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We evaluated the changes of some soil microbiological characteristics due to the use of
transgenic maize expressing Bacillus thuringiensis (Bt) toxin. A two-year field experiment was
conducted (2003 and 2004). Two lines of transgenic Bt maize that express the Cry1Ab protein
(event 176 and MON 810) and their near-isogenic non-Bt lines were used. Rhizosphere and
non-rhizosphere soils were collected and measurements were performed during the maize

cultural cycle and immediately at pre-harvest. Key soil microbiological parameters
measured included the numbers of culturable aerobic bacteria, including actinomycetes,
and fungi, the activity of dehydrogenase and nitrogenase enzymes and ATP content.
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There were clear seasonal effects in the microbial parameters as evidenced by the
consistent changes in sampling dates across the two years. Differences in the measured
variables were also observed between rhizosphere and non-rhizosphere soils. However,
under our field conditions, the presence of Bt maize did not cause, in a general way, changes

in the microbial populations of the soil or in the activity of the microbial community.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The insertion into plants of genes from Bacillus thuringiensis
(Bt) that code for the production of insecticidal toxins (Cry
proteins) reduces many problems associated with the use of
chemical pesticides, as the toxins are produced continuously
within these plants. However, the insecticidal protein, Cry
1Ab, from Bt maize is introduced into soil primarily in root
exudates (Saxena et al., 1999; Saxena and Stotzky, 2000) and
also by incorporating plant residues after harvesting the crops
(Tapp and Stotzky, 1998; Zwahlen et al., 2003). In vitro and in
situ studies indicated that the Cry 1Ab protein was also present
in the rhizosphere soil of field-grown Bt maize plants
throughout their growth and several months after their
death (Saxena and Stotzky, 2000). Although most Bt Cry
proteins have high specificity, their effects on non-target
organisms have not been fully evaluated.

* Corresponding author. Tel.: +351 21 3653198; fax: +351 21 3635031.
E-mail address: adnpoliveira@isa.utl.pt (A.P. Oliveira).

Under laboratory conditions, no effect of the CrylAb
protein was found on collembolans (Sims and Martin, 1997,
Heckmann et al., 2006), isopods (Escher et al., 2000), protozoa,
nematodes, fungi, bacteria, algae, or earthworms (Saxena and
Stotzky, 2001; Koskella and Stotzky, 2002; Baumgarte and
Tebbe, 2005; Vercesi et al., 2006).

Other studies have examined the effects of Bt crops on soil
ecosystem functions, such as residue decomposition. Most of
these studies have compared the decomposition of Bt and
non-Bt plant residues. Hopkins and Gregorich (2003) did not
observe any detectable difference in the decomposition of
plant material from Bt and non-Bt maize. Accordingly, Flores
et al. (2005) found that numbers of culturable bacteria and
fungi and the activities of representative enzymes involved in
the degradation of plant biomass were not different between
unamended soil or amended with biomass of Bt and non-Bt
plants.
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Some detrimental effects, such as mortality and reduced
fecundity, have been observed in non-target invertebrates
exposed to various Bt-producing strains (Mulla et al., 1982;
Flexner et al., 1986). Studies of soil microbial and microfaunal
communities also revealed differences in bacterial and fungal
CLPP profiles (Blackwood and Buyer, 2004) and in nematodes
population (Griffiths et al., 2005) under Bt maize cultivation.
Donegan et al. (1995) observed effects of transgenic Bt cotton
on both abundance and diversity of indigenous soil bacteria
and fungi.

Biological and biochemical properties of soil have often
been proposed as early and sensitive indicators of soil
ecological stress or other environmental changes (Visser and
Parkinson, 1992; Dick, 1994; Oliveira and Pampulha, 2006).
Measurement of microbial populations in combination with
their activity provides more sensitive information of the
microbial changes than either activities or population analysis
alone (Brookes, 1995).

Nitrogen fixation is performed by phylogenetically and
physiologically diverse groups of prokaryotic organisms and is
rapidly affected, positively or negatively, when environmental
conditions are changed (Martensson, 1993). Dehydrogenase
activity (DHA) and ATP content are also widely used in
evaluating the metabolic activity of soil microorganisms
(Bastida et al., 2007; Crecchio et al., 2007; Tejada et al., 2008).

The aim of this research was to evaluate changes in the soil
microbiota due to the use of transgenic Bt maize. We
performed a two-year experiment under field conditions
with two hybrids of transgenic Bt maize and their near-
isogenic lines. Soil microbiological parameters measured
included numbers of culturable aerobic bacteria, including
actinomycetes, and fungi, the activity of dehydrogenase and
nitrogenase enzymes, and ATP content.

2. Materials and methods
2.1. Site and plants

The study was carried out on an experimental farm in the
central region of Portugal. The soil is a well-drained sandy soil
(PH, 6.2; organic carbon, 12 gkg™*; sand, 80.2%; silt, 18.6%; clay,
1.3%). The experiment was conducted in two successive years
(2003 and 2004) in a large plot (160 m x 60 m) where transgenic
Bt or non-Bt maize had never been planted. This plot was
subdivided into 4 sub-plots (80 m x 30 m each). Two varieties of
transgenic Bt maize [CG 00256-176, Cry1Ab (Compa Cb), from

Syngenta and MON 810, Cry 1Ab (Elgina), from Pioneer| and
their near-isogenic lines (Dracma and Cecilia, respectively)
were used in this study. Each sub-plot was sown with a
different maize line, under irrigated conditions. Soils were
sampled from the 4 sub-plots, between 0 and 20 cm deep. The
sub-plots were established in 2003 as part of a larger study
examining the efficiency of the utilization of Bt maize in the
control of Sesamia nonagrioides and Ostrinia nubilalis.

2.2. Soil sampling

Rhizosphere and non-rhizosphere soil samples were col-
lected, in both years, 30 days after sowing (2003: middle
June; 2004: beginning of June) and immediately at pre-harvest
(2003: beginning of October; 2004: end of September).

Ten soil samples were collected from each sub-plot (5
rhizosphere samples and 5 non-rhizosphere samples). Non-
rhizosphere soil was taken at a depth of 0-20 cm. To obtain
rhizosphere soil, root material with adhering soil was
removed with a trowel and placed in a plastic bag. All visible
plant debris was removed manually. Each soil sample was
then sieved (2 mm), and stored at 4 °C, in the dark, before
analysis.

2.3. Enumeration of bacteria, actinomycetes and saprophytic
fungi

Colony-forming units (CFU) of culturable heterotrophic bac-
teria, actinomycetes, and fungi, were determined by serial
dilution and plating on selective media. Serial dilutions of soil
samples (1 g fresh weight) were made with 1/4 strength
Ringers solution. Plate counts of culturally-viable bacteria
were made on Tryptone Soya Agar (TSA, Oxoid) amended with
0.1 g of cycloheximide 1"*. For fungi, the medium was Rose
Bengal Agar (RB, Oxoid) amended with 30 mg of streptomycin
sulphate I"1. Actinomycetes were counted on Glycerol Casein
Agar (Williams and Wellington, 1982) amended with 0.05 g of
cycloheximide 17*. The plates were inoculated with 0.1 ml of
soil suspension and incubated at 25 °C for 4-7 days for fungi
and heterotrophic bacteria and for 10 days for actinomycetes.
All the results are expressed on an oven-dry wt basis.

2.4. Dehydrogenase activity
Dehydrogenase activity (DHA) was determined by the method

of Tabatabai (1982) using 1 ml of a 3% triphenyl tetrazolium
chloride (TTC) solution per 20 g of soil (dry weight equivalent).

Table 1 - Example ANOVA for bacteria data

Source of variation Degrees of freedom  Sum of squares = Mean squares F Probability
Year (Y) 1 9211.2 9211.2 201.4 0.0008
Maize (M) 3 457.9 152.6 33 0.1743
Year x maize 3 137.2 45.7 6.3 0.0005
Sample date (Y xM) 8 1197.7 149.7 2.7 0.0897
Rhizosphere/non-rhizosphere soil (Y x M) 8 3975.6 497.0 9.0 0.0027
Sample date (Y x M) xrhizosphere/non-r (Y x M) 8 441.2 55.2 7.6 0.0000
Error 128 928.7 7.3

Total 159

Significant sources of variation at the 0.05 probability level are in bold font.
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Table 2-Effects of Bt maize on heterotrophic aerobic

bacteria (mean CFUx10° g~* dry soil)

Table 4 - Effects of Bt maize on fungi (mean CFUx10* g~*
dry soil)

Elgina Cecilia Compa Dracma Average

Elgina Cecilia Compa Dracma Average

(t) (t) (t) (t)

Sowing 18.94 15.95 11.33 11.12 14.33 Sowing 12.39 8.27 10.40 13.40 11.12
Rhizosphere  23.70 20.65 13.70 13.52 17.89 Rhizosphere  10.14 6.70 8.50 11.75 9.27
Non- 14.17 11.25 8.95 8.71 10.77 Non- 14.64  9.84 12.30 15.05 12.96

rhizosphere rhizosphere

Harvest 15.94 18.45 17.66 15.94 16.99 Harvest 22.42 21.38 13.57 14.29 17.91
Rhizosphere  20.43 26.58 22.93 21.80 22.94 Rhizosphere  30.08 27.09 9.62 11.45 19.56
Non- 11.44 10.32 12.38 10.07 11.05 Non- 14.76 15.67 17.51 17.13 16.27

rhizosphere rhizosphere

Average 17.44  17.20 14.49 13.53 15.66 Average 17.41 14.83 11.98 13.85 14.51

Tukey’s HSD a a b b Tukey’s HSD a b c b

(t) = transgenic line. Sowing and Harvest refer to the two sampling
times, while Rhizosphere and Non-rhizosphere refer to the two soil
sampling areas, which were nested within the sampling times.
Year is not presented because it is a block term. Marginal averages
in column 6 in bold font were significantly different as determined
by ANOVA, while those in the last row were determined by Tukey’s
HSD test. In the latter, means followed by different letters are
significantly different at the 0.05 probability level.

TTC is converted to triphenyl formazan (TPF), a red dye that is
detected using a spectrophotometer (485 nm) after incubation
(24 h at 37 °C).

Results were expressed in pg TPF- g~ of dry soil 24 h™* and
were calculated from spectrophotometer calibration in the
range of 0-500 pg TPF- g~ * of dry soil.

2.5. Nitrogenase activity

Nitrogenase activity was measured as acetylene reduction
activity (ARA). Soil samples corresponding to 20 g of dry
weight were placed in serum bottles, and 5 ml of Combinated
Carbon (CC) medium (Rennie, 1981) was added. After a pre-
incubation period of 24 h at 25 °C, samples were incubated for
24 h at 25 °C with 10% (vv™ ") acetylene (C,H,). Gas samples
were obtained from the bottles with gas-tight syringes and
analysed for ethylene (C,H,) using a gas chromatograph
Varian 3800GC (Varian Analytical Instruments, Mitchell
Drive, Walnut Creek, USA), fitted with a 1 mx1/8" column
packed with Porapak T(80-100 mesh) and a flame-ionization
detector (FID). Corrections were made for traces of C,H, in the

Table 3 -Effects of Bt maize on actinomycetes (mean
CFUx10° g~* dry soil)

Elgina Cecilia Compa Dracma Average

(t) (t)

Sowing 11.47 14.90 8.63 8.84 10.96
Rhizosphere 9.74 13.35 6.35 7.70 9.29
Non- 13.19 16.44 10.91 9.97 12.63

rhizosphere

Harvest 21.70 21.75 23.50 21.60 22.14
Rhizosphere  24.30 24.80 23.80 21.10 23.50
Non- 19.10 18.70 23.20 22.10 20.78

rhizosphere

Average 16.58 18.32 16.07 15.22 16.55

Tukey’s HSD b a b b

(t) = transgenic line. See Table 2 for explanation.

(t) = transgenic line. See Table 2 for explanation.

C,H,. The results, the means of 10 replicate samples, were
expressed on the basis of dry weight of soil.

2.6. ATP content

The ATP content in soil was determined according to published
methods (Oades and Jenkinson, 1979; Tate and Jenkinson,
1982), with some modifications. Fresh soil (5 g) was suspended
in 50 ml of extracting solution [0.5 M trichloroacetic acid (TCA)
and 0.25 M Na,PO,]. After stirring, soil samples were sonicated
for 3 min., and the suspensions were centrifuged at 1500 g for
5min at4 °C. Aliquots of 50 pl were taken from the supernatant
and were transferred into polystyrene tubes, mixed with
4.95 ml of EDTA-Tris acetate buffer (0.1 M Tris, 2 mM EDTA),
pH7.75, and vortexed for 10 s. Aliquots of 150 pl were tested for
ATP by adding them to a buffered luciferin-luciferase solution.

The radiation emission of the mixtures was measured with
a TD-20/20 Luminometer (Turner Designs, Sunnyvale, CA,
USA). The estimate of the soil ATP content was done in
triplicate. Autoclaved soil extracts were used to obtain blank
values. Counts over a 10 s integration time were compared
with a standard curve of ATP.

2.7. Experimental design and statistics

This study was designed as a randomized complete block,
multi-factorial, double-nested with sub-sampling experiment.

Table 5 - Effects of Bt maize on dehydrogenase activity
(mean pg TPF-g~* 24 h™* dry soil)

Elgina Cecilia Compa Dracma Average

(t) (t)

Sowing 13.45 15.85 19.55 16.70 16.39
Rhizosphere  16.10 17.60 22.50 20.20 19.10
Non- 10.80 14.10 16.60 13.20 13.68

rhizosphere

Harvest 43.40 38.70 27.80 28.05 34.49
Rhizosphere  46.60 48.00 33.20 36.10 40.98
Non- 40.20 29.40 22.40 20.00 28.00

rhizosphere

Average 28.43 27.28 23.68 22.38 25.44

Tukey’s HSD a a b b

(t) = transgenic line. See Table 2 for explanation.
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The block treatment was the two years of sampling and the
four maize lines were the main source of variation. The
interaction of blocks and maize lines was used for significance
testing of the blocks and maize lines. Nested within these
were the two sampling dates and the rhizosphere/non-rhizo-
sphere soils, each with two levels. These treatments were
tested with their interaction mean squares, and the latter with
the residual error from the sub-sampling. These analyses of
variance (ANOVAs) were performed in two steps: the calcula-
tions of the mean squares were done first with JMP 6, and the F
tests then calculated by hand. Because the differences among
the maize lines were the principal subject of interest, the
means were subsequently tested a posteriori to the ANOVAs
using Tukey’s HSD mean separation test at the 0.05 probability
level.

3. Results

Six ANOVAs were calculated to test for significant differences
among the treatment means. Given the complexity of the
ANOVA model, an example is given in Table 1 for the bacteria
data. The remaining five ANOVAs are not presented. Maize
line was not a significant source of variation in any of the six
ANOVAs. Year, which is the block term, was significant in four
of the six ANOVAs, which then resulted in the year by maize
line interaction source of variation being significant for all six
variables. Therefore the interaction term was used to test the
maize line source of variation. It is the only variation at the
same scale that can be used in the F test. In general, values for
the different microbiological parameters under analysis were
higher in Year 2, which were likely related to differences in
weather conditions.

Sampling date was significant in three of the ANOVAs,
while rhizosphere/non-rhizosphere soils were significant in
only two ANOVAs.

The numbers of culturable heterotrophic aerobic bacteria
(Table 2) and actinomycetes (Table 3) showed no statistically
or biologically significant differences between soils planted
with Bt or non-Bt maize. Some significant differences were
observed in the abundance of saprophytic fungi (Table 4).
Fungal populations were lower 30 days after sowing in soils
with Compa Cb transgenic maize when compared with its

Table 6 - Effects of Bt maize on soil ATP content (mean
ng-g~* dry soil)

Elgina Cecilia Compa Dracma Average

(t) (t)

Sowing 270.70  239.25 246.25 281.75 259.49
Rhizosphere 298.90  285.50 287.50 360.00 307.98
Non- 242.50  193.00 205.00 203.50 211.00

rhizosphere

Harvest 357.00 427.50 467.50 421.50 418.38
Rhizosphere 470.50 544.00  565.00 514.00 523.38
Non- 243.50 311.00 370.00 329.00 313.38

rhizosphere

Average 313.85 333.38 356.88 351.63 338.93

Tukey’s HSD b ab a a

(t) = transgenic line. See Table 2 for explanation.

Table 7 - Effects of Bt maize on nitrogenase activity (mean

nmoles G,H,-g~*-24 h™* dry soil)

Elgina Cecilia Compa Dracma Average

(t) (t)

Sowing 11.75 9.95 12.25 13.95 11.98
Rhizosphere 18.40 14.10 19.40 22.00 18.48
Non- 5.10 5.80 5.10 5.90 5.48

rhizosphere

Harvest 89.85 95.00 235.75 208.75 157.34
Rhizosphere 111.90 168.70  422.80 379.00 270.60
Non- 67.80 21.30 48.70 38.50 44.08

rhizosphere

Average 50.80 52.48 124.00 111.35 84.66

Tukey’s HSD b b a a

(t) = transgenic line. See Table 2 for explanation.

isogenic line Dracma. Maize lines did have statistically
different fungal population means, but they were not biologi-
cally meaningful. This effect did not persist at pre-harvest
date, where values did not show significant differences.
Between sampling dates numbers of these three major soil
microbial groups were higher at pre-harvest date. Large
number of heterotrophic bacteria was also detected in the
rhizosphere soil. In contrast, actinomycetes and fungi were
not, in general, stimulated in the rhizosphere.

The variations in soil DHA activity and ATP content are
shown in Tables 5 and 6, respectively. The presence of Bt
maize did not affect, in a general way, these soil parameters.
The values in rhizosphere soil were higher, in general
agreement with the microbial counts.

A marked influence of the presence of maize roots was
detected in the nitrogenase activity (Table 7), as values were
significantly higher at the pre-harvest date in the rhizosphere
soil. However, the presence of transgenic maize lines did not
significantly affect nitrogenase activity.

In spite of some individual cases of reduced populations
under Bt compared with non-Bt maize, these reductions were
transient and did not persist between sampling times.

4, Discussion

We evaluated the effects of Bt maize under typical field
conditions, within large plots. The results indicated that Bt
maize did not cause significant effects on the variables
measured. Occasional significant differences did not persist.
Our field-based results are consistent with other experiments
(Donegan et al., 1995; Saxena and Stotzky 2001; Devare et al.,
2007) indicating that the transgenic corn had no discernable
effect on the bacterial community. In a microcosm experiment
with Bt transgenic cotton leaves, Donegan et al. (1995)
observed that two of the three transgenic lines produced a
significant but transient increase in the number of CFUs of
culturable bacteria and fungi, and Saxena and Stotzky (2001)
found that there were no significant differences in the CFUs of
culturable bacteria, actinomycetes or fungi between soil
amended with biomass of Bt-corn and non-Bt-corn after
45 days of incubation. Studies conducted by Wu et al (2004)
on Bt rice (CrylA) in China suggested that Bt rice had no
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negative effect on a range of soil microbial indicators. In
contrast, some antagonistic effects of the Cry insecticidal
protein on ammonification and nitrification have been
reported (Visser et al., 1994), but other studies have shown
no deleterious effects (Casida, 1989). Glare and O’Callaghan
(2000) reported that many of the effects on microorganisms
were short term and concluded that it was unlikely that there
would be any lasting effects on soil microbial processes. In
another study on Bt proteins, an experiment carried out under
laboratory conditions to investigate the differences in the
population of culturable microorganisms and the enzymatic
activities between soils amended with straw of transgenic rice
containing the CrylAb gene and the isogenic non-transgenic
rice showed no significant differences in the CFU of culturable
bacteria, actinomycetes and fungi between the two soils (Wei-
xiang et al., 2004).

We did observe some stimulatory rhizosphere effects on
measured variables as compared to non-rhizosphere soil.
These findings are in keeping with previous work demonstrat-
ing that increases in plant root exudation result in increased
microbial activity (Swinnen, 1994; Ryan et al., 2001).

Among the many essential functions of the soil biota are
microbially-mediated processes related to nutrient cycling,
such as oxidation-reduction reactions and biological N,-
fixation (Motavalli et al., 2004), but relatively little research
has examined the effects of transgenic crops on these
processes and functions in soil (O’Callaghan and Glare, 2001,
Bruinsma et al., 2003). In this study some differences were
observed in nitrogenase activity, namely between rhizosphere
soil of Compa Cb and its near-isogenic line (Dracma), in year 1.
N,-fixing activity also seemed to be more sensitive to changes
in soil conditions, as ARA showed a marked increase in the
rhizosphere when compared with the other microbiological
parameters measured. There were clear seasonal effects on
microbial biomass and activity in our field plots, as repre-
sented by the consistent changes in all measured variables
across years and sampling dates. In year 1, most of micro-
biological parameters evaluated showed a severe reduction
probably due to unusually dry season.

Because dehydrogenases are not active as extracellular
enzymes in soil, independent of the parent microbial cell, the
measurement of DHA is a good overall indicator of microbial
activity. DHA has been used as an indicator of the microbiological
activity in semi-arid Mediterranean soils (Garcia et al., 1994), in
agricultural soils in Germany (Beyer et al., 1982), in Mediterranean
soils during the dry and wet seasons (Quilchano and Marainén,
2002), and in soil management studies (Bergstrom et al., 1998).
Differences in DHA could also be the result of differences in the
composition of microbiota in stressed soil (Leirés et al., 2000). ATP
is the most important and central coupling agent between
exergonic and endergonic processes in all cells; in dead cells
ATP is quickly degraded. Owing to its properties, ATP is proposed
as a parameter for either estimating microbial activities or
biomass in soil. Soil ATP is also closely related with other indices
of biomass, e. g. C, N, etc. and can serve as an independent
estimate of soil biomass content (Contin et al., 2001).

In the present study, an evaluation of DHA and ATP content
in soils under Bt and non-Bt maize was undertaken. The
values obtained for both soils (rhizosphere and non-rhizo-
sphere) showed no significant differences.

Among the potential direct effects are changes in soil
microbial activity due to differences in the amount and
composition of root exudates. The insecticidal protein in
root exudates binds rapidly to clay minerals and humic
substances, which protect the protein from microbial degra-
dation (Tapp et al., 1994; Crecchio and Stotzky, 1998; Saxena
et al., 2002). The bound protein retains its insecticidal activity
and has been observed to persist in soil up to 234 days (Saxena
et al., 1999). Similar results on the persistence of the
insecticidal protein of Bt cotton, but for shorter periods of
time (up to 140 days), have also been reported (Palm et al,,
1996). However, in a survey of the levels of CrylAc protein in
soil samples of six fields with continuous Bt cotton for 3 to
6 years, Head et al. (2002) indicated that no detectable CrylAc
protein or biological insecticidal activity was present in any of
the fields. Tapp and Stotzky (1998) found that insecticidal
activity was retained when the Cry protein was incubated in
soil, but the amount of retention varied with the type of soil,
probably because of differences in the clay mineral composi-
tion and the pH of the soils. Since clay content increases the
retention of Cry proteins (Crecchio and Stotzky, 1998), the
protein probably does not persist for a long period in our soil
conditions since the soil under study was sandy and well
drained. Although the Cry protein level has not been evaluated
we can presume that if the Cry proteins do not bind on clays
they are available to soil microbes and a short term effect on
the microbial parameters under study could be expected, but
such an effect was not observed for the first sampling date.

Our study over two years in the same plots suggested there
were no cumulative effects of Bt maize, at least in the short
term. The differences caused by growing Bt maize were not as
large as those resulting from rhizosphere and seasonal
changes indicating that the effect of Bt maize on soil
microorganisms was within the normal variation expected
in conventional agricultural systems.
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