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Abstract NIR spectroscopy was tested for predicting the
properties of heat treated wood using pine (Pinus pinaster)
and eucalypt (Eucalyptus globulus) woods with two types
of treatment: in oven and in a steam autoclave. Mass loss,
equilibrium moisture content, dimensional stability, MOE,
bending strength, colour CIELAB parameters and extrac-
tives content were determined. NIR spectra were obtained
using a fibre probe on the radial surface of the samples.
NIR models for mass loss showed very high coefficients of
determination (R2) for cross validation ranging from 96–
98%. The models obtained for wood properties were in gen-
eral good with coefficients of determination ranging from
78–95% for equilibrium moisture content, 53–78% for di-
mensional stability, 47–89% for MOE, 75–77% for bending
strength and 84–99%, 52–96% and 66–98% for colour pa-
rameters L, a∗ and b∗, respectively. R2 of the models for
extractive content varied between 41.9–79.8% for pine and
between 35.3–82.2% for eucalypt wood. NIR spectroscopy
showed a good potential for quality control and characteri-
zation of heat treated woods.
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Qualitätsbewertung von wärmebehandeltem Holz
mittels NIR-Spektroskopie

Zusammenfassung Untersucht wurde die Möglichkeit, die
Eigenschaften von wärmebehandeltem Kiefern- (Pinus pi-
naster) und Eukalyptusholz (Eucalyptus globulus) mit Hilfe
von NIR-Spektroskopie zu bestimmen. Dabei wurde das
Holz auf zwei verschiedene Arten wärmebehandelt, im
Ofen und im Autoklaven. Masseverlust, Gleichgewichts-
feuchte, Dimensionsstabilität, Elastizitätsmodul, Biegefe-
stigkeit, CIELAB Farbparameter und Extraktstoffgehalt
wurden bestimmt. Die NIR-Spektren wurden mit einer
Fasersonde auf der radialen Oberfläche der Prüfkörper er-
mittelt. NIR-Modelle zur Bestimmung des Masseverlusts
ergaben ein sehr hohes Bestimmtheitsmaß (R2) von 96–
98%. Die für die Holzeigenschaften ermittelten Modelle
waren generell gut. Das Bestimmtheitsmaß für die Gleich-
gewichtsfeuchte lag zwischen 78–95%, für die Dimensi-
onsstabilität zwischen 53–78%, für den Elastizitätsmodul
zwischen 47–89%, für die Biegefestigkeit zwischen 75–
77% und für die Farbparameter L, a∗ und b∗ zwischen
84–99%, 52–96% sowie 66–98%. Das Bestimmtheitsmaß
für den Extraktstoffgehalt von Kiefernholz schwankte zwi-
schen 41,9–79,8% und das von Eukalyptusholz zwischen
35,3–82,2%. Die NIR-Spektroskopie erwies sich somit als
ein gut geeignetes Verfahren zur Qualitätskontrolle und Be-
urteilung von wärmebehandeltem Holz.

1 Introduction

The use of near infrared spectroscopy (NIR) as a method
to determine chemical composition and properties of lig-
nocellulosic materials has increased very much since its
first application to agricultural materials nearly 50 years
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ago (Osborne et al. 1993). The research on wood charac-
terization by NIR is booming and many publications show
successful results, namely related to the determination of
chemical composition (Schultz and Burns 1990, Schimleck
et al. 1997, Poke et al. 2004, Alves et al. 2006, Rodrigues
et al. 2006). NIR was also used to detect or determine ex-
tractives like pinosylvins in Scots pine (Holmgren et al.
1999), phenolics in larch (Gierlinger et al. 2002) or total ex-
tractives in Eucalyptus globulus (Poke et al. 2004).

NIR has been used to predict some physical properties of
wood like moisture content (Tsuchikawa et al. 1996), dens-
ity (Schimleck and Evans 2003) or stiffness (Jones et al.
2005).

The use of NIR spectroscopy for the estimation of me-
chanical properties by a non destructive analysis using an
optical-fibre probe is new. Hoffmeyer and Pedersen (1995)
studied the correlations between NIR spectra and, compres-
sion and bending strength. Thumm and Meder (2001) re-
ported that NIR could be used to predict the modulus of
elasticity (MOE) and Gindl et al. (2001) obtained good cali-
brations for MOE of Larix decidua wood. Schimleck et al.
(2005) used NIR to estimate specific gravity, MOE and
modulus of rupture (MOR) of loblolly pine.

The characterization of heat treated wood using NIR
spectroscopy was suggested by Hinterstoisser et al. (2003)
who considered that NIR spectra of milled wood removed
from the surface of heat treated wood could be used for clas-
sification purposes. A close relationship between chemical
changes and NIR spectra of thermally modified beech wood
was reported (Schwanninger et al. 2004).

Heat treatment is an environmentally benign process to
reduce equilibrium moisture content of wood and improve
its dimensional stability and durability along with a small
increase in wood resistance to weathering that evolved
recently to commercial processes in some European and
American countries (Dirol and Guyonnet 1993, Viitaniemi
et al. 1997, Jämsa et al. 2000, Kamdem et al. 2002). Heat
treated wood has a large application for outdoor use in
cladding, decks, garden furniture and window frames and
indoors for kitchen furniture, parquet, decorative panels and
mainly for the interior of saunas. Mass loss during treat-
ment is often used as a measure of heat treated wood quality
but for most of the species mass loss depends on the ex-
tractive content and composition since volatile compounds
are the first to leave the wood when wood is submitted to
heat. Other quality control methods were reported, i.e. high
energy multiple impact (Rapp et al. 2006) and CIELAB
colour measurements (Brischke et al. 2007) but the first is
a destructive analysis and the second only gave significant
correlations with milled wood.

NIR spectroscopy has therefore the potential to be used
in quality control of heat treated wood, with the advan-
tage of allowing predictions of several other properties.

In this work, NIR was used to estimate mass loss and
the following properties of heat treated wood: equilib-
rium moisture content, dimensional stability, MOE, bend-
ing strength, colour parameters and extractive content.
NIR spectra were collected using an optical-fibre probe
on the wood surface to study the possibility of integrat-
ing this method in the production line of heat treated
wood to evaluate quality through a non destructive and fast
process.

2 Material and methods

The wood of two important species in Portugal, eucalypt
(Eucalyptus globulus Labill.) and pine wood (Pinus pinaster
Aiton) were used in this work. The heat treatment with
hot air was made in an oven with heated air at tempera-
tures in the range of 170–200 ◦C and with different du-
rations from 2 to 24 h, and the treatment with steam was
performed in an autoclave with a mixture of superheated and
saturated steam at 190–210 ◦C for 2–12 h, as reported in
Esteves et al. (2007a,b). The cubic samples, 40 mm edge,
were weighed and measured in transversal, tangential and
radial directions and mass loss with heat treatment was de-
termined in relation to initial dry mass as Mass loss (%)
= Wt−Wnt

Wnt
, where Wt is the dry mass of treated wood and

Wnt the dry mass of untreated wood. Equilibrium mois-
ture content and dimensional stability in transversal, tan-
gential and radial directions were determined at 35, 65 and
85% relative humidity. Dimensional stability was measured
as ASE (anti shrinking efficiency) calculated as: ASE(%)
= ( Snt−St

Snt
)100 where Snt and St represent the shrinking be-

tween the desired relative humidity and 0% relative hu-
midity for non treated (nt) and treated (t) samples. MOE
and bending strength were determined by a 3-point static
bending test with 360 × 20 × 20 mm3 (axial × radial ×
tangential) samples. Measurements were made using a con-
stant velocity of 0.3 mm/min for MOE and a velocity
estimated to cause rupture in three minutes for bending
strength. MOE and bending strength were determined ac-
cording to: MOE(N/mm2) = ∆F∗L3

∆x∗4∗b∗h3 , Bending strength

(MPa) = 3∗F∗L

2∗b∗h
10
6

, where F is the load on rupture in N,
∆F
∆x is the slope of the elastic zone in N/mm, L is the arm
length, h the height and b the width all expressed in mm.
The colour measurements were made in a Minolta CM-
3630 spectrophotometer by the CIELAB method as reported
by Esteves et al. (2007c).

Extractive content was determined by successive Soxh-
let extraction of about 3 g of each sample using succes-
sively 150 ml of dichloromethane, ethanol and water during
10 hours for dichloromethane and 20 hours for ethanol and
water.
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The samples were kept in a conditioned room at 20 ◦C
and 50% relative humidity for two weeks prior to analysis.
The NIR measurements were made on the wood surface be-
fore and after each heat treatment in a Bruker Vector 22/N
spectrophotometer, using 50 scans for each spectrum. On
the 40 mm-edge samples, eight measurements were made
on the radial surface along the tangential direction in order
to cover the entire surface and on the 20 mm-edge samples
used for mechanical assays five measurements were made.
Each value represents the average of all the spectra for the
same sample. The results concern all the temperatures and
times of treatment except for mechanical properties where
only some of the samples were analyzed.

The method used for the construction of calibration
models was the partial least-squares regression (PLS), de-
termining the percentage of explained variation (R2), the
random square error for cross validation (RMSECV) and the
number of main components necessary to explain the varia-
tion of the models (rank) using OPUS 4.2 Quant 2 software
(Bruker).

The models were constructed for: mass loss with heat
treatment, equilibrium moisture content, dimensional sta-
bility (measured as ASE), apparent modulus of elasticity
(MOE), bending strength, colour parameters (L∗, a∗ and b∗)
and dichloromethane, ethanol, water and total extractives.
Several pre-processing methods for the NIR data were used

No of Mass loss R2 RMSECV Pre-processing Spectral region
samples amplitude (cm−1)

(%)

Pine Oven 89 0.01–11.73 98.0 0.421 Min-max normalization 7498.3–5446.3
Autoclave 45 0.34–8.65 96.4 0.411 Multiplicative 6102–5774.1

scattering correction 9750.8–6102
Eucalypt Oven 90 0.10–10.60 97.2 0.491 1st Derivative 9986.1–5099.1

and vectorial
normalization

Autoclave 45 3.91–14.87 96.4 0.586 1st Derivative 7502.1–5446.3

Table 1 Sample characteristics
and selected models for mass loss
with heat treatment for pine and
eucalypt wood
Tabelle 1 Anzahl und Art der
Proben und ausgewählte Modelle
zur Beschreibung des
Masseverlusts von
wärmebehandeltem Kiefern- und
Eukalyptusholz

Fig. 1 Experimental and
predicted values for pine and
eucalypt wood mass loss (%)
with heat treatment
Abb. 1 Experimentell
bestimmter und berechneter
Masseverlust (%) von
wärmebehandeltem Kiefern- und
Eukalyptusholz

as available from the software and the best models for each
variable were chosen.

3 Results and discussion

3.1 Mass loss

Although mass loss is not a wood property per se, it is
an important variable in the production of heat treated
wood since it is in relation with the resulting variation
in wood properties (Viitaniemi et al. 1997, Jämsä and Vi-
itaniemi 2001, Kamdem et al. 2002, Wang and Cooper 2005,
Hakkou et al. 2006, Esteves et al. 2007a,b). Therefore, cal-
ibration curves were developed as an indirect method to
predict wood mass loss by heat treatment using pine (Pi-
nus pinaster) and eucalypt wood (Eucalyptus globulus) as
the model species and two treatment methods, respectively
hot air in an oven and steam in an autoclave. Mass loss
with heat treatment ranged from 0.0–12.0% and 0.1–10.6%
for pine and eucalypt wood treated with hot air and from
0.3–8.7% and 3.9–14.9% for pine and eucalypt steam heat
treated wood, respectively. The higher mass losses result
from more intensive treatments (higher temperatures and
treatment duration) as discussed in detail by Esteves et al.
(2007a,b).
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Table 1 presents some characteristics of the samples and
of the best models obtained for mass loss. The determin-
ation coefficients for cross validation were quite good rang-
ing from 96.4% (autoclave treatment) to 98.0% (pine, oven
treatment). This was to be expected since mass loss is es-
sentially due to wood degradation mainly of hemicelluloses,
and to loss of initial extractives. In fact, good NIR calibra-
tions were reported for hemicelluloses content (Schimleck
et al. 1997) and for extractives (Poke et al. 2004). The aver-
age random square error for cross validation (RMSECV)
ranged from 0.411 (autoclave treatment, pine) to 0.586 (au-
toclave treatment, eucalypt). The best models for mass loss
were obtained using different pre-processing techniques.

Predicted mass losses plotted in function of experimen-
tally determined values are shown in Fig. 1 showing the
good prediction ability of all the models. It is interesting to
notice that there is no influence of treatment type (oven or
steam autoclave) in the prediction ability of the models.

3.2 Mechanical properties

The estimation of mechanical properties of wood by NIR
is of high practical importance since the experimental wood
testing requires destructive and expensive methods. Several
models for the prediction of mechanical properties by NIR
spectra were developed for the treated wood.

Table 2 presents some characteristics of samples and of
the best models for MOE and bending strength. Good cali-
brations were obtained for MOE (R2 = 89.3%) and bending
strength (R2 = 76.9%) of heat treated pine wood but for eu-
calypt the calibration results were lower with R2 = 47.1%
for MOE and R2 = 74.5% for bending strength. The aver-
age random square errors for cross validation were 15 MPa
for bending strength of both species and 1020 MPa and
1530 MPa for MOE of pine and eucalypt wood, respectively.

Predicted vs. experimental values are plotted in Figs. 2
and 3. The model for pine bending strength was satisfactory
because the prediction capacity was quite good although
the R2 was not very high. Predictions were either under or
over-estimated for all of the models with no clear predom-
inance except the predictions for eucalypt MOE which are

Property No of Amplitude R2 RMSECV Pre-processing Spectral region
samples (cm−1)

Pine MOE 57 8235–20 020 89.3 1020 Vectorial 10 001.5–6098.1
(MPa) normalization

Bending 57 55–172 76.9 15 Min-max 8751.8–7498.3
strength normalization
(MPa)

Eucalypt MOE 54 12 510–20 640 47.1 1530 Multiplicative 7502.1–5099.1
(MPa) scattering correction

Bending 54 53–172 74.5 15 1st Derivative and 10 001.5–7498.3
strength linear subtraction
(MPa)

Table 2 Sample characteristics
and selected models for MOE
and bending strength for pine and
eucalypt wood
Tabelle 2 Anzahl und Art der
Proben und ausgewählte Modelle
zur Beschreibung des E-Moduls
und der Biegefestigkeit von
Kiefern- und Eukalyptusholz

underestimated up tol about 16 000 MPa and overestimated
afterwards (Figs. 2 and 3).

These results are not much different from the ones re-
ported by several authors for untreated wood. For instance,
Gindl et al. (2001) obtained a better coefficient of deter-
mination with clear Larix decidua wood (R2 = 92%) but
Kelley et al. (2004b) obtained only a R2 of 77% for MOE
of Pinus taeda. Schimleck et al. (2001) obtained a R2 of
77% for Eucalyptus delegatensis wood while Schimleck
et al. (2005) reported a good calibration curve with R2 of
86% for modulus of rupture (MOR) and a slightly poorer
calibration (R2 = 77%) for MOE of loblolly pine. Kelley
et al. (2004a) used NIR measurements to predict MOE and
MOR of six different softwoods with clear wood and re-
ported R2 ranging from 48 to 83% for MOE and from 64
to 85% for MOR The worse results obtained for eucalypt
wood may be partially explained by the smaller amplitude of
wood properties in the eucalypt samples compared to pine
wood. The major reason is probably because cross grain in
eucalypt wood decreases the orientation differences of the
samples and caused some to bend slightly during heat treat-
ment thereby influencing the results.

Since the estimation of wood properties was based on
surface scans, a potential source of prediction error may re-
sult from an eventual difference between the surface and the
wood core in the heat treated samples due to slightly differ-
ent chemical transformations induced by the temperature-
duration gradients within the sample.

3.3 Equilibrium moisture and dimensional stability

Equilibrium moisture content is an important property in the
evaluation of heat treated wood quality in relation to the in-
crease in dimensional stability and durability, which are two
main targets for this type of wood improvement. The charac-
teristics of the samples and the best NIR calibration models
to predict equilibrium moisture and tangential ASE85% are
reported in Table 3.

Oven heat treated wood presented the best models
for moisture with R2 of 94.6% and RMSECV of 0.384
for pine wood and R2 = 91.5% and RMSECV of 0.453
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Fig. 2 Experimental and
predicted values for MOE (MPa)
of pine and eucalypt heat treated
wood
Abb. 2 Experimentell
bestimmter und berechneter
E-Modul (MPa) von
wärmebehandeltem Kiefern- und
Eukalyptusholz

Fig. 3 Experimental and
predicted values for pine and
eucalypt heat treated wood
bending strength (MPa)
Abb. 3 Experimentell bestimmte
und berechnete Biegefestigeit
(MPa) von wärmebehandeltem
Kiefern- und Eukalyptusholz

Property No of Amplitude R2 RMSECV Pre- Spectral region
samples processing (cm−1)

Autoclave Equilibrium 7.7–9.7 77.8 0.26 Vectorial 9750.8–7498.3
treated moisture normalization 6102–5446.3
eucalypt (%)

Tangential 45 9.3–63.4 53.4 4.23 No pre- 10 001.5–8748
ASE85 (%) processing 6102–5446.3

Oven Equilibrium 90 7.6–13.3 91.5 0.453 1st Derivative 7502.1–6098.1
treated moisture and linear 5450.1–5099.1
eucalypt (%) subtraction

Tangential 90 40.9–70.9 64.7 7.09 1st Derivative 11 999.5–9747
ASE85 (%) and vectorial 5276.6–5099.1

normalization
Autoclave Equilibrium 45 11.9–15.5 86.1 0.36 Multiplicative 7502.1–6098.1
treated moisture scattering
Pine (%) correction

Tangential 45 −0.6–49.1 78.1 2.99 Multiplicative 8751.8–7498.3
ASE85 (%) scattering 6102–5446.3

correction
Oven Equilibrium 89 9.0–15.2 94.6 0.38 Vectorial 11 999.5–6098.1
treated moisture normalization
pine (%)

Tangential 89 20.7–45.7 73.2 5.48 1st Derivative 11 999.5–7498.3
ASE85 (%)

Table 3 Sample characteristics
and selected models for
equilibrium moisture and
dimensional stability (ASE85%)

for heat treated pine and eucalypt
wood
Tabelle 3 Anzahl und Art der
Proben und ausgewählte Modelle
zur Beschreibung der
Gleichgewichtsfeuchte und der
Dimensionsstabilität (ASE85%)

von wärmebehandeltem Kiefern-
und Eukalyptusholz

for eucalypt wood. Despite the good prediction abil-
ity, both models had a high rank, 10 and 5, respec-
tively. The models for autoclave heat treated wood were
poorer with a R2 of 86.1 and 77.8% and RMSECV of

0.360 and 0.260 for pine and eucalypt wood, respec-
tively. This difference might be partially explained by
the higher amplitude of the data for the oven treatment
models.
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Fig. 4 Experimental and
predicted value for heat treated
pine and eucalypt wood
equilibrium moisture (%)
Abb. 4 Experimentell bestimmte
und berechnete
Gleichgewichtsfeuchte (%) von
wärmebehandeltem Kiefern- und
Eukalyptusholz

Fig. 5 Experimental and
predicted value for heat treated
pine and eucalypt wood
dimensional stability (%)
Abb. 5 Experimentell bestimmte
und berechnete
Dimensionsstabilität (%) von
wärmebehandeltem Kiefern- und
Eukalyptusholz

Property No of Amplitude R2 RMSECV Pre-processing Spectral region
samples (cm−1)

Autoclave L∗ (%) 45 35.9–55.0 83.5 1.94 Linear subtraction 10 001.5–7498.3
treated 5276.6–5099.1
Pine a∗ 45 7.3–9.5 51.6 0.35 Elimination of 9920.5–5099.1

constant offset 10 001.5–6098.1
b∗ 45 15.9–22.4 66.1 1.17 Min-max 9920.5–5099.1

normalization
Oven L∗ (%) 89 30.9–75.2 98.7 1.4 No pre-processing 11 999.5–7498.3
treated 5450.1–5099.1
pine a∗ 89 6.6–13.6 88.7 0.54 Vectorial 11 999.5–7498.3

normalization 6102–5774.1
b∗ 89 11.1–31.1 96.4 1.1 Vectorial 11 999.5–7498.3

normalization 6102–5446.3
Autoclave L∗ (%) 45 27.9–43.8 94.8 0.9 1st Derivative 10 001.5–7498.3
treated and vectorial 6102–5446.3
eucalypt normalization

a∗ 45 4.3–10.1 96.4 0.285 1st Derivative 8751.8–7498.3
and vectorial 6102–5446.3
normalization

b∗ 45 5.8–16.4 97.6 0.425 1st Derivative and 10 001.5–7498.3
linear subtraction 6102–5446.3

Oven L∗ (%) 90 25.4–59.3 98.7 1.02 1st Derivative 11 999.5–9747
treated and vectorial 6102–5446.3
eucalypt normalization

a∗ 90 5.0–11.2 94.8 0.353 1st Derivative 9750.8–7498.3
and vectorial 6102–5446.3
normalization

b∗ 90 5.8–21.7 97.3 0.742 1st Derivative and 7502.1–5099.1
linear subtraction

Table 4 Sample characteristics
and selected models for colour
parameters of oven and autoclave
heat treated pine and eucalypt
wood
Tabelle 4 Anzahl und Art der
Proben und ausgewählte Modelle
zur Beschreibung der
Farbparameter von
wärmebehandeltem Kiefern- und
Eukalyptusholz
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The results reported by some authors for untreated wood
are similar to those obtained for the oven treatment. For
instance, Hoffmeyer and Pedersen (1995) reported deter-
mination coefficients higher than 90% for Norway spruce,
and Thygesen and Lundqvist (2000a,b) referred that NIR
measurements of moisture content in wood depend on the
temperature. All of the models for moisture behaved well
with no clear predominance between under or over esti-
mated samples (Fig. 4).

In relation to the dimensional stability, the prediction
capacity of all models proved to be relatively weak with
coefficients of determination for cross validation of 73.2
and 78.1% for pine and 64.7 and 53.4% for eucalypt wood
treated in oven and autoclave, respectively. Baillères et al.
(2002) reported a R2 of 82% for tangential shrinkage and
65% for radial shrinkage for a hybrid of E. urophylla
X E.grandis and for grounded wood which shows the

Fig. 6 Experimental and
predicted values for heat treated
pine and eucalypt wood colour
parameters (L∗, a∗ and b∗)
Abb. 6 Experimentell bestimmte
und berechnete Farbparameter
(L∗, a∗ und b∗) von
wärmebehandeltem Kiefern- und
Eukalyptusholz

difficulty of obtaining good correlations for dimensional
stability.

Despite the relatively low predicted ability of the models
NIR can be used to give an approximated value for di-
mensional stability (Fig. 5). The predictions of pine wood
models were over or under-estimated with no clear trend
while predictions of the models for dimensional stability of
eucalypt wood are under-estimated for the smaller values.
These results were to be expected since dimensional stabil-
ity measured as ASE depends not only on the treated wood
sample but also on the untreated wood reference.

3.4 Colour

Table 4 gives some characteristics of the sample and of the
best models to estimate surface colour given by lightness and
chroma coordinates of the CIELAB method (L∗, a∗ and b∗)
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by NIR measurements for oven and autoclave heat treated
pine and eucalypt wood. Although colour is even easier to
measure than NIR spectra, these have the advantage of pre-
dicting several properties with the same spectrum.

All the models for lightness (L∗) were very good with co-
efficients of determination ranging from 83.4% (autoclave
treatment, pine) to 98.7% (oven treatment, pine and euca-
lypt). The predictive capacity of the model for lightness
(L∗) of oven treated pine wood was better than the model
for autoclave, although with a very high rank (10 for oven
and 1 for autoclave). The predictive abilities of eucalypt
L∗ were better than for pine wood with R2 of 98.7% for
the oven treatment and 94.8% for the autoclave treatment,
respectively.

These results are in accordance with Wu et al. (2005)
who used NIR spectroscopy to assess the colour change in
Eucalyptus grandis wood subjected to heat and steaming
treatments. Mitsui et al. (2001) referred that NIR could be
suitable to monitor a new colouring method of wood. Be-
sides the good predictive capacity of the models for L∗ the
rank was low, only 1 and 2 for the treatment in oven and
autoclave, respectively (Table 4).

The models for a∗ gave worse results but still with a R2

ranging from 51.6% (autoclave treatment, pine) to 96.4%
(autoclave treatment, eucalypt). The models for pine had
poorer predictive capacities than for eucalypt wood and
similar rank 3 and 5 (pine) and 2 and 6 (eucalypt) for auto-
clave and oven treatment, respectively.

The predictive capacities of the models for b∗ were better
than for a∗ and with a R2 higher than 96% with the excep-
tion of the model for autoclave heat treated pine. The higher
values of the R2 for the models of oven heat treated pine
wood are mainly due to the higher amplitude of the sample
variation. The models for the chroma coordinate a∗ for eu-
calypt wood were much better than for pine wood although

No of Amplitude R2 RMSECV Pre- Spectral region
samples (%) processing (cm−1)

Pine Dichloromethane 24 0.2–1.2 41.9 0.18 No pre- 10 001.5–7498.3
extractives processing

Ethanol 24 1.4–3.4 64.3 0.36 No pre- 10 001.5–6098.1
processing

Water 24 1.2–10.1 79.8 1.24 Vectorial 7502.1–5446.3
normalization

Total 24 2.2–14 83.8 5.48 1st Derivative 10 001.5–5446.3
Eucalypt Dichloromethane 24 0.4–4.2 82.2 0.45 1st Derivative 10 001.5–7498.3
Extractives and vectorial 5450.1–5099.1

normalization
Ethanol 24 4.5–16.3 81.2 1.25 1st Derivative 10 001.5–5099.1
Water 24 1.7–8.8 35.3 1.69 Derivative 7502.1–6800.1

and linear
subtraction

Total 24 9.1–26.2 34.3 2.99 Multiplicative 10 001.5–5099.1
scattering
correction

Table 5 Sample characteristics
and selected models for
dichloromethane, ethanol, water
and total extractives for heat
treated pine and eucalypt wood
Tabelle 5 Anzahl und Art der
Proben und ausgewählte Modelle
für dichlormethan-, ethanol- und
wasserlösliche Extraktstoffe
sowie der Gesamtextraktstoffe
von wärmebehandeltem Kiefern-
und Eukalyptusholz

the number of main components was generally higher, 2 and
6 for oven and autoclave heat treated wood, respectively.

In general all the models for eucalypt wood colour pa-
rameters (L∗, a∗ and b∗) were very good explaining more
than 95% of the variation. Predictions were either under or
over-estimated with no clear trend except for the b∗ model
for oven heat treated pine wood that despite the high R2 does
not behave well for values higher than 28, with predicted
values higher than the real values (Fig. 6).

In the case of colour and NIR spectroscopy, both meas-
urements are made on the surface of the samples, thereby
eliminating one potential source of prediction loss due to
within sample differences between surface and interior. Cor-
respondingly the NIR-based prediction models for wood
colour of heat treated wood were very good.

3.5 Extractives

Despite the small amount of tested samples, results for the
calibration curves of dichloromethane, ethanol, water and
total extractives are presented in Table 5.

In relation to dichloromethane extractives the R2 for
crossed validation was 41.9% for pine and 82.2% for euca-
lypt with RMSECV of 0.176 and 0.445, respectively. The
number of main components was 1 and 3 for pine and eu-
calypt models. The R2 for the models of the ethanol extrac-
tives was 64.3 and 81.2% with RMSECV of 0.357 and 1.250
for pine and eucalypt wood, respectively. The rank is high, 4
and 8 for pine and eucalypt wood models, respectively.

The R2 for the models of the water extractives were 79.8
and 35.3% with RMSECV of 1.24 and 1.69 for pine and
eucalypt wood, respectively. The R2 for pine was much
smaller than the one reported by Gierlinger et al. (2002)
with powder larch (R2 = 92% for cross validation) but simi-
lar to the one obtained with solid wood (R2 = 81% for cross
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validation). This is understandable since in addition to the
lesser number of analysed samples and the more heteroge-
neous nature of heat treated material there is the differences
due to annual rings, sample geometry and surface properties
as reported by Gierlinger et al. (2002). The best calibrations
for water extracts were reached in the spectral region from
6800 to 7502 cm−1 differently from those reported by Gier-
linger et al. (2002) with larch of 6100 to 5400 cm−1.

In relation to the total extractives R2 was 83.8% for
pine and 34.3% for eucalypt wood with RMSECV of 5.48
and 2.99, respectively. The model reported by Kelley et al.
(2004b) for total extractives of untreated Pinus taeda wood
(R2 = 86%) had higher prediction capacity but according to
Poke and Raymond (2006) who used NIR for the estima-
tion of extractives, lignin and cellulose content in solid wood,
extractives and acid-insoluble lignin gave poor predictions
although cellulose and total lignin showed moderate rela-
tionships. The R2 for pine was similar to the one obtained
by Gierlinger et al. (2002) with acetone extract from larch
(R2 = 84%).

The pre-processing techniques that led to the best models
were different for all of the extracts although the 1st deriva-
tive alone or combined with other techniques usually gave
better results. The predictions were not influenced by the
type of treatment since there were no significant spectral dif-
ferences between wood treated in oven or autoclave. How-
ever the small number of samples tested calls for caution in
generalising the results.

4 Conclusion

NIR spectroscopy showed a good potential to be used for the
assessment of heat treated wood, namely in quality control
in the heat treatment of pine and eucalypt wood. Neverthe-
less substantial work has still to be done in order to use NIR
as a tool in quality control. Every wood species and property
requires calibration sets and the generation of these could be
very time-consuming due to the large number of samples re-
quired and the slowness of most conventional methods for
the measurement of wood properties. The number of tested
samples for mechanical properties was also low, and in order
to obtain a real calibration curve a larger number of samples
needs to be tested.

NIR models for mass loss presented very good prediction
ability with high coefficients of determination for cross val-
idation ranging from 96–98%. The models for heat treated
wood properties were in general good with coefficients of
determination ranging from 78 to 95% for equilibrium mois-
ture content, 53–78% for dimensional stability, 47–89% for
MOE, 75–77% for bending strength and 84–99%, 52–96%
and 66–98% for the colour parameters L, a∗ and b∗, re-
spectively. There were no significant spectral differences

between wood treated in oven or autoclave. Therefore, NIR
spectroscopy of the wood solid surface can be applied to es-
timate several properties that can be related to the intensity
of treatment or to the properties targeted for improvement,
e.g. equilibrium moisture and dimensional stability.

Overall one NIR spectrum of the solid surface of a heat
treated wood sample gave information on the process ex-
tent (by estimating mass loss) and on the properties that
are relevant for this wood modification and for the uses of
heat treated wood, i.e. equilibrium moisture content, dimen-
sional stability and extractives. Therefore and given that the
acquisition of NIR spectra can be done quickly and easily
on the solid surface of the samples using a fibre probe, and
that spectral data processing can be done immediately af-
terwards, this is a methodology with an interesting potential
for process and product quality control, once calibration and
validation of the models have been made for the processed
wood species.
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