g., basketball, handball, rugby), preferably in situations with transitions in ball possession, 

in order to test the collective variables here suggested, and assess their true potential to 

capture the described behavioral characteristics. Having this established, several approaches 

are worth considering, such as. within and between specific team sports, (a) study how the 

fitting of the two spatial distributions evolves and changes, (b) compare teams’ behavior 

when they are defending and when they are attacking, (c) identify and compare preferred 

modes of dyadic interaction and (d) understand how players from both teams reorganize their 

distribution after transition in ball possession. 

Nevertheless, and although VD and SVD models have shown potential towards the 

understanding of interaction behavior in team sports, we have identified an important 

limitation on the definition of players’ DR. The Voronoi cell of each player is defined based 

on a non-weighted distance from each player to points in the field, which means that the DR 

of each player is solely determined by his position. Other factors, such as the anthropometric 

characteristics of the players (Cordovil et al., 2009), players’ performance skills, the 

kinematic characteristics of their movement (Taki, Hasegawa & Fukumura, 1996; Fujimura 

& Sugihara, 2005) and the players’ distance from ball (Fujimura & Sugihara, 2005), are 

known to determine players’ actions and hence influence their spatial distribution in the field. 

Future work in this area should consider weighting the DR by some of these factors. 
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Practical applications in training 

As mentioned before, players’ space perception is a skill of major importance in the 

decision-making process during a game, play or task, as players need to correctly perceive the 

space where they are in order to effectively move on it.  

Players acquire and improve their skills during training sessions and so, their 

performance in a contest is much dependent on what they have learned. The models 

presented in this thesis, and particularly the measures suggested as collective variables, can 

be seen as new tools that coaches can consider to effectively assess the characteristics of the 

spatial interaction behavior of a team, which can be used to quantify performance at team and 

player levels. Applying these in training sessions can help coaches to understand and 

anticipate team and players behavior in a game and to evaluate and compare performance 

under different constrains.  

To illustrate, if a soccer coach considers this spatial approach to analyze the 

interaction behavior of their players in a formal game played in a training session, he would 

be able to answer the following questions: (1) Do attacking players know how to create 

space? (2) Do defensive players know how to close space? (3) Do defending players know 

how to apply a man- man-to-man defense? (4) Can the defense team mark effectively the 

player with the ball? (5) Which player is more successful in creating/close space? Moreover, 

if in addition he decides to consider the previously mentioned constrain-led approach, he can 

further identify how players’ and teams’ spatial interaction behavior change according to the 

manipulated constrains and how these can be used to improve performance. 
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Final remarks 

In conclusion, although the pair of models here presented is still in need of some 

work, they represent a novel and interesting tool for the analysis of players’ and teams’ 

behavior in invasive team sports under a dynamic system approach. As described above, the 

collective variables derived from these models have shown to capture a number of interesting 

properties that characterize the interacting behavior established at an individual and collective 

level during a game, play or trial, which can be useful for coaches in a training context. 
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