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a b s t r a c t

We studied the seasonal and interannual variation in surface energy fluxes – net radiation

(Rn), soil heat (G), sensible heat (H) and latent heat (lE) fluxes – and water vapour exchange

above a Mediterranean C3/C4 grassland in Portugal, during two hydrological years, i.e., the

period from 1 October to 30 September of the next year, of contrasting rainfall. The first year,

2004–2005, was dry, with total precipitation 45% below the long-term mean (669 mm),

whereas the following, 2005–2006, was normal, with total precipitation only 12% above

the long-term mean. Soil water availability and plant canopy growth were the most

important factors in determining the seasonal and interannual variation in energy parti-

tioning. During autumn, winter and early spring the ratio lE/Rn dominated over H/Rn, in the

two years of the study, whereas on an annual basis, the major portion of Rn was consumed in

H and lE in the dry and normal years, respectively. The total annual evapotranspiration (E)

and its daily maximum were 316 mm and 2.8 mm per day, respectively, for the dry year, and

481 mm and 4.5 mm per day for the normal year. After the senescence of the C3 species, the

warm-season perennial C4 grass, Cynodon dactylon L., played a preponderant role in main-

taining substantial E rates contributing to soil water depletion. In this study, we assessed the

effects of the most relevant biophysical factors on surface conductance (gs) and E. We found

that the Priestley–Taylor coefficient and gs were substantially reduced when the average

volumetric soil moisture content in the top 15 cm of the soil profile dropped below 14%. With

abundant soil moisture and leaf area index (LAI) greater than 1, the evaporative fractions

(lE/Rn) were linearly related to LAI (R2 = 0.73). The decoupling coefficient (V) ranged from a

maximum of about 0.7, under non-limiting soil moisture conditions, to a minimum of about

re deficit. This suggests that E was strongly controlled by the vapour

air and gs during the periods with limiting soil moisture.
0.1, under soil moistu
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1. Introduction

The terrestrial surface energy balance is influenced by vegeta-

tion and drives not onlythe local,but also theregional and global

climate (Raupach, 1998; Zeng and Neelin, 2000). Grasslands play

an important role in the exchange of water vapour and energy

between the biosphere and the atmosphere as they comprise

about one third of the word’s area of natural vegetation (Adams
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et al., 1990). In Portugal, grasslands cover about 15% of the

territory, largely in the south, where a Mediterranean type of

climate prevails. Climate change scenarios for the Mediterra-

nean region, and especially for Portugal, suggest an increase in

mean air temperature and more frequent and prolonged

droughts (Miranda et al., 2002). There is therefore value in

understanding how climate variability, particularly reductions

in precipitation and shifts in its seasonality, influences energy
d.
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partitioning in Mediterranean grasslands, not only to improve

our knowledge of the mechanisms that control energy and

water fluxes, but also to anticipate possible impacts of the

climate change scenarios and togive themodellers a betterbasis

to improve and validate their models.

Water and energy exchanges on seasonal and/or annual

time scales have been documented for temperate C3/C4

grasslands (Burba and Verma, 2001, 2005; Meyers, 2001; Wever

et al., 2002) and semi-arid C3/C4 grasslands (Li et al., 2006). In

Mediterranean ecosystems, only Baldocchi et al. (2004) have

reported continuous measurements of water and energy

fluxes from an annual grassland with a C3 plant community.

However, there is a lack of information on how a mixture of

C3/C4 species influences the water and energy exchanges in

Mediterranean climates.

Whereas Mediterranean C3 grasslands are dominated by

annual plantsand have no vegetation during the dry season, the

presence of warm-season C4 species allows C3/C4 grasslands to

remain active during most of thesummer. In Southern Portugal,

Bermuda Grass (Cynodon dactylon L.) is an invasive species in

some of the semi-natural grasslands. This perennial C4 plant

prospers mainly late in the season and has been shown to be

relatively drought-tolerant and deep-rooted, concentrating

about 40% of the root biomass in the top 20–25 cm below the

soil surface (Huang et al., 1997; Mamolos et al., 2001; Vignolio

et al., 2005). The length and area of its root system increase

under water deficits (Vignolio et al., 2002), thus enhancing the

capability to absorb water from deeper soil horizons. For

example, in the conditions of Mediterranean climate, Mamolos

et al. (2001) found that the abundance ofC. dactylon increased in

the field, even at very low values of soil matric potential in the

upper soil layer. Thus, compared with Mediterranean C3

grasslands, C3/C4 grasslands may have higher evapotranspira-

tion during the summer, thus enhancing soil water depletion.

The objectives of this investigation were to (1) examine and

quantify the seasonal and interannual variation in energy and

water vapour exchange and (2) assess the response of surface

conductance and evapotranspiration to changes in the most

relevant physical and physiological factors. As it turned out,

precipitation in the period of measurement, between 2004 and

2006, varied substantially: the hydrological year (i.e., the period

from 1 October to 30 September of the next year) of 2004–2005

was very dry, whereas 2005–2006 was normal. In fact, the

water deficits during 2004–2005 – the driest episode in the last

140 years in western Iberia – strongly affected negatively gross

primary production (Pereira et al., 2007). This allowed us to

investigate further the effects of drought on water vapour

fluxes and energy partitioning in a Mediterranean grassland.
2. Material and methods

2.1. Site description

The study area is a semi-natural grassland located in Monte do

Tojal, Évora, in Southern Portugal (3882802800 N; 880102500 W;

190 m a.s.l.) and was established in June of 2004 as a part of the

Carboeurope IP project.

The soil is a Luvisol (FAO), containing 20% clay, 71% sand

and 9% silt, and overlays a fractured rock. The soil profile
(about 90 cm deep) presents a relatively dense layer of clay

between 25 and 50 cm depth. The bulk density of the upper

30 cm of the soil profile is around 1640 � 80 kg m�3 (n = 16).

The climate is Mediterranean with hot, dry summers and

mild, wet winters. Long-term (1951–1980) mean annual air

temperature and mean annual precipitation are 15.5 8C and

669 mm, respectively (INMG, 1991). The study was conducted

between 2004 and 2006 and analyzed in hydrological years:

2004–2005 from day of the year (DOY) 275 in 2004 to DOY 273 of

2005; 2005–2006 from DOY 274 in 2005 to DOY 273 of 2006. These

periods correspond approximately to the annual cycle of the

vegetation.

The dominant herbaceous species at the site are annuals

(cold-season C3 grasses). As often occurs the native plant

community has been invaded by a warm-season perennial C4

grass, C. dactylon (L.) Pers. The C3 grassland community was

dominated by Avena barbata Link subsp. Lusitanica (Tab. Mor.)

Romero Zarco,Vulpia bromoides (L.) S.F. Gray,Vulpia geniculata (L.)

Link, Medicago sativa L., Medicago polymorpha L., Trifolium resupi-

natum L., Trifolium subterraneum L., Ornithopus compressus L.,

Chamaemelummixtum (L.) All., Parentucellia viscosa (L.) Caruel and

Crepis vesicaria L. The C3 grassland community began to grow

with the first rain events in autumn and senesced by about mid-

spring. Shoots of the C4 grass began growth in late winter and

died-out in early autumn. The whole area within the tower

footprint was normally grazed during the autumn and early

winter, one or two times per week with a stocking density of

60 sheep/ha.

2.2. Field measurements

The water vapour and sensible heat fluxes were continuously

measured using an eddy covariance system at a height of

2.5 m. The system consisted of a 3D sonic anemometer (model

1210R3, Gill Instruments Ltd., Lymington, UK) and an open-

path infrared gas analyzer (IRGA, model LI-7500, LI-COR Inc.,

Lincoln, NE, USA) to measure the three components of the

wind velocity, the sonic temperature and the densities of

water vapour and CO2, respectively. The IRGA was placed with

a 308 tilt angle to minimize accumulation of dust and water

droplets on the windows. Calibration of the IRGA was done

once a month using nitrogen gas and 350 ppm CO2 gas to

calibrate the CO2 and water vapour zeros and the span of CO2,

respectively. The span of water vapour was calibrated with

dew point values estimated from air temperature and relative

humidity, using conventional physical formulations. Real-

time data were acquired at 20 Hz sampling rate using the

software Eddymeas (Meteotools, Jena, Germany) and stored on

a laptop computer for later processing.

Continuous measurements also included standard clima-

tological and soil parameters. Air temperature and relative

humidity were measured at the height of 1.5 m with a

temperature/humidity probe (MP300, Campbell Scientific Ltd.,

Shepshed, UK). The all-wave radiation components, incoming

and outgoing longwave radiation (CG-3, Kipp & Zonen, Delft,

NL), incoming shortwave radiation (Casella solarimeter, Casella

London Ltd., Kempston, UK) and outgoing shortwave radiation

(Starpyranometer 8101, Philipp Schenk, Wien, AT) were also

measured at the height of 1.5 m. Longwave radiation was only

measured from January 2005 onwards. Soil temperature at the
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depths of 2, 10 and 20 cm was measured by Platinum Resistance

Thermometers. One soil heat flux plate (HFT-3, Campbell

Scientific Ltd., Shepshed, UK) was buried at the depth of 8 cm

and the soil heat storage above the plate was added to the final

calculation of the soil heat flux. Soil volumetric water content at

depths of 2, 15 and 30 cm was measured using frequency

domain reflectometer probes (ML2x, Delta-T Devices, Burwell,

Cambridge, UK). Precipitation was measured with a tipping

bucket raingauge (ARG100, Environmental Measurements Ltd.,

Gateshead, UK). The output signals of the equipment above

were scanned by a data-logger (DT-605, Datataker Ltd., Cam-

bridge, UK) and the 30-min averages were subsequently sent

and stored on a laptop computer.

Leaf area index (LAI) was determined at about 1-month

intervals from April 2005 to September 2006. However, during

the period of fast plant growth the sampling frequency was

increased to about twice per month. On each sampling date,

six patches each of 0.063 m2 area were harvested and the

green leaves were removed from the stems. In the laboratory,

the green leaves were scanned using a common scanner and

the area was determined by appropriate software (Sigmascan,

Systat Software UK Ltd., London, UK).

Aboveground biomass was also determined using generally

the same material that had been harvested for the LAI

determination. The green plant parts were separated from the

dead plant material and their biomass was determined

gravimetrically after the samples had been dried for 72 h at

65 8C. The total aboveground biomass was hence calculated.

2.3. Data processing and flux computation

The half-hourly fluxes of sensible heat (H) and water vapour (E)

were determined by the eddy covariance method as follows

(e.g., Fuehrer and Friehe, 2002):

H ¼ rCPw0T0 (1)

E ¼ w0r0v (2)

where r is the mean air volumic mass (kg m�3), CP is the

specific heat capacity of the air at constant pressure

(J kg�1 K�1), w0 is the fluctuation of the vertical wind speed

(m s�1), T0 is the fluctuation of temperature (K) and r0v is the

fluctuation of water vapour volumic mass (mmol m�3). The

overbars denote time averaging. The latent heat flux (lE) was

then calculated by multiplying the water vapour flux by the

latent heat of vaporization of water (l) and the water mole-

cular mass. These calculations included coordinate rotation

2D, spikes detection and removal similar to Vickers and Mahrt

(1997) and check for instantaneous records exceeding realistic

absolute limits. In addition, sensible heat fluxes were cor-

rected for humidity fluctuations (Liu et al., 2001) and the air

density fluctuations were taken into account to correct the

fluxes of water vapour (Webb et al., 1980).

2.4. Data quality control and gap-filling

The available data sets were screened to remove any

anomalous half-hourly fluxes that resulted from malfunction

of the sensors. First, using an approach similar to Rogiers et al.
(2005), the fluxes of water vapour were discharged whenever

the measured H2O concentration differed by more than 30%

from that estimated from relative humidity data, using

conventional physical formulations. Those cases were related

to periods when rain, dew, dust, birds using the instrument as

a roost caused significant interference to the optical path of

the open-path analyzer. Second, the fluxes of water vapour

were excluded if the removed spikes or the absolute limit

violations exceeded 1% of the total records of any of the three

components of wind velocity and/or H2O concentration;

sensible heat fluxes were also filtered using a similar reason-

ing for the three components of wind velocity and/or sonic

temperature.

After this filtering process, the remaining data sets of

sensible heat and water vapour fluxes were subsequently

submitted to data quality tests, the integral turbulence

characteristics and stationarity tests (Foken and Wichura,

1996). Whenever the mean covariance of six intervals of a time

series deviated by more than 50% of the value of the

covariance for the full period, the mean flux was considered

non-stationary and hence excluded from the analysis. The

integral characteristics of the vertical wind (sw/u*) were

assessed to test the development of turbulent conditions.

Thus, if the measured value deviated by more than 50% of the

modelled result, the turbulence was not considered well

developed and the mean flux was removed. Data gaps during

the whole study period, due to missing and rejected data, were

about 40% and 26% for water vapour and sensible heat flux,

respectively. In both cases, around 70% of the total data gaps

occurred during nocturnal periods.

In this study, we examined the energy balance closure

which is considered an independent method to assess the

reliability of the eddy covariance measurements (Wilson et al.,

2002). For short vegetation, the energy balance closure can be

written as (e.g., Kato et al., 2004; Li et al., 2006):

Hþ lE ¼ Rn � G (3)

where Rn and G are the net radiation and the soil heat flux,

respectively. After performing a linear regression between the

eddyfluxes (H + lE) and theavailableenergy (Rn � G),using half-

hourly values, the intercept, slope and coefficient of determina-

tion (R2) for the year 2005 were 11.47 W m�2, 0.81 and 0.95

(P < 0.0001), respectively. These results suggest that the eddy

covariance measurements underestimated H + lE by 19%. A

slight degradation (1%) in the energy balance closure was

observed during 2006. Although, the energy balance closure is

not perfect, it is within the normal range found in most studies.

Several reasons have been put forward to explain the energy

imbalance (Twine etal., 2000; Wilsonetal., 2002),but identifying

and quantifying all its sources is rather difficult. For the case of

this study, part of the imbalance may be related to the mea-

surements/estimations of H and lE. For example, we did not

apply an angle-of-attack dependent calibration for the sonic

anemometer, which has been shown to increase H and lE by

about 5% for smooth canopies (see van der Molen et al., 2004).

The remainder of the imbalance is, however, believed to be

related to the measurements of Rn and G. We used only one soil

heat flux plate, which is likely to be too small a sample as G is

expected to vary with location on the ground. Moreover, the fact



a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 5 6 5 – 5 7 9568
that the vegetation in the measurement point of Rn and G was

slightly higher and denser (the area was fenced and thus not

affected by grazing) is also expected to explain some of the

imbalance because Rn � G tend to be higher in such conditions

(see Bremer et al., 2001). However, using daily values (whereG is

close to zero) in the regression for the whole study period, the

energy imbalance decreased to 12%. Also, the energy balance

ratio (EBR) (Wilson et al., 2002) for the whole study period

indicated a lower underestimation (EBR = 0.87).

To evaluate the contribution of the study area to the total

flux measured by the eddy covariance system, the forward

Lagrangian stochastic trajectory model by Rannik et al. (2003)

was used. The approach for site evaluation is described in

Gockede et al. (2006). Even using a conservative vegetation

height (0.05 m) as input, the results showed that for all

atmospheric stability conditions the measurements were

representative of the area intended to be observed.

Complete data sets of sensible heat and water vapour

fluxes were created using various gap-filling approaches.

Missing time periods of water vapour were filled following the

methodology proposed by Reichstein et al. (2005) and missing

sensible heat flux measurements were replaced using the

method of mean diurnal variation (Falge et al., 2001). Gaps in

the incoming components of radiation, temperature and

precipitation data were filled with data from a nearby

meteorological station. Because we did not perform measure-

ments of longwave radiation during the last months of 2004,Rn

was not determined. Thus, for this period, Rn was modelled

using Eq. (3), including the energy imbalance (assuming that it

was equivalently distributed between Rn and G).

2.5. Data analysis

Daily potential evapotranspiration (EP) was estimated by the

Penman–Monteith combination equation (Monteith, 1965):

lEP ¼
DðRn � GÞ þ rCPD=ra

Dþ gð1þ rs=raÞ
(4)

where D is the rate of change of saturation vapour pressure with

temperature (kPa K�1),D is the vapour pressure deficit (kPa), ra is

the aerodynamic resistance (d m�1), g is the psychometric con-

stant (kPa K�1) and rs is the surface resistance (d m�1). The

measured available energy (Rn � G) was converted to

MJ m�2 d�1. Calculations of D, r (kg m�3), CP (MJ kg�1 K�1), D, g

and ra were performed following Allen et al. (1998). To determine

the aerodynamic resistance, the seasonal changes in canopy

height were accounted for. The surface resistance was assumed

to be 70 s m�1, the FAO/Allen value for a grass reference crop

under well-watered conditions (Allen et al., 1998).

In order to calculate the daily values of the Priestley–Taylor

coefficient (lE/lEeq), the equilibrium latent heat flux (lEeq) was

determined using Eq. (5) (Priestley and Taylor, 1972):

lEeq ¼
DðRn � GÞ

Dþ g
(5)

To assess the physiological control of the water exchange

between the ecosystem and atmosphere, half-hourly surface

conductance (gs) was calculated by inverting Eq. (4). Aerody-
namic conductance (ga) was obtained from sonic anemometer

outputs as (Monteith and Unsworth, 1990):

1
ga

¼ u
u2
�
þ 6:2u�0:67

� (6)

where u* is the friction velocity (m s�1) and u is the mean wind

speed (m s�1). Daily values of gs were derived from the average

of daytime observations, as an indicator of daytime surface

conductance. Conductances in m s�1 were converted to

mmol m�2 s�1 using the ideal gas law.

The coupling between the ecosystem surface and the

atmospheric boundary layer was estimated through the

decoupling coefficient (V), calculated on a half-hourly basis

according to Jarvis and McNaughton (1986):

V ¼ ðDþ gÞ
Dþ gð1þ ga=gsÞ

(7)

Daily values of decoupling coefficient were also obtained by

averaging all daytime observations.
3. Results and discussion

3.1. Meteorology, leaf area index and aboveground
biomass

The variations of themajor environmentalconditions and plant

parameters during the two hydrological years are shown in

Fig. 1. The seasonal pattern of the daily-integrated shortwave

radiation (Rs) was similar in the two hydrological years, with

minimum values (1–5 MJ m�2 d�1) in cloudy winter days and

maximum values (around 30 MJ m�2 d�1) in the summer. The

number of cloudy days was clearly lower in 2005, especially

between the days of the year 1 and 60. Along with Rs, maximum

air temperatures (Tmax) varied from 10 to 15 8C, in the winter, to

extreme values (above 35 8C), during the summer. The mini-

mum air temperatures (Tmin) reached ca. �5 8C in winter,

whereasTmin in summer was consistently well above 10 8C. The

mean air temperature for the hydrological years of 2004–2005

and 2005–2006 was 14.7 and 14.5 8C, respectively.

Precipitation differed markedly between the two hydro-

logical years, in both the amounts and the patterns of rain. The

first hydrological year was dry, with 364 mm of total

precipitation (45% below the long-term mean) and the second

was normal, with 751 mm of total precipitation (only 12%

above the long-term mean). A long period, from DOY 340 to 80,

without significant rainfall, occurred during the dry hydro-

logical year of 2004–2005 (Fig. 1g–h). This led to severe plant

water deficits by late winter as the soil moisture content

dropped below 10% in the upper 15 cm soil layer. In contrast,

precipitation was uniformly distributed during both the

winter and early spring periods of the normal year (2005–

2006), leading to high soil moisture levels (Fig. 1h–i). Isolated

rain events during late spring and summer periods led to

short-term peaks in soil moisture. Large rain events in late

spring of 2006 combined with a subsequent rain pulse during

the summer (Fig. 1i) led to consistently higher soil moisture

than in the previous summer. It is important to mention that



Fig. 1 – Seasonal variation in (a–c) daily-integrated shortwave radiation (Rs), (d–f) daily maximum (Tmax) and daily minimum

(Tmin) air temperature, (g–i) daily total precipitation (PPT) and averaged volumetric soil moisture content (uv) from the upper

(0–15 cm) and (0–30 cm) of soil and (j–l) mean green leaf area index (LAI) W S.E. and dry aboveground biomass (AGB) over the

course of the study. DOY means day of year.
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the higher soil moisture levels of the upper 30 cm soil layer

(Fig. 1g–i), especially during the water-stressed periods,

showed the capability of this soil to hold water at the depth

of 30 cm, where a relatively dense layer of clay is present. In

fact, even during the summer, the soil moisture at 30 cm depth

did not drop below 18%.

There was a clear difference in grass production between

hydrological years (Fig. 1j–l). Overall, LAI and aboveground

biomass responded well to the variations in soil moisture and

temperature. Maximum standing biomass was only

0.157 kg m�2 during the dry year (2004–2005) (Fig. 1k), but

reached a maximum value of 0.512 kg m�2 during the normal

year (2005–2006) (Fig. 1l). Hence, the LAI at the peak growth

period averaged 0.4 and 2.5 in the dry and normal years,

respectively. Although measurements of LAI were not per-

formed before April 2005, LAI probably did not reach values

above 1 because of low soil moisture in combination with

winter grazing. The maximum LAI of the dry year laid within a

range of values published for semi-arid grasslands (e.g., Li

et al., 2006), while for the normal year the maximum LAI

was similar to those observed in an Mediterranean annual
grassland in California (Baldocchi et al., 2004).In both hydro-

logical years, the end of the senescence of the C3 grasses

occurred by the beginning of May (ca. DOY 132). Thereafter, the

warm-season C4 grass, C. dactylon L., remained green but with

highly variable LAI. In 2005, the LAI of the C4 grass between

DOY 132 and 170 was above 0.1, but then decreased smoothly

to approach zero at the end of the summer (Fig. 1k). In

contrast, in 2006, the grass was cut on DOY 144, reducing the

LAI of the C4 grass from ca. 0.3 to 0.15 (Fig. 1l). The hay was left

on the ground partially covering the green leaves until DOY

162, when it was finally removed. Although, we did not

measure the effect of hay coverage, the LAI of uncovered green

leaves would be slightly lower than 0.15. On the DOY 163, a

strong rain pulse led to a quick development of the C4 grass

but the amount of rain was not enough to allow germination

and support growth of C3 annuals. On DOY 188, the LAI of the

C4 grass was 0.35 and remained almost constant until DOY

213. Thereafter, several grazing events gradually reduced its

value to about 0.1, on DOY 217. An increase in LAI was

observed again on DOY 270 (beginning of autumn), because

the previous heavy rain promoted the C3 grass seed



Fig. 2 – Seasonal pattern of (a–c) daily-integrated net radiation flux (Rn), (d–f) soil heat flux (G) and (g–i) sensible heat flux (H)

and latent heat flux (lE) during the course of the study.
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germination, starting a new cycle of the annual C3 grasses.

The lower temperatures in the beginning of autumn in

combination with the competition from the C3 grasses, led

to the death of the aboveground parts of the C4 grass.

3.2. Seasonal and interannual variation in energy fluxes

Fig. 2 shows the seasonal variation in energy fluxes over the

course of the study. The seasonal pattern of Rn followed

closely the variation of Rs (Fig. 1a–c), showing maximum

values (10–15 MJ m�2 d�1) in the summer and minimum

values, close to zero, in late autumn and early winter. Daily

G (Fig. 2d–f) was generally negative in autumn and winter,

indicating an important loss of energy from the soil to the

atmosphere. In spring and summer, it was predominantly

positive, except for most cloudy days. The temporal variation

of H was concomitant with the pattern of change of Rn. In late

autumn and winter, H was close to zero, often negative, but

increased afterwards to daily values above 8 MJ m�2 in the

summer (Fig. 2g–i). The negative values of H reflected the

transfer of heat from the atmosphere to the ecosystem.

The minimum daily values of lE (1–2 MJ m�2) were

recorded during both winters, essentially due to low atmo-

spheric evaporative demand. However, in spring and summer

the rates of lE were clearly controlled by the soil moisture

conditions and canopy growth. Therefore, the drought

conditions in late winter and early spring of 2005 led the

ecosystem to transfer lE at a maximum rate of about 6 MJ m�2

per day, which was approximately half of the maximum rate
observed in 2006 (11 MJ m�2 d�1) with abundant soil moisture

and a denser canopy. In the summer of 2006, higher soil

moisture, in combination with higher LAI, resulted in

consistently greater lE than in the previous summer.

In both hydrological years, H switched to lE by about the

first rain events that increased soil moisture and consequently

propitiated seed germination of the C3 community. The

switch from lE to H occurred at the same time as the

senescence of the C3 herbaceous species. Similar changes,

essentially associated with the variation in soil moisture, were

also observed in a Mediterranean grassland in California

(Valentini et al., 1995) and in a temperate grassland in Canada

(Wever et al., 2002).

The seasonal and interannual differences in energy fluxes

were largely imposed by the variability in soil moisture and

canopy growth. To better understand these differences, we

divided each hydrological year into three main periods of

growth (Table 1). Pre-growth was defined as the period

between 1 October and 31 December, when the C3 grasses

germinated, began to grow, but remained short. The Growth

period, when maximum plant growth was observed, occurred

between 1 January and the end of the C3 plant senescence (12

May, DOY 132, in both hydrological years). The remaining

period, until 30 September corresponding to the time when

only the warm-season C4 species was present, was called Dry.

Soil water deficits combined with low LAI in the Growth

and Dry periods of 2005 led to substantially lower cumulative

Rn values as compared with those from the same periods of

2006. This resulted in a considerable annual difference in Rn,



Table 1 – Comparison of major meteorological and biometeorological parameters at different periods of growth for the two
hydrological years

Period

Pre-growth Growth Dry Pre-growth Growth Dry

2004 2005 2005 2005 2006 2006 2004–2005
hydrological

year

2005–2006
hydrological

year

T (8C) 11.1 9.6 21.9 11.2 9.5 21.3 14.7 14.5

Ts (8C) 13.3 12.5 29.8 13.6 12.0 26.5 19.5 18.0

Rs (MJ m�2) 1048.0 2222.6 3585.2 939.4 2082.2 3452.8 6855.8 6474.4

PPT (mm) 239.4 83.2 41.0 355.2 290.2 105.8 363.6 751.2

uv (%) 24.1 10.8 5.3 26.0 31.1 10.1 10.9 21.8

D (kPa) 0.35 0.42 1.52 0.32 0.25 1.36 0.83 0.69

Rn (MJ m�2) 235.2 775.7 1110.0 266.7 893.3 1455.1 2120.9 2615.1

G (MJ m�2) �69.0 �2.5 111.6 �59.5 �11.7 84.7 40.2 13.4

H (MJ m�2) 59.2 291.4 815.0 21.9 96.0 793.4 1165.7 911.4

lE (MJ m�2) 205.3 331.4 239.6 216.2 530.7 432.4 776.3 1179.3

G/Rn �0.29 0.00 0.10 �0.22 �0.01 0.06 0.02 0.01

H/Rn 0.25 0.38 0.73 0.08 0.11 0.55 0.55 0.35

lE/Rn 0.87 0.43 0.22 0.81 0.59 0.30 0.37 0.45

b = H/lE 0.49 0.89 4.54 0.45 0.12 2.31 2.20 1.05

E (mm) 83.3 134.4 98.4 87.9 215.8 177.6 316.1 481.3

EP (mm) 128.3 292.7 739.8 133 263.2 675.2 1160.7 1071.4

Eeq (mm) 73.9 181.2 278.3 76.7 209.3 388.9 533.5 674.9

E/PPT 0.35 1.62 2.40 0.25 0.74 1.68 0.87 0.64

E/Eeq 1.13 0.74 0.35 1.15 1.03 0.46 0.59 0.71

gs (mmol m�2 s�1) 290.3 176.6 30.3 346.7 392.3 64.4 151.8 254.4

V 0.53 0.38 0.12 0.56 0.59 0.21 0.33 0.44

Pre-growth: period between 1 October and 31 December; Growth: period between 1 January and the end of the C3 species senescence (12 May,

DOY 132, in both years); Dry: the remaining period until 30 September. Daily means for each period: T, air temperature; Ts, soil temperature,

averaged from the depth of 2, 10 and 20 cm; uv, volumetric soil moisture content, averaged from the upper 15 cm of soil; D, vapour pressure

deficit; b, Bowen ratio; gs, surface conductance; V, decoupling coefficient. Totals for each period: Rs, shortwave radiation; PPT, precipitation; Rn,

net radiation; G, soil heat flux; H, sensible heat flux; lE, latent heat flux, E, evapotranspiration; EP, potential evapotranspiration; Eeq,

equilibrium evapotranspiration.
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2121 and 2615 MJ m�2 for the first and second hydrological

years, respectively (Table 1). Similar annual Rn values were

reported for a Mediterranean annual grassland in California

(Baldocchi et al., 2004). Differently, a lower annual Rn was

observed for a semi-arid steppe in central Mongolia (Li et al.,

2006) and higher values were found in a native tallgrass prairie

in Oklahoma (Burba and Verma, 2005). Cumulative values of G,

H and lE are also summarized in Table 1.

The energy partitioning was different between the Growth

periods and hydrological years (Table 1). The fraction G/Rn

increased from the pre-growth to the Dry period, in both

hydrological years, but only reached the maximum of 0.1 in the

Dry period of 2005 (Table 1).On an annual basis, theportion ofRn

consumed inGwas very low, 0.02 and 0.01 for the 2004–2005 and

2005–2006 hydrological years, respectively. A slightly higher,

but small, annual fraction of 0.05 was reported by Li et al. (2006).

The fractions lE/Rn and H/Rn varied inversely from the Pre-

growth to the Dry periods (Table 1). Although in the Pre-growth

and Growth periods the ratio of lE/Rn dominated over H/Rn, in

the Dry periods the H/Rn was dominant. The degree of

dominance was substantially different for each hydrological

year as reflected by the Bowen ratios (the ratios between H and

lE), b (Table 1). The major difference was found in the Growth

and Dry periods, where b varied from 0.89 to 4.54, in the first

hydrological year, and from 0.12 to 2.31, in the second,

indicating higher soil water availability during 2006.
On an annual basis, the largest portion of Rn was consumed

in H (0.55), in the first hydrological year, and in lE (0.45), in the

second (Table 1). It is important to mention that the

differences in energy closure between the two years may

have introduced some uncertainties in the magnitude of the

ratios of lE/Rn and H/Rn. Nevertheless, our results are within

the expectable range, giving the contrasting climatological

conditions observed. In this study, the annual ratios of lE/Rn

(0.37 and 0.45) were lower than those reported by Burba and

Verma (2005) for a native tallgrass prairie in Oklahoma, and

higher than the ratio obtained by Li et al. (2006) for a semi-arid

grassland.

The diurnal pattern of energy fluxes (Fig. 3) showed a distinct

seasonal and interannual variation. As an example, we selected

three periods of the main stages of plant growth; a period with

relatively short vegetation (January, DOY 1–31), the period of

maximum plant growth (April, DOY 91–120) and a period where

the only plant species present was C. dactylon (July, DOY 182–

212). In 2005 and 2006, Rn increased from values around

300 W m�2 in January (Fig. 3a and d) to values around600 W m�2

in April (Fig. 3b and e). A further decrease occurred in July (Fig. 3c

and f), but was less pronounced in 2006 than in 2005.

The partitioning of Rn at midday differed markedly

between the selected periods and years (Table 2). Even though

the soil was fairly dry in January 2005, the ratio lE/Rn was

similar to that of January 2006, probably due to the low



Fig. 3 – Seasonal and interannual variation in the mean diurnal course of net radiation flux (Rn), soil heat flux (G), sensible

heat flux (H) and latent heat flux (lE). (a and d) are shown a period with relatively short vegetation (January, DOY 1–31), (b

and e) the period of maximum growth (April, DOY 91–120) and (c and f) a period where only the C4 species was present (July,

DOY 182–212). The values represent half-hourly averages (WS.E.) for cloudless and near-cloudless days. UTC time was used.
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atmospheric evaporative demand in winter. However, the

short canopy combined with low soil moisture and tempera-

ture meant that G/Rn dominated in January 2005. Even in

January 2006, the ratio G/Rn shared the dominance with lE/Rn.

This reveals that G was preponderant at midday during those

periods. In a semi-arid steppe in central Mongolia, Li et al.

(2006) also found that G had a important role in energy

partitioning at midday, due to the short canopy. In April 2005,

very low soil moisture content, but higher amount of

vegetation than in January, switched the dominance to H/Rn

(Table 2). In contrast, lE/Rn strongly dominated in April 2006 as

a consequence of the dense vegetation (LAI = 2.5) and

adequate soil moisture, which led to very low ratios of H/Rn

and G/Rn. With the reductions in soil moisture from April to

July, H/Rn was dominant in July of both years, but with

increased importance of lE/Rn in July 2006 (Table 2).
Table 2 – Midday (10:00–15:00 h) partitioning compo-
nents (soil heat (G), sensible heat (H) and latent heat (lE)
fluxes) of Rn, maximum LAI and volumetric soil moisture
content uv, averaged from the upper 15 cm of soil, for the
selected periods reported in Fig. 3

Period

January April July

2005 2006 2005 2006 2005 2006

G/Rn 0.39 0.29 0.23 0.12 0.31 0.22

H/Rn 0.27 0.16 0.33 0.15 0.54 0.45

lE/Rn 0.29 0.29 0.27 0.49 0.11 0.21

Maximum LAI Very low 1.3 <1 2.5 0.1 0.35

uv (%) 16.9 33.3 7.9 27.2 4.8 9.8
3.3. Seasonal and interannual variation in
evapotranspiration

The seasonal pattern of daily-integrated evapotranspiration

(E) is shown in Fig. 4a–c. To characterize the difference

between the hydrological years of the study, we estimated the

potential evapotranspiration (EP), derived from Eq. (4), which

represents the maximum expected evapotranspiration from a

wet soil-plant surface. After the first rains in autumn,

adequate soil moisture levels led to the germination of

annuals and E reached potential rates. Toward the spring a

substantial difference in the temporal variation of E was

observed between the years as a result of the contrasting soil

moisture conditions and LAI. There was a clear separation

between E and EP early in the winter of 2005. Nevertheless, in

2006, E proceeded at potential rates until the early spring

(around DOY 120), when a maximum rate of 4.5 mm per day

was achieved. The maximum daily rate (2.8 mm d�1) of 2005

was obtained around DOY 150 after a strong rain pulse,

although, the rates were not significantly different

(2.3 mm d�1) throughout the period of maximum LAI.

The maximum rate of evapotranspiration during the

normal year (2005–2006) was similar to those recorded in a

Mediterranean annual grassland in California (Baldocchi et al.,

2004), in the 1998 growing season of a temperate grassland in

Canada (Wever et al., 2002) and in a native tallgrass prairie in

Oklahoma (Burba and Verma, 2005). On the other hand, Li et al.

(2006) measured a maximum rate of 2.8 mm per day in a water

stressed ecosystem, like the dry year (2004–2005).

After the senescence of the C3 species, which occurred by

about mid-spring (12 May, DOY 132) in both hydrological years,

distinct patterns of E were identified. In late spring 2005, rain

pulses propitiated short-term peaks in E. Afterwards, E



Fig. 4 – Seasonal variation in daily-integrated evapotranspiration (E) and daily potential evapotranspiration (EP), (a–c), and

daily surface conductance (gs), (d–f), over the course of the study.

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 5 6 5 – 5 7 9 573
decreased smoothly toward the end of the summer, when LAI

of the C4 grass was approaching zero. Although very low soil

moisture levels (<5% in the top 15 cm of the soil), E was well

above 0.4 mm per day in mid summer and around 0.2 mm per

day at the end of the summer. Given that the soil was very dry

and compacted at the top, and with considerable amount of

dead grass on it, we can speculate that soil evaporation would

be very low. Thus, those low, but considerable rates of E, can be

apparently explained by the physiological activity of the

drought-tolerant C4 grass, C. dactylon, which has the ability to

extend its roots deeply into the soil to enhance water

absorption. The summer physiological activity is corroborated

by the estimated photosynthetic rates, calculated using the

method proposed by Reichstein et al. (2005), which varied from

ca. 0.6 g C m�2 per day in mid summer to ca. 0.2 g C m�2 per

day at the end of the summer. The daily water-use efficiencies

(the ratio between the daily photosynthesis and the daily E)

varied generally from 1.2 to 2 mmol CO2 mol�1 H2O during the

summer. In a previous study under Mediterranean conditions,

Mamolos et al. (2001) also found that C. dactylon was active

during the summer, even growing in the field at very low

values of soil matric potential in the upper soil layer. In

contrast to our results, Baldocchi et al. (2004) recorded daily

rates of E close to zero during the summer, in a Mediterranean

annual grassland with absence of warm-season species.

In late spring 2006, the effects of grass cutting on E were

well evident between DOY 144 and 162. Since it reduced the

LAI and the evapotranspiration was limited due to the dead

grass left on the soil-plant surface, the daily rates were

substantially reduced to around 0.5 mm per day (Fig. 4c).

When the grass was finally removed, on DOY 162, subsequent

strong rain events raised the soil moisture and the LAI of the

C4 grass rapidly increased to 0.35, leading to evapotranspira-

tion rates of about 2 mm per day. Later, after DOY 213, the

substantial reduction in E, from about 1.4 to 0.7 mm per day,

resulted mainly from several grazing events that reduced the

LAI of the C4 grass to 0.1 (Fig. 4c). Significant reductions in the
daily E, due to reductions in transpiration by defoliation, have

also been reported for a grazed prairie in Kansas, dominated

by C4 grasses (Bremer et al., 2001). This occurrence provided,

once more, a clear evidence of the relevant role of the warm-

season C4 grass in controlling E during the summer. An

increasing trend in E during late summer was related to large

rain events, which also promoted the emergence of C3 plants

due to seed germination (Fig. 4c).

The contrasting seasonal and annual trends of E were well

supported by the variations in the estimated surface con-

ductance (gs) (Fig. 4d–f). Under well-watered conditions, gs

reached maximum values and E occurred at near potential

rates, but with significant day-to-day variation (200–

600 mmol m�2 s�1). This variation reflected the measure-

ments from dry or wet surfaces and under cloudy or sunny

days (Baldocchi et al., 2004). In contrast, when soil moisture

was not adequate to sustain evapotranspiration at potential

rates, gs decreased, showing a less day-to-day variation and

reaching minimum values (of about 10 mmol m�2 s�1) in the

summer of both years. However, during the summer of 2006, gs

was generally higher that in the previous summer due to

greater soil moisture and higher LAI. The mean gs values for

different periods of growth of both hydrological years are

shown in Table 1.

Fig. 5 shows the cumulative evapotranspiration and

precipitation for both hydrological years. For the dry year

(2004–2005), cumulative E and precipitation were 316 and

364 mm, respectively. During the normal year (2005–2006), E

and precipitation amounted respectively to 481 and 751 mm.

In Table 1, we show the budgets and the water balances (E/PPT)

for the three selected periods of growth, as well as the annual

values for both hydrological years. During the Dry period, E

was 31% and 37% of the annual evapotranspiration of the first

and the second hydrological years, respectively. The accu-

mulated E for the dry year is close to the annual sums reported

for an Mediterranean annual grassland in California (Baldoc-

chi et al., 2004), but higher than the annual evapotranspiration



Fig. 5 – Cumulative precipitation (PPT) and evapotranspiration (E) for (a and b) the 2004–2005 hydrological year and (b and c)

the 2005–2006 hydrological year.
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measured in other grasslands ecosystems (Wever et al., 2002;

Li et al., 2006). Much higher amounts of annual evapotran-

spiration, even relatively to our normal year, were reported for

native tallgrass prairies in the summer rain monsoon climate

of North America (Burba and Verma, 2001, 2005).

We found a large difference in the annual water balances

between years (Fig. 5, Table 1). Although, negative annual

balances were observed in both hydrological years, in the dry

year E was 87% of the precipitation and only 64% in the normal

year. The better closure in the dry year may be attributed to

lower losses by runoff. Furthermore, a long period with soil at

field capacity during the normal year may have increased the

water infiltration into the soil, where it may have percolated to

the water table (Law et al., 2002).

Despite negative annual balances, the Growth period of the

2004–2005 hydrological year and the Dry periods of both years,

had positive balances (Table 1). The highest balance (2.40) was

attained in the Dry period of 2005. In the Dry period of 2006, the

balance was considerably lower (1.68), mainly due to the large

inputs of water at the end of that period that in practice were not

evapotranspiredwithin the period. Excluding that period of rain,

the balance becomes similar to that in the Dry period of 2005.

Based on these results, here we can highlight, once more, the

role of the warm-season C4 grass after the senescence of the C3

species. For example, the difference betweenEand precipitation

in the Dry period of 2005 was about 57 mm (Table 1), which

means that the soil lost an extra 57 mm of water. The same

exercise for the Dry period of 2006 yielded 72 mm, but excluding

from the analysis the rain at the end of the Dry period that was

not evapotranspired, results in ca. 112 mm. As we mention

above, we believe that this soil had very low evaporation during

the Dry period. Thus, we may speculate that those extra losses,

equivalent to 18% and 23% of the total E of the dry and normal

years, respectively, were largely related to the water extracted

by the deep-rooted C. dactylon. Even if we consider a possible

overestimation or underestimation of evapotranspiration, in

the order of the energy imbalance observed, the essence of this

exercise would not be significantly altered.

3.4. Biophysical controls on surface conductance and
evapotranspiration

3.4.1. Effects of soil moisture
To determine the soil moisture threshold below which

evapotranspiration is affected, we assessed the relationship
between the Priestley–Taylor coefficient and the volumetric

soil moisture content, using an approach similar to Baldocchi

et al. (2004) (see Fig. 6c and d). Under well-watered conditions,

lE/lEeq varied from 0.9 to around 1.2 (close to the Priestley–

Taylor constant, 1.26), but declined substantially when

volumetric soil moisture content dropped below 14% and

13% in the 2004–2005 and 2005–2006 hydrological years,

respectively. The surface conductance (Fig. 6a and b) also

showed a similar trend.

Since the results were similar for both hydrological years,

we assumed, from a conservative point of view, a critical uv of

14% for this grassland. This critical uv agrees reasonably well

with that (13%) reported for the Mediterranean annual

grassland in California (Baldocchi et al., 2004). Similarly, Hunt

et al. (2002) found that the evaporative fraction of a tussock

grassland, in New Zealand, declined sharply when soil

moisture dropped below the threshold of 12%. However,

while Baldocchi et al. (2004) found that lE/lEeq decreased

precipitously below the critical uv, we observed a gradual

decrease, similar to that observed in the tussock grassland.

This suggests that the physiological activity of the warm-

season C4 grass may have attenuated the decreases in

evapotranspiration during and after the senescence of the

C3 species. In addition, the significant rates of evapotranspira-

tion observed during the summer periods explain the

relatively high ratios of lE/lEeq at the uv lowest levels.

In the 2005–2006 hydrological year, the lowest values of lE/

lEeq and gs were measured after grass cutting, when the grass

was left covering partially the soil-plant surface (Fig. 6b and d).

The period after the heavy summer rain, in 2006, is also shown

in Fig. 6b and d. In general, lE/lEeq and gs declined with the

gradual decrease in soil moisture after the heavy rain event.

However, the ratios of lE/lEeq increased when the soil

moisture levels approached 13%. This was the result of a

long period with cloudy conditions that reduced lEeq, while lE

remained fairly unchanged.

3.4.2. Effects of canopy development
The dependence of surface conductance and/or evapotran-

spiration on canopy development has been observed in

numerous studies across the world (Kelliher et al., 1993;

Rosset et al., 1997; Saigusa et al., 1998; Burba and Verma, 2005;

Li et al., 2006). In this study, we found a strong linear

correlation between the evaporative fraction and the leaf area

index (Fig. 7), under abundant soil moisture and dense



Fig. 6 – (a and b) surface conductance (gs) and (c and d) Priestley–Taylor coefficient (lE/lEeq) in relation to volumetric soil

moisture content (uv), averaged from the upper 15 cm of soil (the most important layer for C3 species roots), for the 2004–

2005 and 2005–2006 hydrological years. Daily values of gs and lE/lEeq were bin-averaged into 1% bins (black circles).

Vertical bars represent the standard error. Daily values for the period after grass cutting (triangle up), where the grass was

left covering partially the terrain, and the period after the heavy summer rain (white circles), in 2006, are also shown.
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vegetation (LAI > 1). The changes in LAI explained 73% of the

variance found in lE/Rn (P < 0.01). The importance of LAI in

controlling the evaporative fractions, under abundant soil

moisture, was also well evident (R2 = 0.58) in a native tallgrass

prairie in Oklahoma (Burba and Verma, 2005).

Under well-watered conditions, but when LAI was less than

1 (vegetation height less than 3 cm), the evaporative fractions

were relatively high (not shown). This may be explained by a

large contribution of soil evaporation and a presence of a
Fig. 7 – Relationship between mean daytime evaporative

fraction (lE/Rn) and leaf area index (LAI) for the 2005–2006

hydrological year, when the vegetation was dense

(LAI > 1). Data represent 5-day averages (WS.E.) around the

LAI measurement days.
canopy with a great proportion of young leaves with lower

stomatal resistance (Rosset et al., 1997).

In this study, we could not observe a clear influence of

changes in LAI on surface conductance because of a large day-

to-day variation. In fact, this problem has also been found in

the study of other Mediterranean grassland (Baldocchi et al.,

2004).

3.4.3. Effects of vapour pressure deficit
Fig. 8 illustrates the dependence of surface conductance on

vapour pressure deficit in the two years of thestudy. It is evident

that as soon as D increased, gs became limited. However, the

sensitivity of these responses is mainly affected by the soil

moisture conditions. A close inspection shows that for

D < 0.5 kPa there was no distinct effect on surface conductance

because of the well-watered conditions and hence a large day-

to-day variation in gs. This implies that in ecosystems such as

this, D plays a stronger role in controlling gs when the soil

moisture is not adequate, than otherwise. To examine this, we

assessed the relationship between gs and D for short periods

under limiting soil moisture conditions, when volumetric soil

moisture content was nearly constant (Fig. 9). For all thecases, it

was found that more than 78% of the variance in gs was

explained by the changes in D (P < 0.0001). Considering the

consequences of summer drought, David et al. (2004) also

reported a strong linear relationship between midday canopy

resistance and D for an evergreen oak tree near Évora, Portugal.

To quantify the relative importance of D in controlling the

evapotranspiration on a daily and seasonal basis, we



Fig. 8 – Relationship between daily (daytime average) surface conductance (gs) and mean daytime vapour pressure deficit (D)

for (a) the 2004–2005 hydrological year and (b) the 2005–2006 hydrological year. Periods of rain were excluded from the

analysis.

Fig. 9 – Relationship between daily (daytime average) surface conductance (gs) and mean daytime vapour pressure deficit (D)

for short periods (8–10 days) under limiting soil moisture conditions, when volumetric soil moisture content was nearly

constant. Shown are the examples of (a) the period of severe drought conditions during the late winter 2005 (DOY 62–70), (b)

the summer 2005 (DOY 178–187) and (c) the summer 2006 (DOY 220–227).
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determined the decoupling coefficient (V) (Jarvis and

McNaughton, 1986). This coefficient varies from 0 to 1; when

it approaches 0, the ecosystem surface and the atmosphere

are aerodynamically coupled and the evapotranspiration

proceeds at rates imposed by D and gs; when it approaches

1 the ecosystem surface and the atmosphere are aerodyna-

mically decoupled and the evapotranspiration is controlled by

the available energy.

On a seasonal basis, the daily values of V varied from a

maximum of about 0.7, under ample soil moisture and low D,

to a minimum of 0.05 and 0.1 during the summers of 2005 and
Fig. 10 – Seasonal variation in daily (daytime average) deco
2006, respectively (Fig. 10). These low values of V indicate a

strong control of evapotranspiration by D and gs. In contrast,

during the wet periods the available energy was the main

driver of evapotranspiration, but D was still reasonably high.

Consistent with our study, Valentini et al. (1995) reported that

V of a Mediterranean annual grassland varied from 0.8, early

in the growing season, to 0.1 as the soil moisture decreased. In

Table 1 it is presented the mean V values at different periods of

growth for both hydrological years.

The diurnal pattern of V and gs showed a distinct seasonal

and interannual variation (Fig. 11). As an example, we selected
upling coefficient (V) over the course of the study (a–c).



Fig. 11 – Seasonal and interannual variation in diurnal pattern of surface conductance (gs), (a and b), and decoupling

coefficient (V), (c and d), on typical cloudless or near-cloudless days. The figure shows periods with short vegetation and

low evapotranspiration (DOY 30, 2005 and DOY 38, 2006), periods near the maximum LAI and evapotranspiration (DOY 97,

2005 and DOY 103, 2006) and summer periods where only the C4 species was present (DOY 213, 2005 and DOY 212, 2006).

UTC time was used.
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typical days of periods with short vegetation and low E (DOY

30, 2005 and DOY 38, 2006), periods near the maximum LAI and

E (DOY 97, 2005 and DOY 103, 2006) and summer periods where

only the warm-season C4 species was present (DOY 213, 2005

and DOY 212, 2006). Overall, the diurnal pattern of V and gs

was similar. In 2006, V remained fairly constant through the

day on DOY 38 and 103, indicating that water was available in

the soil. In contrast, on DOY 30 and 97 of 2005, V decreased as

the day progressed, revealing an increasing control of D and gs

on E. This suggests that, under soil moisture deficits, the

plants reduced the stomatal conductance during the after-

noon in response to high temperatures and D, preventing

excessive losses of water, as commonly reported (e.g., Verhoef

et al., 1996; Loustau et al., 1996).

On DOY 97 of 2005, V was considerably high due to the

relatively high soil moisture that resulted from previous late

winter rainfall. However, a few days afterwards, V was

substantially lower, showing a stronger decreasing trend as

the day progressed. The peaking values of V and gs, early in the

morning, suggest evaporation of dew (Gu et al., 2005). In

the summer periods (DOY 213, 2005 and DOY 212, 2006) the

decreasing trend from the morning to the afternoon was also

evident. This decreasing trend was observed in other

ecosystems (Wever et al., 2002; Gu et al., 2005).
4. Conclusions

The observation of two climatologically contrasting hydro-

logical years (one dry, 2004–2005, and another normal, 2005–

2006) offered a unique opportunity to understand how
interannual climate variability, namely drought, affects the

energy and water vapour exchange between a grassland and

the atmosphere under a Mediterranean climate. The seasonal

and interannual variation in energy partitioning was primarily

controlled by soil water availability and canopy growth. In the

dry year, the drought in winter and early spring limited the

grass production, and as a consequence of these conditions

most of the annualRn was consumed inH, as would be the case

in a semi-arid climate. In contrast, lE dominated the annual

energy partitioning in the normal year. Although, on an

annual basis G consumed a minor part of Rn, we found that

during daytime it played a stronger role, even dominating the

energy partitioning in periods with short grass and low soil

temperatures.

During the winter and early spring periods of the normal

year, E proceeded at potential rates and reached a maximum

rate twice as high as the rate recorded in the dry year, when E

remained clearly below the potential rate. Between the end of

the senescence of the C3 annual grasses, in mid-spring, and

the early autumn, the warm-season C4 grass, C. dactylon L.,

played a preponderant role in maintaining substantial rates of

E. We estimated that the presence of this C4 grass, during that

period, contributed to an additional E probably equivalent to

around 18% and 23% of the total E of the dry and normal years,

respectively, thus greatly contributing for soil water depletion.

However, further investigation is needed in order to better

understand the role of this invasive species during the

summer. For example, measurements of leaf stomatal con-

ductance, maximum depth of its roots and soil water content

for the entire soil profile, would be valuable inputs of

information.
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The evapotranspiration of the grassland was primarily

affected by the soil water availability. We found that whenever

the average volumetric soil moisture content in the top 15 cm

of the soil profile dropped below 14%, the Priestley–Taylor

coefficient and surface conductance were substantially

reduced. Under these conditions, the evapotranspiration did

not proceed at potential rates. Thus, this critical value can be

empirically used to indicate whether or not the soil moisture is

a limiting factor. When soil moisture was not limiting, the

long-term changes in the evaporative fractions were mainly

explained by changes in LAI (when LAI > 1) and the daily rates

of E were predominantly controlled by the available energy. As

soon as soil moisture became limiting, E was strongly

controlled by the vapour pressure deficit and surface

conductance.
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Carvalho, A., Pires, C., Pires, H.O., Pires, V.C., Ramalho, C.,
2002. 20th century portuguese climate and climate
scenarios. In: Santos, F.D., Forbes, K., Moita, R. (Eds.),



a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 5 6 5 – 5 7 9 579
Climate Change in Portugal: Scenarios. Impacts and
Adaptation Measures (SIAM Project), Gradiva, pp. 23–83.

Monteith, J.L., 1965. Evaporation and environment. In: Fogg, G.E.
(Ed.), The State and Movement of Water in Living
Organisms. Academic Press, New York, pp. 205–234.

Monteith, J.L., Unsworth, M.H., 1990. Principles of
Environmental Physics, second ed. Chapman and Hall, New
York, USA.

Pereira, J.S., Mateus, J.A., Aires, L.M., Pita, G., Pio, C., David, J.S.,
Andrade, V., Banza, J., David, T.S., Paço, T.A., Rodrigues, A.,
2007. Net ecosystem carbon exchange in three contrasting
Mediterranean ecosystems. The effect of drought.
Biogeosciences 4, 791–802.

Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface
heat flux and evaporation using large-scale parameters.
Monthly Weather Rev. 100, 81–92.

Rannik, U., Markkanen, T., Raittila, J., Hari, P., Vesala, T., 2003.
Turbulence statistics inside and over forest: influence
on footprint prediction. Bound. Layer Meteorol. 109,
163–189.

Raupach, M.R., 1998. Influences of local feedbacks on land-air
exchanges of energy and carbon. Global Change Biol. 4, 477–
494.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T.,
Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H.,
Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D.,
Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M.,
Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D.,
Valentini, R., 2005. On the separation of net ecosystem
exchange into assimilation and ecosystem respiration:
review and improved algorithm. Global Change Biol. 11,
1424–1439.

Rogiers, N., Eugster, W., Furger, M., Siegwolf, R., 2005. Effect of
land management on ecosystem carbon fluxes at a
subalpine grassland site in the Swiss Alps. Theor. Appl.
Climatol. 80, 187–203.

Rosset, M., Riedo, M., Grub, A., Geissmann, M., Fuhrer, J., 1997.
Seasonal variation in radiation and energy balances of
permanent pastures at different altitudes. Agric. For.
Meteorol. 86, 245–258.

Saigusa, N., Oikawa, T., Liu, S., 1998. Seasonal variations of the
exchange of CO2 and H2O between a grassland and the
atmosphere: an experimental study. Agric. For. Meteorol.
89, 131–139.

Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R.,
Meyers, T.P., Prueger, J.H., Starks, P.J., Wesely, M.L., 2000.
Correcting eddy-covariance flux underestimates over a
grassland. Agric. For. Meteorol. 103, 279–300.

Valentini, R., Gamon, J.A., Field, C.B., 1995. Ecosystem gas-
exchange in a California grassland – seasonal patterns and
implications for scaling. Ecology 76, 1940–1952.

van der Molen, M.K., Gash, J.H.C., Elbers, J.A., 2004. Sonic
anemometer (co)sine response and flux measurement—II.
The effect of introducing an angle of attack dependent
calibration. Agric. For. Meteorol. 122, 95–109.

Verhoef, A., Allen, S.J., DeBruin, H.A.R., Jacobs, C.M.J.,
Heusinkveld, B.G., 1996. Fluxes of carbon dioxide and water
vapour from a Sahelian savanna. Agric. For. Meteorol. 80,
231–248.

Vickers, D., Mahrt, L., 1997. Quality control and flux sampling
problems for tower and aircraft data. J. Atmos. Oceanic
Technol. 14, 512–526.

Vignolio, O.R., Biel, C., de Herralde, F., Araujo-Alves, J.P.L., Save,
R., 2002. Growth of Lotus creticus creticus and Cynodon dactylon
under two levels of irrigation. Aust. J. Agric. Res. 53, 1375–
1381.

Vignolio, O.R., Biel, C., de Herralde, F., Araujo-Alves, J.P.L., Save,
R., 2005. Use of water-stress tolerant Lotus creticus and
Cynodon dactylon in soil revegetation on different slopes in a
Mediterranean climate. Ann. Bot. Fenn. 42, 195–205.

Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux
measurements for density effects due to heat and water-
vapor transfer. Quart. J. Roy. Meteorol. Soc. 106, 85–100.

Wever, L.A., Flanagan, L.B., Carlson, P.J., 2002. Seasonal and
interannual variation in evapotranspiration, energy balance
and surface conductance in a northern temperate
grassland. Agric. For. Meteorol. 112, 31–49.

Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D.,
Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H.,
Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A.,
Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen,
J., Valentini, R., Verma, S., 2002. Energy balance closure at
FLUXNET sites. Agric. For. Meteorol. 113, 223–243.

Zeng, N., Neelin, J.D., 2000. The role of vegetation-climate
interaction and interannual variability in shaping the
African savanna. J. Clim. 13, 2665–2670.


	The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal
	Introduction
	Material and methods
	Site description
	Field measurements
	Data processing and flux computation
	Data quality control and gap-filling
	Data analysis

	Results and discussion
	Meteorology, leaf area index and aboveground biomass
	Seasonal and interannual variation in energy fluxes
	Seasonal and interannual variation in evapotranspiration
	Biophysical controls on surface conductance and evapotranspiration
	Effects of soil moisture
	Effects of canopy development
	Effects of vapour pressure deficit


	Conclusions
	Acknowledgments
	References


