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 The hydrological function of peatlands, one of which is acting as a medium 

for storing and releasing water, undergoes alteration due to degradation. 

Saturated hydraulic conductivity (Ks) is a pivotal parameter for 

comprehending the hydraulic properties of peatlands. Ks plays a crucial role 

in the transmission and release of water influenced by other peat properties. 

This research examined the impact of Ks and selected peat properties, 

namely bulk density and available water content, to depict the hydrological 

function in rewetted peatlands. The study sites are rubber plantation (RB), 

oil palm plantation (OP), and drained secondary forest (SF). Results revealed 

a significantly higher Ks in OP (106.7 cm hr-1) compared to RB                 

(19.56 cm hr-1) and DSF (15.1 cm hr-1). The hydrological function at all 

study sites was categorized as high, with minor degradation in OP and 

moderate degradation in RB and SF. Nonetheless, these findings necessitate 

fundamental interpretation and adjustment. The outcomes of this study can 

be utilized to prioritize rewetting efforts in the study sites, emphasizing the 

importance of prioritizing immature peat (fibric) with high Ks. 
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Introduction 

The global importance of peatlands as providers of 

diverse ecosystem services, from carbon storage to 

water regulation, is well documented (Jaenicke et al., 

2008; Page et al., 2011; Joosten et al., 2012; 

Murdiyarso et al., 2019a; Menberu et al., 2021). 

Peatlands face a multitude of threats stemming from 

inadequate management practices, the ever-increasing 

demands of a burgeoning population, and the 

intensifying impacts of climate change (Joosten et al., 

2012). Analyzing their physical and hydraulic 

properties can provide invaluable insights into the 

consequences of land-use changes and drainage 

regimes (Schwärzel et al., 2002; Anshari et al., 2010; 

Kechavarzi et al., 2010).  

 Land use change and artificial drainage disrupt 

the natural hydrological functions and water storage 

(Rieley, 2007; Evers et al., 2017), which is linked to 

the risk of fire and water scarcity during the dry season 

(Merten et al., 2016; Taufik et al., 2017) and the 

flooding (Hooijer et al., 2015; Wells et al., 2016). In 

addition, several peat physical properties are affected 

by this process, including total porosity (Tonks et al., 
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2017; Gusmayanti et al., 2019), water holding capacity 

(Iiyama et al., 2012; Kurnain, 2019), and saturated 

hydraulic conductivity or Ks (Iiyama et al., 2012; 

Gabriel et al., 2018; Murdiyarso et al., 2019b). Ks is 

the most important parameter in studying the hydraulic 

properties of peatlands (Morris et al., 2022; Fewster et 

al., 2023), and it has a significant impact on the 

transmission and storage of water in peat soils 

(Lennartz and Liu, 2019). 

In response to the escalating degradation of 

tropical peatlands in Indonesia, the government has 

initiated a restoration effort employing the rewetting 

program. However, the implementation of this 

program poses challenges due to various factors, 

including the intricate variability of environmental 

factors and peat properties. Knowledge concerning 

tropical peatland restoration remains at an early stage 

(Jaenicke et al., 2010). Assessing the effectiveness of 

the rewetting in reinstating the hydrological functions 

of peatland is a crucial aspect. 

Previous studies on the impact of rewetting on 

peatlands in Indonesia have focused on the 

groundwater table (GWT) and CO2 emissions 

(Ritzema et al., 2014; Sutikno et al., 2019; Putra et al., 

2022; Urzainki et al., 2023). However, there is a 

paucity of research on the impact of this process on 

other peatland hydrological functions, including the 

ability of peat to store and transport water. 

Additionally, the limitations of previous studies in 

quantifying Ks in tropical peatlands have led to 

limitations in knowledge of the water flow mechanism 

within this ecosystem (Dommain et al., 2010; 

Kurnianto et al., 2018). Therefore, this study aimed to 

fill this knowledge gap and provide further insights 

into the role of Ks and several peat hydro-physical 

properties in affecting the hydrological function of 

tropical peatlands. The results are expected to make an 

important contribution to the management and 

conservation of this ecosystem. 

Materials and Methods 

Time and study site 

This study was conducted from January to April 2023 

for field measurements and June 2023 for laboratory 

analyses. Study sites were three land uses of rewetted 

peatlands i.e. oil palm plantations (OP) at 0°10'35"S, 

109°22'38"E; rubber plantation (RB) at 0o10’37”S, 

109o22’35”E; and drained secondary forest (SF) at 

0°5'24"N, 109°25'3"E in Kubu Raya Regency, West 

Kalimantan (Figure 1). The BRGM (Badan Restorasi 

Gambut dan Mangrove; Peat and Mangrove 

Restoration Agency) is working to restore peatlands in 

all sites. This restoration is being carried out through 

rewetting with canal blocking. Peat properties analyses 

were conducted at the Soil and Water Conservation 

Laboratory of IPB University, Bogor, Indonesia. 

 

 

Figure 1. Study site (base map: Semi-detail peatland map 1:50,000 ICALRRD/BBSDLP 2019). 

Materials and tools 

The field equipment used for measurements includes 

the Eijkelkamp peat auger, Kubiēna box, and various 

field tools. A peat auger was employed for disturbed 

soil sampling for on-site peat properties analysis and 

the installation of a piezo hole. Kubiēna box was 

utilized for collecting intact soil samples for laboratory 

analyses. The Kubiēna box is 10 cm x 5 cm x 5 cm for 

length, width, and depth (modified from Anwar et al., 

2001). The box is constructed using galvanized 

material with a diameter of 0.8 mm. Note that the box 

has a larger volume than some other peat soil sampling 

equipment, such as ring samplers or Eijkelkamp 

augers. This tool is also able to preserve the mass and 
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volume of peat from external disturbances due to the 

vertical sampling process. Piezometers were 

constructed using 2-inch (5.08 cm) diameter PVC 

pipes with a length of 200 cm. The piezos were 

inserted to a depth of 180 cm, with 20 cm remaining 

above the soil surface.  

Data collection and analyses 

Ks data were collected in five plots. Five plots were 

established at 10 m intervals along a 40 m transect. For 

OP and RB, the transect was aligned with planting 

rows and extended 20-30 m far from drainage 

channels. Soil samples for peat properties were taken 

from three plots. The following soil properties were 

measured: peat decomposition rate (DR), bulk density 

(BD), total porosity (PG), and available water content 

– represented by water potential at pF 4.2 to pF 2.54 

matrix suction – (AWC).  

Daily precipitation data were collected from the 

Indonesian Meteorological, Climatological, and 

Geophysical Agency (data downloaded at: 

https://dataonline.bmkg.go.id/home). A graphical time 

series of daily precipitation was obtained using HEC-

HMS 4.11 (HEC, DA, USA). DR was measured 

directly in the field, while BD and PG were measured 

in the laboratory.  

 DR analysis was conducted using the Von Post 

humification scale (Table 1). BD and PG were 

determined using gravimetric methods at 105oC using 

UNB 400 dry oven (Memmert GmbH, DE). AWC was 

determined using a 1600F1 5 Bar Plate Extractor 

(Soilmoisture, CA, USA). DR analysis was conducted 

at every 50 cm depth interval of the peat profile until 

the mineral substratum was reached. BD, PG and 

AWC were collected between depths of 0-50 cm using 

a Kubiēna box. 

Table 1. Von Post method for measuring peat decomposition rate*. 

Symbol Description  

H1 Completely undecomposed peat, which, when squeezed, releases almost clear water. Plant remains 

easily identifiable. No amorphous material is present. 

H2 Almost entirely undecomposed peat, which, when squeezed, releases clear or yellowish water. Plant 

remains still easily identifiable. No amorphous material is present. 

H3 Very slightly decomposed peat which, when squeezed, releases muddy brown water, but from which 

no peat passes between the fingers. Plant remains still identifiable, and no amorphous material is 

present. 

H4 Slightly decomposed peat, which, when squeezed, releases very muddy brown water. No peat is passed 

between the fingers, but plant remains are slightly pasty and have lost some of their identifiable 

features. 

H5 Moderately decomposed peat, which, when squeezed, releases very muddy water with a very small 

amount of amorphous granular peat escaping between the fingers. The structure of the plant remains 

is quite indistinct, although it is still possible to recognize certain features. The residue is very pasty. 

H6  Moderately highly decomposed peat with a very indistinct plant structure. When squeezed, about one-

third of the peat escapes between the fingers. The residue is very pasty but shows the plant structure 

more distinctly than before squeezing. 

H7  Highly decomposed peat. Contains a lot of amorphous material with very faintly recognizable plant 

structure. When squeezed, about one-half of the peat escapes between the fingers. The water, if any is 

released, is very dark and almost pasty. 

H8 Very highly decomposed peat with a large quantity of amorphous material and very indistinct plant 

structure. When squeezed, about two-thirds of the peat escapes between the fingers. A small quantity 

of pasty water may be released. The plant material remaining in hand consists of residues such as roots 

and fibers that resist decomposition. 

H9 Practically fully decomposed peat in which there is hardly any recognizable plant structure. When 

squeezed, it is a fairly uniform paste. 

H10 Completely decomposed peat with no discernible plant structure. When squeezed, all the wet peat 

escapes between the fingers. 

*) This method was devised by Lennart von Post during his work on the 1926 Soil Survey of Sweden to measure the degree 

of decomposition of dead plant matter such as Sphagnum moss.  Using parameters such as fiber integrity, color and viscosity 

of exudate, and presence of colloidal particles, it creates a descriptive framework across a wide range of organic soils and 

assigns a numerical value from H1 (undecomposed) to H10 (colloidal).  The USDA/FAO compressed von Post’s 10 steps 

into three levels (fibric, hemic, and sapric), thereby reducing its diagnostic usefulness at the field scale. 

 

Ks data was measured using the auger-hole method 

(Oosterbaan and Nijland, 1994), as described in 

equation 1 (eq1). The measurements Ks and GWT 

were obtained directly from the piezometer (Figure 2). 

Peatland hydrological function was assessed using a 

modeling scheme comparing values of multiple peat 

physical properties, i.e., Ks, AWC, and BD (Lennartz 

and Liu, 2019). This model classifies peatland 

hydrology based on their ability to store and release 

water. 



 R.Y. Mahardika et al. / Journal of Degraded and Mining Lands Management 11(3):5717-5725 (2024) 

 

Open Access                                                                                                                                                        5720 

 

Ks = C (H0-Ht)/t                 ... (eq1) 

when D > ½ D2 , then C = 
4000 r h'⁄

(20+D2 r⁄ )(2-h' D2⁄ )
 ... (eq2) 

when D = 0, then C = 
3600 r h'⁄

(10+D2 r⁄ )(2-h' D2⁄ )
 ... (eq3) 

when 0 < D <½ D2, then  

C = 
4000 r h'⁄

(20+D2 r⁄ )(2-h' D2⁄ )
, h’ = 0,5 (H0+Hn)-D1 ... (eq4) 

where: 

Ks :  saturated hydraulic conductivity (cm hr-1) 

C :  coefficient permeability 

T :  elapsed time (s) 

Ht :  GWT depth from reference at time t (cm) 

H0 :  GWT depth at time zero (cm) 

D :  distance impermeable layer to piezo 

bottom (cm) 

D1 :  GWT depth below reference (cm) 

D2 :  distance of piezo bottom to GWT (cm) 

R :  hole radius (cm) 

h’ :  average GWT within the hole (cm), h' 

>D2/5 

Hn :  GWT inside the hole after pumping (cm) 

 

All data were analyzed using descriptive statistics. The 

statistical significance of the differences between sites 

was assessed with one-way ANOVA with a 

significance level of 95%. The statistical analyses were 

obtained using SPSS Statistics 25 (IBM, NY, USA). 

 

 

Figure 2. Auger-hole method. 

Results 

Peat properties 

The 50 cm profile is predominantly composed of 

sapric (mature peat) in RB and SF, while fibric 

(immature peat) in OP. These contrasting DR levels 

significantly influence other peat properties (Table 2). 

The mean of BD and PG in OP is significantly lower 

than the mean BD value in RB and SF (p=0 for BD and 

p=0.001 for PG). AWC across all sites is not 

significantly different, with a p-value of 0.789.  

Ks, GWT, and precipitation 

Ks exhibited significant spatial variability across the 

study sites. Measurements indicated a clear disparity 

in Ks values. The average Ks values in RB, OP, and SF 

were cm hr-1 19.56 (min 8.34, max 43.13, n=30), 106.7 

cm hr-1 (min 57.21, max 155.93, n=30), and 15.13 ± 

5.96 cm hr-1 (min 1.77, max 29.26 n=30), respectively. 

The results indicate that Ks values vary over the land 

uses. The result of the ANOVA test indicates that Ks 

were significantly different in all sites (p=0), and OP 

was the highest. GWT was observed to vary at all study 

sites. According to the prevailing regulations on GWT 

management in Indonesia, the water level must be 

maintained at no more than 0.4 m. These regulations 

apply to cultivated peatlands such as RB and OP in this 

study. The average GWT for RB was 57.9 (min 33.1, 

max 75.5, n=30), OP 27.9 (min 15.3, max 38.3, n=30), 

and SF 31.9 (min 19.8, max 45.9, n=30). Daily 

precipitation is shown in Figure 3. 

Discussion 

The influences of peat properties on Ks values 

The Ks values in this study are relatively similar to 

some previous research findings in tropical peatlands 
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(Sayok et al., 2007; Wösten et al., 2008; Baird et al., 

2017). The observed variations in Ks values are closely 

linked to peat properties, particularly the DR, BD, and 

PG. 

 

Figure 3. Daily precipitation from Feb-Mar 2023. 

Previous research has established a strong negative 

correlation between DR and Ks, implying that lower 

DR corresponds to higher Ks values (Wösten et al., 

2008; Kurnianto et al., 2018). A higher degree of peat 

decomposition rate is associated with a lower content 

of coarse fiber fractions and increases bulk density 

(Kurnain, 2019). This, in turn, eliminates the 

macropores that are responsible for the movement of 

water through peat deposits (Wallor et al., 2018; Liu 

and Lennartz, 2019). This is consistent with the 

findings of studies that have shown that the Ks value is 

much lower in sapric peat than in fibric peat (Table 2). 

Furthermore, previous research indicates that the 

heterogeneity of Ks is influenced by various complex 

biogeochemical processes, such as the occurrence of 

biogenic gas ebullition in peat pores linked to the 

formation of local aquitards (Reeve et al., 2013; 

Kaczmarek et al., 2023), inhibiting soil permeability, 

and the development of secondary pores (Liu et al., 

2016; Liu and Lennartz, 2019; Glaser et al., 2020) that 

extend the flow path of water and/or disrupt the 

continuity of the peat soils. 

Table 2. Ks and peat properties in soil profile 0-50cm (average, standard deviation, N = number of samples). 

Site Decomposition  

rate 

Ks (cm hr-1)* Bulk density 

(g cm-3)* 

Total porosity 

(%)* 

Available water 

content (cm3 cm-3)* 

OP H4-H5, fibric 106.7 ±26.6a (n=30) 0.087 ±0.004a (n=3) 91.942 ±0.419a (n=3) 0.330 ±0.019a (n=3) 

RB H7-H9, sapric 19.56 ±7.94b (n=30) 0.148 ±0.006b (n=3) 86.587 ±0.162b (n=3) 0.320 ±0.060a (n=3) 

SF H8-H9, sapric 15.13 ±5.96b (n=30) 0.146 ±0.013b (n=3) 90.185 ±1.172b (n=3) 0.352 ±0.050a (n=3) 

Notes: OP = oil palm plantation, RB = rubber plantation, and SF = drained secondary forest. *results accompanied by different 

notations indicate a significant difference at a 95% confidence level. 

 

Hydrological function of peatland to study sites 

This study employed the hydrological function 

classification model by Lennartz and Liu (2019) as it 

utilizes a combination of the common and easily 

measurable peat properties, accompanied by relevant 

justification in categorizing peat hydrological classes. 

The conceptual models constructed serve as valuable 

tools for depicting interactions and aiding in the 

comprehension of potentialities and threats (Suter, 

1999; King and Hobbs, 2006). Additionally, it assists 

in identifying conservation intervention methods to 

support ecosystem recovery (McDonald et al., 2016). 

The model presented in Figure 4 indicates that all 

study sites exhibit a high hydrological function. Based 

on this classification, peatlands at the study sites are 

capable of providing maximum environmental 

services in their role of storing and releasing water. 

Furthermore, based on the level of hydrological 

degradation, the OP is classified as experiencing minor 

degradation, while the RB and SF exhibit moderate 

degradation. 

This result can be interpreted from two 

perspectives. First, it shows that the rewetting process 

affects the hydrological function of peatlands in study 

sites. This is evidenced by the Ks at all sites being no 

lower than 1 cm hr-1. Where peatlands with very low 

Ks values, which range from 0.01 to 1 cm hr-1, are 

limited in the hydrological services because they act as 

a hydraulic barrier, which hampers restoration efforts 

(Lennartz and Liu, 2019). 

Considering that the model was constructed 

using non-tropical peat properties that are almost 

certainly different from the general properties of 

tropical peat, these results cannot be directly applied 

and require an advanced interpretation. For example, 

Ks values for sapric peat in some studies have been 

shown to be lower than those for fibric peat (this study, 

Wösten et al., 2008; Kurnianto et al., 2018). Sapric 

peat is generally found in peat landscapes that have 

undergone long-term oxidation due to the 

decomposition of peat materials in the layer above the 

GWT, such as in intensive agricultural/plantation 

areas. However, other studies have reported that sapric 

peat is also found in the layers of primary peat forest 

peat (Nusantara et al., 2020) and that GWT in certain 

seasons can reach 0.6 m in undrained peat landscapes 

(Könönen et al., 2015). This can certainly have an 

impact on soil hydrological properties. 

Secondly, these findings do not directly assert 

that oil palm plantations represent the optimal land use 

for addressing peatland hydrological function, 

compared to other uses, including secondary forests. 

Furthermore, there are several aspects that warrant 
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discussion. We suspect that in oil palm plantations 

(OP), there is a loss of mature (sapric) peat materials, 

leaving behind more immature (fibric) peat. This 

mechanism occurs in several stages, either through a 

single process of oxidative decomposition, 

compaction, and shrinkage or through loss due to 

subsidence processes that occur simultaneously, as 

described in previous reports (Hooijer et al., 2012; 

Sinclair et al., 2019). In addition, this model does not 

account for the impact of soil subsidence and the 

associated loss of water storage on AWC (Lennartz 

and Liu, 2019).  

 

 
Figure 4. Hydrological function in study sites using Lennartz and Liu (2019) modelling scheme. 

Furthermore, in this model, the BD value was used as 

a proxy, which tends to be inconsistent with the 

general characteristics of BD in tropical peatlands in 

Indonesia. Even in undisturbed peatlands, the average 

BD is 0.13 g cm-3 (Könönen et al., 2015). Drained 

peatlands, subjected to anthropogenic alterations, 

typically display higher BD values compared to their 

pristine counterparts, such as undisturbed peat swamp 

forests (Lampela et al., 2014; Wakhid et al., 2017; 

Sazawa et al., 2018). 

Regarding the hydrological function, it has the 

potential to offer insights into hydrological 

degradation at study sites. However, the use of a 

database limited to non-tropical peat renders this 

model imperfect in analysis, especially when applied 

to tropical peat, as in this study. This model represents 

a step towards understanding the dynamics of peatland 

hydrological degradation in a simplified method using 

a combination of soil properties. As a long-term effort, 

collecting more data on the hydraulic properties of 

tropical peat, especially Ks, will be essential to 

enhance the accuracy of the model. Regarding the 

rewetting process carried out in the study sites, it is 

possible that this process, which has not yet reached a 

decade, has a positive impact on maintaining the 

hydrological function of peatland. However, future 

strategies are still needed to restore peatland in order 

to achieve a balance between increased productivity 

and peatland sustainability. 

Future strategy for peatland rewetting in study sites 

Rewetting, defined as the enhanced elevation of GWT 

using canal blocks, can contribute to the restoration of 

the natural hydrological conditions in degraded 

peatlands. However, the primary focus of the rewetting 

process should be directed towards peatlands with high 

Ks and immature peat. A previous study showed that 

canal blocks are most effective in peatlands with high 

hydraulic conductivity, lowered GWT, and reduced 

carbon loss (Urzainki et al., 2022). For instance, low 

Ks in sapric peat at RB and SF, while high Ks in fibric 

peat at OP. Hence, when canal blocking is 

implemented for rewetting purposes, the GWT rises or 

becomes shallower, consequently suppressing the 

potential for water loss. Fibric peat, characterized by 

immature peat, exhibits a coarse fiber structure and a 

higher organic fiber content. This facilitates water loss. 

Therefore, rewetting this type of peatland can reduce 

AWC

K s

P P Mi Mi

Mi Mi, M Mi

M, E M, H, E M, H

H H

0.01-1 cm hr
-1

<0,01 cm hr
-1

0-0.1 0.1-0.3 0.3-0.5 >0.5

>100 cm hr
-1

1-100 cm hr
-1

Rubber (RB) = Ks 15.56; 

AWC 0.320; BD 0.148 

Drained Secondary Forest 

(SF) = Ks 15.13 ; AWC 
0.352; BD 0.120

Oil Palm (OP) = Ks 105.78; 

AWC 0.345; BD 0.087

High hydrological 

function;

Degradation level is 

moderate

High hydrological 

function;

Degradation level is 

minor

Description: 

value combinations marked in green, yellow, and red

provide a high, moderate, and low ecosystem service,

respectively.

 P, pristine peat, BD ≤ 0.05 g cm−3;

 Mi, minor degradation, 0.05 < BD ≤ 0.10 g cm−3;

 M, moderate degradation, 0.10 < BD ≤ 0.20 g cm−3;

 H, high degradation, 0.20 < BD ≤ 0.40 g cm−3;

 E, extreme degradation, BD > 0.4 g cm−3.
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the potential for water loss, considering its inherent 

ability to store water. 

Restoring the drained peatlands through 

rewetting is often considered essential for promoting 

the natural regeneration of peatland vegetation 

(Jaenicke et al., 2011). A review of 94 replanting pilots 

and studies conducted on degraded peatlands between 

1988 and 2019 has been reported (Smith et al., 2022). 

The results suggest that rewetting significantly reduces 

the survival rates of peat forest seedlings despite not 

affecting their half-life or relative growth rates. This is 

attributed to the adaptation of native peat swamp forest 

species to waterlogged conditions. However, other 

reports have shown that reducing GWT contributes to 

the recovery of woody vegetation, highlighting the 

need for effective rewetting efforts (Giesen et al., 

2023). Understanding Ks is essential for effective 

peatland management, particularly in balancing 

conservation needs with agricultural practices (Giesen 

and Sari, 2018). 

The interdependence between peat properties and 

processes within it also provides crucial insights into 

the overall dynamics of this ecosystem. For instance, 

distinctive hydrological conditions and specific peat 

characteristics are essential in supporting peat 

pedogenesis processes and vegetation succession 

(Page and Baird, 2016). 

Strategies in rewetting efforts have the potential 

to restore their natural hydrological functions, reduce 

water loss, and support the long-term sustainability of 

these vital ecosystems. Prioritizing peatlands with 

properties as described in the study for rewetting does 

not mean that other peatlands with different properties 

do not require restoration. This is a challenge in the 

rewetting process, requiring careful planning and 

specific considerations related to peat properties and 

environment. Ongoing research can pave the way for 

successful peatland restoration and the preservation of 

their diverse hydrological and carbon services. 

Conclusion   

In this study, the hydrological functions of rewetted 

peatlands were generally high, with minor to moderate 

levels of degradation. However, further adjustments 

and interpretations of the models used are needed. 

These efforts still require more practical plans to 

improve the effectiveness of rewetting in maintaining 

these hydrological functions, especially by considering 

inherent peat properties such as hydraulic 

conductivity. In addition, this study found a significant 

difference in Ks between peatlands with different 

degrees of decomposition. Fibric peats have higher Ks 

than sapric peats.  
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