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AbstractAbstractAbstractAbstract    
    
In vitro and in vivo studies were conducted to investigate the potential of four biocontrol agents (BCAs), 

namely Bacillus megaterium, Pseudomonas fluorescens, Trichoderma viride, and T. harzianum, individually and 

in combination with sodium nitrophenolate (SN) to control marigold powdery mildew. The results showed 
that all treatments led to a significant inhibition in the conidial germination of Golovinomyces cichoracearum 

in vitro. Maximum inhibition was recorded by T. harzianum (1×109 CFU mL-1) + SN (1.5%), followed by T. 

viride + SN, and B. megaterium + SN at the same concentrations as follows: 83.6, 79.1, and 70.6%, respectively. 

While the lowest inhibition (20.4%) was recorded by P. fluorescens (1×105 CFU mL-1). In the greenhouse, all 

treatments applied significantly reduced the disease severity and the area under the disease progress curve 
(AUDPC). The combination treatments had a better disease control response than individual treatments. 
Similar results were achieved in the field, where disease severity reduced to 9.2 and 10.3% in plants treated with 
T. harzianum + SN in the first and second seasons, respectively, compared to 40.2 and 44.1% in control in 

both seasons. Likewise, AUDPC reduced to 274 and 315 in plants treated with T. harzianum + SN in the first 

and second seasons, respectively, compared to 1207 and 1340 in control in both seasons. The treatments 
improved growth and productivity characteristics, as well as photosynthetic pigments, total phenolic 
compounds (TPC), and polyphenol oxidase (PPO) activity, while significantly reducing free proline (FP). In 
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conclusion, BCAs applied individually or in combination with SN can be used effectively to suppress powdery 
mildew of marigold. 
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powdery mildew; sodium nitrophenolate 
 
 
IntroductionIntroductionIntroductionIntroduction    
 
Marigold (Calendula officinalis L.) is one of the medicinal plants that is grown in Egypt, and mainly 

cultivated for its yellow and orange flowers, which are rich in carotenoids, flavonoids, essential oils, and vitamin 
A (Escher et al., 2019). It is an annual herb belonging to the Asteraceae family, and is native to southern and 

eastern Europe and the Mediterranean countries (Gazim et al., 2008). Marigold is used as raw material in the 

medical, cosmetic, and food industries, as well as in the landscape (Verma et al., 2018). In Egypt, the area 

planted with marigold reached 711 hectares, producing 26,372 tons of flowers (Anonymous, 2019).  
Powdery mildew is one of the most widespread foliar diseases of marigold, which can be very destructive 

in the greenhouse and field (Mir et al., 2012; Abdel-Wahed and Shaker, 2020). This disease is caused by G. 

cichoracearum (DC.) V.P. Heluta (Syn.: Erysiphe cichoracearum DC ex Merat.) (Severoglu and Ozyigit, 2012). 

Small white or gray spots scattered on stems, leaves, and inflorescences are typical symptoms of the disease, 
which expand under favorable conditions to cover the plant with a white, talcum powder-like mass (Sujatha et 

al., 2018). Affected leaves fall, causing defoliation, decreased photosynthetic capacity, and decreased flower 

productivity (Garibaldi et al., 2008; Kavak, 2011). Powdery mildew control has long relied on the use of two 

basic practices: resistant varieties and chemical control (Kiss, 2003). Although powdery mildew-resistant 
commercial varieties are available for many crops, the rapid evolution of pathogen strains hampers this practice 
(Pérez-García et al., 2009). Chemical control is usually achieved through intensive applications of fungicides, 

the emergence of fungicide-resistant isolates with their harmful residual effects has reduced the efficacy of this 
practice (Sellitto et al., 2021). So, the search for alternative strategies has become indispensable. In this consider, 

biological control is a promising approach (Ownley et al., 2010). It provides a plant protection that is eco-

friendly, ecologically viable, and has great potential to promote a sustainable agricultural system.  
Biological control of plant diseases is defined as the suppression of pathogen populations to an 

acceptable level by the organisms (Heimpel and Mills, 2017). In nature, plants and microorganisms live in 
interactions with each other, which can influence the growth and development of plants and even their 
defensive responses to different stresses (Nataraja et al., 2019). Several reports have documented a variety of 

beneficial microorganisms that possess antimicrobial activities against plant pathogens (Mmbaga et al., 2016; 

Lahlali et al., 2022). These microorganisms, known as biocontrol agents (BCAs), include a number of bacteria 

such as Streptomyces spp., Pseudomonas spp., and Bacillus spp., and a number of fungi such as Trichoderma spp., 

Coniothyrium spp., and arbuscular mycorrhizal fungi (AMFs) (Cordier et al., 1998; Xu et al., 2019). BCAs play 

an important role in protecting crops from disease damage through different modes of action. They may induce 
resistance or prime enhanced resistance in infected tissues without direct interaction with pathogens (Conrath 
et al., 2015). Another indirect interaction with pathogens is competition for nutrients or space (Spadaro and 

Droby, 2016). BCAs may interact directly with the pathogen via hyperparasitism or antagonism, whereby the 
parasite invades and kills the mycelium, spores, and resting structures of the fungi, as well as bacterial cells 
(Ghorbanpour et al., 2018). The production of antimicrobial secondary metabolites with inhibitory effects on 

pathogens is another direct mode of action (Raaijmakers and Mazzola, 2012).  
Trichoderma species exhibit a variety of antagonistic mechanisms against plant pathogens, including 

secretion of lytic enzymes and antifungal secondary metabolites, mycoparasitism, and competition for 
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nutrients (Stracquadanio et al., 2020). They can also penetrate and surround the hyphae of pathogens, thus 

killing them (Tomah et al., 2020). Moreover, they promote root development and plant growth by dissolving 

phosphate and micronutrients, making them accessible to the plant (Lorito et al., 2010). Recently, Trichoderma 

spp. have been successfully used to suppress powdery mildew on celery (Ahmed et al., 2021), vineyards (Sawant 

et al., 2017), and sunflower (Esawy et al., 2021). Bacteria belonging to the genus Bacillus are effective biocontrol 

agents against phytopathogens (Mahmoud et al., 2021). They produce a wide range of antibiotics and 

lipopeptides, which have shown antimicrobial activities and significant inhibitory capacities (Kim et al., 2010). 

Several studies have demonstrated the ability of B. subtilis and B. megaterium to reduce powdery mildew on 

many crops (Hashem et al., 2019). Another example of beneficial bacteria is P. fluorescens, which has been used 

in agriculture as biofertilizer, biocontrol agent, and plant growth-promoter (Kiely et al., 2006). Strains of these 

bacteria have the ability to secrete cell wall-degrading enzymes, hydrogen cyanide, and antibiotics to suppress 
fungal growth, in addition to stimulating plant defense mechanisms (Zian and Aly, 2020). 

Crops are exposed to various biotic and abiotic stresses that have negative effects on their growth, 
productivity and quality (Gull et al., 2019). The application of biostimulants has received great attention due 

to their efficiency in improving plant morphological, physiological and biochemical processes against these 
stresses (Posmyk and Szafranska, 2016). They play an important role in activating metabolic processes such as 
photosynthesis, respiration, DNA synthesis, and ion uptake, thus increasing plant tolerance and improving its 
growth and development (Rafiee et al., 2016). Among the plant stimulants that have been successfully used to 

improve growth and increase productivity of many crops is sodium nitrophenolate (Michalski et al., 2008). 

This compound consists of 3 phenolic compounds: sodium para-nitrophenolate, sodium ortho-
nitrophenolate, and sodium 5-nitroguaiacolate. These active ingredients are found naturally in plants and 
stimulate growth by increasing antioxidant enzyme activities, auxin amount, nutrient uptake, and 
photosynthetic intensity (Borowski and Michałek, 2009; Przybysz et al., 2010). Although sodium 

nitrophenolate is registered in the European Union as a pesticide for some crops, knowledge about its potential 
in plant disease management is still limited. This study investigates the effect of four BCAs individually and in 
combination with SN in controlling marigold powdery mildew and improving growth and productivity. The 
hypothesis discusses increasing BCAs efficacy to suppress this disease by combining them with a plant 
biostimulant.  

 
 
Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Plant and soil materials, treatments, and experimental conditions 

The present study was conducted in the laboratory, greenhouse, and experimental farm at the Faculty 
of Agriculture, Beni-Suef University, Egypt, during the 2021/2022 and 2022/2023 seasons. The trial site is 
found at latitudes 29° and 3°N and longitudes 31° and 5°E, and at an altitude of 32.4 m above sea level. From 
October to March in the two study seasons, precipitation averaged 2.5 mm, temperature 20.8 °C, relative 
humidity 55.2%, and evaporation 145.1 mm. Physicochemical analysis of the experimental soil was performed 
according to the methods of Page et al. (1982) as shown in Table 1. Analysis was done at the Central Fertilizer 

Analysis Laboratory, Soil, Water, and Environment Research Institute, ARC, Egypt. The purpose of this study 
was to investigate the efficacy of four biocontrol agents (BCAs), i.e. B. megaterium, P. fluorescens, T. viride, and 

T. harzianum, individually and in combination with SN, in comparison with the fungicide propiconazole 25%, 

to control powdery mildew of marigold. In combination treatments, BCAs and SN were prepared separately 
and then sprayed on plants with an interval of 1 to 2 hours between them. Seeds of a local marigold (cv. ‘Orange 

Flower’) used in all the experiments were obtained from Sids Agricultural Research Station, ARC, Egypt. The 
seeds were sown in the nursery on September 1st. Uniform seedlings, 35 days old and 15 cm height, were 
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transplanted under greenhouse and field conditions. All agricultural approvals related to marigold cultivation 
have been implemented according to what was stated by the Egyptian Ministry of Agriculture and Land 
Reclamation. 

 
Table 1.Table 1.Table 1.Table 1. Physicochemical analysis of the experimental soil before sowing marigold during the 2021/2022 
and 2022/2023 seasons (average of the two seasons) 

Silt %Silt %Silt %Silt %    Coarse sand %Coarse sand %Coarse sand %Coarse sand %    Clay %Clay %Clay %Clay %    Fine sand %Fine sand %Fine sand %Fine sand %    Soil textureSoil textureSoil textureSoil texture    

28.6428.6428.6428.64    4.394.394.394.39    56.3556.3556.3556.35    10.6210.6210.6210.62    ClayClayClayClay    

pH 
EC 

(dS/m) 

O.
M% 

Soluble cations (meq/L) Soluble anions (meq/L) NPK (mg kg-1 soil) 

Na+ K+ Mg++ Ca++ CO3-- HCO3-- Cl-- So4-- N P K 

7.90 1.51 1.17 6.87 0.39 2.43 5.25 5.40 2.14 7.58 4.51 38.52 7.69 194 

 
Plant sampling, inoculum preparation, and inoculation 

Marigold samples showing powdery mildew symptoms were collected from naturally infected fields. 
Pathogenicity was performed by shaking infected parts on 60-day-old healthy plants (Yarwood, 1936), which 
were then kept under polyethylene bags for 24 h at 25 ± 2 °C and sufficient humidity necessary for successful 
infection (Koike and Saenz, 1997). Plants were checked daily for disease development. To fulfil Koch's 
postulations, the symptoms and re-isolated fungus must be morphologically identical to those originally 
observed. To prepare fungal inoculum, profusely growing conidia were carefully collected using a sterile brush 
and suspended in 100 mL of sterile distilled water mixed with 2 drops of Tween-20. The suspension was 
centrifuged at 3000 rpm for 5 min, then adjusted to 5 × 105 conidia mL-1 (Kitao and Doazan, 1989). 
Inoculation of 60-day-old healthy plants was carried out by spraying them with the prepared suspension, then 
the plants were kept under polyethylene bags as mentioned previously. Disease was assessed by estimating 
disease severity. 

 
Inoculum preparation of biocontrol agents (BCAs)  

BCAs isolates were provided by the National Research Center (NRC), Cairo, Egypt. Fungal isolates 
were cultured on PDA for a week, then the cultures were flooded in 20 mL of sterile distilled water + 0.02% 
Tween-80. The surface of the colony was gently scraped with a spatula to obtain the spores. The suspension 
was shaken, filtered, and adjusted to 1×105, 1×107, and 1×109 CFU mL-1. Bacterial isolates were grown in 
liquid nutrient broth in 250 mL flasks and shaken at 150 rpm for 3-4 days, and then bacterial cells were 
suspended in tap water and adjusted to 1×105, 1×107, and 1×109 CFU mL-1. 

 
Experimental design and layout 

In vitro study 

An in vitro assay was performed to evaluate the antifungal effect of BCAs individually and in 

combination with SN on conidial germination of G. cichoracearum. Conidia were carefully collected from 

sporulation lesions on leaves using a sterile brush and placed on sterile glass slides (Nair et al., 1999). Three 

concentrations of each BCAs (1×105, 1×107, and 1×109 CFU mL-1), sodium nitrophenolate (0.5, 1.0, and 
1.5%), and fungicide (0.15, 0.20, 0.25 mLL-1) were made. In combination treatments, BCAs and SN were 
prepared separately and then mixed in a 1:1 (v/v) ratio. Two drops of each concentration were applied to the 

conidia, and the slides were then placed on U-shaped glass rods in sterile Petri dishes (9 cm diameter) 
containing sterile cotton moistened with water to provide the necessary moisture for germination. Conidia 
treated with sterile distilled water only were used as a control. Three replicates were used/treatment and three 
Petri dishes/replicate. Plates were incubated at 25 ± 1 °C for 48 h. Germinated conidia were counted using a 
hemocytometer, then Germination of conidia (GC) and inhibition were calculated according to the following 
equations: 

�� % = [(�	. 	� �
������
� �	�����/ �	��� �	. 	� �	�����) ×  100] 
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��ℎ� ���	� % = [(�� �� �	���	� − �� �� ��
���
��/ �� �� �	���	�) ×  100] 

 
Greenhouse experiments  
During the 2021/2022 season, greenhouse trials were designed to evaluate the efficacy of four BCAs 

individually and in combination with sodium nitrophenolate (SN) to control marigold powdery mildew. Trials 
were conducted in a randomized complete block design (RCBD), with 11 treatments, 3 replicates/treatment, 
and 3 pots/replicate. Marigold seedlings, 45 days old and 15 cm high, were transplanted into 30 cm diameter 
pots, filled with sterilized sandy loam soil (1:3 w/w) at a rate of one seedling/pot. After 15 days of transplanting, 
inoculation with a suspension of G. cichoracearum spores (5 × 105 CFU mL-1) was performed as mentioned 

before. One week after inoculation, the plants were sprayed three times at an interval of 15 days with the 
following treatments: (T1): control (untreated plants); (T2): propiconazole fungicide (0.25 mLL-1); (T3): SN 
(1.5%); (T4): B. megaterium (1×109 CFU mL-1); (T5): T. viride (1×109 CFU mL-1); (T6): P. fluorescens (1×109 

CFU mL-1); (T7): T. harzianum (1×109 CFU mL-1); (T8): B. megaterium (1×109 CFU mL-1) + SN (1.5%); 

(T9): T. viride (1×109 CFU mL-1) + SN (1.5%); (T10): P. fluorescens (1×109 CFU mL-1) + SN (1.5%); and 

(T11): T. harzianum (1×109 CFU mL-1) + SN (1.5%). Powdery mildew severity was assessed 10, 20, 30, and 

40 days after the last application, and then the area under disease progress curve was calculated. 
 
Field experiments 
Two successive experiments were carried out in the field during the 2021/2022 and 2022/2023 seasons. 

The experiments were arranged in RCBD, with three repetitions. Each plot consists of 5 rows, each 3.5 m long 
and 0.7 m wide. Marigold, 45 days old and 15 cm high, was transplanted at a distance of 25 cm from each other. 
The plants were left for natural infection with the disease, and as soon as the first symptoms of powdery mildew 
appeared on the plants, they were sprayed with the previous treatments three times at an interval of 15 days. 
Powdery mildew severity and AUDPC were calculated as in the greenhouse experiments. 

 
Experiment evaluations 

Disease assessment 
The severity of powdery mildew on marigold was measured using the scale described by Prakash and 

Saharan (1999) with minor modifications. The scale ranged from 0 to 5 ratings based on the area of plant 
covered by powdery mildew (%) as follows: 0 = disease free, 1 = 1 – 10%, 2 = 11 – 25%, 3 = 26 – 50%, 4 = 51 
– 75%, and 5 = more than 75%. Disease severity was calculated by the following formula given by Liu et al. 
(2001); 

"�#
�#
 #
$
���% ("&)% =  
∑ � ×  $

5 �
 ×  100 

Where n = number of plants in each numerical rating, v = numerical rating, and N = total number of 
plants examined. 

Based on the recorded data of disease severity values, the disease reduction (DR) rate was calculated as 
in the following equation: 

") % = [("& �� �	���	� –  "& �� ��
���
��/ "& �� �	���	�)  ×  100] 

The area under disease progress curve (AUDPC) was calculated using the following equation proposed 
by Pandey et al. (1989): 

+,"-� = " [1/2 (/1 + /1)  + /2 + /3 + ⋯ /1 − 1] 

Where D = intervals between successive records, Y1 = first disease score, YK = last disease score, and 
Y2, Y3, YK-1 = intermediate disease scores. 
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Morphological and flowering parameters 
At the end of the growing season (late April), some morphological parameters were recorded as follows: 

plant height (cm), number of main branches/plant, number of leaves/plant, and leaf area (cm2). During the 
flowering stage (from the beginning of December to the end of April), some flowering parameters were 
measured, such as the number of inflorescences/plant, the diameter of the inflorescences (cm), the number of 
ray flowers/inflorescence, and the fresh and dry weight of 100 inflorescences (g). 

 
Photosynthetic leaf pigments  
Chlorophyll and carotenoids in fresh leaves were evaluated using the method described by Lichtenthaler 

(1987). 0.2 g of sample was homogenized in 10 mL of 80% acetone. The mixture was filtered, then 
supplemented to 15 mL by adding acetone. The absorbance of the supernatant was measured at 663.2, 646.8, 
and 470 nm. Pigments were evaluated using the next equations: 

Chlorophyll-a (mg/mL) = (12.5 A663.2) – (2.79 A653) 
Chlorophyll-b (mg/mL) = (21.51 A646.8) – (5.1 A663.2) 
Carotenoids (mg/mL) = (1000 A470) – (1.8 Chl. a) – (85.02 Chl. b) 
Photosynthetic Pigment (mg/g FW) = (C – V/1000 – W) 
Where C = conc. of pigment, V = volume of acetone (mL), and W = sample weight (g) 
 
Biochemical parameters 

Total phenolic compounds (TPC) 
Quantification of total phenolic compounds was done colorimetrically using the Folin-Ciocalteu’s 

reagent, following the method described by Georgé et al. (2005). Samples (stems and leaves) were collected, 

dried at 65 oC for 48 h, and stored at 25 oC in the dark before extraction. 1.0 g of dried material was extracted 
in 10 mL of 70% ethanol. The extract was shaken at 120 rpm for 2 h on 30 oC and then centrifuged at 1013 × 
g for 10 min. About 0.2 mL of the extract was mixed with 1.0 mL of Folin-Ciocalteu’s reagent 1:10 and 0.8 mL 
of 7.5% NaCO3. After 30 min of rest in the dark, the absorbance was read at 760 nm, using gallic acid as a 
standard. Results were expressed as mg of gallic acid equivalent per 100 g of dry weight. 

 
Polyphenol oxidase (PPO) activity 
PPO activity in fresh leaves was assessed using the method of Mayer et al. (1965). The sample (1.0 g) 

was homogenized in 2 mL of 0.1 M sodium phosphate buffer (pH 6.5), and the mixture was then centrifuged 
at 16,000× g for 15 min at 4 oC. The reaction mixture involved 0.2 mL of supernatant and 1.5 mL of 0.1 M 
sodium phosphate buffer (pH 6.5). To begin the reaction, 0.2 mL of 0.1 M catechol was added to the mixture. 
The change in absorbance was recorded at 30 s intervals for up to 3 min at 495 nm. Results were reported as 
PPO mg protein-1 min-1. 

 
Free proline (FP) content 
Free proline was quantified by the method of Bates et al. (1973). A known amount of dry matter (about 

100 mg) was homogenized in 3% (w/v) 5-sulfosalicylic acid. The extract was reacted with glacial acetic acid and 
acidic ninhydrin reagent at 100 °C for 1h. Toluene was used to extract the reaction mixture, and the absorbance 
was read at 520 nm. Results were reported as FP μ mole g-1 of dry weight. 

 
Statistical analyses 

Data obtained were statistically analysed through ANOVA, by Web Agriculture Stat Package software 
(WASP 2.0, Central Coastal Agricultural Research Institute, Goa, India). The values given are the means of all 
recorded measurements. A combined analysis of data noticed over the two study seasons and Duncan’s range 
test were applied to compare significant differences between treatments at p≤ 0.05 (Gomez and Gomez, 1984). 
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To test the relationships between all measured variable parameters and treatments, a hierarchical cluster 
analysis was performed using Statgraphics XVII software version 17.20. 

 
 
ResultsResultsResultsResults    
 
Activity of biocontrol agents individually and in combination with sodium nitrophenolate against conidial 

germination of G. cichoracearum in vitro  

Data presented in Table 2 reveal that all combination or individual treatments significantly inhibited 
the germination of G. cichoracearum conidia compared to control. The highest inhibition was recorded by T. 

harzianum + SN at 1000 ppm, followed by T. viride + SN, B. megaterium + SN, P. fluorescens + SN, and T. 

harzianum at the same concentration. The corresponding inhibition values were 83.6, 79.1, 70.6, 64.5, and 

61.6%, respectively. While the lowest inhibition was recorded by P. fluorescens at 250 ppm (20.4%). Complete 

inhibition of conidia was achieved by propiconazole fungicide at all tested concentrations. 
 
Table 2. Table 2. Table 2. Table 2. Effect of BCAs individually and in combination with SN on conidial germination of G. 

cichoracearum, after 48 h of incubation at 25 ± 1 °C 

TreatmentsTreatmentsTreatmentsTreatments    

Conidial Conidial Conidial Conidial ggggermination %ermination %ermination %ermination %    * Inhibition %* Inhibition %* Inhibition %* Inhibition %    

Concentration Concentration Concentration Concentration aaaapplied (ppm)pplied (ppm)pplied (ppm)pplied (ppm)    Concentration Concentration Concentration Concentration aaaapplied pplied pplied pplied (ppm)(ppm)(ppm)(ppm)    

AAAA    BBBB    CCCC    AAAA    BBBB    CCCC    

Control 24.5 ± 0.7 a 24.5 ± 0.7 a 24.5 ± 0.7 a – – – 

Propiconazole 0.0 ± 0.0 h 0.0 ± 0.0 i 0.0 ± 0.0 k 100 100 100 

SN 15.9 ± 1.8 c 12.3 ± 0.4 e 10.7 ± 0.3 e 35.1 49.7 56.3 

B. megaterium 17.1 ± 1.2 c 14.3 ± 0.3 c 13.5 ± 0.3 c 30.2 41.6 44.8 

T. viride 16.2 ± 1.1 c 13.5 ± 0.3 d 11.4 ± 0.5 d 33.8 44.8 53.5 

P. fluorescens 19.5 ± 0.7 b 17.4 ± 0.7 b 15.3 ± 0.2 b 20.4 28.9 37.5 

T. harzianum 14.0 ± 0.6 d 11.2 ± 0.4 f 9.4 ± 0.2 f 42.8 54.2 61.6 

B. megaterium + SN 11.5 ± 0.6 e 9.1 ± 0.3 g 7.2 ± 0.5 h 53.1 62.8 70.6 

T. viride + SN 10.1 ± 0.3 f 7.5 ± 0.2 h 5.1 ± 0.3 i 58.7 69.3 79.1 

P. fluorescens + SN 13.0 ± 0.3 d 11.2 ± 0.4 f 8.7 ± 0.3 g 46.9 54.2 64.5 

T. harzianum + SN 7.9 ± 0.3 g 7.1 ± 0.2 h 4.0 ± 0.3 j 67.7 71.0 83.6 
Data represent the mean of three replicates ± standard deviation (SD). Means with different letters represent a 

significant difference at the statistical level p ≤ 0.05 between the treatments according to Duncan’s multiple range test. 

A = 1×105 CFU mL-1, B = 1×107 CFU mL-1, C = 1×109 CFU mL-1, and SN = sodium nitrophenolate. * Inhibition 
values were calculated based on control value.  

 
Potential of biocontrol agents individually and in combination with sodium nitrophenolate in reducing 

powdery mildew severity and AUDPC in the greenhouse  

Data presented in Table 3 show that all treatments applied in the greenhouse significantly reduced the 
severity of powdery mildew 10, 20, 30, and 40 days after the last application, and also significantly reduced the 
area under disease progress curve (AUDPC) compared to the control. Moreover, combination treatments had 
a better disease control response than individual treatments. The highest reduction in disease was recorded by 
T. harzianum + SN, followed by propiconazole, T. viride + SN, B. megaterium + SN, and P. fluorescens + SN 

as follows: 83.7, 82.7, 75, 71.7, and 70.2%, respectively. In addition, intermediate values of 61.8, 59.4, 57.1, and 
53.1% were recorded by T. harzianum, SN, T. viride, and B. megaterium, respectively. While P. fluorescens 

ranked lowest (45.9%). 
 



Ahmed HFA et al. (2024). Not Bot Horti Agrobo 52(1):13589 

 

8 

 

 

 

 

 

 

Table 3. Table 3. Table 3. Table 3. Effect of BCAs individually and in combination with SN on the severity of marigold powdery 
mildew and AUDPC during the 2021/2022 season in the greenhouse 

TreatmentsTreatmentsTreatmentsTreatments    

Disease Disease Disease Disease sssseverity %everity %everity %everity %    

AUDPCAUDPCAUDPCAUDPC    
* * * * Disease Disease Disease Disease 

Reduction %Reduction %Reduction %Reduction %    
Period after last application (Days)Period after last application (Days)Period after last application (Days)Period after last application (Days)    

10 Days10 Days10 Days10 Days    20 Days20 Days20 Days20 Days    30 Days30 Days30 Days30 Days    40 Days40 Days40 Days40 Days    

Control 12.3 ± 0.7 a 34 ± 3.6 a 48.2 ± 3.4 a 62.1 ± 1.5 a 1194 ± 37.3 a – 

Propiconazole 3 ± 0.4 g 5.7 ± 0.3 f 8.1 ± 0.4 g 10.3 ± 0.4 i 204.5 ± 22.3 h 82.7 

SN 9.3 ± 0.8 c 14 ± 0.6 cd 18.3 ± 0.6 d 22 ± 1.1 de 479 ± 26.5 de 59.4 

B. megaterium 10.3 ± 0.3 b 15.7 ± 0.7 c 21.1 ± 0.8 c 26.3 ± 1.5 c 551 ± 16.6 c 53.1 

T. viride 9.7 ± 0.3 bc 15 ± 1.0 cd 19.3 ± 0.6 cd 23.1 ± 1.2 d 507 ± 9.4 d 57.1 

P. fluorescens 10 ± 0.3 b 18 ± 0.5 b 25 ± 0.9 b 31.7 ± 1.7 b 638.5 ± 7.0 b 45.9 

T. harzianum 8.3 ± 0.3 d 13.1 ± 0.4 d 17.3 ± 0.5 d 21 ± 1.0 e 450.5 ± 12.7 e 61.8 

B. megaterium + SN 7 ± 0.3 e 10.3 ± 0.3 e 11.7 ± 0.5 ef 15.3 ± 0.8 g 331.5 ± 12.0 f 71.7 

T. viride + SN 5.3 ± 0.3 f 9.7 ± 0.3 e 11 ± 0.4 f 13.1 ± 0.5 h 299 ± 11.5 g 75.0 

P. fluorescens + SN 7.3 ± 0.2 e 9.1 ± 0.3 e 13.3 ± 0.6 e 17 ± 0.6 f 345.5 ± 5.4 f 70.2 

T. harzianum + SN 3 ± 0.4 g 5.2 ± 0.3 f 7.3 ± 0.2 g 10 ± 0.4 i 190 ± 9.1 h 83.7 

Data represent the mean of three replicates ± standard deviation (SD). Means with different letters 

represent a significant difference at the statistical level p ≤ 0.05 between the treatments according to 

Duncan’s multiple range test. SN = sodium nitrophenolate and AUDPC = the area under disease progress 
curve. * Disease reduction values were calculated based on control value. 

 
Potential of biocontrol agents individually and in combination with sodium nitrophenolate in reducing 

powdery mildew severity and AUDPC in the field  

Data provided in Table 4 demonstrate that after applying the treatments in the field, the severity of 
powdery mildew decreased significantly from 40.2% in untreated plants to 9.2% in plants treated with T. 

harzianum + SN, in the first season, and from 44.1% in untreated plants to 10.3% in plants treated with T. 

harzianum + SN, in the second season. Likewise, AUDPC decreased from 1207 in untreated plants to 274 in 

plants treated with T. harzianum + SN, in the first season, and from 1340 in untreated plants to 315 in plants 

treated with T. harzianum + SN, in the second season. In general, the highest reduction in disease was recorded 

by T. harzianum + SN, followed by propiconazole, T. viride + SN, and B. megaterium + SN. The 

corresponding reduction values were 79.3, 74.6, 73.8, and 71.4%, respectively, in the first season, and 78.9, 74.3, 
72.5, and 69.1%, respectively, in the second season. While P. fluorescens ranked lowest, recording 44.3 and 

43.1% in the first and second seasons, respectively. 
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Table 4. Table 4. Table 4. Table 4. Effect of BCAs individually and in combination with SN on the severity of marigold powdery 
mildew and AUDPC during the 2021/2022 and 2022/2023 seasons 

TreatmentsTreatmentsTreatmentsTreatments    

1111stststst    Season (2021/2022)Season (2021/2022)Season (2021/2022)Season (2021/2022)    2222ndndndnd    Season (2022/2023)Season (2022/2023)Season (2022/2023)Season (2022/2023)    

Disease Disease Disease Disease 
Severity %Severity %Severity %Severity %    

AUDPCAUDPCAUDPCAUDPC    
Disease Disease Disease Disease 

Reduction %Reduction %Reduction %Reduction %    
Disease Disease Disease Disease 

Severity %Severity %Severity %Severity %    
AUDPCAUDPCAUDPCAUDPC    

Disease Disease Disease Disease 
Reduction %Reduction %Reduction %Reduction %    

Control 40.2 ± 1.0 a 1207 ± 11.2 a – 44.1 ± 1.8 a 1340 ± 26.8 a – 

Propiconazole 9.3 ± 0.4 h 276 ± 6.5 i 74.6 10.7 ± 0.4 hi 318 ± 6.4 j 74.3 

SN 17.2 ± 0.7 d 519.5 ± 3.5 d 57.2 19.2 ± 0.7 d 579.5 ± 9.9 e 56.4 

B. megaterium 19.5 ± 1.2 c 575 ± 7.8 c 51.5 22.2 ± 2.0 c 656 ± 7.4 c 49.6 

T. viride 17.1 ± 0.4 d 510.5 ± 5.3 d 57.4 20.3 ± 1.9 d 603 ± 11.9 d 54.0 

P. fluorescens 22.4 ± 1.4 b 665 ± 7.2 b 44.3 25.1 ± 1.0 b 749 ± 6.9 b 43.1 

T. harzianum 15.1 ± 0.9 e 455 ± 9.7 e 62.4 17.1 ± 0.5 e 513.5 ± 7.1 f 61.2 

B. megaterium + SN 11.5 ± 0.4 g 342 ± 9.6 g 71.4 13.6 ± 0.8 g 404 ± 8.9 h 69.1 

T. viride + SN 10.5 ± 0.3 g 317 ± 4.8 h 73.8 12.1 ± 0.4 h 367 ± 9.9 i 72.5 

P. fluorescens + SN 13.4 ± 0.7 f 393 ± 8.9 f 66.7 15.4 ± 0.7 f 453 ± 11.8 g 65.0 

T. harzianum + SN 9.2 ± 0.3 h 274 ± 8.8 i 79.3 10.3 ± 0.6 i 315 ± 9.7 j 78.9 

Data represent the mean of three replicates ± standard deviation (SD). Means with different letters represent a 

significant difference at the statistical level p ≤ 0.05 between the treatments according to Duncan’s multiple range test. 

SN = sodium nitrophenolate and AUDPC = the area under disease progress curve. * Disease reduction values were 
calculated based on control value. 

 

Marigold morphological parameters  

Data in Figure 1 indicate that all treatments significantly improved the morphological traits of marigold. 
Combination treatments had a better effect than individual treatments. In the first season, all plants treated 
with T. harzianum + SN and SN recorded the highest values of plant height (90.3 cm in each), followed by 

those treated with propiconazole (87.3 cm), B. megaterium + SN (83.7 cm), P. fluorescens + SN (82.3 cm), and 

T. viride + SN (81 cm). While plants treated with B. megaterium recorded the lowest value (69.7 cm) (Figure 

1A). In addition, the highest number of main branches/plant was recorded by T. harzianum + SN, followed 

by propiconazole, SN, and T. viride + SN as follows: 13.7, 13.3, 10.7, and 10.3, respectively, in contrast to P. 

fluorescens had the lowest value (6.7) (Figure 1B). Also, T. harzianum + SN, propiconazole, and T. viride + SN 

recorded the best results for number of leaves/plant as follows: 168.3, 160.3, and 155.7, respectively. While P. 

fluorescens recorded the lowest value (107.3) (Figure 1C). Similarly, the highest leaf area was found in plants 

treated with propiconazole, followed by T. harzianum + SN, SN, T. viride + SN, B. megaterium + SN, and P. 

fluorescens + SN, recording 41.3, 41.2, 39.7, 39.5, 37, and 36.1 cm2, respectively. While P. fluorescens ranks 

lowest (28.7 cm2) (Figure 1D). In the second season, the treatments: SN, T. harzianum + SN, propiconazole, 

and B. megaterium + SN achieved the highest values for plant height as follows: 87.3, 87, 85, and 81.7 cm, 

respectively. While B. megaterium recorded the lowest value (63.7 cm). Likewise, the best results for number 

of main branches/plant were obtained by the treatments: T. harzianum + SN, propiconazole, SN, and T. viride 

+ SN, recording 12.3, 12.3, 10, and 9.7, respectively. While the lowest value was recorded by P. fluorescens (6.7). 

In addition, plants treated with propiconazole, T. harzianum + SN, SN, and T. viride + SN recorded the 

highest number of leaves/plant as follows: 157, 154, 149.3, and 140.3, respectively. While P. fluorescens 

recorded the lowest value (97.3). The highest leaf area values were achieved by T. harzianum + SN, 

propiconazole, T. viride + SN, B. megaterium + SN, and SN as follows: 41.5, 40.1, 38.5, 38.1, and 37.5 cm2, 

respectively. While P. fluorescens recorded the lowest value (26.5 cm2). 
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Figure 1.Figure 1.Figure 1.Figure 1. Effect of treatments on the morphological parameters of marigold: (A) plant height; (B) no. of 
main branches/plant; (C) no. of leaves/plant; and (D) leaf area, during the 2021/2022 and 2022/2023 
seasons 
Vertical bars represent the mean of three replicates ± standard deviation (SD). Means with different letters represent 

a significant difference at the statistical level p ≤ 0.05 between the treatments according to Duncan’s multiple range 

test. 

 
Marigold flowering parameters  

As shown in Figure 2, all treatments led to a significant improvement in flowering traits of marigold. 
Combination treatments had a better effect than individual treatments. In the first season, the highest number 
of inflorescences/plant was recorded in plants treated with T. harzianum + SN, followed by T. viride + SN, 

propiconazole, and B. megaterium + SN as follows: 191, 180.7, 180.3, and 165.1, respectively. While P. 

fluorescens ranked lowest (119) (Figure 2A). Also, the highest inflorescence diameters were recorded by T. 

harzianum + SN, T. viride + SN, propiconazole, and B. megaterium + SN as follows: 5.9, 5.6, 5.6, and 5.2 cm, 

respectively. While the lowest value was recorded by P. fluorescens (3.9 cm) (Figure 2B). In addition, the best 
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results for number of ray flowers/inflorescence were achieved by T. viride + SN, T. harzianum + SN, 

propiconazole, and B. megaterium + SN, recording 54.7, 54.3, 54, and 50.1, respectively. While P. fluorescens 

recorded the lowest value (39) (Figure 2C). The results also show that the highest fresh weights of 100 
inflorescences were recorded by T. harzianum + SN, propiconazole, T. viride + SN, and B. megaterium + SN 

as follows: 370.3, 362.1, 359.3, and 340.1 g, respectively. While P. fluorescens recorded the lowest value (249.7 

g) (Figure 2D). Likewise, the highest dry weights of 100 inflorescences were recorded by T. harzianum + SN, 

T. viride + SN, propiconazole, and B. megaterium + SN as follows: 80.1, 78.4, 78.1, and 74.5 g, respectively. 

While P. fluorescens was found in the lowest ranking (54 g) (Figure 2E). In the second season, plants treated 

with T. harzianum + SN, T. viride + SN, propiconazole, and B. megaterium + SN achieved the best results for 

the number of inflorescences/plant as follows: 183.3, 171, 169, and 157.3, respectively. While P. fluorescens was 

found in the lowest ranking (112.3). In addition, the highest values of inflorescence diameter were achieved by 
T. harzianum + SN, propiconazole, T. viride + SN, and B. megaterium + SN, recording 5.5, 5.4, 5.3, and 5 cm, 

respectively. While P. fluorescens recorded the lowest value (3.5 cm). Similarly, plants treated with 

propiconazole, T. harzianum + SN, T. viride + SN, and B. megaterium + SN recorded the highest values for 

the number of ray flowers/inflorescence as follows: 52.3, 51.7, 50.3, and 48.7, respectively. While the lowest 
values were recorded by P. fluorescens and SN (37.1 in each). As for the fresh and dry weight of 100 

inflorescences, the best results were recorded by T. harzianum + SN, propiconazole, T. viride + SN, and B. 

megaterium + SN as follows: 361, 355.2, 348.5, and 336 g, respectively in FW, and 78.4, 77.3, 75.3, and 73 g, 

respectively in DW. While the lowest values (241.7 and 52 g) were recorded by P. fluorescens in FW and DW, 

respectively. 
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Figure 2.Figure 2.Figure 2.Figure 2. Effect of treatments on the flowering parameters of marigold: (A) no. of inflor./plant; (B) 
diameter of inflor.; (C) no. of ray flowers/inflor.; (D) 100 inflor. FW; and (E) 100 inflor. DW, during the 
2021/2022 and 2022/2023 seasons 
Vertical bars represent the mean of three replicates ± standard deviation (SD). Means with different letters represent 

a significant difference at p ≤ 0.05 between the treatments according to Duncan’s multiple range test. 

 
Chlorophyll a, chlorophyll b, and carotenoids  

Data in Figure 3 show that all treatments resulted in a significant increase in the content of chlorophyll 
a, chlorophyll b, and carotenoids. In the first season, the highest values of these pigments were found in plants 
treated with T. harzianum + SN, T. viride + SN, SN, B. megaterium + SN, and propiconazole as follows: 9.15, 

8.63, 8.14, 7.52, and 7.43 mg g−1 leaf FW, respectively in chl. a (Figure 3A), 4.37, 4.21, 4.07, 3.98, and 3.77 mg 
g−1 leaf FW, respectively in chl. b (Figure 3B), and 0.98, 0.91, 0.84, 0.79, and 0.75 mg g−1 leaf FW, respectively 
in carotenoids (Figure 3C). On the contrary, plants treated with P. fluorescens recorded the lowest values of 

5.22, 2.5, and 0.42 mg g−1 leaf FW for chl. a, chl. b, and carotenoids, respectively. In the second season, plants 
treated with T. harzianum + SN, T. viride + SN, SN, B. megaterium + SN, and propiconazole achieved the 

highest chl. a (8.72, 8.55, 7.33, 7.24, and 7.10 mg g−1 leaf FW, respectively), chl. b (4.20, 4.02, 3.89, 3.80, and 
3.80 mg g−1 leaf FW, respectively), and carotenoids (0.93, 0.90, 0.80, 0.77, and 0.72 mg g−1 leaf FW, 
respectively). Conversely, plants treated with P. fluorescens had the lowest values for chl. a, chl. b, and 

carotenoids as follows: 5.03, 2.47, and 0.40 mg g−1 leaf FW, respectively. 
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Figure 3.Figure 3.Figure 3.Figure 3. Effect of treatments on (A) chlorophyll-a; (B) chlorophyll-b; and (C) carotenoids of marigold, 
during the 2021/2022 and 2022/2023 seasons 
Vertical bars represent the mean of three replicates ± standard deviation (SD). Means with different letters represent 

a significant difference at p ≤ 0.05 between the treatments according to Duncan’s multiple range test. 

 
Marigold biochemical components  

As shown in Figure 4, all treatments significantly changed the biochemical components of marigold. In 
the first season, the highest contents of total phenolic compounds were recorded in plants treated with T. 

harzianum + SN, T. viride + SN, and propiconazole as follows: 365, 350, and 340 mg 100 g-1 DW, respectively. 

While the lowest content was recorded by P. fluorescens (254 mg 100 g-1 DW) (Figure 4A). Regarding 

polyphenol oxidase, the highest activity was recorded by T. harzianum + SN, followed by T. viride + SN, B. 

megaterium + SN, and P. fluorescens + SN as follows: 0.84-, 0.80-, 0.76-, and 0.72-unit mg protein-1 min-1, 

respectively. While P. fluorescens recorded the lowest activity (0.55-unit mg protein-1 min-1) (Figure 4B). In 

addition, the lowest amount of free proline was recorded in plants treated with T. harzianum + SN, followed 

by propiconazole, T. viride + SN, and B. megaterium + SN. The corresponding free proline values were 1.93, 

2.10, 2.30, and 2.45 μ mole g-1 DW, respectively. While the highest amounts of 4.79 and 3.86 μ mole g-1 DW 
were recorded by control and P. fluorescens, respectively (Figure 4C). In the second season, treatments of T. 

harzianum + SN, T. viride + SN, B. megaterium + SN, and propiconazole recorded the highest content of total 

phenolic compounds as follows: 354, 339, 328, and 326 mg 100 g-1 DW, respectively. While P. fluorescens 

recorded the lowest content (259 mg 100 g-1 DW). Concerning the activity of polyphenol oxidase, the 
maximum level was recorded by T. harzianum + SN, followed by T. viride + SN, B. megaterium + SN, P. 

fluorescens + SN, and propiconazole, recording 0.78, 0.73-, 0.70-, 0.67-, and 0.66-unit mg protein-1 min-1, 

respectively. While P. fluorescens ranked lowest (0.48-unit mg protein-1 min-1). In addition, treatments of T. 
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harzianum + SN, propiconazole, T. viride + SN, and B. megaterium + SN recorded the lowest amounts of free 

proline as follows: 2.44, 2.59, 2.80, and 2.96 μ mole g-1 DW, respectively. Conversely, the highest amounts of 
5.62 and 4.10 μ mole g-1 DW were recorded by control and P. fluorescens, respectively.  
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Figure 4.Figure 4.Figure 4.Figure 4. Effect of treatments on the biochemical components of marigold: (A) total phenolic compounds 
(TPC); (B) polyphenol oxidase (PPO) activity; and (C) free proline (FP), during the 2021/2022 and 
2022/2023 seasons 
Vertical bars represent the mean of three replicates ± standard deviation (SD). Means with different letters represent 

a significant difference at the statistical level p ≤ 0.05 between the treatments according to Duncan’s multiple range 

test. 

 
Correlations 

Data in Figure 5 show that the hierarchical analysis divided the study treatments into 3 main groups. 
The first group (T8, T9, T2, and T11) showed higher performance compared to the second group (T7, T5, 
T10, T3, T6, and T4). While T1 was clustered in the third group. The first group was clustered into two 
subgroups (T11 and T2) and (T8 and T9), while the second main group was clustered into two subgroups (T7, 
T5, T10, and T3) and (T6 and T4). Therefore, the use of biocontrol agents, especially combined with sodium 
nitrophenolate, significantly reduced the severity of powdery mildew and improved all growth, productivity, 
and biochemical parameters of marigold compared to untreated plants under in vivo conditions. 
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Figure 5.Figure 5.Figure 5.Figure 5. Heat map correlation graph showing the hierarchical clustering analysis between the studied 
parameters and treatments as an average of two seasons 
The colors represent variations in the data. Severity = disease severity, AUDPC = the area under disease progress curve, 
Height = plant height, Branches = no. of main branches/plant, Leaves = no. of leaves/plant, Leaf area = leaf area, 
Inflores = no. of inflorescences/plant, Diameter = diameter of inflo., Ray = no. of ray flowers/inflo., FW.100 = fresh 
weight of 100 inflo., DW.100 = dry weight of 100 inflo., Chl-b = chlorophyll a, Chl-b = chlorophyll b, Car = 
carotenoids, TPC = total phenolic compounds, PR = proline, and PPO = polyphenol oxidase activity. 

 
    
DiscussionDiscussionDiscussionDiscussion    
 
Powdery mildew caused by G. cichoracearum (DC.) V.P. Heluta, is one of the most destructive diseases 

of marigold in greenhouse and field (Mir et al., 2012; Abdel-Wahed and Shaker, 2020). Losses due to this 

disease range from 37 to 51% in flower productivity (Abdel-Wahed and Shaker, 2020). Although fungicides 
provide easy management of plant diseases, the negative effects associated with their frequent use have led to 
reduced reliance on them. This paper discusses the use of four BCAs individually or in combination with SN 
to control this disease. Our results revealed that all treatments significantly inhibited conidial germination of 
G. cichoracearum compared to control. These results are in harmony with those of Sarhan et al. (2020), who 

found that Podosphaera xanthii conidia treated with culture filters of T. harzianum, T. viride, and B. subtilis, 

showed a significant reduction in conidial germination. Likewise, E. heraclei conidia treated with B. subtilis, B. 

pumilus, and B. megaterium showed a significant decrease in germination rate and germ tube length (Ahmed et 

al., 2021). In addition, Hafez et al. (2018) reported that treatment of P. xanthii conidia with B. megaterium, 

B. pumilus, and Paenibacillus polymyxa inhibited germination by 98.5, 95.2, and 90.7%, respectively. The 

activity of BCAs against conidia germination can be attributed to their ability to synthesize of antibiotics 
and/or other antimicrobial substances, such as hydrolytic enzymes, hydrogen cyanide, and siderophores. These 
substances degrade conidia cell walls or inhibit enzymes needed to complete the germination (Prasannath, 
2017; Rais et al., 2017). 

Our results showed that all treatments applied in vivo significantly reduced powdery mildew severity 

and AUDPC compared to the control. In this regard, the most effective treatments were T. harzianum + SN, 

propiconazole, T. viride + SN, B. megaterium + SN, and P. fluorescens + SN. These results are consistent with 
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those of Ahmed et al. (2021), who found that foliar application of B. subtilis, and B. megaterium significantly 

reduced the severity of celery powdery mildew and AUDPC. Similarly, Esawy et al. (2021) reported that among 

five BCAs, T. koningii, T. harzianum, and B. subtilis were the most efficient in reducing the severity of 

sunflower powdery mildew and AUDPC. In addition, Hafez et al. (2018) found that application of B. subtilis, 

B. megaterium, T. harzianum, and T. viridi significantly reduced the severity of squash powdery mildew and 

AUDPC. Many reports have demonstrated the potential of Trichoderma spp. as effective biocontrol agents 

against powdery mildew of celery, vineyards, and sunflower (Ahmed et al., 2021; Sawant et al., 2017; Esawy et 

al., 2021). More than 250 Trichoderma-based biofungicides are currently commercially available worldwide 

(Mukherjee et al., 2014). Biological control mechanisms for these fungi include mycoparasitism, competition 

for nutrients and space, and induction of systemic and local plant resistance (Brunner et al., 2005). They also 

have the ability to produce antibiotics (i.e. viridin, gliotoxin, gliovirin, pyrones, and peptaibols) and cell wall-
hydrolytic enzymes (i.e. chitobiosidase, endochitinase, glucan 1,3-β-glucosidase, and n-acetyl-β-
glucosaminidase) (Vey et al., 2001). Similarly, the antifungal activity of Bacillus spp. against powdery mildew 

fungi has been demonstrated (Ahmed et al., 2021; Hashem et al., 2019; Hafez et al., 2018). This activity is 

attributed to their ability to synthesize a variety of antibiotics such as iturin, surfactin, and fengicin, which 
exhibit growth inhibitory effects on many plant pathogens (Kim et al., 2010). Some species have the ability to 

synthesize cyclic peptides, total proteins, and cell wall-degrading enzymes (Schreiber et al., 1988). In addition 

to its ability to synthesize siderophores, plant hormones, volatile compounds, and lipopeptides, that stimulate 
growth and immune responses in plants (Franco-Sierra et al., 2020). Our results also showed that treatments 

of BCAs combined with sodium nitrophenolate (SN) had a better disease control response than those without 
SN. This may be due to the multiple positive effects of SN on stimulating growth, increasing productivity, and 
improving quality (Michalski et al., 2008). In addition to its protective role against various abiotic stresses 

(Borowski and Michałek, 2009). Although sodium nitrophenolate is registered in the European Union as a 
pesticide for some crops, knowledge about its potential in plant disease management is still limited. It was found 
that the use of SN (0.1%) achieved positive results in reducing some plant diseases, such as powdery mildew in 
roses, chrysanthemum rust, rose black spot, and willow rust (Wojdyla, 2004; Oluoch, 2022).  

In our study, all treatments significantly improved the growth and productivity parameters of marigold. 
These results are consistent with those of Sarhan et al. (2020), who found that cucumber treated with BCAs 

showed a significant increase in plant height, weight and number of fruits. Also, Ahmed et al. (2021) found 

that foliar application of BCAs significantly improved celery plant height, number of leaves and umbels, and 
weight of herb and fruits. Likewise, Ahmed et al. (2023) found that roselle treated with a mixture of B. subtilis, 

Gliocladium catenulatum, and T. asperellum showed significant improvement in plant height, number of 

branches and fruits, and weight of sepals and seeds. Many reports have shown the potential of Bacillus spp. and 

Pseudomonas spp. to improve the growth and productivity of many crops. This ability may be attributed to 

their ability to synthesize phytohormones and siderophores, produce amino acids, vitamins and antioxidants, 
and form biofilms (Khalil et al., 2017). They also stimulate the plant to produce ACC-deaminase enzymes that 

reduce ethylene synthesis in the roots (Gupta and Pandey, 2019). These bacteria mainly contribute to nitrogen 
fixation and phosphorus availability to plants, and produce plant growth regulators, such as cytokinin, 
gibberellic acid, and indole-3-acetic acid (Wang et al., 2017; Singh et al., 2018). They also promote plant growth 

indirectly by eliminating biotic stresses on plants caused by pathogens through the production of a wide range 
of antibiotics, cell wall-degrading enzymes, phenolics, and signaling compounds (Prasannath, 2017). In a 
similar vein, extensive studies have indicated the role of plant growth-promoting fungi (PGPFs) such as 
Trichoderma spp. in enhancing the growth and productivity of crops, and indicated that they produce 

hormones that aid in the interaction between soil and plant, thus decompose organic matters and dissolve 
minerals (Altomare et al., 1999). They also play an active role in improving plant growth and vitality indirectly 

as effective biocontrol agents against a wide range of pathogens (Kumar, 2013). They also directly stimulate 
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plant growth by enhancing stress tolerance, active uptake of nutrients, supplying plants with many secondary 
metabolites, enzymes, and PR proteins, in addition to producing plant growth stimulants such as gibberellic 
acid (Al-Askar et al., 2016; Prasannath, 2017). Our results also showed that BCAs combined with SN had a 

better effect in improving the growth and productivity parameters of marigold than those without SN. Many 
studies have shown similar results for improving the growth of cotton and maize (Djanaguiraman et al., 2005; 

Batool et al., 2022). This potential of SN as a biostimulant may be due to one/or more of the following modes 

of action: (1) increased activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. 
These enzymes search for harmful reactive oxygen species (ROS), which oxidize polysaccharides, proteins and 
nucleic acids (Matysik et al., 2002); (2) increased auxin concentration and inhibition of IAA oxidase activity, 

ensuring higher activity of naturally synthesized auxins (Przybysz et al., 2010); (3) enhancing the uptake of 

some nutrients such as K, Ca, and Mg (Guo and Oosterhuis, 1995); (4) increased photosynthesis intensity by 
up to 24.3%, reduced membrane leakage by 34.5%, and increased transpiration rate, but without a decrease in 
relative water content (Borowski and Michałek, 2009); and (5) increased activity of nitrate reductase, an 
essential enzyme in nitrogen metabolism (Sharma et al., 1984). 

Our study showed that all treatments led to a significant increase in the content of chlorophyll a, 
chlorophyll b, and carotenoids. These findings are consistent with those of Ahmed et al. (2021), who found 

that celery treated with BCAs showed a significant increase in chlorophyll and carotenoid pigments. Gaafar et 

al. (2021) also found that roselle treated with the mixture of P. fluorescens, B. subtilis, and Pleurotus ostreatus 

showed a significant increase in the content of photosynthetic pigments compared to the untreated ones. In 
fact, the activity of BCAs in increasing photosynthetic pigments can be attributed to their ability to stimulate 
the increase of hormones and the uptake of some minerals such as Fe and Mn needed for chlorophyll synthesis 
(Ben Maachia et al., 2013). In addition to its ability to stimulate the formation of pyridoxal enzymes, which 

play a vital role in the biosynthesis of the beta-aminolevulinic compound necessary for the synthesis of 
chlorophyll (Adil et al., 2017). Our results also showed a significant increase in total phenolic compounds in 

response to the effects of the treatments. These results are consistent with those of Yousef (2021), who found 
that the highest content of total phenols was recorded in sunflower treated with the mixture of T. harzianum 

and salicylic acid. Similarly, Sarhan et al. (2020) reported that cucumber treated with BCAs showed a 

significant increase in total phenols content compared to untreated plants. In general, the synthesis of phenolic 
compounds is a defensive response to pathogen attack, and may be formed before infection (Goodman et al., 

1986). Phenols exert protection against pathogens through several mechanisms, such as affecting the 
physiology, morphology, and ultrastructure of pathogen, or by enhancing systemic plant resistance (Mohamed 
et al., 2016). They also activate both resistance genes in plants and pathogen toxicity modulators (Nicholson 

and Hammerschmidt, 1992). Phenols are participate in the lignification of cell walls, thus impeding the spread 
of the pathogen in healthy tissues and reducing the transfer of nutrients from host cells to the pathogen (Zaynab 
et al., 2018). In our study, all treatments significantly increased polyphenol oxidase activity. This result is similar 

to that of Yousef (2021), who found that the highest activity of peroxidase, catalase and polyphenol oxidase 
was recorded in sunflower treated with mixture of T. harzianum and salicylic acid. Also, Sarhan et al. (2020) 

reported that cucumber treated with BCAs showed a significant increase in peroxidase and polyphenol oxidase 
activity compared to untreated plants. In general, defense-related enzymes play an important role in protecting 
plants from biotic stresses caused by fungal, bacterial and viral infections (Safdarpour and Khodakaramain, 
2018). They act as antioxidants, reducing excess ROS, which are a source of oxidative stress caused by pathogens 
(Rais et al., 2017). Several studies have reported that PPO oxidizes phenolic compounds to quinines that are 

toxic to microbes (DallAgnol et al., 2015). It contributes to the lignification of cell walls, which act as defensive 

barriers against the penetration of pathogens (Morishita et al., 2003). On the other hand, our results showed 

that all treatments significantly reduced free proline compared to untreated plants. As stated by Gull et al. 

(2019), proline level increases in plants in response to abiotic stresses such as drought, high/low temperatures, 
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salinity, heavy metal toxicity, etc., or biotic stresses such as infection with plant pathogens, which have adverse 
effects on growth, productivity and quality. However, proline accumulation is not just a stress signal, but 
improves the plant's ability to withstand various stresses by increasing photosynthesis, stimulating enzymatic 
and non-enzymatic antioxidant activities, regulating osmolyte levels, and K and Na balance (Hosseinifard et 

al., 2022). Our results also showed that BCAs combined with SN had a better effect in improving the 

biochemical traits of marigold compared to those without SN. These results are consistent with those of 
Przybysz et al. (2014), who found that foliar spray of SN improved maize physiological traits, such as relative 

leaf water (10%), chlorophylls (14%), and carotenoids (15%) under water-deficient conditions. Also, Heikal 
(2017) found that application of SN with different sources of potassium enhanced chlorophyll, total 
carbohydrate, and mineral contents of Salvia farinacea. It has also been found that SN helps reduce the level of 

oxidative stress by increasing the activities of antioxidant enzymes and total antioxidant capacity to a greater 
extent than the increase in the level of anion radicals, in addition to affecting the production of proline and 
polyols, which are involved in anti-stress mechanisms (Djanaguiraman et al., 2005).  

 
    
ConclusionsConclusionsConclusionsConclusions    
 
Our study concluded that application of BCAs individually or in combination with SN can be 

successfully used to suppress marigold powdery mildew, as they significantly inhibited conidial germination of 
G. cichoracearum in vitro, as well as disease severity and AUDPC in vivo. Combination treatments had a better 

disease control response than individual treatments. The most effective treatments were T. harzianum + SN, 

T. viride + SN, B. megaterium + SN, and P. fluorescens + SN. The treatments improved growth and 

productivity traits, as well as photosynthetic pigments, total phenolic compounds, and polyphenol oxidase 
activity, while significantly reducing free proline. 
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