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Abstract. We use affine variety codes and their subfield-subcodes to obtain quantum
stabilizer codes via the CSS code construction. With this procedure we get codes with
good parameters, some of them exceeding the CSS quantum Gilbert-Varshamov bound
given by Feng and Ma.

Introduction

Shor’s algorithm [30] for factoring integers opens the possibility of breaking some cryp-
tographical systems. This is a clear example of the increasing interest in computers based
on the principles of quantum mechanics. The fact that arbitrary quantum states cannot be
replicated seemed to suggest that error correction could not be used on quantum mechan-
ical systems [34]. However this is not the case as showed in [31]. Binary stabilizer codes
are the most studied quantum error-correcting codes. There is an extensive literature on
them, for simplicity we only cite [6, 16] as seminal works.

In this paper, we are interested in general stabilizer codes defined over finite fields and
constructed by using a class of linear error-correcting codes called affine variety codes. Let
q = pr be a positive integer power of a prime number p and Cq the q-dimensional complex
vector space representing the states of a quantum mechanical system. Let |x〉 be the vectors
of a distinguished orthonormal basis of Cq, where x ∈ Fq, Fq being the finite field with q
elements. By definition, a quantum error-correcting code is a s-dimensional subspace of
Cqn = Cq⊗Cq⊗· · ·⊗Cq. Let a, b ∈ Fq, then the unitary operators on Cq, X(a)|x〉 = |x+a〉
and Z(b)|x〉 = βtr(bx)|x〉, where tr : Fq → Fp is the trace map and β a primitive pth root
of unity, allow us to consider the set ε = {X(a)Z(b)|a, b ∈ Fq} of error operators. For
a = (a1, a2, . . . , an) ∈ Fnq , define X(a) := X(a1)⊗X(a2)⊗· · ·⊗X(an) and Z(a) analogously

and write εn = {X(a)Z(b)|a,b ∈ Fnq } a nice error basis on the complex space Cqn . A

stabilizer code C is a non-zero subspace of Cqn such that C = ∩H∈∆{v ∈ Cqn |Hv = v},
for some subgroup ∆ of the group generated by εn, Gn.

A stabilizer code C has minimum distance d if, and only if, all errors in Gn with weight
less than d can be detected or have no effect on C but some error of weight d cannot be
detected, where the weight is the number of nonidentity tensor components. We say that
a code C as above is an ((n, s, d))q-code. When the code is an ((n, qk, d))q-code, we simply
say that it is an [[n, k, d]]q-code. C is said to be pure to t whenever the group ∆ does not
contain non-scalar matrices whose weight is less than t and C is called pure whenever it
is pure to its minimum distance.

As in the binary case, classical codes can be used to provide quantum codes. The
following result gives a first link between them and it can be found in [22, Corollary 19]
(see also [6, 5, 2]).
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Proposition 1. Assume the existence of an [n, k, d] linear code E over Fq2 such that the

dual code of E, E⊥1, with respect to the Hermitian inner product, satisfies E⊥1 ⊆ E.
Then, there exists an [[n, 2k − n,≥ d]]q-quantum code over Fq which is pure to d.

The Hermitian inner product of two vectors a and b in Fnq2 is defined as a · bq,
where · is the standard Euclidean inner product and bq = (bq1, b

q
2, . . . , b

q
n) whenever

b = (b1, b2, . . . , bn). We prefer to use the Euclidean inner product to provide quantum
codes. The symbol ⊥ is used to represent dual spaces with respect to that inner product.
So, in this paper we use the so-called CSS code construction after the papers [7] and [32].
We summarize the idea behind it in the next two results, which can be found as Lemma
20 and Corollary 21 in [22].

Theorem 1. Let C1 and C2 be two linear error-correcting block codes with parameters
[n, k1, d1] and [n, k2, d2] over the field Fq and such that C⊥2 ⊆ C1. Then, there exists an
[[n, k1 + k2 − n, d]]q stabilizer code with minimum distance

d = min
{

wt(c)|c ∈ (C1 \ C⊥2 ) ∪ (C2 \ C⊥1 )
}
,

which is pure to min{d1, d2}.
For an explanation of how to construct the codes, we refer to [22, Theorem 13] where

the additive code C⊥1 × C⊥2 is used.

Corollary 1. Let C be a linear [n, k, d] error-correcting block code over Fq such that

C⊥ ⊆ C. Then, there exists an [[n, 2k − n,≥ d]]q stabilizer code which is pure to d.

Quantum codes admit bounds on their parameters as the quantum singleton or, when
they are pure, the Hamming bound [28, 3, 17, 12, 22], which give necessary conditions for
the existence of arbitrary or pure quantum codes. With the same philosophy of the classical
Gilbert-Varshamov bound, a sufficient condition for the existence of pure stabilizer codes
is given by Feng and Ma in [12].

Literature contains many quantum codes derived from classical codes. We only cite
[5, 22] and other recent papers based on BCH and quasi-cyclic codes [1, 18, 21, 23, 24]. In
this paper, we consider affine variety codes to obtain stabilizer codes through the CSS code
construction. We use Corollary 1 for this purpose. The direct application of this procedure
yields, in general, codes over fields which can be large. Subfield-subcodes [8, 33, 19, 20]
are used to decrease them and we consider this type of codes for providing stabilizer
codes with good parameters. Our goal consists of finding suitable affine variety codes
over a field Fpr that produce stabilizer codes over Fps for some s that divides r. In this
way, we get several examples of stabilizer codes improving some of those given in [9] and
[24]. In addition, we also provide some stabilizer codes exceeding the Gilbert-Varshamov
bound, i.e., they satisfy the opposite inequality in the above mentioned Gilbert-Varshamov
sufficient condition.

It is also worth mentioning that affine variety codes are, in some cases, a particular
case of multivariable abelian codes. These codes have been studied in [26], where for the
case q = 4, self-orthogonal and self-dual codes with respect to the trace inner product are
characterized.

Our manuscript is structured as follows. Section 1 introduces affine variety codes over a
finite field Fpr , where p is a prime number and r a positive integer. The codes are obtained
by evaluating polynomials in several variables belonging to vector spaces generated by
monomials whose exponents are in some subsets U of the cartesian product

{0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} × · · · × {0, 1, . . . , Nm − 1},
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where the integer Ni divides pr − 1 for all i, 1 ≤ i ≤ m. We also devote Section 1 to show
that good choices of sets U give rise to stabilizer codes over Fpr . However, the ground field
of these codes is, in general, large. To reduce the size of the field, in Section 2 we introduce
and study subfield-subcodes of our affine variety codes providing, in Theorem 3, a basis
for the vector space of polynomials associated with affine variety codes but evaluating to
a subfield Fps of Fpr . Dual codes of the above mentioned subfield-subcodes are treated in
Section 3. They are useful for proving our main result, Theorem 6, which gives conditions
on the above sets U for obtaining good stabilizer codes and their parameters. Finally,
Section 4 shows parameters of stabilizer codes constructed with our procedure. These
codes improve some of the quantum codes included in [9] and [24, Tables I and II], and
several of them exceed the Gilbert-Varshamov bound.

1. Affine variety codes

We devote this section to introduce the class of classical error-correcting codes that we
will use to yield stabilizer codes via the CSS code construction. Consider a finite field
Fpr where r is a positive integer. Set Fpr [X1, X2, . . . , Xm] the ring of polynomials in m
variables over the field Fpr and pick m positive integer numbers N1, N2, . . . , Nm such that
Ni | pr − 1 for i = 1, 2, . . . ,m. Consider the ideal of Fpr [X1, X2, . . . , Xm] generated by the

set of polynomials {XN1
1 −1, XN2

2 −1, . . . , XNm
m −1}, which will be denoted by I. Let Z(I) be

the set of zeroes of I, its cardinality is n := card(Z(I)), and we set Z(I) = {P1, P2, . . . , Pn}.
Now, write R := Fpr [X1, X2, . . . , Xm]/I and consider the evaluation map ev : R → Fnpr
which maps any function f ∈ R to ev(f) = (f(P1), f(P2), . . . , f(Pn)), where f also denotes
any representative of its class.

The family of codes that we are going to define will be determined by certain linear
subspaces of R. Since the polynomials XNi

i − 1 have no multiple roots, our codes are of
semi-simple type [27].

It is worthwhile to mention that G = {XN1
1 − 1, XN2

2 − 1, . . . , XNm − 1} is a Gröbner
basis of the ideal I with respect to (say, some fixed) lexicographical ordering. Hence, we
can choose a canonical representative of each class given by a polynomial f which will be
its reduction module G. Frequently, we will use the same notation for expressing a class
in R and its canonical representative. The following result will be useful.

Proposition 2. The above introduced evaluation map, ev, is an isomorphism of Fpr -vector
spaces.

Proof. It follows from the fact that R and Fnpr have the same cardinality and the evaluation
map is surjective. �

Throughout this paper H denotes the hypercube

H := {0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} × · · · × {0, 1, . . . , Nm − 1}
and our codes are defined by suitable subsets U of H. Each U gives rise to the set
{Xu1

1 Xu2
2 · · ·Xum

m |(u1, u2, . . . , um) ∈ U} of monomials in Fpr [X1, X2, . . . , Xm]. This set
provides elements in R which generate a vector space over Fpr that is denoted by FUpr . In

particular R = FHpr as vector spaces. Now we introduce the concept of affine variety codes.
For a more general definition see [13] or [14].

Definition 1. Let U be a set as above. The image of the restriction of the evaluation map
ev to FUpr is denoted by CU and constitutes the affine variety code associated to U over
Fpr .
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As a consequence of the previous proposition and with the above notation for the set
Z(I), it holds that the restriction map of ev to FUpr ,

ev|FU
pr

: FUpr → Fnpr , f 7→ (f(P1), f(P2), . . . , f(Pn)) ,

is injective and therefore dim(CU ) = card(U).
Consider an element u = (u1, u2, . . . , un) ∈ H and set û ∈ H the element û :=

(û1, û2, . . . , ûn) defined by ûi = 0 if ui = 0 and ûi = Ni − ui otherwise. The next re-
sult generalizes a similar result for toric codes. It can be found in [4] and [29].

Proposition 3. Let CU be the affine variety code defined by U ⊂ H, then C⊥U is the affine

variety code defined by U⊥ = H \ {û|u ∈ U} .

The following result is useful for obtaining stabilizer (quantum) codes.

Theorem 2. With the above notations, the inclusion CU ⊂ C⊥U happens if, and only if,
û /∈ U for all u ∈ U .

Proof. Proposition 3 shows that the code C⊥U is the evaluation by ev of FU⊥pr , where U⊥ =

H \ {û|u ∈ U}, hence U ⊂ U⊥ if and only if û /∈ U for all u ∈ U , what concludes the
proof. �

By using the CSS code construction, one can deduce the following result.

Corollary 2. Let N1, N2, . . . , Nm be positive integers such that Ni divides pr − 1 for all
index i, p being a prime number and r a positive integer. Let U be a nonempty subset
of the hypercube H satisfying that û /∈ U for all u ∈ U . Then, from the affine variety
code CU , a stabilizer code can be obtained. The parameters for this code are [[n, k,≥ d]]pr ,

where n = N1N2 · · ·Nm, k = n− 2 card(U) and d = d(C⊥U ).

Example 1. With the above notation, set R the ring F4[x, y, z]/ < x3−1, y3−1, z3−1 >.
This means that the corresponding codes will have length n = 27. Our set U will be

U = {(0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1), (1, 2, 0)(1, 0, 2), (0, 1, 2), (1, 1, 2), (1, 2, 1), (2, 1, 1)} .
Since U satisfies the conditions in Corollary 2, U yields a [[27, 7, 6]]4 stabilizer code. The
distance has been computed with the computational algebra system Magma [25].

Example 2. Let us show another example. Consider the ring R = F8[x, y]/ < x7−1, y7−
1 > and the set U = {(1, 3), (4, 4), (1, 6), (5, 0), (1, 2)} . This gives a [[49, 39, 4]]8 stabilizer
code.

Codes in the above examples are only samples. The next section is devoted to show that
new codes with algebraic structure and good parameters can be obtained by considering
subfield-subcodes.

2. Subfield-Subcodes of Affine variety Codes

As above, we write R = Fpr [X1, X2, . . . , Xm]/I, where I is the ideal of the polynomial

ring Fpr [X1, X2, . . . , Xm] generated by the set of polynomials {XN1
1 −1, XN2

2 −1, . . . , XNm−
1}. In addition, we consider a positive integer s which divides r. We say that an element
f ∈ R evaluates to Fps whenever f(α) ∈ Fps for all α ∈ Z(I). Now, define T : R → R

the map given by T (f) = f + fp
s

+ · · · + fp
s( rs−1)

. Also, set trsr : Fpr → Fps given

by trsr(x) = x + xp
s

+ · · · + xp
s( rs−1)

and extend it to tr : Fnpr → Fnps by applying trsr
coordinatewise. Afterwards, we will need the following results.



QUANTUM CODES FROM AFFINE VARIETY CODES 5

Proposition 4. With the above notations and for any f ∈ R, it holds:

(1) T (af) = aT (f), for all element a ∈ Fps.
(2) T (f)p

s
= T (fp

s
) = T (f).

(3) ev(T (f)) = tr(ev(f)).
(4) ev(T (f)) = 0 happens if, and only if, T (f) = 0.

Proof. Items (1), (2) and (3) follow from the definition of T , properties of finite fields
and the fact that we are working modulo I. Item (4) holds because the map ev is an
isomorphism. �

Proposition 5. Let g ∈ R. Then, the following statements are equivalent.

(1) g = T (h) for some h ∈ R.
(2) gp

s
= g.

(3) g evaluates to Fps.

Proof. First suppose that for some h ∈ R, g = T (h). Then

gp
s

= T (h)p
s

= T (h) = g,

where the second equality follows from Proposition 4. If gp
s

= g, then for any α ∈ Fmpr ,

g(α)p
s

= g(α) and so g(α) ∈ Fps . Lastly suppose that, for every α ∈ Fmpr , g(α) ∈ Fps .
Since tr is surjective, we can consider y ∈ Fnpr such that tr(y) = ev(g). Now, consider the
class h of a interpolating polynomial satisfying ev(h) = y, then,

ev(T (h)) = tr(ev(h)) = ev(g)

and the proof is concluded since ev is an isomorphism. �

Given a positive integer t, Zt will stand for the quotient ring Z/tZ.

Definition 2. A subset I of the cartesian product ZN1 × ZN2 × · · · × ZNm is called to be
a cyclotomic set if I = p · I := {p ·α | α ∈ I}. I will be a minimal cyclotomic set if there
is α ∈ ZN1 ×ZN2 × · · · ×ZNm such that every element of I can be written psi ·α for some
integer i.

Fix a monomial ordering on Fpr [X1, X2, · · · , Xm] and its corresponding ordering �
on Zm≥0, where Z≥0 denotes the nonnegative integers. A minimal cyclotomic set I will be
represented by that element a ∈ I with smallest coordinates with respect to the above fixed
ordering �. Notice that we use the ordering � for determining a unique representative of
the set I and the monomial ordering in the proof of Theorem 3. Thus, we will set Ia := I
and ia := card(Ia). Finally, the set of elements a representing minimal cyclotomic sets is
denoted by A.

For every a = (a1, a2, . . . , am) ∈ A, ia is a divisor of r and it holds that aip
sia ≡

ai (mod Ni), 1 ≤ i ≤ m. In addition, every cyclotomic set is a union of minimal cyclotomic
sets and the minimal cyclotomic sets constitute a partition of ZN1 × ZN2 × · · · × ZNm .
Recall that we denote by f an element in R and its canonical representative and we set
supp(f) the support of the canonical representative. Then, any element f ∈ R may be
decomposed in a unique way as a sum of classes of polynomials with support included in
minimal cyclotomic sets. That is to say, f =

∑
a∈A fa, where supp(fa) ⊆ Ia. We also

notice that supp(T (fa)) ⊆ Ia.

Now define the function Ta : R → R as Ta(f) = f + fp
s

+ · · · + fp
s(ia−1)

and set
Xa = Xa1

1 Xa2
2 · · ·Xam

m . Then we are ready to state and prove Theorem 3, which gives a
basis for the vector space of elements in R evaluating to the field Fps . First, we provide
two results that help us in our purpose.
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Proposition 6. Let f be an element in R that evaluates to Fps with supp(f) ⊆ Ia and con-
sider a primitive element β of Fpsia . Then, f can be expressed as a linear combination with

coefficients in Fps of the elements in R given by Sβa :=
{
Ta(Xa), Ta(βXa), . . . , Ta(βia−1Xa)

}
.

Proof. Since supp(f) ⊆ Ia and fp
s

= f , there is some α ∈ Fpr such that f =
∑ia−1

j=0 (αXa)p
js

.

Moreover αp
sia

= α, which implies that α ∈ Fpsia .

We know that {1, β, . . . , βia−1} is a basis of Fpsia over Fps , so α = a0 + a1β + · · · +
aia−1β

ia−1, with ai ∈ Fps for all i. Therefore,

f =

ia−1∑
j=0

αp
js
Xpjsa =

ia−1∑
j=0

Xpjsa

(
ia−1∑
l=0

alβ
l

)pjs

=

ia−1∑
l=0

al

ia−1∑
j=0

βlp
js
Xpjsa

 =

ia−1∑
l=0

alTa(βlXa).

�

Proposition 7. The polynomials in the previously considered set Sβa are linearly indepen-
dent over Fps.

Proof. Reasoning by contradiction, assume that
∑ia−1

l=0 alTa(βlXa) = 0. Then, the term
whose attached monomial is Xa and appears in the left hand side of the above equality is
(a0 + a1β + · · ·+ aia−1β

ia−1)Xa and it must vanish. This is true only if β is a root of the
univariate polynomial a0 + a1Z + · · · + aia−1Z

ia−1. This gives the desired contradiction
because the minimal polynomial of β has degree ia. �

Next, we state the above mentioned theorem.

Theorem 3. The following set

ΩR
s :=

⋃
a∈A

{
Ta(βlXa) | 0 ≤ l ≤ ia − 1 and β is a primitive element of Fpsia

}
constitutes a basis for the vector space over Fps of elements in R evaluating to Fps.

Proof. We start by proving that the classes in ΩR
s are linearly independent. This holds, on

the one hand, because there is no linear dependence among the elements in ΩR
s supported

on different minimal cyclotomic sets. Indeed, any monomial of any element supported
on Ia is different from that of any other supported on Ia′ with a 6= a′. On the other
hand, Proposition 7 proves the independence of the elements supported on the same set
Ia, which shows our statement.

To conclude the proof, we are going to show that the set ΩR
s generates the vector space

of elements f in R evaluating to Fps . Recall that we are using canonical polynomials
for representing their corresponding classes in R. Consider the term in f with smallest
order for the above mentioned monomial ordering associated with the order � on Zm≥0, say

βk1Xa1 , then Ta1(βk1Xa1) =
∑ia1−1

l=0 (βk1Xa1)p
ls

must appear in f because it evaluates

to Fps . Since βk1Xa1 has the smallest order in f , a1 must be one of the elements in
A. Assume, without loss of generality, that these elements are {a1,a2, . . . ,at}. Set f1 =
f − Ta1(βk1Xa1) and pick its monomial with smallest order, say βk2Xa2 . Again the
polynomial Ta2(βk2Xa2) must appear in f1. We can repeat the above procedure and
consider f2 = f1 −Ta2(βk2Xa2). We will finish in t steps and this will provide the desired
expression of f as a linear combination of elements in ΩR

s , which concludes the proof. �
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We have just provided a constructive way of obtaining all classes in R that evaluate to
Fps . In particular, if we restrict to those with support in U , we have a formula for the
dimension of an affine variety subfield-subcode.

Theorem 4. Let U be a subset of {0, 1, . . . , N1−1}×{0, 1, . . . , N2−1}×· · ·×{0, 1, . . . , Nm−
1}, n = N1N2 · · ·Nm and define CsU := CU ∩ Fnps. Then,

CsU = ev
(
T (FHpr) ∩ FUpr

)
,

CsU is generated by the images under the evaluation map ev of the following elements in R⋃
Ia|Ia⊆U

{
Ta(βlXa) | 0 ≤ l ≤ ia − 1 and β is a primitive element of Fpsia

}
and

dimCsU =
∑

Ia|Ia⊆U

ia.

3. Quantum codes from subfield-subcodes of affine variety codes

We devote this section to explain which of our affine variety subfield-subcodes yield
stabilizer codes. Notice that our quantum codes will be defined over a small field Fps but
the original code is defined over a large field Fpr .

Prior to stating our main result, we will need to describe dual codes of subfield-subcodes.
From Proposition 3, we know that C⊥U is the affine variety code defined by U⊥. Then, we
get

(CsU )⊥ = tr (CU⊥) = tr
(

ev(FU
⊥

pr )
)

= ev
(
T (FU

⊥
pr )

)
,

where the first equality follows from Delsarte’s Theorem [8] and the last one from the fact
that, by Proposition 5, the following map composition equality ev ◦ T = tr ◦ ev holds.
Notice that, as above, we are identifying classes in R with canonical representatives. Now,

T (FU⊥pr ) is generated by T (γXa) for a ∈ U⊥ and γ ∈ Fpr . If one fixes a and varies γ over

the field, then the set {Ta(βlXa)}0≤l≤ia−1, β primitive, is obtained. Thus we have proved
the following result.

Theorem 5. Let U ⊆ H be as in Section 1. The dual code (CsU )⊥ of the code CsU is
generated by the image by ev of the following elements in R:⋃

Ia|Ia∩U⊥ 6=∅

{
Ta(βlXa) | 0 ≤ l ≤ ia − 1 and β is a primitive element of Fpsia

}
.

As a consequence, it holds that

dim(CsU )⊥ =
∑

Ia|Ia∩U⊥ 6=∅

ia.

We conclude this section with our main result which allows us to construct good sta-
bilizer codes. Given a minimal cyclotomic set Ia, the subset of ZN1 × ZN2 × · · · × ZNm

defined as Îa := {û | u ∈ Ia} will be called the complementary set of Ia.

Theorem 6. Let p be a prime number and r and s positive integers such that s|r. Let

H := {0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} × · · · × {0, 1, . . . , Nm − 1}
be the hypercube defined in Section 1, where Ni divides pr− 1 for all index i, and consider
a nonempty subset U of H. Then,



8 C. GALINDO AND F. HERNANDO

(1) The codes’ inclusion CsU ⊆ (CsU )⊥ happens if, and only if, Îa is not contained in
U whenever Ia is.

(2) Assume that U satisfies the conditions in the previous item. Then, from the affine
variety code CsU a stabilizer code can be obtained. The parameters for that code are

[[n, k,≥ d]]ps, where n = N1N2 · · ·Nm, k = n− 2
∑

Ia|Ia⊆U ia and d = d
(
(CsU )⊥

)
.

Proof. Theorem 5 proves that the dual code (CsU )⊥ is given by the evaluation of the

elements Ta(βlXa), where 0 ≤ l ≤ ia − 1 and β is a primitive element of Fpsia , whenever

Ia ∩ U⊥ 6= ∅. Therefore, CsU ⊆ (CsU )⊥ if and only if Ia ∩ U⊥ 6= ∅ when Ia ⊆ U and

this happens if, and only if, the complementary set of Ia satisfies Îa 6⊆ U for all minimal
cyclotomic set Ia ⊆ U . This proves our first assertion. The second one follows from the
CSS construction. �

Remark 1. One of the best known classes of affine variety codes are those where the
ring R (it could be more general than that in this paper) admits a weight function. This
function takes values in an ordered semigroup and gives a suitable nested sequence of
vector spaces in R, L1 ⊂ L2 ⊂ · · · ⊂ Lr, whose dimensions increase in one unit. The
evaluation of these spaces provides a nested family of primary codes C1 ⊂ C2 ⊂ · · · ⊂ Cr
and their corresponding dual ones (Cr)

⊥ ⊂ (Cr−1)⊥ ⊂ · · · ⊂ (C1)⊥. The weight function
allows us to define the so-called Feng-Rao bound on the minimum distance of the previous
codes. In this paper, from the point of view of classical codes and despite not having a
weight function, we show a way of getting suitable sets Ui ⊂ H, 1 ≤ i ≤ r, to obtain
nested sequences of codes CU1 ⊂ CU2 ⊂ · · · ⊂ CUr (respectively, CsU1

⊂ CsU2
⊂ · · · ⊂ CsUr

)

such that CUr ⊂ C⊥Ur
(respectively, CsUr

⊂ (CsUr
)⊥) and therefore (CUr)⊥ ⊂ (CUr−1)⊥ ⊂

· · · ⊂ (CU1)⊥ (respectively, (CsUr
)⊥ ⊂ (CsUr−1

)⊥ ⊂ · · · ⊂ (CsU1
)⊥ ). Our main result is to

determine the dimensions of the above mentioned codes.
It would be interesting to know an explicit formula or tight bound for the value d((CsU )⊥),

U ⊂ H. Reasoning as in Theorem 6, when the inclusion (CsU )⊥ ⊆ CsU holds, one can get an
[[n, k,≥ d]]ps code where n is as above, k = 2

∑
Ia|Ia⊆U ia−n and d = d(CsU ). In this case

a lower bound for the distance d can be described. Indeed, d(CsU ) ≥ d(CU ) and a lower
bound for the distance of the code CU can be computed following the procedure given in
[15]. It should be noted that this procedure is not easy to implement computationally and
the bound seems not to be sharp.

Codes in this paper are constructed by applying the CSS code construction to suitable
linear codes. However, to get quantum codes, one can also use other bilinear pairings as
the trace alternating inner product. As a referee of this paper pointed out, to relate our
codes with those obtained with respect to different bilinear pairings is an interesting future
work. Notice that in terms of the CSS construction as well as in the more general context
of asymmetric quantum codes, this last topic has been explored in [11, 10] by using the
so-called functional approach.

4. Examples

In this section we provide some sets U with associated codes CsU giving rise to CSS
stabilizer codes and compute their quantum parameters. We impose the condition that a
minimal cyclotomic set Ia is contained in U whenever any of its elements is in U . First
we give a table containing the parameters and the field where are defined. Notice that,
by Corollary 1, the value d in the table needs not to be the true minimum distance but
a lower bound and that our codes are pure to d. These codes either improve or add new
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parameters with respect to those ones given in [9]. In addition, some of them have a symbol
GV which means that we have checked that they are pure and exceed the quantum Gilbert-
Varshamov bound [12, Theorem 1.4 and Corollary 2.3]. Finally, codes with a symbol L
improve the parameters of some codes in [24, Tables I and II]. Computations has been
done by writing a Magma [25] function. After the table, as announced earlier, the reader
can find, also in tabular form, those subsets U and values Ni, p, r and s providing the
codes. For simplicity, a code given by U is also called U . Based on [10, Table IV, entry
18], within the family of CSS codes, the code U23 is optimal.

Code Symbol n k d q = ps Code Symbol n k d q = ps

U1 147 123 4 2 U2 147 105 6 2
U3 GV 23 1 7 2 U4 189 147 5 2
U5 189 141 6 2 U6 189 129 7 2
U7 217 171 6 2 U8 245 209 4 2
U9 245 179 6 2 U10 441 411 4 2
U11 45 25 6 4 U12 225 199 5 4
U13 189 165 5 4 U14 189 153 6 4
U15 GV 225 211 4 4 U16 L 73 55 6 8
U17 21 9 5 8 U18 L 73 43 8 8
U19 147 135 4 8 U20 147 127 5 8
U21 64 48 4 3 U22 64 52 3 3
U23 GV, L 11 1 5 3 U24 L 71 51 5 5
U25 L 31 13 6 5 U26 71 41 8 5
U27 96 88 3 5 U28 96 84 4 5
U29 GV 200 184 4 3 U30 36 26 4 7

Code / Subset p r s N1 N2 N3

U1 = {(6, 2, 2), (5, 4, 1), (3, 1, 2), (6, 2, 1), (5, 4, 2), (3, 1, 1),
(2, 3, 0), (4, 6, 0), (1, 5, 0), (6, 0, 0), (5, 0, 0), (3, 0, 0)} 2 6 1 7 7 3

U2 = {(2, 4, 0), (4, 1, 0), (1, 2, 0), (6, 0, 2), (5, 0, 1), (3, 0, 2),
(6, 0, 1), (5, 0, 2), (3, 0, 1), (6, 2, 0), (5, 4, 0), (3, 1, 0),
(0, 6, 2), (0, 5, 1), (0, 3, 2), (0, 6, 1), (0, 5, 2), (0, 3, 1),

(2, 0, 0), (4, 0, 0), (1, 0, 0)}

2 6 1 7 7 3
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Code / Subset p r s N1 N2 N3

U3 = {2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1} 2 11 1 23 - -
U4 = {(0, 2, 0), (0, 4, 0), (0, 1, 0), (0, 6, 2), (0, 5, 1), (0, 3, 2),

(0, 6, 1), (0, 5, 2), (0, 3, 1), (2, 6, 2), (4, 5, 1), (8, 3, 2),
(7, 6, 1), (5, 5, 2), (1, 3, 1), (2, 1, 0), (4, 2, 0), (8, 4, 0),

(7, 1, 0), (5, 2, 0), (1, 4, 0)}

2 6 1 9 7 3

U5 = {(2, 4, 1), (4, 1, 2), (8, 2, 1), (7, 4, 2), (5, 1, 1), (1, 2, 2),
(0, 6, 2), (0, 5, 1), (0, 3, 2), (0, 6, 1), (0, 5, 2), (0, 3, 1),
(2, 6, 2), (4, 5, 1), (8, 3, 2), (7, 6, 1), (5, 5, 2), (1, 3, 1),
(2, 2, 0), (4, 4, 0), (8, 1, 0), (7, 2, 0), (5, 4, 0), (1, 1, 0)}

2 6 1 9 7 3

U6 = {(2, 3, 0), (4, 6, 0), (8, 5, 0), (7, 3, 0), (5, 6, 0), (1, 5, 0),
(6, 6, 0), (3, 5, 0), (6, 3, 0), (3, 6, 0), (6, 5, 0), (3, 3, 0),
(2, 3, 1), (4, 6, 2), (8, 5, 1), (7, 3, 2), (5, 6, 1), (1, 5, 2),
(2, 4, 2), (4, 1, 1), (8, 2, 2), (7, 4, 1), (5, 1, 2), (1, 2, 1),
(6, 2, 2), (3, 4, 1), (6, 1, 2), (3, 2, 1), (6, 4, 2), (3, 1, 1)}

2 6 1 9 7 3

U7 = {(0, 2), (0, 4), (0, 1), (14, 0), (28, 0), (25, 0), (19, 0),
(7, 0), (22, 6), (13, 5), (26, 3), (21, 6), (11, 5), (22, 3), (13, 6),

(26, 5), (21, 3), (11, 6), (22, 5), (13, 3), (26, 6), (21, 5), (11, 3)}
2 15 1 31 7 -

U8 = {(2, 4, 0), (4, 1, 0), (1, 2, 0), (6, 0, 2), (5, 0, 4), (3, 0, 3),
(6, 0, 1), (5, 0, 2), (3, 0, 4), (6, 0, 3), (5, 0, 1), (3, 0, 2),
(6, 0, 4), (5, 0, 3), (3, 0, 1), (2, 0, 0), (4, 0, 0), (1, 0, 0)}

2 12 1 7 7 5

Code / Subset p r s N1 N2 N3

U9 = {(2, 4, 2), (4, 1, 4), (1, 2, 3), (2, 4, 1), (4, 1, 2), (1, 2, 4),
(2, 4, 3), (4, 1, 1), (1, 2, 2), (2, 4, 4), (4, 1, 3), (1, 2, 1),
(6, 2, 0), (5, 4, 0), (3, 1, 0), (6, 4, 2), (5, 1, 4), (3, 2, 3),
(6, 4, 1), (5, 1, 2), (3, 2, 4), (6, 4, 3), (5, 1, 1), (3, 2, 2),
(6, 4, 4), (5, 1, 3), (3, 2, 1), (6, 6, 0), (5, 5, 0), (3, 3, 0),

(6, 0, 0), (5, 0, 0), (3, 0, 0)}

2 12 1 7 7 5

U10 = {(0, 6, 2), (0, 5, 4), (0, 3, 1), (6, 2, 2), (3, 4, 4), (6, 1, 1),
(3, 2, 2), (6, 4, 4), (3, 1, 1), (2, 2, 3), (4, 4, 6), (8, 1, 5),

(7, 2, 3), (5, 4, 6), (1, 1, 5)}
2 12 1 9 7 7

U11 = {(3, 1, 1), (2, 1, 1), (0, 0, 2), (4, 1, 2), (1, 1, 2), (4, 2, 0),
(0, 2, 2), (3, 0, 1), (2, 0, 1), (1, 2, 0)} 2 4 2 5 3 3

U12 = {(10, 0), (0, 10), (10, 5), (10, 13), (10, 7)(8, 5), (2, 5),
(4, 3), (1, 12), (12, 1), (3, 4)(8, 3), (2, 12)} 2 4 2 15 15 -

U13 = {(8, 5), (5, 20), (2, 17), (4, 9), (7, 15), (1, 18), (3, 0),
(6, 7), (6, 14), (8, 6), (5, 3), (2, 12)} 2 6 2 9 21 -

U14 = {(8, 5), (5, 20), (2, 17), (4, 9), (7, 15), (1, 18), (3, 0),
(6, 7), (6, 14), (8, 6), (5, 3), (2, 12), (0, 4), (0, 16),

(0, 1), (0, 19), (0, 13), (0, 10)}
2 6 2 9 21 -

U15 = {(10, 0), (14, 14), (11, 11), (5, 9), (5, 6), (0, 10), (10, 5)} 2 4 2 15 15 -
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Code / Subset p r s N1 N2 N3

U16 = {16, 55, 2, 32, 37, 4, 53, 59, 34} 2 9 3 73 - -
U17 = {(5, 2), (5, 1), (1, 2), (1, 1), (2, 0), (4, 0)} 2 6 3 7 3 -

U18 = {(23, 38, 12, 22, 30, 21, 54, 67, 25, 56, 10, 7, 15, 47, 11} 2 9 3 73 - -
U19 = {(2, 2, 0), (3, 2, 2), (3, 2, 1), (4, 1, 0), (5, 3, 0), (3, 1, 0)} 2 6 3 7 7 3
U20 = {(2, 2, 0), (3, 2, 2), (3, 2, 1), (4, 1, 0), (5, 3, 0), (3, 1, 0),

(4, 2, 2), (4, 2, 1), (3, 4, 2), (3, 4, 1)} 2 6 3 7 7 3

U21 = {(3, 2), (1, 6), (0, 3), (0, 1), (7, 0), (5, 0), (7, 3), (5, 1)} 3 2 1 8 8 -
U22 = {(3, 0), (1, 0), (6, 5), (2, 7), (7, 7), (5, 5)} 3 2 1 8 8 -

U23 = {(3, 9, 5, 4, 1} 3 5 1 11 - -
U24 = {39, 53, 52, 47, 22, 65, 41, 63, 31, 13} 5 5 1 71 - -

U25 = {15, 13, 3, 20, 7, 4, 29, 21, 12} 5 3 1 31 - -
U26 = {64, 36, 38, 48, 27, 15, 4, 20, 29, 3, 45, 12, 60, 16, 9} 5 5 1 71 - -

U27 = {(18, 1), (17, 0), (13, 0), (6, 0)} 5 2 1 24 4 -
U28 = {(23, 3), (19, 3), (11, 2), (7, 2), (18, 0), (12, 3)} 5 2 1 24 4 -

U29 = {(3, 3, 3), (4, 4, 1), (2, 2, 3), (1, 1, 1), (3, 0, 6), (4, 0, 2),
(2, 0, 6), (1, 0, 2)} 3 4 1 5 5 8

U30 = {(2, 0), (2, 2), (0, 5), (1, 1), (1, 2)} 7 2 1 6 6 -
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