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Abstract

Team sports games are recognized as dynamic systamsraction, where
individual and collective patterns of behavior egeefrom a confluence of multiple
organismic, environmental and task-related cormgBan the players. Researchers have
been interested in studying the dynamic interaabiothese many degrees of freedom
for at least two decades considering various methapbroaches and techniques. In this
thesis we aimed to provide a fruitful contributiorthis area of research presenting
innovative methods of analysis that overcome satastified methodological
limitations in measures that are often consideogd Y assess the complexity of
behavioral dynamic systems (ApEn) and (2) to dbsdthe spatial interaction behavior
of a team.

Regarding the first issue, we have defined norradlineasures of the original
ApEn to measure, and compare, the regularity eofedgggenerated from any behavioral
system. These were tested and validated using ®llekwown data series of regular
(sine) and irregular (random) behavior. As for $keeond issue, we developed two new
models, Voronoi diagram (VD) and Superimposed Vor@iagram (SVD), from
which strong candidates to collective variablesenggrived: from the VD model we
defined the size of the dominant region (DR) amainfthe SVD model, the percentage
of free area (%FA) and the maximum percentage eflapgped area (Max%OA). Given
that %FA that is largely dependent on the distdretereen each pair of exclusive
opponents, we have conjectured SVD patterns forsprexific rules of dyadic
interaction: (1) exclusive pairing and (2) randarteraction. While the former rule was
thought to be associated with a specific defengieéhod, the man-to-man defense, the
second rule is associated with a reference spatétrn used for analysis purposes.

Patterns simulated under each of these two ruhesaecording to the settings in the



observed tasks (5 vs 4+GK in a limited play area®@20nf), were considered to
generate reference values of %FA. As for the Max%@sa from simulated SVD
patters have shown that this variable is inverasBociated with the number of
opponent neighbors, i.e., the more the opponeetsrtialler the Max%OA.

Results from formal applications of the describezthnds have suggested the
following: (1) having considered data signals frtira collective variable that describes
the dyadic sub-system in rugby union, we found thatphysical contact between the
players (tackle) increases the complexity of themyant behavior, making this more
predictable in try situations; (2) in Futsal (544GK in a limited play area of
20x20n?), the size of the DR was measured to assess lammstmanage space — the
attacking team has presented greater DR than teadieg team throughout the task,
also, the attackers presented a more regular Epahavior, which means spatial
behavior of the team defending is more unpredietal3l) the %FA has captured the
presence of low levels of exclusive dyadic inteémactvhen the defense team has
numerical disadvantage; (4) the Max%OA was ablddatify the attacker under more

pressure.

Key words: ApEn, Voronoi diagrams, Superimposedovior diagrams, team
interaction behavior, collective variables



Resumo

Jogos desportivos colectivos podem ser consider@mos sistemas dinamicos
de interacao, onde padrdes de comportamento in@iv&coletivo emergem de uma
confluéncia de varios constrangimentos (individurobiente e tarefa) na accao dos
joagadores. Ha pelo menos 20 anos, os investigatirese interessado pelo estudo da
interacdo dinamica desta multiplicidade de grausbeéedade, considerando para tal
varios métodos de andlise, abordagens e técniagenBe-se que o trabalho
apresentado nesta tese constitua uma contribuighfefa para esta area de
investigacdo, sendo aqui apresentados métodosdamsde andlise que pretendem
superar algumas limitacbes metodoldgicas identifisanas medidas que sdo muitas
vezes consideradas (1) para avaliar a complexidadéstemas dinamicos (ApEn) e (2)

para descrever o comportamento de interacdo efpatia equipas.

Quanto a primeira questao, foram aqui propostasdasaormalizadas de
entropia aproximada (ApEn) para medir e comparagalaridade de sinais gerados por
qualquer sistema comportamental. Estas medidas fastadas e validadas
considerando séries de referéncia para comportamegular (funcdo seno) e irregular
(funcéo geradora de numeros aleatorio). Quantguénsia questédo, foram considerados
dois novos modelos de anélise, os diagramas dengbfDV) e os Diagramas de
Voronoi Sobrepostos (DVS), dos quais foram derigadadidas candidatas a variaveis
coletivas: a partir do modelo DV definimos a araaeido dominante (RD) e, a partir
do modelo DVS, a percentagem de area livre (AL¥hA&ima percentagem de area
sobreposta (Max%AS). Dado que a AL% dependentestiandia interpessoal de diades
exclusivas, conjecturamos padrdoes DVS de acordodu@s regras de interaccéo
diadica: (1) emparelhamento exclusivo e (2) intgfiacaleatdria. A primeira regra esta
teoricamente associada ao método de defesa honemem e a segunda regra esta
associado a um padrao de referéncia espaciaklilipara analise. Foram simulados
padrdes de distribuicdo espacial sob estas duessregde acordo com as caracteristicas
da tarefa em estudo (5 vs 4 + GR numa &rea de &ffx20ara gerar valores de
referéncia da AL% para as duas situacées. Quaiax&AS, os dados simulados
evidenciaram uma relacéo inversa com o nimero dersatio vizinhos, ou seja, quanto

maior o numero de vizinhos adversarios, menor a%/fss.



Os resultados de aplicacdes formais dos métodasitdsssugeriram o seguinte:
(1) considerando a variavel colectiva que descoesgb-sistema diadico de no Rugby,
verificou-se que o contacto fisico entre os jogas@placagem) aumenta a
complexidade do comportamento emergente, tornandai® previsivel em situagdes
em que o Ensaio é marcado, (2) no Futsal (5 v&& auma area de 20x26no
tamanho da RD foi medida para avaliar como as agugprem o espaco — a equipa que
ataca apresenta uma RD maior do que a equipa frredée e os atacantes apresentam
um comportamento espacial mais regular, o quefgigrque o comportamento espacial
da equipa que defende é mais imprevisivel; (3) & @exmitiu detectar baixos niveis
de interacdo diadica exclusiva quando a equipasgi#ea defender se encontra em
desvantagem numérica; e (4) a Max%AS permite ifiestio atacante que se encontra

sob mais pressao.

Palavras-chave: ApEn, diagramas de Voronoi, diagsashe VVoronoi sobrepostos,
comportamento de interacdo entre as equipas, e&iéulectivas

Vi
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Chapter 1: General introduction

Framework

Team sports of an invasive nature are those spiese each of the two competing
teams tries, simultaneously, to gain possessi@m abject, e.g. the ball, in order to move it
across a field toward the goal of the other teard,ta prevent the opposing team from doing
the same thing (Bayer, 1994). Thus, during a ganeetwo teams act concurrently and their
behavior alternates between attempting to scotbeif are in possession of the ball, and

preventing the other team to score, if they arempbssession of the ball.

During a game, players from both teams act contislyoaccording to game rules and
principles, but fundamentally according to theirgaption of, and interaction with, the
information available in the environment (Aradjoa\ids & Hristovskic, 2006). According to
the same author, behavior in team sports ecoldgiealerges from a confluence of multiple
organismic (e.g. fatigue), environmental (e.g. sizthe field) and task-related (e.g. defend)
constraints on the players (Newell, 1986; Handf@ehnet & Button, 1997). Given these
many degrees of freedom, behavior in team sportghen be seen as a dynamic system

(Gréhaigne, Bouthier & David, 1997; McGarry et 2D02).

In general, dynamical systems have nonlinear pt@seiand therefore they cannot be
studied using linear methods of analysis. Henceadycal system has been approached by
means of synergetic and nonlinear equations (Hak&8i/; Davids et al., 2003), which are
defined based on order and control parametersyithand yang’ of the synergetic approach
(Kelso, 1995). An order parameter, or collectivaalale, is a low-dimensional variable that
capture the dynamic behavior of the system, armh&r@ parameter are properties that

constrain the behavior of the dynamical systenmsakhe critical values of the control
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parameter, the order parameter can change frorstateeto another, with fluctuations during
transition between states (Kelso, 1995; Stergi®@042 Thus, the choice of a collective
variable is a critical step for characterizing aamwic system, and depending on the level of

analysis to be undertaken, this could be quitecdilif to accomplish (Thelen & Smith, 2006).

Studying behavior in sports games by mean of dollewariables was first
considered in a dyadic level of interaction, spealfy, in individual sports, such as squash
(McGarry & Franks, 1996; McGarry, Khan & Franks999McGarry, 2005) and tennis
(Palut & Zanone, 2005; Lames, 2006) and in dyanis fream sports, such basketball (Araujo
et al., 2004; Cordovil et al., 2009) and rugby @@aset al., 2006; Passos et al., 2008). The
collective variables suggested to describe thebera dyadic system were mainly distance
related measures, as suggested by Schmidt, O’'Brigysko (1999). Results from these
innovative studies have contributed greatly foettdr understanding of the dynamical
interaction behavior in sports. Nevertheless, agretmension of interaction behavior at a
higher level, i.e., team level, could not be inéerfrom the former, neither those collective

variables could be effectively applied in systenithwwnulti-players (McGarry, 2009).

Following this, some ideas were developed regarldoigtic measures that could be
considered for describing team behavior, at a colle level, as a dynamical system
(Schollhorn, 2003). It is commonly accepted amasgarchers and coaches that teams’
positioning and distribution in the field is oftessociated to strategic decisions, principles
and prescriptions (Garganta, 2009), which areyikelbe printed in the behavioral patterns
observed during a game. Hence, some quantitatigsunes extracted from the positioning of
all teammates have, in theory, potential to be icened collective variables. The covered

area, the geometric shape formed by team membdrharcommon centre of gravity were
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putted forward by Schdéllhorn (2003) and somehowpsathin posterior studies, as those

described next.

Some of the variables currently considered as dapdlrapturing the dynamics of
team behavior during a game are the convex hudingken et al., 2011), the stretch index
(Bourbousson, Seve, & McGarry, 2010a) and simplasueements derived from the average
position (centroid) of the whole team (Frencken &mmink, 2008; Bourbousson, Séve, &
McGarry, 2010b; Frencken et al., 2011; Sampaio &&a2012). Despite the ability of these
variables of describing some characteristics oltiaerlying dynamical system, they are
calculated neglecting one of the major charactesigtf the structural dimension, this being
the boundaries which establish the frontiers ofsygtem (McGarry, 2009). This is illustrated

using a simple example in Figure 1.

Figure 1: Three players of a team at the same intpersonal distances but placed in different locatios
form the same geometric shape as it does not accadior the boundaries of the field (the black dots ee
the 2D spatial representation of the players).

Another drawback is that those measures are oftlenlated for each team
separately, not considering information regardimgdistribution characteristics of the other.
This limits the analysis of intra- and inter- tearteraction behaviors as, conceptually,
interaction between and among groups assumes al ghteraction, where all players play a

role.
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There are, however, spatial construction, namedMardiagram (Dirichlet, 1850,
Voronoi, 1908), that partition the area of inteyéisé field, into as many cells as the existing
points, players, taking into account the positibalbplayers and the limits of the field.
These diagrams have already been successfullyeapplia variety of game settings, namely,
real soccer games (Taki, Hasegawa & Fukumura, 1@8&)tronic soccer games (Kim,
2004), robotic soccer (Law, 2005) and real hockayes (Fujimura & Sugihara, 2005), in
which the authors suggested some variables to cfeaize players individual and collective

behavior. However, this was not approached undetiibory of the dynamical systems.

As this particular partition of space captures sasgential details of players’
distribution, which are neglected in other moreydapmethods (Figure 2 in opposition to
Figure 1), it is possible to recognize the potémtidhe VVoronoi diagrams for studying the
spatial characteristics of the team behavior andéoiving from these diagrams some strong

candidates to collective variables.

Figure 2: Three players of a team at the same intpersonal distances but placed in different locatios
form a very different spatial pattern as assessedyta VVoronoi diagram, which partitions the field taking
into account its boundaries (the black dots are th@D spatial representation of the players).

When the collective variable(s) of a dynamical egsis defined, it is possible to
capture its behavior by measuring that variablessctime. The characteristics of the
observed dynamical system, such as self-organizgtierturbations, critical fluctuations,

etc., will be printed in that signal. In additiomthese, the level of complexity of the system

15
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can also be assessed by studying the charactestine generated data series. The
regularity of a signal relates to the complexityttug system generating it (Pincus, 1995),

thus, by quantifying regularity it is possible t@asure complexity.

The Approximate Entropy (ApEn) is a nonlinear measaf regularity in behaviors of
complex systems (Pincus, 1991) and it was mucheppi the analysis of physiological
time series such as heart rate variability, eleatrdiogram measures, respiration, anesthesia,
gene sequences, pulse waveform and electroencegpdathy (Xu, Wang & Wang, 2005).
Such systems can be observed in a fixed time windfien rather long, so that each of their
realizations produces a signal of a pre-determiixed length, which is a requirement for
applying the ApEn measure. Unlike these, team spdyhamical systems cannot be framed
temporally as they evolve across time towards tairegoal and finish whenever that goal is
achieved by one of the two parties involved, bgiagsible to vary between very short and
very long series. Clearly, this is a limitation tih@eded to be addressed as dynamical system
has become a dominant approach to the analyseawof sports’ behavior in different levels

and dimensions.

Some authors have already suggested modified mesastithe original ApEn, such
as the sample entropy (Richman, & Moorman, 200@)clware less dependent on record
length and more stable for short series, howekliesd do not allow, for example, revisiting
studies where the old ApEn was applied and comjpaie complexity with the complexity of

other systems.
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Aims

In aim of the present research work was, firstyaddress the identified limitations
on applying the ApEn measure to quantify the regylaf time series data from collective
variables measured in team sports dynamical systeet®ndly, to develop models for
formally describing behavioral patterns of spatiétraction in team sports using Voronoi
diagrams. From these models, we aimed to derivabielcollective variables for assessing
inter- and intra-team interaction behavior at d#fé levels, and to establish reference values
for specific patterns of interaction in order tgtdiguish modes of spatial interaction

behavior during a game.

Outline

The thesis is constituted by four chapters, tret fwwo (Chapter 2 and Chapter 3) are
articles that were submitted, revised and accdptegublication in the course of this

process.

Chapter 2 presents normalized measures of appréxieméropy (ApEn) which allow
guantifying the complexity of a system responsfblea given time series signal. This work
emerged from an identified limitation on using treginal ApEn measure in team sports’
data given that, in the majority of situations, signals under study are of varying lengths
and are likely to be small (less than 50 data gdifthus, in order to measure and compare
the regularity of team and players’ behavior acebgame, plays or trials, we suggest these
normalized measures. In this study we have conside@pplication of the new ApEn

measures in rugby union attacker-defender system.

Chapter 3 describes the results from an applicatioforonoi diagrams (VD) to

Futsal data under a dynamical systems approach.Wdrk is based on the assumption that

17
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the spatial distribution of players in the fieldates with the spatial interaction behavior
established at player and team levels, and helmisaytll vary according to the modes of
interaction assumed. We suggest collective spatiadbles, derived from the mentioned

spatial tessellation, for describing intra-teanetiattion behavior in invasive team sports.

Chapter 4 presents a paper recently submitteduloligation to the journal of
Behavior Research Methods and it is, to date, mggi revision. Here is presented a novel
conceptual spatial model for assessing spatialigargtion patterns in invasive team sports
based on the previously introduced VD. This Suppased Voronoi diagram (SVD) model,
as it was named, was applied to Futsal data ancallextive variables suggested for
measuring spatial interaction at team and playexisewere then tested. Additionally, for this
particular data, reference values for two modespatial interaction modes were calculated
using data from simulated spatial patterns and tmeidentifying patterns of spatial

behavior in Futsal.

Finally, in Chapter 5, a general discussion ofrttan results from the three articles is
presented, along with some final considerationsiathee contribution of this work to both

sport and scientific communities.
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Abstract
When considering time series data of variablesrd@sg agent interactions in social

neurobiological systems, measures of regularitypramide a global understanding of such
system behaviors. Approximate entropy (ApEn) waduced as a nonlinear measure to
assess the complexity of a system behavior by gyizgt the regularity of the generated
time series. However, ApEn is not reliable whereassg and comparing the regularity of
data series with short or inconsistent lengthsctvioften occur in studies of social
neurobiological systems, particularly in dyadic lmmmovement systems. Here, we present
two normalized, non-modified, measures of reguatérived from the original ApEn which
are less dependent on time series length. Theityatifithe suggested measures is tested in
well-established seriesandomandsing prior to their empirical application, describitige
dyadic behavior of athletes in team games. We densine of the ApEn normalized
measures to generate thé"gercentile envelopes that can be used to testwhat

particular social neurobiological system is higbbmplex, i.e., generates highly
unpredictable time series. Results demonstratadtiggested measures may be considered
as valid instruments for measuring and comparimgpdexity in systems that produce time
series with inconsistent lengths.

Keywords: analysis of regularity, entropy measusesjal neurobiological systems, time
series
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Introduction

Approximate Entropy (ApEn) was first introducedli®91 by Pincus as a nonlinear
measure to quantify regularity in the behaviorsahplex systems (Pincus, 1991). The
regularity of a signal relates to the complexitytted system generating it (Pincus, 1995),
thus, the greater the value of ApEn, the lowenrdgeilarity of the time series, and the greater
the complexity of the system under study. ApEn galvary between 0 and 2, with high
values identifying data series with less regulal predictable patterns, and low values
associated with data series containing many r@gefatterns, i.e., data which are more
regular and more predictable. Since its introdutipEn has been established as a measure
of regularity in a time series, with numerous aggdions in analysis of physiological time
series such as heart rate variability, electroogdim measures, respiration, anesthesia, gene

sequences, pulse waveform and electroencephalogfXphWang & Wang, 2005).

A major interest when analyzing the complexity bfgiological systems is to
compare the regularity of a given time series betwaifferent groups, for instance, compare
the ApEn of pulse data records in healthy persopstients with cardiovascular disease and
inpatients without any cardiovascular disorder (@/aXu, Li, Zhang, Li & Wang, 2003).
However, given that ApEn values are highly depehdartimes series length, and are
particularly unstable for short time series (eigcBs & Golberger, 1994; Xu et al., 2005;
Richman, 2007), the application of such a regylarieasure is only recommended when
considering signals of the same length, preferalitly at least 50 data points (Stergiou,
Buzzi, Kurz, & Heidel, 2004). To ensure such coiodis, when considering physiological

time series (e.g. heart rate variability, pulsedlividuals are monitored during a fixed amount
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of time and data are collected at the same rate(Bj & Viscarello, 1992; Ryan,
Goldberger, Pincus, Mietus, & Lipsitz, 1994; Pinddadmanabhan, Lemon, Randolph, &

Midgley, 1998; Wang et. al, 2003).

When the conditions above cannot be guaranteedifiggbcheasures of the original
ApEn can be applied, e.g. sample entropy (Richaviporman, 2000), Gaussian Kernel
approximate entropy (Xu et al., 2005), modified pentropy (Xie, He, & Lui, 2008) and
Fuzzy approximate entropy (Chen, Zhuang, Yu, & Wa&@§8). These measures have been

shown to be less dependent on record length and stable for short series.

In the study of social neurobiological systemshsasg flocking birds, schooling fish,
herding animals, human societies and sports te@msz{n, 2007; Sumpter, 2006), unlike
physiological systems, it may not be possible ®uea that all system output samples are of
the same length. This is particularly difficultstudying social neurobiological systems
because of the continuous interactions of systeentagn tasks where a specific performance
goal has to be achieved. Since the length of theuocad time series is dependent on the time
required by the agents to conclude a particuldopmance task (as exemplified by an
attacking or defending performance sub-phase @amtgame), the use of ApEn for assessing
regularity is not advisable. Modified measuresegjularity, such as those mentioned above,
could be applied here however, we suggest in typeptwo normalized measures of the
original ApEn. By applying these new measures @ameaompute a straightforward
normalization of any ApEn value where the origiApEn was used, which allows a reliable

comparison of time series regularity in differeamplex systems.
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Material and Methods

Given a data series with N points, say,{, ..., Xx}, ApEn (m, r, N) can be used to measure
the logarithmic likelihood that runs of patterndiwn points that are close, remain close
within a tolerance factarin ensuing incremental comparisons (Pincus, 19%1),to

measure the predictability of the data seriesrdieioto compute ApEmg, r, N), the
parametersn, the length of compared runs, andhe tolerance factor, need to be fixed for all
calculations to ensure reliable analysis (Pincu§ddberger, 1994). In our analysis, as
suggested in studies of other neurobiological systeve consideresh = 2 andr = 0.2. All
calculations were performed in Matlab (7.6.0) usiogtines written for this purpose

(Kaplan, & Saffin, 2009).

The techniques for normalization considered hezdbased on the ratio between an
observed ApEn value and a threshold reference Aslitre, for a specific data series length.

This normalization allows the regularity of dataieg of different lengths to be compared.

Our first normalized measure, designated AgkJrandom IS given by

ApEnN (20.2,N)
> '"ApEn (202,N),, /100

ApEnN

RatioRanden —

Here, the regularity of the data series X5{, ..., X} IS quantified by means of the
ratio between its original ApEn value, ApEn (2,,0x , and the mean ApEn calculated in
100randomseriedJ; with the same length N. Note that for each geedr@ndomseriesU;,
the corresponding approximate entropyEn (202, N),, , represents a maximum value of
approximate entropy for that particular length. enApEnN (2, 0.2, N) is normalized with

respect to a maximum value of ApEn of a serieenfiih N.
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Our second normalized measure, designated AfEsaurie IS given by

ApEN (202, N)
ApEn RatioShuffe = 100 X
> ""ApEn (202,N) /100

Here, the regularity of the data series X={x1, x2,XxN} is given by the ratio
between its original ApEn value, ApEn (2, 0.2xNand the mean ApEn calculated in 100
shuffled replicas§s of the original data. Note that for each shufileglica of X,S, the

corresponding approximate entropdpEn (20.2,N) , represents a maximum value of

approximate entropy for that particular set of pginHence, ApEn (2, 0.2, N)is normalized
with respect to a maximum value of ApEn of thattipafar set of points. In both methods
described here, low values of the correspondingsorea will indicate that the time series
under study is generated by a social neurobiolbgicstem that is less predictable than

randomtime series of the same length.

For testing the methods presented in this papeconmsidered data from a dyadic
human movement system; more precisely, a rugbynuatimcker-defender system where the
attacker aims to score and the defender trieseegptt it. Results should be in accordance
with findings in the literature that suggest thiaygical contact between an attacker and
defender increases the complexity of this systeasg®s et al., 2009), making the dyadic sub-
system behaviors that emerge in try situationsasse for the attacker) more predictable than

in tackle situations (success for the defender)revpéayers do experience physical contact.

In this regard, the interactive behaviors that gasiin each trial of this social
neurobiological system is accurately measureasadts duration, by a one-dimensional
variable X defined in previous work by Passos e{24109) and designated as collective

variable. This variable represents the vector comng the agents in the dyad, and is
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formally given by the value of the angle betweendkfender—attacker vector and a
horizontal line parallel to the try line with thegn in the defender. The values of X range
from -90° to 90°, which occur when an attacker defénder are in the same vertical position,
being 90° when the defender is closer to the gy ind -90° when the attacker is closer to the

try line. X is zero when attacker and defendernatbe same horizontal position.

To assess the regularity of this collective vaealle considered 47 experimental
dyadic trials in which participants were male rugligyers aged 11-12 years, with an
average of 4.& 0.5 years of rugby practice. Treatment of paréiniig was in accordance
with the ethical standards of American Psycholdgissociation (APA). Trials were
performed on a field of 5 m width x 10 m depth and fixed digital video cameras at 25 Hz
were used to capture players’ movements. The ajigds by the variable X was calculated
from players’ trajectory motion data extracted frtra videos using the methodology
described in detail in Passos et al. (2009). Figulesplays two examples of these data, one
from a successful situation (try scored) and tieiofrom an unsuccessful situation (try not

scored).

————— Try scored
Try not scored

Collective variable X (degrees)

0 20 40 60 80 100 120

Figure 3: Example data for the collective variableX measured in a successful trial (Try scored) anchia
unsuccessful trial (Try not scored)
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The 47 data series analyzed, try scored (n=20}rgmbt scored (n=27), had a record
length ranging from 69 to 230 data points (112 83@oth normalized measures of ApEn
were calculated and comparative statistical analygse performed using non-parametric
tests (Mann-Whitney test) due to lack of normailityhe data and the small sample size. The

level of statistical significance was fixed at 5%.

Results

The normalized measures of ApEn suggested in #pemp ApERatiorandom@aNd
ApEnraiioshuiiewere tested in regard to the series length effectapplication of these two
well-known data seriesineandrandon) with different lengths, has shown the advantaijes

these (Figure 4a) in comparison to the original Apieasure (Figure 4b).
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2 A ApEnRatioShuffle(sine) 2 AgEnEIan ciom)
----- ApEnRatioRandom(sine)
ApEnRatioRandom(random) Pt
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Figure 4: (a) Normalized entropy measures and (b)r@inal entropy measure calculated forsine and
random series data of different lengths (N)

Both normalized measures appeared to be less demeonl record length for both
data series, reaching stability for small lengiftss observation reinforces the need of
considering more reliable measures for analyzimgpiexity in systems that produce time
series with inconsistent lengths, a typical ocaureewhen studying social neurobiological

systems. Nevertheless, a minimum of 50 data p@rdiso advised to allow reliable
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approximate entropy comparisons (Stergiou et 8D42 In a specific application of these
measures to a dyadic sub-system (1v1l) interaatiohd team sport of rugby union, where
physical contact is associated with less regularaction behaviors, both ApEn normalized
measures indicated, accordingly, greater unprdalitiain situations with effective contact

between the players, i.e. an attacker was tackteahlbpposing defender (try not scored) (see

Figure 5).
1,0 1 m ApEnRatioShuffle
ApEnRatioRandom
z 038
S
g
=
=
2 05 -
g
g ]
<& 03 A I
Try scored Try not scored

Coordination patterns

Figure 5: Mean approximate entropy for each of theéwo task outcomes using Apegkiorandom and
ApEn RatioShuffle

Using the non-parametric Mann-Whitney test, sigaifit differences were found
between the two task outcomes for ApEBrandoriP=0.0196) and ApE&iioshurie (P=0.0185),

confirming that behavioral outcomes in try situai@re more regular than tackle situations.

Given the similarity of both measures, we consideéhe APERatiorandonrtO determine
the 98" percentile envelope of this normalized measureptzted from 100 simulations of

randomdata series of length from 50 to 1000 (Figure 6).
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95th percentile ApEnRatioRandom

154 ——95th percentile ApEnRatioRandom
(fitted logarithm)

Approximate Entropy

O - T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000
N

Figure 6: 05" percentile envelopes of ApEguiorandom fOr random series of different lengths (N) and the
fitted logarithm curves for the upper and lower bownds

The logarithm curves fitted to the upper (U) anatdo (L) bounds of the 95

percentile of the Ap&fiorandondOr randomtime series with length greater than 50 are given

by

ApEnRatioRandonI\ . =-0.09 lr( N) +1.608

U

APEN, oot = 0.0845I{N)+ 0.423

L

with a corresponding or the logarithm fitting of 0.752 and 0.742, resfively.

Given these, deviations from complete behavionatlomness, i.e., high
unpredictability, observed in a specific social rduological system could be tested by
computing the median ApRRiorandonrfOr @ sSample of time series of that system tofyeri
whether the obtained value is within the envelggsanated for N equal to the median of
dimension of the time series considered. For tleeakoeurobiological system considered in
this study, the median of the time series dimens@&8 and 105 for try and no-try situations
and therefore the respective envelopes are [0.81ahd [0.82,1.19], respectively. The

median APERatiorandomiN try and no-try situations were 0.23 and 0.38ng both below the
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respective lower reference value. This finding ®sig that, regardless of the outcome, the
dyadic system behavior under study is more predletdnan would be expected in the case of
complete randomness. Nevertheless, results suggstiethe level of system output
regularity was significantly different between ting and no-try performance situations, being

more predictable for try situations.

Conclusion and Discussion

In this paper we presented two normalized measassd on the original
Approximate Entropy (ApEn) for quantifying and coanimg regularity in the interactions of
agents in social neurobiological systems, partitpia those that produce time series with
inconsistent lengths. The limitations associatetth wie application of the original ApEn to
time series of varying lengths, have been previjoadtiressed by other authors (Richman &
Moorman, 2000; Xu et al., 2003; Xie, He & Lui, 20@hen et al., 2008) introducing
modified measures of the original ApEn. Alternalyyéhe measures here presented consider

the same limitations but are based on the useeodttiginal ApEn.

We considered two well-known data serigim¢ andrandon) with different lengths,
for testing the advantages of these normalized amesasn comparison to the original ApEn
measure. For the normalized measures we calchiat@sth percentile envelopes which can
be interpreted as reference values for testingadievis from complete randomness, i.e. low
predictability, in social neurobiological time sesiof any length greater than 50. An
application of these measures to empirical data faadyadic system behavior in rugby union
suggested that the emergent behavior of this péatisocial neurobiological system is more
regular than expected in the case of complete randes, given that the agents in this system

have a specific performance goal. Additionally, éimalysis of regularity indicates that the
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complexity of this system was significantly lowehen physical contact between the two
players occurred, as suggested by Passos et @9)(20verall, the application of the
normalized ApEn measures to both theoretis@gandrandon) and empirical data suggest
that they can be regarded as reliable measuregiémtifying and comparing regularity of
time series with different lengths. These findicgsld be used to re-interpret previous work
on behaviors of social neurobiological systems.(&mujo, Davids, Bennett, Button, &
Chapman, 2004) with criteria to compare the regylaf time series of different lengths,
something that was not possible previously beyamgble visual inspection. Moreover, an
exciting possibility for future research is to sfumbmplex daily social interaction behaviors

to identify different patterns, without concernsothe possible loss of explanatory power.
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Abstract
Team sports are complex systems, where the playersict continuously during a

game, forming patterns of interaction that, on@ntdied, can describe their behavior in both
individual and collective levels. In order to idénthese interaction patterns, we considered
Voronoi diagrams to describe the spatial dynamiqdayers’ behavior in Futsal plays.

We considered 19 plays of a sub-phase of a Futsaéglayed in a reduced area
(20x20n7) from which the trajectories of all players wertracted. Results from a
comparative analysis of player’'s Voronoi area (dwant region) and nearest teammate
distance, show that there are different patternstefaction between attackers and defenders,
at both player and team levels. Namely, we fourd, ih comparison with the defender team,
attacker players have larger dominant regionsadttition, these regions are more variable in
size among players from the same team but, atyaplevel, the attackers’ dominant regions
are more regular during performance than thosecadsd to each of defender players. These
findings support a formal description of the dynaispatial interaction of the players, in this
sub-phase of the game.

This approach may be extended to other team beisavitere the actions taken at
any instant by each of the involved agents areciest®al with the space they occupy at that

very time.

Keywords: Interaction patterns, Team sports, Vordimgrams
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Introduction

Team sports can be seen as complex systems wiagerglthe agents of the system,
interact continuously during a game (Davids, Ara&jShuttleworth, 2005, McGarry,
Anderson, Wallace, Hughes, & Franks, 2002) ansltiheir interaction behavior what
determines the occurrence of specific events duxiggme (Passos et al., 2008). Therefore,
having a good understanding of this dynamic belravauld allow not only a better
characterization of these systems but also codfzldeaches to anticipate some outcomes or

events.

Players’ interaction behavior can be assessedjpagal perspective. For instance,
players change their location continuously durirgpme as they adjust their relative position
according to the information that they can perc¢Rassos et al., 2008; Travassos, Araujo,
Vilar, & McGarry, 2011), acting collectively as esult of phenomena such as cooperation
and competition. Thus, players collective behagannot be explained by the simple
addition of behaviors from each player (Gréhaidgmythier, & David, 1997), instead,
players’ behaviors could be considered within ti@l dynamic system that they form
(Glazier, 2010; McGarry, 2009; Passos et al., 2008gre both time (Aradjo et al., 2006)
and space (Davids, Handford and Williams, 1994 68kbrn, 2003) need to be brought into
the equation. Considering both space and time,pgbssible to evaluate the spatial

configuration that players present during a game.

To illustrate, spatial configurations can be cl#sdias random, regular or clustered.
A random classification can be defined when plageesat random distances from each other
in the field, regular, when players are equallyatis from each other in the field, or
clustered, when we can identify different groupplalyers aggregated in different parts of

the field (Figure 7). These spatial distributionteans can be easily identified by measuring
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interpersonal distances, in particular the minimaotarpersonal distance, or nearest neighbor

distance (Clark, & Evans, 1954).

(@) (b) (c)

Figure 7: Example of spatial distribution patterns(a) random, (b) regular and (c) clustered.

The spatial distribution of the players in a fiedthd hence the space that a players has
to act, is dependent on a large number of conssréiat change continuously throughout a
game, being ball possession an obvious one. Iipte) the attacker team normally tries to
free-up space while the defender team tries tagispace (McGarry et al., 2002, Gréhaigne,
Bouthier, & David, 1997). Therefore, in terms ohnegess, it is expected that the
interpersonal distance between players is keptgréar the attacker team and smaller for
the defender team, which results in more spacth®attack. This relationship was already
observed using surface area (Frencken, Lemminkemah, & Visscher, 2011) and stretch

index variables (Bourbousson, Séve, & McGarry, 3010

An alternative method to study the spatial relaBstablished between players at each
instant of a game is the Voronoi diagram (Dirichie850, Voronoi, 1908), which is a spatial
construction that allows a spatial partition of tiedd area into cells, each associated to each
of the players, according to their positions (Feg8j. These cells result from applying a very
simple nearest-neighbor rule: each player, reptedéry the coordinates of his/her location
in the field, is associated to all parts of thédfihat are nearer to that player than it is to any

other player (see Okabe et al., 2000).
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(@) b) (

Figure 8: Example of a Voronoi diagram generated fothe set of points represented in the figure.

Voronoi diagrams have already been suggested gy atithors in the study of
players’ spatial distribution in team sports andlédine players’ and teams’ dominant
regions, having been applied in a variety of gaetergys, namely, real soccer games (Taki,
Hasegawa & Fukumura, 1996), electronic soccer gdKias 2004), robotic soccer (Law,
2005) and real hockey games (Fujimura & Sugiha@52 When real games were
considered, dominant regions were calculated censigl more than just players’ location, in
particular, Taki, Hasegawa & Fukumura (1996) hassmered players’ direction and speed,
whereas Fujimura & Sugihara (2005) has taken into@ant players’ distance from ball and
distance to goal. In all these studies it was shthanthe position of the ball influences the

location of the players and hence the size of tlespective dominant regions.

Besides the advances of the work mentioned abavartls the analysis of spatial
patterns of behavior in team sports, an importanedsion has not been considered. In fact,
when analyzing systems of interacting agents,nesessary to measure its degree of
complexity (Stergiou, Buzzi, Kurz, & Heidel, 2004arbourne, & Stergiou, 2009), as this is
a key issue to understand the emergence of suatessformances in dynamical movement
systems (Bartlett, Wheat & Robins, 2007, Davidsz@&r, Aradjo, & Bartlett, 2003). To
assess the complexity of a system, one can corsidenlinear measure suggested by Pincus

in 1991, the Approximate Entropy (ApEn), which gties the regularity (predictability) of
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signal from a variable measured in the system usidely. \WWhen this variable expresses the
state of the system (Harbourne, & Stergiou, 20@®)egularity is directly proportional to the
system’s complexity, i.e., lower values of ApEnigade more regularity and hence low

complexity.

Thus, the main goal of the present paper was tactexize the spatial interaction
dynamics of players in team sports, by understandow players from two opposite teams
coordinate their location in the field during a gaand how they define and adjust their
dominant regions throughout the game. We expetiplhgers from the attacker team present
greater interpersonal distances, greater domiregndms, and greater regularity overtime in

terms of space area as they are with the ball.

Material and Methods

In this study were considered 19 experimental ptdysutsal, in which participants
were 15 male senior players (232%.96 years old), treated in agreement with theath
standards of American Psychological AssociationApARPlays represent the sub-phase of
Futsal of 5 vs 4+GK performed in half field (20 ndthh x 20 m depth) where all players
occupied fixed initial positions. This is a comnsmenario in Futsal when the team losing the
game has ball possession and aims to score whexe¢ochumerical disadvantage, the
defender team retract their positions to their fielfl. Accordingly, in each play, the aim of
the attacker team is to score while the defendenteies to avoid it, and each play ends

whenever the attack loses ball possession.

Two fixed digital video cameras at 25 Hz were ugedapture players’ movements
during each play. The trajectory of each player wdsacted from the recorded videos using

TACTO software (see more in Duarte et al., 2010n&edes, & Malta, 2007) and

40



Modelingintra- and inter-team spatial interaction in tegrarts 2012

transformed into real coordinatésy) using a direct linear transformation method (2DTpL
(Abdel-Aziz, & Karara, 1971). The 19 plays had,auerage, 8484374) frames
(corresponding to approximately 34214.94) seconds), minimum of 315 and maximum of

1558 frames (approximately 12.6 and 62.4 secorgpgectively).

In the present work two variables were consideoedkiscribe this system, players’
dominant region, as defined by the respective Vairoall, and the minimum interpersonal
distance between teammates. The minimum interpaksiistance between all teammates
(N), here designated nearest teammate distancg{Pmwas calculated at each franfg (
considering the Euclidean distances between ats pdiplayers of a team (A), as described

below.

Dist,; (A)f = rinjin{\/(xif _Xjf )* +(yif - yjf)z}’i' j=1..,N

ES]
As for players’ individual dominant region, we catesed the respective Voronoi

cells and calculated their area (Asgpas described next.

The field was mapped with a grid of 2D positions. At each framé,(the area of
the DR of player k (K[1,M]) is the sum of all grid positions (i,j) (wher=1,..,20 and
j=1,...,20) that are closer to that player than tbigny other player. This can be

mathematically defined as presented below,

20 20
Arege (K)' =D D1, k=1.M
i=1 j=1

where I(i,j) is a Boolean function that takes valuié player k is the closest player to

the grid position (i,j) and O otherwise:
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Qi) ~ .
0 otherwise

| _{1 it =x)7+ (=) < =%) + (- yp) Om#k,m=1..M
Grid points that are equidistant to two or moreygta constitute the boundaries of

their respective regions and therefore are notctléhe corresponding areas.

For each player and team we investigated how #eedfitheir dominant regions
changes over time and how the size of such regalates to each other. MATLAB routines
were written to generate, at each frame, the Vadrdiagram associated to the spatial
distribution of the players, and to calculate tize ©f the dominant region (Arga

according to descriptions above.

The regularity of time series data from Aggand Disf;r was measured using the
ApEnRatiorandom(FONSeca et al., 2012), which is a normalized omeasf Pincus (1991)
approximate entropy (ApEn), obtained by dividing #pEn of the original series, Y, by the
average ApEn of 100 random series of the sameo$i¥e This measure allows the
comparison of entropy values calculated in seriespying lengths. A value of
ApPEnRaiiorandomOf @pproximately 0.2 indicates regularity (higtegictability), whereas 1

indicates low regularity (high unpredictability)difseca et al., 2012).

We used descriptive statistics (Mean (M) + Stand2ediation (SD)) and inferential
statistics (ANOVA, t-test and paired t-test) to quare the spatial behavioral complexity

between players, teams, and teams by play, respBcti

Reliability

From all the plays, one of them was randomly setkend the data trajectories of the

players re-digitized by the same researcher. Data then assessed for accuracy and
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reliability using technical error of measuremenEl) and coefficient of reliability (R),
respectively (Goto & Mascie-Taylor, 2007). The TiiIded values of 0.137 meters

(0.23%) and the coefficient of reliability was eft@0.984.

Results

When looking at changes on the minimum interpensgiséance between teammate
players (Distr) and area of the dominant region (Asgeacross each play, we found that, on
average, players from the attacker team tend fartieer from each other in comparison with
players from the defender team, as expected (F@juegemplar single play). Consequently,
the space occupied by each player is, on averagateg for the team with the ball (attacker

team) in comparison with the defender team (Fidiixreexemplar single play).

= = = Defense
Attack

10

Mean Distance to Nearest Teammate (m)

0 2 é 5 6 8 0 11 13 14 16 18 19 21

Time (seconds)

Figure 9: Mean distance to nearest teammate distapcacross time, for the attacker and defender teams
in a randomly selected play (error bars representtie standard deviation).

43



Modelingintra- and inter-team spatial interaction in tegrarts 2012

140

= = = Defense
—— Attack

120

100

80

60

Mean Area of Dominant Regions (m2)

0 2 3 5 6 g 10 11 13 14 16 18 19 21
Time (seconds)

Figure 10: Mean area of the dominant region, acrossme, for the attacker and defender teams in a
randomly selected play (error bars represent the sindard deviation).

When comparing the amount of variability within eaeam for both variables, it is
clear that the attacker team shows less varialtliay the defender team in the Risand
more variability than the defender team in the Argeas shown by the error bars in Figure 9
and Figure 10, respectively, This tendency wasmisen all plays, suggesting that, in
comparison to what was found in the defender tehenarea occupied by the attacker team is
much more variable within each frame, whereas timgnmum interpersonal distance is less
variable. In Figures 9 and 10, the moment captateésne 10 s. corresponds to the exact
moment (observed by visual inspection) when thei®aéceived by an attacker inside the
defensive structure, which is, according to Fusskilérature, a critical occurrence for the
defender team (Lucena, 2007). As a consequeriaefahders were trying to close the
space around the ball carrier and avoid the attaelaen to score, and both Qysiand

Areag, presented particularly low variability.

To better understand and characterize the systeler study, we measured the
regularity of Disfr and Are@g, at both player and team levels and within eaely,pising a
normalized measure of the ApEn due to presencgoéls with varying lengths (for more

detail see Fonseca et. al, 2012). At a player Jekelregularity of the Digt and Aregr was
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calculated separately for each player in all plays.found that the regularity of both
variables is significantly different between atde@vo players (Dis#r: F(9,180)=9.5,

p<0.001; Aregr: F(9,180)=12.5, p<0.001), being this differencéydaund between
opponent players. This means that players witheaen have similar behavioral patterns
regarding proximity to their teammates and managemietheir dominant regions. At a team
level, the regularity of the same two variables w@sipared between the teams (Defender vs
Attacker) and significant differences were foundboth variables (Digt: 0.165+ 0.048 vs
0.106 £ 0.043, p<0.001; Area: 0.264+ 0.135 vs 0.114+ 0.061, p<0.001). In addition, and
having shown a team effect, we tested the effetit@play in the spatial interacting behavior
between teams. Hence, for the same two variablesonsidered, for each play and for each
team, the median entropy. Our results were comdigtigh what was shown above,
suggesting that, within a play, Distand Arear were significantly more regular for the
attacker team in comparison with the defender teHa8)=8.26, p<0.001; t(18)=8.86,

p<0.001, respectively) (Figure 11).

0,6 0,6 -
= =
& 4
Z 04 - Z 04 -
Z 02 - Z 02 -
z | 5 I
< <
0,0 . 0,0 . |
Attack Defense Attack Defense
Team Team

Figure 11: Comparison of the mean entropy of the dtance to nearest teammate (DistNT) and area of the
dominant region (AreaDR) between teams in the sany@ay. Error bars represent the standard deviation
(*** p<0.001).

Discussion

The aim of this study was to characterize the apd{inamics of players and teams in
Futsal using Voronoi diagrams. We considered th@mmim interpersonal distance between
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teammates (Digt) and the area of the dominant region of each plgdeayr) as variables
that can be considered to characterize the indatidad collective behavior of the players.
Both variables mentioned above appear to captune soteresting characteristics of this
system of interactions, namely, players from tlartevith the ball, are further apart from
each other whereas defenders are closer from ¢laeh @his spatial organization has direct
influence on the dominant region defined by eaayegi. These individual dominant regions
were defined using Voronoi diagrams and they apfmebe greater for the attacker team and
smaller for the defender team. These results aagr@ement with what was theoretically
expected (McGarry et al., 2002). The spatial betraassessed by these two variables did not
present significant differences between playeith@fsame team as their actions are, to some
extent, regulated by their goal as a team, whidtasing and avoiding a score for the

attacker and defender teams respectively.

Moreover, we found that the Argaand Dist;r present, across time, lower regularity
in the defender team being their behavior more estiptable that the interaction behavior
observed in the attacker team. This greater ungiadallity associated to the defender team
may be justified by the fact that the players aa tham are constantly adjusting their spatial
organization to protect the goal in function of wttee attacker team does (Frencken,
Lemmink, Delleman, & Visscher, 2011). On the othand, the attacker team explores the
free space in a more regular way, possibly actaupmling to the trained coordination

patterns that are assumed to increase chancesrofgsc

Voronoi diagrams can then be considered to measdrngdual and team dominant
regions. The observed signals of this variable apfgecapture particular phases of the game,
such as when the ball is received by an attaclsterthe defensive structure, presenting

behavioral patterns that may be used to describegplain the performance outcome

46



Modelingintra- and inter-team spatial interaction in tegrarts 2012

(Glazier, 2010; McGarry, 2009). Unlike other authan this paper, we did not consider any
factor to weight players’ Voronoi regions, so thaieas were simply based on the position of
the players which, according to our results, atenadly influenced by ball possession.
However, there are other factors, such as playeds/idual characteristics (Cordovil et al.,
2009), distance from ball (Fujimura & Sugihara, 2Q)0notion direction, speed and
acceleration (Taki, Hasegawa & Fukumura, 1996;rkuja & Sugihara, 2005), that are likely
to determine players’ actions and hence their apdistribution in the field. In future work,
some of the mentioned constraints could be consitier weight the distances used in the

calculation of the dominant regions.

In addition, future research in this topic couleshsidler other sub-phases of the game
(e.g. 5 vs 5, counter-attack, corners) and studygst’ spatial configurations (e.g. attacker
team vs defender team) in orderfdomally describe their spatial behavior and coregghese
with the principles that regulate them. With theneaeasoning, the definition of players’
spatial profiles for different game scenarios cdugdof muchnterest to the training

processes (Travassos et al., 2010).

Conclusion

In conclusion, we showed that Voronoi diagramslmamnised to characterize players’
spatial interaction behavior in Futsal. The intespeal relationship between players and
teams is well described by the variables considaretthe quantification of their
predictability was able to capture the interacti@havior between and within teams during

performance.
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This analysis can be further applied to other teports to describe individual and
collective behavior, identify patterns of coordinatin different sub-phases of a game, and

compare spatial patterns of coordination betweamseof different levels of expertise.

48



Modelingintra- and inter-team spatial interaction in tegrarts 2012

References

Abdel-Aziz, Y. & Karara, H. (1971). Direct linearahsformation from comparator
coordinates into object space coordinates in clasge photogrammetry. Paper presented at

the Symposium on Close-Range Photogrammetry, Eallsch, VA.

Bartlett, R., Wheat, J., & Robins, M. (2007). Iswvament variability important for
sports biomechanist$Sports Biomechanic§(2), 224-243.

Araujo, D., Davids, K. & Hristovskic, R. (2006). &@ecological dynamics of decision
making in sportPsychology of Sport and Exercige 653-676.

Bourbousson, J., Séve, C., & McGarry, T. (2010aceptime coordination patterns in
basketball: Part 2 - Investigating the interactetween the two team3ournal of Sport
Sciences28(3), 349 - 358.

Clark, P.J. & Evans, F.C. (1954). Distance to Nsiakeighbor as a Measure of
Spatial Relationships in Populatiofsology35(4): 445-453.

Cordovil, R., Araujo, D., Davids, K., Gouveia, Barreiros, J., Fernandes, O., et al.
(2009). The influence of instructions and body-sgpas constraints on decision-making

processes in team sporiropean Journal of Sport Scien&3), 169 - 179

Davids K, Araujo D, & Shuttleworth, R. (2005). Ajpgdtions of dynamical systems
theory to football. In T. Reilly, J. Cabri & D. Aligo (Eds.), Science and Football Vhe
Proceedings of the Fifth World Congress on Spoetsrige and Footballpp. 537-550):
Routledge.

Davids, K., Glazier, P., Araujo, D., & Bartlett, R003). Movement Systems as
Dynamical Systems: The Functional Role of Variapiéind its Implications for Sports
Medicine.Sports Medicing33(4), 245.

Davids, K., Handford, C., Williams, M. (1994). Thatural physical alternative to
cognitive theories of motor behavior: an invitationnterdisciplinary research in sports
scienceJournal of Sports Scienc#2(6), 495-528.

49



Modelingintra- and inter-team spatial interaction in tegrarts 2012

Dirichlet, G.L. (1850). Uber die Reduktion der gosin quadratischen Formen mit
drei unbestimmten ganzen Zahldournal fur die Reine und Angewandte Mathemaiik
209-227.

Duarte, R., Araljo, D., Fernandes, O., FonsecaCQrreia, V., Gazimba, V., et al.
(2010). Capturing complex human behaviors in reptdive sports contexts with a single
cameraMedicing 46(6), 408-414.

Fernandes, O., & Malta, P. (2007). Techno-tactnck rainning distance analysis using
one cameralournal of Sports Sciences and Medicia€suppl.10), 204-205.

Fonseca, S., Passos, P., Davids, K., Aradjo, DMilko, J. (2012). Approximate
entropy normalized measures for analyzing sociafai@ological systemslournal of Motor
Behavior 44(3), 179-183.

Frencken, W., Lemmink, K., Delleman, N., & Visschér (2011). Oscillations of
centroid position and surface area of soccer tearsall-sided game&uropean Journal of
Sport Sciencell(4), 215-223.

Fujimura, A. & Sugihara, K. (2005) Geometric Anasyand Quantitative Evaluation
of Sport TeamworkSystems and Computers in Japaé (6), 49-58.

Glazier, P.S. (2010). Game, Set and Match? Sulbgassues and Future Directions
in Performance Analysi§ports Medicing40(8), 625-634.

Goto, R. & Mascie-Taylor, C. G. N. (2007). Precrsif measurement as a
component of human variatiodournal of physiological anthropolog26(2), 253-256.

Greéhaigne, J.F., Bouthier, D. & David, B. (1997ynamic-system analysis of
opponent relationships in collective actions incescJournal of Sports Scienceks(2), 137-
149.

Harbourne, R.T. & Stergiou, N. (2009). Movementiafaitity and the use of
nonlinear tools: principles to guide physical thpesapracticePhysical Therapy89(3), 267.

Kim, S. (2004). Voronoi Analysis of a Soccer Gamenlinear Analysis: Modelling
and Contro] 9(3), 233-240.

50



Modelingintra- and inter-team spatial interaction in tegrarts 2012

Law, J. (2005). Analysis of Multi-Robot Cooperatiosing Voronoi Diagrams.
Proceedings of the 3rd International Kemurdjian Kgbop “Planetary rovers, space robotics
and Earth-based robots-2005”, St Petersburg, Ru@staber 2005

Lucena, R. (2007). Futsal Training System - Anadtrction for coaches and players:

Futsal Training System.

McGarry, T. (2009). Applied and theoretical pergpes of performance analysis in
sport: Scientific issues and challengesernational Journal of Performance Analysis in
Sport 9(1), 128-140.

McGarry, T., Anderson, D. I., Wallace, S. A., HughB®l. D., & Franks, I. M. (2002).
Sport competition as a dynamical self-organizingtesy.Journal of Sports Sciencez0(10),
771-781.

Okabe, A., Boots, B., Sugihara, K. & Chiu, S.N.@2Q Spatial Tesselations:

Concepts and Applications of Voronoi Diagrams, Jdfitey & Sons, Inc., New York.

Passos, P., Araujo, D., Davids, K., Gouveia, Lrp&gS., Milho, J., & Fonseca, S.
(2009). Interpersonal Pattern Dynamics and Adafeleavior in Multiagent
Neurobiological Systems: Conceptual Model and Dadarnal of Motor Behaviqr41(5),
445-459.

Passos, P., Araujo, D., Davids, K., Gouveia, LIhgliJ., & Serpa, S. (2008).
Information-governing dynamics of attacker-defendegractions in youth rugby union.
Journal of Sports Science?26(13), 1421-1429.

Pincus, S. (1991). Approximate entropy as a measusgstem complexity.
Proceedings of the National Academy of Scier@8®®), 2297-2301.

Schollhorn, W. (2003). Coordination dynamics amsccibnsequences on sports.

International Journal of Computer Science in Spart40-46

Stergiou, N., Buzzi, U.H., Kurz, M.J. & Heidel,(2003). Nonlinear tools in human
movement. In: Innovative Analyses of Human Movem#ahtStergiou (Ed.) Human Kinetics:

Champaign, IL.

51



Modelingintra- and inter-team spatial interaction in tegrarts 2012

Taki, T., Hasegawa, J. & Fukumura, T. (1996). Depsient of Motion Analysis
System for Quantitative Evaluation of Teamwork ot&r GamedEEE, 815-118.

Travassos, B., Araujo, D., Vilar, L., & McGarry, [011). Interpersonal coordination

and ball dynamics in futsal (indoor footbaljuman Movement Scien@0 (6), 1245-59.

Travassos, B., Araujo, D., Correia, V., & Estew@s(2010) Eco-Dynamics Approach
to the study of Team Sports Performanidee Open Sports Sciences Jour3al56-57.

Voronoi, G. (1908). Nouvelles applications des partres continus a la théorie des

formes quadratiquedournal fir die Reine und Angewandte Mathemdtid, 198-287.

52



Modelingintra- and inter-team spatial interaction in tegrarts 2012

Chapter 4. Measuring spatial interaction behavior n team sports

using superimposed Voronoi diagrams
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Abstract

In team sports, the spatial distribution of playiarthe field is determined by the
interaction behavior established at both playertaach levels. The distribution patterns
observed during a game emerge from specific teahaitd tactical methods adopted by the
teams, and from individual, environmental and teshstraints that influence players’
behavior. By understanding how specific patteffinspatial interaction are formed, one can
characterize the behavior of the respective teardpkayers. Thus, in the present work we
suggest a novel spatial method for describing téapadial interaction behavior, which

results from superimposing the Voronoi diagramsawaf competing teams.

We considered theoretical patterns of spatialibistion in a well-defined scenario (5
vs 4+ GK played in a field of 20x2@rin order to generate reference values of theabbes
derived from the superimposed Voronoi diagrams (VILhese variables were tested in a
formal application to empirical data collected BAutsal trials with identical playing

settings.

Results suggest that it is possible to identifyimher of characteristics that can be
used to describe players’ spatial behavior at diffelevels, namely the defensive methods

adopted by the players.
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Introduction

Team sports are considered dynamic systems ofttten, where players from both
teams continuously change, adapt, adjust and auaiedtheir position and actions in order to
win the game (Davids, Aradjo & Shuttleworth, 200%issos et al., 2009). Pre-determined
tactical and technical methods, along with indiad@nvironmental and task constraints
(Newel, 1986), regulate players’ spatial behaviat are responsible for a continuous
emergence of patterns of intra-and inter-team &ctésn. Research on this subject should
therefore assume a holistic character considertmgeaand space continuous approach,
which is accomplished when defining variables cégabdescribing the collective behavior

of a team (Davids et al., 2005; Schélhorn, 2003Glsicy, 2009).

When considering the space dimension, playergdtajies during a game are a
relevant source of information but they only prevelmeasure of team behavior when
considered simultaneously. Following this reasongpgtial team variables, such as the
convex hull (Frencken et al., 2011), the stretclein(Bourbousson, Séve, & McGarry,
2010a) and simple measurements derived from thexgegosition (centroid) of the whole
team (Frencken & Lemmink, 2008; Bourbousson, S&wdcGarry, 2010b; Frencken et al.,
2011), have been considered to describe the behaivéoteam. These variables are

illustrated in Figure 12 a), b) and c), respectivel

The mentioned variables became popular for desyithie spatial behavior of each
team across the duration of a game (or task). Bjlgidhe area of the geometric shape
(Figure 12 a) and b)) is calculated for each teanmacase of using the centroid (Figure
12c)), its distance or angle to the aimed target @oal) is considered as a measure of

individual team behavior.
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Figure 12: Variables for describing team spatial oganization of two opponent teams (players of each
team are represented by black dots and trianglesgspectively, grey players on the top and bottom dfie
field are the goalkeepers) — (a) convex hull, (b)dnizontal and vertical stretch and (c) centroid pogion
(red dots).
For the analysis of these data series, researcbhessder the use of entropy measures

to quantify and compare the complexity of the spdtehavior of the teams (Passos et al.,
2009; Fonseca et al., 2012a, Sampaio & Macas, 201 )for assessing teams’ coordination,
a relative phase analysis is considered (Bourboys3eve, & McGarry, 2010a; Travassos et

al., 2011). While these approaches are a step fdneavards the understanding of players’

behavior in team sports, some limitations can ketifled, as illustrated in Figure 13.
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Figure 13: The same spatial configuration of two t@ms 5+ GK vs 5+GK (players of each team are
represented by black dots and triangles, respectilig grey players on the top and bottom of the fieldire

the goalkeepers) measured using the area of the pestive convex hull (shaded areas) in three very
different scenarios (a, b and c).
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Figure 13 shows the same spatial configurationvofteams in three very different
scenarios of team interaction, which would presendifferences if, for example, the area of
the convex hull of each team is considered. Thmgtion can be found in some variables
currently used to describe spatial behavior in shwateam sports as they are calculated for
each team ignoring the spatial distribution of dpponent team and the dimension of the
field. Given that the spatial organization of oearh is much influenced by the spatial
organization of its opponent, it seems reasonabt®mnsider the position of all players in the
field, as well as its dimension, to define varialeat describe teams’ spatial arrangement.
Thus, some authors have suggested measures @i spgtnization based on a geometric
partition of space called Voronoi diagram (see @katal., 2000), in which parts of the field,
the Voronoi cells, are associated to each of thgguk. Figure 14 shows an example of a

Voronoi diagram generated for a set of 10 points limited square area.

(a) (b)

Figure 14: Example of a set of points in a plane Jand respective Voronoi diagram (b).

The application of this spatial tessellation imtesports has been welcomed as the
points can represent the position of the playedsthe associated Voronoi cells can be
interpreted as the dominant region of each play#iimvthe limits of the playing area (field).
Not surprisingly, such approach has been considaradariety of settings, namely,
electronic soccer games (Kim, 2004), robotic soflcaw, 2005), on-field hockey games

(Fujimura & Sugihara, 2005), on-field soccer garfiesi, Hasegawa, & Fukumura, 1996)
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and on-field futsal (Fonseca et al., 2012b). Altfosome principles of the game are fully
capture in these studies (e.g., the idea thattthekateam has to free-up space and the
defense team has to tie-up space), it is still omkmhow relationships established at a player

level relate to this.

Hence, we suggest a novel spatial method for d@sgrinter-teams spatial
interaction patterns of behavior in invasive tegrorts, which also allows characterizing the
type of play of defending teams. Results from gpliegtion of this approach in futsal task

situations are presented.

Method

The spatial method suggested here, illustratedgaré 15, results from
superimposing the Voronoi diagrams (VD) of the t@ams competing (VD of team A -

black, over VD of team B - white), hereafter nansegberimposed Voronoi Diagram (SVD).

L ] . ./

Figure 15: Construction of the superimposed Voronodiagram (at bottom) from considering, separately
the Voronoi diagrams for team A (black dots) and tam B (white dots).

Given this graphical construction, we defined tweasures of spatial interaction: the
maximum percentage of overlapped area (Max%OA)pandentage of free area (%FA). The
former (Max%OA) is calculated for each player anepresents the maximum percentage of

the player’s Voronoi cell that is covered by th# oéan opponent; as for the latter (%FA), it
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is a measure that summarizes the degree of sityilz@tween the overlapped diagrams, and
is calculated by extracting from the play areastim of the Max%OA calculated for players

of a team. A representation of these measuregsepted in Figure 16.

SR SN

AN /\
iy \ | !
(@) (b)

Figure 16: Measures from the superimposed Voronoiidgram (SVD): (a) shaded grey areas are the
maximum Overlapped Area for each player of the teamepresented with black dots; (b) the sum of the
shaded black area is the Free Area.

The fitting of the two diagrams, VD of team A an®\éf team B, is clearly
dependent on the spatial distribution of the playssm both teams, and a perfect fit would
only occur if players of a team could be in theasame position of the players from the
other team, which in a sports context would maksertse (note that in this case the

Max%OA would be equal to 100% to all players anddeethe %FA would be null).

A more likely scenario in invasive team sportsasihg players exclusively paired,
i.e., matched one-to-one as in a man-to-man defemsethod, in which case the two VD
would be similar, but not identical. Alternativeig, case players are not so tightly coupled,
one would expect a weaker match of the two diagr&tasing described these two
possibilities, we recognize the importance of ustderding how these two measures of
interaction (%FA and Max%OA) differ in these twaesarios. Thus, simulated spatial
patterns of exclusive pairing and random interacti@re performed to derive the properties

of the SVD. Note that random interaction was com®d as a reference model for spatial

58



Modelingintra- and inter-team spatial interaction in tegrarts 2012

patterns assessment. The simulation settings nthtbbee in the empirical data considered
for application purposes (5 vs 4+ GK players imated region of 20x201), nevertheless, it

is supported that this can be adjusted to otherast®s.

Random interactionl000 SVDs were generated for random interactien, all players
except GK are randomly allocated in the field, @t is fixed at location (10,18) — example

of one simulated pattern is shown in Figure 17a.

Exclusive pairingGiven the numerical advantage for the attack irptlesent setting (5
vs 4+GK), each defender, except GK, was paired ot of the 4 attackers closer to the
center of the goal. The GK remains fixed at loga(i0,18). Thus, 1000 SVDs were
generated for exclusive pairing at different maximndistances between pairs, from 0.5 to 7
meters with increments of 0.5 meters — examplenefsimulated pattern is shown in Figure

17Db.
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Figure 17: Example of a generated SV in a situatiowhere (a) players from both teams (grey and black
dots) are randomly distributed in the field and (b)defender players, grey dots, are exclusively paidewith

the attacker players, black dots, that are closerathe goal. The GK (red dot) is in both cases fixealt
position (10, 18). The arrow indicates the directio of the attack.
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Inter-Team interaction assessment

For measuring inter-team interaction the %FA wasswered. In case of random
interaction, this measure is, on average, equabto7.2% and the corresponding 95%
confidence interval is (0.22, 0.50)%. As for thelagive pairing patterns, given that in this
case the %FA calculated for each of the 14 distan@es not normally distributed, we have
computed the 95% confidence envelopes. These arpared with the values expected in the

presence of random interaction in Figure 18.

----- Random interaction Exclusive pairing

0,6 -

0,4 7 -___________,_—-—-"'__
o
=
e e e

T
_
O T T T T T T T T T 1

Maximum pairing distance (meters)

Figure 18: 95% confidence envelopes for simulatedgpterns of exclusive pairing at different maximum
pairing distances (solid lines) and 95% confidenciaterval for simulated patterns of random interaction
(dashed lines).

As expected, when opponent dyads are tightly paired for very small pairing
distances, the %FA is smaller than what is expegyechance (random interaction). As this
distance increases, the pairing becomes weaketharfdFA increases towards the values
observed under complete randomness. In fact, sesudjgest that for the specific settings
considered in this study, 5 vs 4+GK played in &ifig 20x20n7, it is only possible to
identify exclusive pairing at a team level when digtance between all pairs is below two

meters (dotted vertical line in Figure 18).
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Opponent interaction assessment

For assessing spatial interaction at a player eetonsider the maximum
percentage of overlapped area (Max%OA) for eacyeplas illustrated in Figure 19, we
found that this variable is associated with the banof opponents within the player’s
Voronoi area — the more the number of opponentsriadler the value of Max%OA of the

attacker (p<0.001).

1.0 -

0,6

Max % OA

0,4 4 s i

0.2 1

0,0 . .
1 2 3 4 5

Number of opponents inside area

Figure 19: Mean of the maximum percentage of Overjgped Area (Max%OA) calculated for a player in
situations where the number of players inside his &onoi area varies from 1 to 5. The error bars
represent the standard deviation.

Hence, this variable can be used to charactereethraction of one player with the
opponents, in particular, the density of opponentss vicinity. According to the simulated
data results presented in Figure 19, values ofm#wemum percentage of overlapped area
(Max%OA) below 0.4 indicate that the attacker isuisituation of clear numerical

disadvantage (dotted horizontal line).

Results

The described methodology was applied to empidesa collected from 19 Futsal
attack trials, 5 vs 4+GK played in a limited regm20x20ni. Data results are shown for

four randomly selected trials. The observed pastefrbehavior, assessed by means of the
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%FA (see Figure 20), indicate more towards low lewé exclusive dyadic interaction (%FA
values inside the interval (0.22, 0.50)%), whicls\weapected as defense players were playing

in a zone defense fashion due to their numericadliantage.
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Figure 20: Observed %FA (percentage of Free Areahia sample of 4 trials (solid black line) and the ®%
confidence interval for absence of interaction (ddwed grey lines). Values within the dashed lines @2,
0.50) indicate low levels of exclusive dyadic intaction.

In addition, for testing for the opponent interantiand according to what was
described above, it was considered the Max%OAdcheattacker. Figure 21 (see next page)
shows the Max%OA for each of the five attacker®s€ithe duration each selected trials.
This variable allows identifying the attackers theg under more pressure during the task,

i.e., the attackers that have a greater numbeppdrents in the vicinity (greater density).

In each of the sampled trials, the periods of #s& highlighted in Figure 21 are
related with two kinds of situations: 1) when tlegresponding attacker enters in the
defensive structure with the intention of receivangass from the ball carrier or 2) when the
attacker is the ball carrier and is positioned \@oge to the goal. In both situations, players
from the defense team tend to protect the goalandball possession, which leads to a
pressure towards these attackers and hence lowesvar their Max%OA.
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Figure 21: Observed Max%OA (maximum percentage of @erlapped Area) for each of the 5 attackers in
each of the 4 sampled trials. The shaded rectanglexlicate periods during the task when values of ts
variable for one of the attackers indicate that theplayer was surrounded by more than one opponent ée
text for details).

Discussion

The Superimposed Voronoi Diagrams method presentius paper is a novel
approach for studying spatial interaction in invasgieam sports. Although the reference
values considered here were generated for thefgpltsal scenario under study, it is

possible update them according to other settingstefest.

Results from a formal application of this methoeopirical data suggest that it is
possible to identify a number of characteristic ttan be used to describe players’ spatial
behavior at different levels. In one hand, it isgble to describe the interaction between the
two teams by comparing the spatial pattern formethb respective players, which is much
dependent on the interaction established among paopponents, i.e., if players are

exclusively paired, as they would be in a man-tormefensive method, the % FA will be
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below the reference values calculated for situatiwhen such interaction is not imposed
(random interaction). On the other hand, and bynaed a different variable extracted from
the same superimposed graphical construction, Mak2Qs possible to describe, across
the duration of the game (or task), the type ddrimttion established between each attacker
and his opponents, in particular to distinguiswaein different types of numerical relation,
for example, situations of more or less pressulgghvcorresponds to having many or few

opponents in his vicinity, respectively.

In this work, the areas defined by the VD for eplayer of a team are solely based
on players’ position and limits of the playing ar€dher factors likely to influence the size of
these areas such as ball position, distance frélndistance from goal, direction and speed
of the displacement as well as players’ skills weseconsidered, but we intend to add these

in future work on this area.

Importantly, the fact that the described methodgplognsiders the superimposition of
opponent teams’ dominant regions adds value tintheduced measures making them more
appealing than those that are calculated for esauin separately, ignoring the interaction

context.
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Chapter 5: General discussion

Under a dynamical system approach to team spomisvie, and with the aim of
ascertain the dynamic characteristics of the ioteya behavior established at a collective
level, researchers have suggested spatial medsulescribe inter-team and/or inter-player
interaction behavior across the duration of garpleg/s or trials. Some examples are the
convex hull (Frencken et al., 2011), the stretaclein(Bourbousson, Séve, & McGarry,
2010a) and simple measurements derived from thexgegosition (centroid) of the whole
team (Frencken & Lemmink, 2008; Bourbousson, S&wdcGarry, 2010b; Frencken et al.,

2011; Sampaio & Macas, 2012).

Concerns about the adequacy of the measures medtaliove have arisen after
identifying a couple of drawbacks on their conogptinamely, the limits of the playing area
are neglected and variables are calculated for &@erh ignoring the spatial information of
the other. Accordingly, the models presented is thesis were specifically designed to
address these problems and, consequently, deforegstandidates to collective variables for

such interacting dynamic behavioral systems.

Pertinence of a Voronoi diagrams’ approach

Team sports games are recognized as dynamic systanisraction, where players
from both teams continuously interact, taking measand countermeasures in order to
overcome the opponent (Lames & McGarry, 2007). @iagiwhere to be (position) and what
to do (action), at each moment of the game, emdrgesa decision-making process (Araljo
et al., 2006), in which players: (a) perceive esakmformation from the playing
environment, e.g. the position of the other play@¥correctly interpret it and (c) act

accordingly (Baker, C6té & Abernethy, 2003). Thihg spatial organization of a team,
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assessed throughout a game, play or trial, mimbit teammates have individually
perceived to be the best collective distributioeath moment, according to the present
characteristics of the environment, in particule $patial distribution of the opponent

players.

For example, in an offensive play, the attackiregrtewill try to create/find space by
avoiding the defenders and positioning themselveke field according to this intention.
More space affords more possibilities of action bypdioing so players will be able to have
more chances to decide what is best to do atmachent (e.g., pass, run, shoot, etc.) in
order to maintain ball possession and progredsarfi¢ld towards the goal. As expected, the
defending team will want to close this space ary thill position themselves in the field in

order to do so.

Given this, team sports behavior was here apprabgsiag Voronoi diagrams as
these basic laws of spatial interaction are presesiich spatial tessellations: for each point,
the size of respective Voronoi cell is related wifta closeness to other points, the closer the

points the greater the cells’ area.

The models

The spatial models here suggested imply that gaptegs or trials, of interest are
video recorded and that the positional data frdrplalers are available in real world

metrics.

Model 1: Voronoi Diagrams (VD)

In the first model was considered a straightforwagglication of VD to the set of

players from both teams. The collective variabletsiggested was the size of the dominant
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regions (area of the Voronoi cells), which allovescribing intra- and inter-team spatial
behavior. Results from an application to empirttatia from Futsal tasks of a 5 vs 4+GK
suggested that the area of the dominant region,(B8RWvell as the distance to nearest
teammate, can capture the tactical behavior of taatins. Specifically, the team that is
attacking is more spread out, presenting a grelat@inant region’s area during the whole
trial, whereas the team defending is more concaty@resenting, instead, smaller dominant
regions. In addition, as a result of a formal aggilon of a normalized measure of ApEn to
these data, we concluded that the size of the DiRetkby players is more regular for the
attacker team in comparison with the defender teeimch means that the spatial interaction

behavior of the team defending is more complex.

Model 2: Superimposed Voronoi Diagrams (SVD)

The second model represents a new approach talspéraction behavior. This
model results from superimposing the VD generave@ach of the two competing teams.
From this novel spatial construction, were deritv@d collective variables, %FA and
Max%OA. According to how they were defined, %FAasgely dependent on the distance
between each pair of exclusive opponents, wherea@MDA, it is largely dependent on the
number of opponent neighbors, and they can be tosééntify modes of dyadic interaction

and quantify pressure, respectively.

An exploratory application of this model to empaliclata from Futsal tasks of a 5 vs
4+GK, allowed to: (a) identify the type of defemaethod applied, which in this case
presented low levels of dyadic interaction duehriumerical advantage of the attack, and

(b) to identify the attacker that was under momspure.
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Theoretical contributions

According to our results, these models appear ve patential to study the dynamic
characteristics of the spatial interaction behaggiablished between players and teams in
invasive team sports, such as soccer, basketlaalidall, etc. The specificity of each team
sports is considered in this approach as it alldgtermining reference values of some
collective variables according to the charactexsstif the game, play or trial under study,
e.g., the number of players and the dimensionseoptay area. In this context, reference
values can be used as a tool to identifying speiflividual and collective characteristics of

a dynamic behavioral system of this nature.

Tuned with an ecological approach to decision n@kinteam sports (Araujo et al.,
2006), these models can serve constrain-led appesdo team sports behavior (Araujo et
al., 2004; Renshaw et al., 2004; Chow et al., 20@&;ids, Button & Bennett, 2008) in order
to understand how certain constraints influenceethergent patterns of interaction behavior.
Results from a recent study (Celikkaya, Fonsecaa&vdssos, 2012) have shown that
limitation on the number of ball touches has aeafbn the spatial interaction behavior
established between the attackers. In partictiar minimum interpersonal distance
increased significantly in the presence of thatsjweconstraint, which is thought to be a
result of players’ attempt to increase space. idbntext, more space affords more time to

decide what to do, when the possibilities of acaos limited.

Finally, considering the dynamic nature of thedeavéral systems, the collective
variables here suggested to describe behavioffatett levels of interaction can be
considered to evaluate the properties of such mgstior example, visually inspecting the

behavior of a specific collective variable, measgriits regularity, identifying eventual
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gualitative transitions in the system state, pedtions, critical fluctuations, among other

properties.

Methodological considerations

Despite the encouraging results from an exploraappflication of the two models to
Futsal data, they should be applied to data frorargety of different invasive team sports
(e.g., basketball, handball, rugby), preferablgitnations with transitions in ball possession,
in order to test the collective variables here gstgd, and assess their true potential to
capture the described behavioral characteristiasirtg this established, several approaches
are worth considering, such as. within and betvspatific team sports, (a) study how the
fitting of the two spatial distributions evolvesdachanges, (b) compare teams’ behavior
when they are defending and when they are attackehgdentify and compare preferred
modes of dyadic interaction and (d) understand plawers from both teams reorganize their

distribution after transition in ball possession.

Nevertheless, and although VD and SVD models hage/s potential towards the
understanding of interaction behavior in team spave have identified an important
limitation on the definition of players’ DR. The Yamoi cell of each player is defined based
on a non-weighted distance from each player totpamthe field, which means that the DR
of each player is solely determined by his posit@ther factors, such as the anthropometric
characteristics of the players (Cordovil et alQ2)) players’ performance skills, the
kinematic characteristics of their movement (T&#lasegawa & Fukumura, 1996; Fujimura
& Sugihara, 2005) and the players’ distance froth(Bajimura & Sugihara, 2005), are
known to determine players’ actions and hence émfbe their spatial distribution in the field.

Future work in this area should consider weightlmgyDR by some of these factors.
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Practical applications in training

As mentioned before, players’ space perceptiorsiglbof major importance in the
decision-making process during a game, play or, @sklayers need to correctly perceive the

space where they are in order to effectively mavé.o

Players acquire and improve their skills duringnirey sessions and so, their
performance in a contest is much dependent on tukgthave learned. The models
presented in this thesis, and particularly the messsuggested as collective variables, can
be seen as new tools that coaches can considifettively assess the characteristics of the
spatial interaction behavior of a team, which carubed to quantify performance at team and
player levels. Applying these in training sessioas help coaches to understand and
anticipate team and players behavior in a game@edaluate and compare performance

under different constrains.

To illustrate, if a soccer coach considers thigiapapproach to analyze the
interaction behavior of their players in a formahge played in a training session, he would
be able to answer the following questions: (1) Dacking players know how to create
space? (2) Do defensive players know how to clpaees? (3) Do defending players know
how to apply a man- man-to-man defense? (4) Caddfense team mark effectively the
player with the ball? (5) Which player is more sgsful in creating/close space? Moreover,
if in addition he decides to consider the previguskntioned constrain-led approach, he can
further identify how players’ and teams’ spatidkiaction behavior change according to the

manipulated constrains and how these can be usetptove performance.
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Final remarks

In conclusion, although the pair of models heresgnéed is still in need of some
work, they represent a novel and interesting toottie analysis of players’ and teams’
behavior in invasive team sports under a dynanstesy approach. As described above, the
collective variables derived from these models rehawvn to capture a number of interesting
properties that characterize the interacting behastablished at an individual and collective

level during a game, play or trial, which can befukfor coaches in a training context.

References

Araujo, D., Davids, K. & Hristovskic, R. (2006). @ecological dynamics of decision
making in sportPsychology of Sport and Exercise653—676.

Araujo, D., Davids, K., Bennett, S. J., Button, & Chapman, G. (2004). Emergence
of sport skills under constraints. In A. M. Wilhies & N. Hodges (Eds.), Skill acquisition in
sport: Research, theory and practice (pp. 409-416)don: Routledge.

Baker, J., C6té, J., & Abernethy, B. (2003). Siptcific Practice and the
Development of Expert Decision-Making in Team BEgplorts.Journal of Applied Sport
Psychology 15, 12-25.

Bourbousson, J., Séve, C., & McGarry, T. (2010pacg-time coordination dynamics
in basketball: Part 1. Intra- and inter-couplingsoag player dyadsournal of Sports
Sciences28(3), 1-9.

Bourbousson, J., Séve, C., & McGarry, T. (2010pace-time coordination dynamics
in basketball: Part 2. The interaction betweentweeteamsJournal of Sports Sciences
28(3), 349-358.

Celikkaya, F., Fonseca, S., & Travassos, B. (20A2)ipulating the number of
touches on the ball in small-sided games of Assiocidootball: Effect on players’ spatial
interaction. Abstract in the proceedings of the W&ongress of Performance Analysis of
Sport IX, Worcester, UK.

73



Modelingintra- and inter-team spatial interaction in tegrarts 2012

Chow, J. Y., Davids, K., Button, C., Shuttleworh, Renshaw, I., & Araujo, D.
(2006). Nonlinear Pedagogy: A constraints-led framd for understanding emergence of
game play and movement skildonlinear Dynamics, Psychology, and Life Scient8¢l),
71-103.

Cordovil, R., Araujo, D., Davids, K., Gouveia, Barreiros, J., Fernandes, O., et al.
(2009). The influence of instructions and body-spls constraints on decision-making

processes in team sporiropean Journal of Sport Scien&3), 169 — 179.

Davids, K., Button, C. & Bennett, S. J. (2008). @gmcs of skill acquisition: A

constraints-led approach, Champaign, IL: Human #gse

Frencken, W., Lemmink, K., Delleman, N., & Vissch@r (2011). Oscillations of
centroid position and surface area of soccer tearssall-sided game&uropean Journal of
Sport Sciencell(4), 215-223.

Frencken, W., & Lemmink, K. (2008). Team kinemati¢small-sided soccer games.
A systematic approach. In T. Reilly and F. Korkuélads.), Science and football VI:
Proceedings of the 6th World (pp. 161-166). NewkY®dY: Routledge.

Fujimura, A., & Sugihara, K. (2005). Geometric Aysb and Quantitative Evaluation
of Sport TeamworkSystems and Computers in Japaé (6), 49-58.

Lames, M. & McGarry, T. (2007). On the search frable performance indicators

in game sportdnternational Journal of Performance Analysis ino8p7(1), 62-79.

Sampaio, J. & Macgas, V. (2012). Measuring tactieddaviour in football.
International Journal of Sports Medicin83(5), 395-401.

Taki, T., Hasegawa, J., & Fukumura, T. (1996). Demment of Motion Analysis
System for Quantitative Evaluation of Teamwork ot&r GamedEEE, 815-118.

Renshaw, I., Oldham A. R., Glazier, P., & Davids(R004). Why applied sport

scientists need a theoretical model of the perfor@@ort and Exercise Scientidt, 24.

74



