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A data-driven channel prediction method for distribution automation master is
proposed to address the poor quality of communication network and
communication system transmission problems in distribution network
communication. In this paper, an adaptive broad learning network (ABLN)
consisting of a standard broad learning network and a hybrid learning network
is introduced to predict the channel state information of the communication
system. Among them, the hybrid learning network is used to solve the ill-
conditioned solution problem when estimating the output weight matrix of
the standard broad learning network. Therefore, the ABLN produces sparse
output weight matrices and provides excellent prediction performance. In the
simulation analysis, the outdoor and indoor scenes are considered based on
OFDM system. The prediction performance of ABLN is subsequently evaluated in
one step prediction and multistep prediction. The results show that for the
prediction performance is concerned, the maximum improvement of ABLN is
about 96.49% as compared to other evaluation models, indicating that the CSI is
effectively predicted by the ABLN to support the adaptive transmission of the
main station of the distribution automation and to satisfy the quality of the
communication network of the distribution network.
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1 Introduction

Currently, the distribution automation main station (DAMS) tends to huge network
size, wide distribution, harsh environment, and frequent changes of distribution sites
(Gu, 2017). The distribution communication network, as the nervous system of
distribution network automation, is bound to meet the high-quality communication
needs. Therefore, high-quality distribution network communication system is the
foundation of the smart distribution network construction. The distribution network
automation construction presents many challenges to the wireless communication
system (Pan L et al., 2023). Generally speaking, the receiver of wireless communication
system needs to estimate the channel state information (CSI) of transmission
environment through channel estimation technique, and feedback the CSI to the
transmitter. However, in fast time-varying communication environments, the CSI
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tends to be outdated, which degrades the adaptive transmission
performance. Therefore, the channel prediction based on the
outdated CSI is important to support the adaptive
transmission performance of wireless communication systems
such as power IoT (by Flam et al., 2006).

Currently, channel prediction methods can be classified into
three categories, i.e., linear prediction methods parameter class
prediction methods and nonlinear prediction methods
(Sarankumar R et al., 2016) Among them, linear prediction
methods are mainly used to predict the next channel state
information sample by linearly weighting the sum of several
CSI samples in the past by linear fitting. Currently, channel
prediction methods can be classified into three
categories,i.e., linear prediction methods parameter class
prediction methods and nonlinear prediction methods. Among
them, linear prediction methods are mainly used to predict the
value of the next channel state information sampling point by
linearly fitting the past several channel state information sampling
points, i.e., by linearly weighting the sum. Linear prediction
methods include the auto-regression (AR), the recursive least
squares (RLS) and the affine projection algorithm (APA)
(Kapoor et al., 2018). The parameter prediction method mainly
estimates those relevant parameters of transmission delay, such as
the power, the delay and the Doppler shift. In addition, errors in
the estimated channel statistical characteristics and parameters
reduce the accuracy of the channel prediction, so the errors in the
parameter class prediction need to be reduced in order to improve
the performance of adaptive transmission techniques for wireless
communication systems. Scholars have developed relevant studies
on parameter class channel prediction methods. Such as, Niu G Q
et al. (2014) and Yang et al. (2021) proposed a new predictor that
utilizes the powerful time series prediction capability of deep
learning. The prediction result indicates that the deep learning
can offer significant performance improvement compared with the
traditional predictor. To overcome the problem caused by the
nonlinearity of the transmission channel and inter-symbol
interference caused by multipath effects, Tan and Wang, (2023)
used deep learning networks to optimally research the channel
equalization for the optical fiber communication networks, and
constructed an optical fiber communication network channel
model, and used deep learning networks to estimate the
communication network channel loads and operational states.
Trivedi and Kumar, (2018) used a scheduler based on a
standardized SNR for selecting users for data transmission, the
scheduler has higher data rate and long-range transmission
capabilities without requiring much power or bandwidth. In
addition, this paper presents a comparative assessment of the
bit error rate (BER) performance of multi-user multiple input
multiple output orthogonal frequency division multiplexing (MU-
MIMO-OFDM) and MU-MIMO single-carrier frequency-division
multiple access (MU-MIMO-SCFDMA) and investigates the
impact of various factors, e.g., the CSI imperfections, network
heterogeneity, and other factors on the communication
transmission; Bai et al. (2020) proposed a prediction method
based on the long short term memory (LSTM) network and
developed an incremental learning scheme for dynamic
scenarios, which makes the LSTM predictor run online;
(Multiple-Input Multiple-Output, MIMO) system, based on the

measured data of 2.35 GHz band in the road-wall scenario, C Xue
et al. (2021) proposes a Convolutional Long Shore-Term Memory
(CLSTM) and CNN combination of Conv- CLSTM channel
prediction model for typical channel state information, Les
K-factor, RMS delay extension and angle extension
characteristics prediction. Son and Han, (2021) proposed the
channel adaptive transmission (CAT), which uses the LSTM
network for channel prediction and the prediction accuracy is
over 97%, indicating that this algorithm can be effectively used for
channel prediction. Jiang and Schotten, (2019) used the recurrent
neural network (RNN) to construct a frequency domain channel
predictor, which was integrated into the MIMO-OFDM system to
improve the correctness of antenna selection. To avoid the
degradation of communication quality, Ding and Hirose, (2013)
proposed a high-accuracy time-varying channel prediction by
using channel prediction with linear extrapolation and
Varangian extrapolation of frequency-domain parameters, and
by combining a multilayered complex neural network (CVNN)
with a linear FM permutation method. The proposed CVNN-
based predictive channel prediction accuracy is experimentally
proved to be better than the traditional prediction methods (Ding
and Hirose, 2014). Xu and Han, (2016) proposed a new model
adaptive elastic echo state network (ESN), which adopts the
adaptive elastic network algorithm to compute the unknown
weights and combines the advantages of quadratic
regularization and adaptive weighted lasso contraction to deal
with the covariance problem.

In recent years, the deep learning has been successfully applied
in many fields and played an important role in the field of the
artificial intelligence field (Schofield et al., 2019).Wang et al. (2019b)
proposed a hybrid deep learning method of Convolutional Neural
Network (CNN) and LSTM to get the CSI of downlink channel
based on the CSI of uplink channel in FDD system. By extending an
LSTM for reconstructing CSI, Wang et al. (2019a) proposed a real-
time CSI feedback framework applied to point-to-point massive
MIMO. The application of deep learning in channel prediction
successfully solves the problem of traditional manual methods that
are overly dependent on channel-specific parameters and has a
stronger ability to adapt to the environment. However, the deep
learning methods still have some drawbacks. On the one hand, when
facing the high-dimensional data, the deep learning is usually
trained with a complex structure, which means that many model
parameters need to be adjusted. On the other hand, when some new
samples are added, the deep learning often needs to re-train the
model, which is a quite time-consuming process. To address the
issue above, Chen et al. (2018) developed the broad learning system
(BLS). Unlike the deep learning model, the BLS only has two
horizontally aligned hidden layers, i.e., the feature layer and the
enhancement layer (Suganthan and Katuwal, 2021; Pao and
Takefuji, 2021). In the training process of the BLS model, the
input data are firstly generated into feature nodes by feature
mapping, and then the feature nodes are enhanced into
augmentation nodes by nonlinear changes. Finally, the output of
the feature layer and the output of the enhancement layer are
connected to generate the result of the final output layer. The
output weights of the final output layer can be obtained quickly
using the ridge regression algorithm without complex computation
(Chen and Liu, 2018). In addition, BLS has an attractive advantage of
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the universal approximation property (Jin and Chen, 2018). In
particular, the incremental learning algorithms of the BLS can be
quickly reshaped without the need for complete retraining
from scratch.

With these solid foundations mentioned above, a large amount
of work on BLS has been reported. Kurtz, (1987) incorporated the
and paradigm combination into the regular term of the elastic
network into the BLS model thus obtaining ENBLS. ENBLS can
benefit from the trend of both ridge regression and sparse solutions.
However, there are still many drawbacks of the shallow structure,
and the expressive ability is significantly weaker than that of the deep
structure. For this reason, many scholars started to improve the
standard BLS. Then, many more complex BLS appeared. Such as,
Feng and Chen, (2020) integrated BLS with Takagi-Sugeno fuzzy
system to generate the FBLS. In addition, to extend the applicability
of BLS, Zhao et al. (2020) obtained Semi-Supervised BLS (SS-BLS)
by introducing popular learning and thus extending BLS to semi-
supervised learning. However, the SS-BLS requires all labelled
training datasets, which limits the practicability in practical
scenarios. Another structure of online semi-supervised BLS
(Online SS-BLS, OSSBLS) was investigated in Pu and Li, (2020).
In addition, Min et al. (2019) improved the BLS and obtained a
Structured Manifold BLS (SM-BLS), which was used to predict the
time-series. Zhang et al. (2020) also applied the BLS for the emotion
recognition. Then, Liang, (2023) investigated a class of the
distributed learning algorithms based on the BLS, which used a
quantization strategy to reduce the number of bits per transmission
and a communication review strategy to reduce the total number of
transmissions and minimize the communication cost (Huong
et al., 2023).

To meet the demand of the information transmission quality of
the DAMS and solve the problem that the expired CSI reduces the
adaptive transmission performance of wireless communication
system, this paper proposes a channel prediction method for
ADSM based on the ABLN, including the standard BLN and the
hybrid regularization network. Thereinto, the ill-conditioned
solution of the output weight matrix of the former is mainly
solved by the latter. The hybrid regularization network contains
two layers, the first layer is an adaptive weight factor generation
network based on regularization, and the second layer is the output
weight matrix estimation network based on the elastic network. The
hybrid regularization network has the oracle property, which can
effectively solve the output weight ill-conditioned solution problem
of the BLN. Thus, the ABLN can provide well channel prediction
performance.

2 Revelant theory

2.1 Channel estimation for OFDM systems

The channel prediction is an important technique to support
the adaptive transmission of power IoT communication systems
such as distribution network automation master stations. In this
paper, it is assumed that the SCI changes slowly or steadily in a
frame time, so the channel estimation process can be described as
follows. Let si(n) denote the n-th sample of the i-th complex-

valued baseband time-domain transmission signal, then si(n) can
be expressed as

si n( ) � ∑L−1
l�0

Si l( )ej2πnl/L (1)

where Si(l) denotes the frequency-domain transmit signal on the lth
subcarrier of the i-th pilot OFDM symbol, l � 0, 1, 2, . . . . . . , L − 1, L
is the total number of subcarriers in each OFDM symbol. When the
transmitting antenna sends out the transmit signal, the transmit
signal reaches the receiving antenna through the time domain
channel. Therefore, the receiving end estimates the target CSI by
analyzing the received signal. Currently, the two commonly used
channel estimation methods are least squares (LS) method and the
minimum mean square error (MMSE) method. The process of the
channel estimation by LS method is [29]

Yi m( ) � Ei m( )
Si m( ) + Ri m( ) � Yi m( ) + Ri m( ) (2)

where Yi(m), Yi(m), Ei(m) and Ri(m) are the estimated CSI of the
i-th subcarrier of the OFDM symbol, the ideal CSI, the received
symbols, and the corresponding noise for the first subcarrier of the
OFDM symbol at the first pilot subcarrier, respectively. Ri(m) is
modelled as the additive white gaussian noise (AWGN) with mean
0 and variance σ2z.

2.2 The broad learning system (BLS)

As shown in Figure 1, the BLS is used as an alternative to deep
network structure. The input data is mapped to the mapping
features and the enhancement features. The output layer
connects the feature and enhancement layers. The data is
transformed using a linear mapping function connecting the
input weight matrices to obtain the set of mapped features. The
Zi is the mapped feature, which is obtained by linear mapping and
activation function, i.e.

Zi � φi XV ei + αei( ), i � 1, 2, . . . , n (3)
where X ∈ Ra×b denotes the input sample data for model training,
where a is the sample number and b is the dimension. The φi is the
activation function of the feature node, αei denotes the input layer to
the mapping feature layer. The mapping feature group is denoted as

Zm � Z1,Z2,Z3, . . . ,Zm[ ] (4)
The enhancement nodes are obtained from the mapped nodes

by the nonlinear mapping and the activation function
transformation. Yj is the jth set of augmented nodes, which is

Yj � ξj ZmVhj + αhj( ), j � 1, 2, . . . , n (5)

where ξj is the activation function of the enhancement node; Vhj

denotes the random connection weight matrix of the j-th group of
mapped feature nodes to the layer of enhancement nodes; αhj is the
bias matrix of the j-th group, and the group of enhancement nodes
obtained by the n-transform is denoted by

Dn � D1,D2,D3, . . . ,Dn[ ] (6)
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Then, the outputs of the feature nodes and enhancement nodes
are combined, i.e., F � [Zm |Dn]. The weighted mapping of F, forms
the output of the network Ĥ � FV. The mapped feature nodes and
enhancement nodes are used as inputs to the BLS and the feature
vectors are solved. V denotes the weight matrix from the input layer
to the output layer of the system, which is solved by solving the ridge
regression, i.e.,

V � λI +HTH( )−1FHT (7)
where the H denotes the regularization factor and I denotes the
unit matrix.

3 Channel predictionbased of
adaptive BLS

3.1 ABLN

The hidden layer of a typical BLN often has a large number of
neurons. After using Eq. 5 to estimate the BLS network’s output

weight matrix, the estimated value is generally an ill-conditioned
solution, which has a large amplitude. Therefore, the ill-
conditioned solution problem of the output weight matrix is a
problem that cannot be ignored in the training process of the BLN
(Zhou, 2013). To improve the ABLN’s generalization capabilities
throughout the learning process, this study proposes using a
hybrid generalization network to estimate the output weight
matrix. The initial layer of the hybrid generalization network
looks like this:

Jk � arg min
Q̂: ,i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k
(8)

where i = 1,2,3, ., I, Yi denotes the target output corresponding
to the i-th step prediction, Q: ,i is the estimated value of the
target output weight matrix corresponding to the i-th prediction.
‖*‖2 and ‖*‖ 1 /

2
denote the l2 norm and l1/2 norm, respectively, and

λ 1 /

2
is the generalization coefficient of l1/2 norm. Therefore, the

first layer is further expressed as

FIGURE 1
The typical network structure of BLS.

TABLE 1 Model parameter settings for the channel prediction method based on adaptive broad learning network.

Symbol Meaning Value Symbol Meaning Value

fd Carrier frequency 2.4 GHz NFFT Total number in FFT 64

BW Bandwidth 2 MHz TIDFT IDFT/DFT period 32us

MD Modulation QPSK Tg Guard interval length 9us

fOFDM OFDM symbol rate 30 kHz Nt Number of transmitting antennas 1

CR Code rate 1/2 Nr Number of receiving antennas 1

DR Data rate 1.2Mbps Nss Quantity of data streams 1

K Subcarrier number per OFDM symbol 50 NDATA DATA OFDM symbol count for each frame 1

NSPS Pilot subcarrier per OFDM symbol 4 fr Sample rate 2 MHz
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Jk � argmin
Q̂: .i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k

� arg min
Q̂: .i

Y1 − ZQ: ,1

���� ����22 + λ1 Q: ,1

���� ����22 + λ 1 /

2
Q: ,1

���� ���� 1
2

1
2+

Y2 − ZQ̂: ,2

���� ����22 + λ1 Q̂: ,2

���� ����22 + λ 1 /

2
Q̂: ,2

���� ���� 1
2

1
2+

..

.

YI − ZQ: ,I

���� ����22 + λ1 Q: ,I

���� ����22 + λ 1 /

2
Q: ,I

���� ���� 1
2

1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

Therefore, the above Eq. 9 is equivalent to solve the following
issue, i.e.,

Jk � arg min
Q̂: .i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k
(10)

where i � 1, 2, 3, ..., I. Then, the above equation is rewritten as

Jk � arg min
Q: ,i

Yi − ZQ̂: ,i

���� ����22 + λ1 Q̂: ,i

���� ����22 + λ 1 /

2
Q: ,i

���� ���� 1
2

1
2{ }

k

� arg min
Q: ,i

Yi

0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ − 1 + λ2( )−1

/

2

Z��
λ2

√
I

⎛⎜⎝ ⎞⎟⎠Q̂: ,i

�����������
�����������
2

2

+ λ2����
1+λ1/2

√ Q: ,i

���� ���� 1
2

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
k

� arg min
Q: ,i

Ŷi − ẐQ̂: ,i′
���� ���� + λb Q: ,i

���� ���� 1
2

1
2{ }

k

(11)

where

Ŷi � Yi

0
[ ] (12)

Ẑ � 1 + λ2( )−1

/

2 Z��
λ2

√
I

( ) (13)

FIGURE 2
Non-zero weight curves and RMSE curves in ABLN with varying input dimensions: The actual and hypothetical components of the indoor scenario
are shown in (A,B), respectively; The actual and imagined components of the outdoor landscape are shown in (C,D).
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λb � λ2������
1 + λ1/2

√ (14)

Equation 11 is an optimization problem about l1/2 norm.
However, the l1/2 norm is the non-convex and non-smooth, and
some common optimization solution methods, i.e., the Newton’s
method and simulated Newton’s method are difficult to solve the
optimization Eq. 11. The coordinate descent method is utilized to
solve Eq. 11 and its computation process is shown in Algorithm 2.
Then the adaptive weighting factor δ: ,i for the first layer is

δ: ,i � Q: ,i

∣∣∣∣ ∣∣∣∣ + 1
M + L( )[ ]−τ

(15)

where τ ∈ N+ is the adaptive adjustment factor. The second layer of
the output weight matrix estimation network for the BLN is:

Jk � argmin
Q: ,i

∑I
i�1

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22+
λ2 ∑M+L

j�1
δj,i Qj,i( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭
k

(16)

where Q: ,i is the output weight matrix corresponding to the i-th
prediction, Qj,i denotes the jth element of the output weight matrix
corresponding to the i-th step prediction, and λ1 and λ2 are the non-

zero penalty coefficients, respectively. Eq. 16 can be further
rewritten as

Jk � arg min
Q: ,i

∑I
i�1

Yi −ZQ: ,i

���� ����22 +λ1 Q: ,i

���� ����22
+λ2 ∑M+L

j�1
δj,i Qj,i( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭
k

� arg min
Q: ,i

Y1 −ZQ: ,1

���� ����22 +λ2 Q: ,1

���� ����22 +λ1 ∑M+L

j�1
δj,1 Qj,1( )

+ Y2 −ZQ: ,2

���� ����22 +λ2 Q: ,2

���� ����22 +λ1 ∑M+L

j�1
δj,2 Qj,2( )

..

.

YI −ZQ: ,I

���� ����22 +λ1 Q: ,I

���� ����22 +λ2 ∑M+L

j�1
δj,i Qj,I( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

It can be shown that the loss function (17) of the second layer
output weight matrix estimation network can also be converted into
an I optimization problem with respect to the l2 norm and the
adaptive weighting factors, i.e.,

Jk � arg min
Q: ,i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ2 ∑M+L

j�1
δj,i Qj,i( )⎧⎨⎩ ⎫⎬⎭

k

(18)

TABLE 2 One step prediction performance.

Scenario Database Model Regularization
parameter

RMSE Average sparsity
degree (%)

Average consuming
time (s)

indoor scenario Real component BLN - 9.54e−4 100 0.0258

LBLN 3.9e−4 7.54e−4 3.05 1.5678

RBLN 2.6e−4 4.87e−4 100 0.0258

EBLN 2.8e−4,1.1e−4 6.71e−4 3.05 3.7364

ABLN 1.4e−6,2.7e−6 1.65e−4 3.05 0.8612

Imaginary
component

BLN - 5.11e-4 100 0.0252

LBLN 5.6e−5 3.38e-4 3.13 1.4521

RBLN 4.8e−5 3.38e-4 100 0.0198

EBLN 0.9e−5,2.6e−6 2.41e-4 3.13 2.8974

ABLN 8e−7,4e−6 1.64e−4 3.13 0.4874

Outdoor
scenario

Real component BLN - 2.86e-4 100 0.0109

LBLN 1.1e-4 1.58e-4 3.2 0.8124

RBLN 5.3e−4 2.14e-4 100 0.0137

EBLN 2.6e−6,1.1e−5 1.67e-4 2.05 2.9485

ABLN 1.3e−6,2e−6 8.13e−5 1.99 0.2712

Imaginary
component

BLN - 3.69e-4 100 0.0295

LBLN 2.2e−5 1.63e-4 3.2 1.1566

RBLN 4.8e−5 1.88e-4 100 0.0269

EBLN 1.1e−5,2.8e−6 1.21e-4 2.16 3.8573

ABLN 0.9e−6,1.8e−6 1.27e−4 2.11 0.2433
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where i � 1, 2, 3, . . . , I. Eq. 17 can be further derived as:

Jk � arg min
Q: ,i

Yi − ZQ: ,i

���� ����22 + λ1 Q: ,i

���� ����22 + λ2 ∑M+L

j�1
δj,i Qj,i( ){ }

k

� arg min
Q: ,i

Yi

0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ − 1 + λ2( )−1

/

2

Z��
λ2

√
I

⎛⎜⎝ ⎞⎟⎠Q: ,i

�����������
�����������
2

2

+ λ2���
1+λ2

√ ∑M+L

j�1
δj,i Qj,i( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
k

� arg min
Q: ,i

Y′
i − Z′Q: ,i′

���� ���� + λs ∑M+L

j�1
δj,i Qj,i( ){ }

k

(19)

Where Y′
i , Z′, Q: ,i′ and λs are defined as follows:

Y′
i � Yj 0[ ]T (20)

Z′ � 1 + λ2( )−1
2 z

��
λ2

√
I[ ]T (21)

Q: ,i′ �
�����
1 + λ2

√
wi (22)

λs � λ1�����
1 + λ2

√ (23)

where I is the unit matrix. It can be shown that Eq. 18 is an
optimization problem with respect to the adaptive weighting
factors. Further definition.

Qj,i
″ � δj,iQj,i

′ (24)

Z″ � Z′
δ: ,i

(25)

Eq. 19 can be further rewritten as:

Jk � argmin
Q: ,i
′

Y ′
i − Z′Q: ,i

″
���� ����22 + λ ∑M+L

j�1
Qj: ,i

″( ){ }
k

� argmin
Q: ,i
′

Y ′
i − Z′Q: ′i

″
���� ����22 + λ Q: ,i

″
���� ����{ }

k

(26)

Eq. 26 is an optimization problem with respect to the
L1-paradigm. Currently, some methods are available, such as the
Newton’s method and the gradient descent method. All of the
approaches, though, need the solution variables’ derivatives. In
this study, we answer Eq. 27 using the minimal angle regression
(MAR) approach, which avoids the derivatives of the variables.
When Q: ,i

″ is obtained, the output weight matrix Q: ,i corresponding
to the ith step prediction is

Q: ,i � Q: ,i
″

δ: ,i
�����
1 + λ2

√( ) (27)

Equation 27 is further modified as (Rodan, 2012):

Q: ,i �
�����
1 + λ2

√
δ: ,i

Q: ,i
″ (28)

TABLE 3 Multistep prediction performance.

Scenario Database Model Average sparsity degree (%) Average consuming time (s)

indoor scenario Real component BLN 100 0.0253

LBLN[33] 20.8 2.1187

RBLN 100 0.0162

EBLN 15.63 1.7548

ABLN 15.09 1.2869

Imaginary component BLN 100 0.0169

LBLN[33] 17.69 1.4467

RBLN 100 0.0089

EBLN 16.64 3.3716

ABLN 15.37 1.2285

Outdoor scenario Real component BLN 100 0.0243

LBLN[33] 5.28 0.9624

RBLN 100 0.0164

EBLN 3.68 3.2686

ABLN 4.47 0.4538

Imaginary component BLN 100 0.0245

LBLN[33] 4.59 1.2572

RBLN 100 0.0142

EBLN 4.46 3.1453

ABLN 4.29 0.6941
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Therefore, the output weight matrix Qout is

Input: training output matrix Y, training input matrix

Z, penalty coefficients λ1, λ2 and λ1/2, adaptive factors

τ, maximum prediction step number I

Output: weight matrix Qout

Step 1: For i � 1,2,3, . . . ,I

Step 2: Solve Eq. 8 to obtain Q: ,i;

Step 3: Calculate the δj,i by Eq. 15;

Step 4: Calculate the modified Y′
i by Eq. 20;

Step 5: Calculate the modified Z″ by Eq. 21;

Step 6: Solve Eq. 26 by the minimum angle

regression method;

Step 7: Estimate by Eq. 28.

end

Step 8: Construct the output weight matrix Qout by Eq. 29

Step 9: Output Qout;

Algorithm 1. Calculation process of the ABLN.

Inputs: input: training output matrix Y, training output

matrix Z, non-zero penalty coefficients λ 1 /

2
, empty

matrix Q0
: ,i

Output: Q: ,i;

Step 1: Q: ,i � Q0
: ,i;

Step 2: For j � 1,2,3, . . . ,L + M;

Step 3: Q0
: ,i � Q: ,i;

Step 4: Estimate Q: ,i, p � 1,2,3,..,j;

Step 5: Judge ∑M+L
j�1

|Q0
j,i − Qj,i|≤ ε. If no, then jump back to

step 3; If yes, then jump to step 2.

End

Algorithm 2. Coordinate descent computation procedure.

Qout � Q1,Q2,/,QI[ ] (29)

The computational pseudo-code for the ABLN is shown in
Algorithm 1 and the computational pseudo-code for the
coordinate descent method is shown in Algorithm 2.

4 Simulation and discussion

These related parameters are part of the channel prediction
approach for the DAMS based on ABLN that is looked at in this
paper; they are shown inTable 1. Both the interior and outdoor scenarios
are taken into consideration in order to assess howwell ABLN performs.

1) The indoor scenario: Among the pertinent features are the
maximum Doppler shift of 80 Hz and the total of six
transmission routes; the delay and power are, respectively,
(0, 120, 430, 860, 1030, 1470) ns and
(0, −1.6, −0.8, −9, −9.4, −2.8) dB.

2) The outdoor scenario: The relevant parameters for the
Nakagami-m channel scenario are as follows: The maximum
Doppler shift is 20 Hz, andm is set to 5. Then, there are a total of
four transmission lines, each having the following powers and
de-lays: 0 dB and (0, 130, 230, 1180) ns, respectively.

This work also examines several of the current BLN-based
methodologies, such as the fundamental BLN (Zhao and Lu,
2023), the lasso regularized BLN (LBLN) (Duan and Xu, 2022),
the BLN with the ridge regularization (RBLN) (Wang, 2022) and the
elastic network BLN (EBLN) (Ding and Xie, 2023). The following
three performance metrics are considered in this paper.

1) The difference between the ideal and expected CSI is
represented by the Root Mean Square Error, or RMSE.
Thus, the prediction performance is evaluated in this paper
using RMSE. Better predictive performance of the model is
indicated by a reduced root mean square error.

2) The examined model’s ability to generate sparse output weight
matrices is shown by its average sparsity. Again, a sparse
output weight matrix demonstrates the significant
improvement in the model’s memory use.

3) The average time spent is used to determine how complex the
computation is during the output weight matrix estimation
procedure. When the average time to estimate the output
weight matrix is lower for a given model, we can conclude
that the model has less computational complexity.

These three metrics are computed and examined in terms of one
step and multi-step prediction in this section. The three measures
are averaged over ten runs to remove randomness. The average
sparsity for one step prediction is the mean number of non-zero
elements in the projected output weight matrix after 10 iterations.
The average sparsity in multi-step prediction is defined as the
average rate of non-zero elements in the predicted output weight
matrix from one step prediction to h-step prediction. Besides, in the
simulation, the relevant parameter parameters of the ABLN include
the neuron number of the feature layer 100, the neuron number 50,
the input scaling factor 0.01 of the feature layer. Random generation
is used to create both the input weight matrix and the internal weight
matrix within the interval [-1, 1]. Each OFDM symbol has
60 subcarriers, as seen in Table 1, and 120 predictors might
theoretically be used to complete the IDFT process. To keep
things simple, the model utilized in this research is only
evaluated using the CSI samples of the first subcarrier. The
model is trained in ABLN using 5000 frames, and its
performance is then assessed using the 1000 frames that follow.

4.1 Input dimensions of ABLN

The model’s input dimensions have an impact on the prediction
performance. As a result, in two channel cases, the input dimensions
of ABLN must be estimated. We present simulation results and a
discussion of input dimensions in ABLN in this sub-section. Table 1
provides these regularization parameters. The x-axis of Figure 2,
which shows the RMSE curves and non-zero weight curves of the
predicted output weight matrices of both evaluation models in the
two scenarios given, represents the input dimension of the ABLN, or
the total CSI samples utilized to forecast the next CSI sample. The
relationship between the RMSE and the input dimension p is thus
shown by the red curve with a solid red circle, and the RMSE is
represented by the left vertical axis. Similarly, the black curve labeled
with black solid triangles represents the relationship between the
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number of non-zero components and the input dimension p, and
the number of non-zero elements in the expected output weight
matrix is displayed on the right vertical axis.

Generally, as the input dimension of the ABLN increases, the
RMSE tends to decrease. Furthermore, when the input dimension
increases, the projected output weight matrix’s non-zero members
also grow. In Figure 2A, due to the increasing input dimensions, the
RMSE curve of the real part of the CSI samples tends to stabilize in
the indoor scenario, and the final RMSE is about 7.9e-4. Because of
the increasing input dimensions, the redundancy information in
Figure 2A raises the number of non-zero components of the
projected output weight matrix. As a result, the lowering.

RMSE has a significant impact on the predicted output weight
matrix’s sparsity. The primary ex-planation behind this is that as input
dimensions grow, the ABLN model has access to more data and may
perform better when making predictions. The number of non-zero
items in the predicted output weight matrix rises as a result of the
increased redundant information brought about by the larger input
dimensions. Generally, the actual fraction of the CSI samples in the
interior situation should have an input dimension of about 35.
Subsequently, regarding the fictitious portion of the CSI samples in
the indoor setting, the stabilized RMSE is about 8.8e-5, and the
appropriate input dimension is about 35. Thus, in the indoor
scenario, we set the input dimensions to 35 for both the imaginary

FIGURE 3
The predicted real and imaginary components of the inside scene are represented by the scenes (A,B), respectively, and the predicted real and
imaginary elements of the outside scene by the scenes (C,D), respectively.
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portion of the CSI samples and the real values. Then the external
situation Figure 2 display the non-zero weight curves and RMSE
curves. The steady RMSEs of the real and imaginary sections of the
CSI samples are, as can be shown from Figures 2C, D, approximately
9.2e-5 and 2.4e-4, respectively, just like in the indoor scene. Therefore,
we also adjust the input dimensions of the real and imaginary sections
of the CSI samples in the outdoor scene set to 35 to reduce the amount
of non-zero weights in the estimated weight matrices.

4.2 One step prediction

Table 2 provides the regularization settings in ABLN for one step
prediction. Moreover, the cost parameter c in the c-SVC, gamma in
the kernel function, epsilon p in the SVM loss function, and 25,

0.001 and 2e-5 for the outside scenario are assigned the values 25,
0.006, and 2e-5. c, g and p for these evaluated model predictive
performances are shown in Table 3. Figure 3 shows the ideal CSI
curves, projected CSI curves, and error curves of the ABLN in the
indoor scene and outdoor scenario for the real and imaginary halves
of the CSI sample. The distribution range of these assessment
models’ estimated output weight matrices is displayed in Figure 4.

The predicted CSI in ABLN, as illustrated in Figure 3A, closely
resembles the ideal CSI with a maximum error of 2e-3, whereas
Figure 3B shows a maximum error of 3e-3 for the imaginary
component of the indoor scene. The correlation curves for the
out-door scenario are displayed in Figures 3C, D. The predicted
CSI curves, with a maximum error of 3e-4 in Figure 3C and 5e-3 for
the imaginary component in Figure 3D, are observed to be
satisfactorily accurate in matching the ideal curves. From

FIGURE 4
The estimated output weight matrix’s distribution range. in the indoor scene, (A,B) are the real and imaginary parts, respectively; (C,D) the real and
imaginary parts in the outdoor scene.
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Figure 3, it can be seen that ABLN has relatively small prediction
errors in one step prediction of indoor scenes versus outdoor scenes
compared to other models. Thus, for the CSI samples in the indoor
scene and the outdoor scene, we can obtain excellent one step ABLN
prediction performance. The one step prediction performance is
shown in Table 2. Table 2 also includes the regularization parameters
of the BLN-based models for the two scenarios. The assessed models’
average sparsity for the actual portion of the CSI samples in the in-door
scenario is 3.05%, except for BLN and RBLN. But ABLN has the lowest
RMSE (1.65e-4) compared to LESN (7.54e-4) and RESN (4.87e-3) and
EESN (6.71e-4). It is calculated that, in terms of one step prediction
performance, ABLN has a maximum improvement of about 96.49%
with the other evaluated models. Furthermore, the amount of time
needed to compute the output weight estimate matrix is also less in
ABLN, with an average consumption time of about 0.8612 s, compared
to 1.5678 s in LBLN and 3.7364 s in EBLN. Specifically, there is a

considerable reduction in the computational time needed for the
adaptive elasticity network in ABLN to estimate the input weight
matrix. Although BLN and RBLN need less computing time
(i.e., 0.0258), they do not yield a sparse output weight matrix. In the
indoor situation, ABLN exhibits the best RMSE of 1.64e-4 and the same
average sparsity of 3.13% for the imaginary part of the CSI samples. It
also requires relatively little processing time, 0.4874 s. It is calculated
that, in terms of the one step prediction performance, the maximum
improvement of ABLN with respect to the other evaluated models is
about 92.96%. ABLN requires smaller regularization parameters
compared to other evaluation models. As a result, ABLN creates
good sparse output weight matrices, has strong one step pre-diction
performance, and uses less computing time to estimate the output
weight matrices for CSI data in indoor environments. In the outdoor
scenario, BLN exhibits the lowest performance for the genuine half of
the CSI samples and requires a large amount of time to train the entire

FIGURE 5
Multi-step prediction performance in indoor and outdoor scenarios: in the indoor scenario, (A,B) are real and imaginary parts, respectively; (C,D) real
and imaginary parts in the outdoor scenario.
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model; in contrast, ABLN requires very little computational time
(0.2712 s) and has an ideal RMSE of 8.13e-5 and 1.99% mean
sparsity. ABLN also has the same mean sparsity (e.g., 2.11%) for the
imaginary component with an ideal RMSE (i.e., 1.27e-4), and a very
short computation time (i.e., 0.2433 s). The highest improvement of the
ABLN for the real and imaginary sections of these CSI samples
compared to the other examined models in outdoor scenarios, is
around 95.01% and 97.31% in terms of one step prediction
performance. Therefore, ABLN can offer good one step prediction

Performance and shorter computing time for estimating the
output weight matrices in two given communication scenarios for
similar sparse output weight matrices.

Figure 4 displays the range of the estimated output weight
matrix’s distribution in the BLN-based assessment model. The
projected output weight matrix in BLN has a substantial size, as
seen in Figure 4A, and it roughly ranges from −5 to 5. Thus
indicating that the generalization ability of the input CSI samples is
unsatisfactory. In addition, the output weight matrix of the BLN is
not sparse. The output weight matrix of the RBLN is also not
sparse, despite having an estimated output weight matrix with the
smallest range of magnitude. Furthermore, even though the
LBLN’s output weight matrix is sparse, its magnitude range
exceeds the magnitude range of the RBLN. Com-pared with the
output weight matrix of EBLN, the output weighting matrix
typically approaches zero in ABLN. In terms of sparsity and
magnitude range of the output weight matrix, ABLN has a clear
advantage, which also indicates that ABLN has good generalization
ability to the input CSI samples.

4.3 Multistep prediction

These parameters are the same as those in Table 3 for multi-step
forecasts. Figure 5 displays the correlation curves for these assessed
models’ 1-step to 15-step predictions for the two provided scenarios.
Overall, the ABLN has the best multi-step prediction performance
better compared to BLN, RBLN, LBLN and EBLN for the two given
scenarios. In the indoor scenario, for the real and imaginary parts of
the CSI samples, the improvement ratios of ABLN with the above
evaluation models in the 15th step are about 80.14% and 82.03%,
respectively, while in the outdoor scenario, these improvement
ratios are about 90.87% and 97.42%, respectively. Moreover,
ABLN has the best multi-step prediction performance for the
BLN-based assessment model, particularly for the real portion of
the CSI samples (Figures 5A, C). For the imaginary part of the two
given scenes (as shown in Figures 5B, D), among the evaluation
models, ABLN performs better in multi-step prediction. In the
indoor scene, the 15th step prediction improvement rates of
BLN-based ABLN compared to other evaluated models are
approximately 35.28% and 28.94% for the real and imaginary
parts of the CSI sample, respectively. Conversely, in the outdoor
scene, these improvement rates are approximately 48.35% and
49.46%, respectively. Thus, as far as prediction performance is
concerned, the ABLN has satisfactory multi-step performance for
both real and imaginary parts in both given scenarios. The results for
the evaluated models in terms of average sparsity and average time
consumption are presented in Table 3. In this paragraph, the average
sparsity and average consumption time are defined using the mean

of predictions made across stages one through fifteen. In the indoor
scenario, the output weight matrix in ABLN exhibits the optimal
sparsity of 14.97% for the real part of the CSI samples, whereas the
output weight matrices in BLN and BLN exhibit no sparsity. The
BLN beats the other evaluation models, including the ABLN, in
terms of the average time needed to estimate the output weight
matrix. But as was already established, the BLN’s output weight
matrix is not sparse. The conclusions are like those of the BLN.
Then, the ABLN is also better in estimating the average time
consumed for the output weight matrix compared to LBLN and
EBLN. Therefore, the ABLN exhibits excellent multi-step prediction
performance for the authentic portion of CSI data in the indoor
scenario, considering both the average time required for calculating
the output weight array and the sparsity of the estimated output
weight matrix. The corresponding outcomes in the outdoor scenario
are comparable to those obtained for the actual portion of CSI
samples in the in-door scenario.

5 Conclusion

The channel prediction problem for distribution automation
masters is the main topic of this study. Specifically, we propose in
this study an ABLN for predicting the CSI of distribution automation
master communications in OFDM systems. In this study, we simulate
and analyze communication scenarios in both indoor and outdoor
environments. The indoor scenario considers the Nakagami channel,
while the outdoor scenario uses the Rayleigh channel. Moreover, in
the simulation part, one step, multi-step and local predictability proofs
for CSI samples are implemented. After the simulation, we draw
several inferences. First, the CSI samples inferred by least squares (LS)
in orthogonal frequency division multiplexing (OFDM) symbol
subcarriers have significant local predictability, especially under the
condition of finite maximum Doppler shift. In both cases, the local
predictability of the best CSI samples exceeds 94.95%. Furthermore, in
both cases, ABLN exhibits excellent one step andmultistep prediction
performance for both the real and imaginary parts of the CSI samples.
In one step prediction, ABLN provides well one step prediction
performance and shorter computation time to estimate the output
weight matrix. In multistep prediction, ABLN provides satisfactory
multistep performance in both real and imaginary parts of two given
scenarios. It is characterised by sparse output weight matrices with
small magnitude and less computational time required to estimate the
output weightmatrix, especially in one step prediction. Themaximum
improvement in the prediction performance of ABLN is calculated to
be about 96.49% compared to other models. In addition, the
regularization factor of ABLN is smaller than the regularization
parameters of other evaluated models. Therefore, ABLN has
advantages in channel prediction based on adaptive distribution
automation master communication and can be used for future
adaptive wireless communication in distribution automation
master. The channel prediction method proposed in this paper can
provide highly accurate channel prediction information, which
provides a guarantee to reduce the impact of outdated channel
state information on wireless communication systems such as
distribution network automation master stations. The optimization
and modification of the ABLN further to improve the prediction
performances of the system model are the works in the future.
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