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Abstract

Grapevine (Vitis vinifera L.) is one of the most economically important fruit crops in the world. 

Deficit in nitrogen, phosphorus and sulfur nutrition impairs essential metabolic pathways. The 

influence of mineral stress in the composition of the plant cell wall (CW) has received residual 

attention. Using grapevine callus as a model system, 6-weeks deficiency of those elements caused a 

significant decrease in growth. Callus CWs were analyzed by Fourier transform infrared spectroscopy 

(FT-IR), by quantification of CW components and by immunolocalization of CW epitopes with 

monoclonal antibodies. PCA analysis of FT-IR data suggested changes in the main components of the 

CW in response to individual mineral stress. Decreased cellulose, modifications in pectin methyl 

esterification and increase of structural proteins were among the events disclosed by FT-IR analysis. 

Chemical analyses supported some of the assumptions and further disclosed an increase in lignin 

content under nitrogen deficiency, suggesting a compensation of cellulose by lignin. Moreover, 

polysaccharides of callus under mineral deficiency showed to be more tightly bonded to the CW, 

probably due to a more extensive cross-linking of the cellulose-hemicellulose network. Our work 

showed that mineral stress impacts the CW at different extents according to the withdrawn mineral 

element, and that the modifications in a given CW component are compensated by the synthesis and/or 

alternative linking between polymers. The overall results here described for the first time pinpoint the 

CW of Vitis callus different strategies to overcome mineral stress, depending on how essential they are 

to cell growth and plant development.

Keywords: Cellulose; FT-IR; Lignin; Mineral Stress; Pectin

Abbreviations

2.4–D 2,4–dichlorophenoxy–acetic acid

CDTA Cyclohexane–trans-1.2–diamine–N,N,N′,N′–tetraacetic acid 

sodium salt 

CW Cell Wall

FT–IR Fourier–Transform Infrared

GC Gas chromatography 

HRP Horseradish peroxidase

MS Murashige and Skoog Medium

-N Nitrogen deficient callus
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-P Phosphorus deficient callus

PBS Phosphate buffered saline

PCA Principal component analysis

PVP–40T Polyvinylpyrrolidone

RG–I Rhamnogalacturonan–I

-S Sulfur deficient callus

SD Standard deviation

TFA Trifluoroacetic acid

1. Introduction

The structural and mechanical support of plants is provided by cell walls (CW), which are load–

bearing, extensible viscoelastic structures that surround the cells, acting as an “exoskeleton". The CW 

plays a vital role in the regulation of the rate and direction of growth and the morphology of plant cells 

and organs [1]. The plant CW is a dynamic complex with further functions such as control of the 

diffusion through the apoplast, signaling, regulation of cell–to–cell interactions, storage of 

carbohydrates, or protection against biotic [2] and abiotic stress agents [3]. 

In the primary CW, cellulose is the main load–bearing polysaccharide which interlinks with cross–

linking matrix glycans, predominantly xyloglucan in dicots [4], to form an extensive framework that 

provides most of the tensile strength to the CW matrix. This network is embedded in a surrounding 

phase constituted by pectic polysaccharides, forming hydrophilic gels that determine the regulation of 

the hydration status and ion transport, the definition of the porosity, stiffness and control of the wall 

permeability [5]. These features are, in turn, defined by the chemical structure of pectic 

polysaccharides, particularly the branching degree and pattern, the decoration with neutral sugars and 

the degree and pattern of acetyl– and methyl–esterification, which can lead to either stiffening or 

loosening of the CW [6]. The occurrence of micro–domains inside the pectic polysaccharides means 

the localization of precise areas with distinct properties, providing a highly fine–tuned regulation of 

the wall properties to cope with the cell functioning. In addition to polysaccharides, a third network 

composed by structural glycoproteins contributes to the biophysical properties of the primary CW and 

cell adhesion [7, 8]. In some tissues, after cell growth has ceased, a secondary CW is formed with 

higher cellulose content and a different organization of its deposition. After cellulose, lignin is the 

second most abundant plant polymer in vascular plants [9]. In secondary CWs, lignin is deposited 
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within, around or among the cellulose microfibrils establishing covalent bonds with carbohydrates, 

providing additional strength and rigidity that, along evolution, allowed plants to grow upward [10].

The most consensual dicot primary CW model has been the “tethered network”, a representation in

which the hemicellulose polymers link cellulose through hydrogen bonds to create a load bearing 

tether, inserted in an amorphous cement-like pectin matrix [11]. However, recent results disclosed the 

presence of covalent linkages between rhamnogalacturonan–I (RG–I)–arabinan side–chains and 

cellulose microfibrils [12] and covalent linkages between xyloglucan and pectins in muro, [13, 14]

providing structural links between two major cell wall domains. Moreover, since not all of the 

cellulose microfibril surfaces are covered with xyloglucans and not all xyloglucans are adsorbed to 

cellulose [15, 16, 17], the existence of such other linkages within the CW is expected to maintain its 

structure.

During development, the fine structure of the plant CW matrix is extensively modified. The amount 

and composition of specific molecules and their arrangements differ among plants, organs, cell types 

and even in different micro–domains of the wall of a given individual cell [18]. 

Localized changes in CW composition and structure also provide the cell with a notable ability to 

tolerate abiotic stresses, such as osmotic [19] and chemical [20, 21].

Deficiencies in mineral nutrition, particularly nitrogen (N), phosphorus (P), potassium (K) and sulfur 

(S), which are required in relatively large amounts by the plant, strongly affect the plant metabolism 

with subsequent impact on the plant growth, crop yield and in both nutritional and organoleptic quality 

of the agronomic product [22, 23, 24, 25]. Essential nutrients are major regulators of plant growth and 

development due to their involvement in primary metabolic pathways e.g. amino acid and nucleotide 

biosynthesis, protein phosphorylation or disulfide bonds between cysteine.

Plant development and anatomy are impacted by abiotic stresses and a common “stress–induced” set 

of responses have been reported : prompting of localized cell division, arrestment of cell elongation, 

and modifications in cell differentiation status [26]. 

Limited mineral nutrient availability has been reported to affect organ growth rates, through inhibition 

of the production of new cells and/or cell expansion [27] via reduction of CW plasticity [28, 29]. It has 

been proposed that nutrient–induced stress act by modifying xylem tension which then signals the 

onset of CW rearrangements in growing tissues [30, 31]. These components are determined by the 

dynamic regulatory properties of the CW. Nevertheless, and even though the importance of mineral 

nutrition in plant development has been widely recognized, only residual attention has been given to 

its influence on the CW dynamics. More recently, global transcriptomic studies involving nutrient 

depleted plants revealed differential regulation of CW–related genes and proteins in various species 

[32, 33], emphasizing the CW role in survival response mechanisms. 
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Despite the grapevine (Vitis vinifera L.) economic value and scientific relevance as a model species, 

there is little information about the CW structure and polysaccharide composition in this species. 

Investigation has been mainly focused to the economic important organ, the fruit, both berry pulp and 

skin, reviewed in [34]. 

The aim of the present work was to investigate the response of the CW to mineral depletion of 

individual major nutrients, nitrogen, phosphorus and sulfur, using Vitis callus as experimental model. 

Here, an integrated approach employing complementary methodologies was followed. Fourier–

Transform Infrared (FT–IR) spectroscopy coupled with chemometrics was used to detect changes in 

CW polymers and putative cross–links [35, 36] to retrieve the major candidate events occurring in the 

CW in response to the imposed conditions. Candidate events were further tested by chemical methods 

and immunochemical staining using monoclonal antibodies [37] and through the determination of 

monosaccharide composition of fractionated CWs. The combined use of these methodologies allowed 

drafting a map of CW responses to specific changes in the mineral health in Vitis callus.

2. Material and methods

2.1 Cell culture and mineral stress imposition

Vitis vinifera cv Touriga Nacional callus tissue was maintained in the dark at 25 ºC, as described in 

Jackson et al. [38]. Four and a half grams of callus tissue was used as initial explant in medium 

containing MS basal salts [39] (DuchefaBiochemie, Haarlem, NL) supplemented with 2.5 μM 2.4–D 

(2,4–dichlorophenoxy–acetic acid); 1 μM kinetin; 5 g l-1 PVP–40T; 20 g l-1, sucrose; 2 g l-1 Gelrite®, 

pH 5.7. The calluses were sub-cultured every three weeks. Four treatments were applied: full nutrients 

(control), nitrogen deficiency (–N), phosphorus deficiency (–P) and sulfur deficiency (–S). 

Commercial MS was used to obtain control samples while modified MS media in which nitrates, 

phosphates and sulfates were substituted for chlorides were considered –N, –P and –S treatments 

respectively. Calluses were sub–cultured to the respective medium after three weeks of growing. After 

each culture cycle in the respective treatment medium each sample, corresponding to 10 petri dishes 

(9cm Ø) containing four calluses, was collected to monitor growth. Based on the results obtained, six 

weeks grown callus (2X3 weeks) samples were used for CW analyses.

2.2 Cell wall isolation

Twenty gram callus samples were homogenized in liquid nitrogen using a mortar and pestle, washed 

with cold 100 mM potassium phosphate buffer pH 7.0 (2X), and treated overnight with 2.5 U ml-1 α–

amylase VI from hog pancreas (Sigma–Aldrich Co., St. Louis) at 37 ºC. The suspensions were 
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centrifuged and the pellet was sequentially washed with distilled water (3X), acetone (3X), 

methanol:chloroform (1:1; v/v) (3X), diethylether (2X), and then air–dried [40].

2.3 FT–IR spectroscopy and multivariate analysis

FT-IR analysis was performed according to the methodology described in Alonso–Simón et al. [36].

Tablets for FT–IR spectroscopy were prepared in a Graseby–Specac Press, using 2 mg of CW samples 

mixed with potassium bromide (KBr) (1:100 w/w) from a minimum of 11 biological replicates per 

treatment. Spectra were obtained on a Perkin–Elmer System 2000 FT–IR at a resolution of 1 cm-1. In 

order to tackle CW structure modifications, a window between 800 and 1800 cm-1, which contains 

information of polysaccharide characteristic linkages, was selected for analysis. Normalization and 

baseline–correction were made using the Perkin–Elmer IR Data manager software and the data 

exported to Microsoft Excel for area normalization. Principal component analysis (PCA), using 

Pearson coefficient for distance estimation, was performed with a maximum of four principal 

components using the Statistica 6.0 software package (StatSoft, Inc., USA).

2.4 Cellulose quantification

Cellulose was quantified by the Updegraff method [41], using the hydrolytic conditions described by 

Saeman et al. [42] and quantifying the glucose released by the anthrone method [43].

2.5 Lignin quantification

Klason lignin was determined using the method described by Hatfield et al. [44]. Briefly, 60 mg of 

CW material was solubilized in 2 ml of 72% H2SO4 at 30 °C for 60 min. The solution was diluted to 

2.48% H2SO4 prior to secondary hydrolysis by autoclaving at 115 °C for 60 min. The non–hydrolyzed 

residue was collected by filtration and dried at 60 ºC until constant weight. The results are expressed 

as µg lignin (mg CW)-1.

2.6 Quantification of pectin methyl–esterification

The extent of esterification of pectins was assessed by quantification of the released methanol using 

the method described by Wood and Siddiqui [45]. To each 10 mg CW sample, 0.75 ml distilled water 

and 0.25 ml 1.5M NaOH were added. The samples were incubated at room temperature for 30 min, 

chilled on ice and added with 0.25 ml 4.5M H2SO4. After centrifugation, 0.5 ml of the supernatant was 
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mixed with 0.5 ml 0.5M H2SO4, chilled on ice and 0.2 ml 2% KMnO4 (w/v) were added. The samples 

were allowed to stand in an ice bath for 15 min and added with 0.2 ml 0.5M sodium arsenite in 0.06M 

H2SO4. The samples were thoroughly mixed and left for 1 h at room temperature. Finally, 2 ml 

acetylacetone–ammonium acetate reagent was added, tubes were vortexed, closed and heated to 59 ºC 

for 15 min. After cooling to room temperature, absorbance was read at 412 nm and the results were 

expressed as ml CH3OH (mg CW)-1, using methanol as standard.

2.7 Cell wall fractionation

CW fractionation was done according to Selvendran and O'Neill [46] with minor modifications. Dried 

CW were extracted at room temperature with 50 mM cyclohexane–trans-1.2–diamine–N,N,N′,N′–

tetraacetic acid sodium salt (CDTA) adjusted to pH 6.5 with KOH, for 8 h (2X), collected by 

centrifugation, washed with distilled water and the combined supernatants referred to as the CDTA–

soluble fraction. The residue was incubated for 18 h with 0.1M KOH containing 20 mM NaBH4

centrifuged and the pellet washed with distilled water. The combined alkali and water supernatants

were adjusted to pH 5.0 with acetic acid. This fraction was referred to as the 0.1M KOH–soluble 

fraction. Then, the residue was incubated for 18 h in 6 M KOH containing 20 mM NaBH4, processed 

as described for the 0.1M KOH–soluble fraction, to obtain the 6M KOH–soluble fraction. All fractions 

were dialyzed against distilled water with a dialysis membrane of 12-14KDa cut-off and lyophilized.

2.8 Total sugar and monosaccharide quantification

Total sugars and uronic acids were determined using the phenol–sulfuric acid assay [47] and the m–

hydroxybiphenyl assay [48] respectively, using glucose and galacturonic acid as standards. Neutral

sugars were quantified as described by Albersheim et al. [49]. Lyophilized samples of each CW 

fraction were hydrolysed with 2N trifluoroacetic acid (TFA) at 121 ºC for 1 h and the sugars were 

derivatized to alditol acetates and analyzed by Gas Chromatography (GC) using a Supelco SP–2330 

30m x 0.25mm x 0.20µm capillary column in a Perkin Elmer Autosystem gas chromatograph fitted 

with a flame–ionization detector. Helium (2ml min-1) was used as the carrier gas. Sugar quantification 

was carried out after determination of each sugar response factor using pure rhamnose, fucose, 

arabinose, xylose, mannose, galactose and glucose as standards. Inositol was used as internal standard.
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2.9 Immunodot blot assays

For immunodot assays, 1µl aliquots from CDTA–, 0.1M KOH– and 6M KOH–soluble fractions in 

three replicated dilution series (1:5 dilutions) as described by García–Angulo et al. [50] were spotted 

onto a nitrocellulose membrane (Scheicher & Schull, Dassel, Germany). The membranes were 

blocked for 2 h with 0.1M Phosphate buffered saline (PBS) containing 4% fat–free milk powder and 

each primary antibody (2F4, LM1, LM5 and LM6) at a 1:5 dilution. After washing with PBS, the 

membranes were incubated for 1 h with a 1:1000 dilution of an anti–rat IgG1 secondary antibody 

linked to horseradish peroxidase (HRP). For signal detection, the membranes were incubated with 25 

ml of deionized water, 5 ml methanol containing 10 mg ml−1 4–chloro-1–naphtol and 30 µl 6% (v/v) 

H2O2, and photographed with a digital camera.

2.10 Statistical analysis

Data is presented as mean values ± standard deviation (SD). The results were statistically evaluated by 

variance analysis (ANOVA) and Bonferroni test as post hoc tests with a p=0.05 significance, to 

compare the treatment effect. The SigmaPlot (Systat Software Inc.) statistical package was used in the 

analyses.

3. Results

3.1 Effect of mineral stress on callus growth 

Our main aim was to analyze the effect of nitrogen, phosphorus or sulfur nutrient depletion in 

grapevine CW composition and structure. The effect of the imposed individual mineral stresses on the 

functioning of the biological experimental system used was firstly assessed by measuring the growth 

of callus along time. The absolute growth of Vitis callus in full MS culture medium (control) and in 

modified MS media without nitrogen (–N), phosphorus (–P) or sulfur (–S) along two cycles of 3–

weeks each is showed in Fig. 1.

After withdrawing of nutrients, the absolute growth of the callus was significantly affected in both 

cycles when compared to the control. During the first three weeks, phosphorus and sulfur depleted 

media affected growth in a more pronounced way than under nitrogen absence. After a second 

growing cycle under nutrient depletion, a more severe reduction in growth was noticed in all 

individual stresses, with a reduction in growth of ca. 80% in comparison with the control. This time 

scale (2 cycles of three weeks) was selected to produce template material to be used in the subsequent 

analyses.
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3.2 FT–IR spectroscopy determination

Putative changes in CW relative composition during nutrient deprivation were monitored by FT-IR 

spectroscopy by analysis of at least 11 FT-IR CW spectra per treatment. 

For a clear analysis of the FT-IR spectra a multivariate analysis (Principal Component Analysis; PCA) 

was performed (Fig. 2). Principal components 1 and 2 (PC1 and PC2), which explain 71.9% of the 

total variation, were useful to separate the samples. PC1 clearly differentiates the control samples from 

treatments –N and –P, while PC2 separates the samples according to each individual mineral stress. 

Samples from the –S treatment also tend to be discriminated from the control, considering their 

distribution across the gradient from the negative to the positive areas of the PC1 and PC2 axes (Fig. 

2a). PC1 loading factor plot (Fig. 2b) showed several negative peaks associated with cellulose, such as 

1160 cm-1, assigned to the C–O and C–C vibration [51], 1120 cm-1, associated with the glycosidic C–

O–C vibration [52] or 988 cm-1, associated with bonds shared by cello–triose, –tetraose and –pentose 

[53], indicating that samples located in the negative part of PC1 (all control and some –S samples) 

should have a higher content of cellulose. In the same samples, an alteration in the esterification 

patterns of pectins is also suggested, as reveled by the contribution of the 950 cm-1 peak [54], 

indicating that the absence of nutrients alters pectin biochemistry. PC2 loading factor plot (Fig. 2b) 

showed negative peaks associated with xyloglucan (1041 cm-1, related to β–glucan) [52] and with 

proteins (1650 cm-1, related to C=O amide I linkage). This evidence points to decreased concentrations 

of these CW components upon –N and –P conditions. PC2 positive peaks were also observed, mainly 

related to phenolic compounds (1630 and 1430 cm-1) [55], suggesting an increase of these components 

in CW under some mineral stresses. Other positive peaks were also observed, mainly at 840, 1295, 

1565 and 1700 cm-1, for factor 1 and 885, 1180, 1250 and 1390 cm-1 for factor 2, but no information is 

available about the nature of the linkages and wall components associated with these peaks. It should 

be noted that –N and, in a minor extent, –P callus samples tend to cluster more compactly in the plots, 

while control samples appear as a more dispersed group (Fig. 2a) suggesting lower variability in 

samples exposed to higher stresses.

To acquire additional information on the significance of spectral differences between the control and 

the mineral stressed callus, a subtraction of the spectra was also performed (Fig. 3). Using this 

approach, the differences in -N spectra observed were more striking as negative peaks in 

wavenumbers 1033 cm-1 characteristic of cellulose, related to deformations of C–OH groups [52] and 

1650 cm-1, assigned to proteins, as stated above. These negative peaks points to a minor amount of 

cellulose and proteins in –N condition. They were accompanied by positive peaks at 950 and 1740 cm-

1, both related to a higher amount of pectins. These trends were not maintained in –P or –S conditions.

In –S, alterations in cellulose assigned to the vibrations associated with the CH2 group, as revealed by 

the 1265 cm-1 wavenumber peak [53], were also observed (Fig. 3). A positive peak at 1180 cm-1 was 
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also observed in all cases but it has not been associated with any known wall component or group 

linkage. A clear difference in the absorbance peaks for cellulose between the three treatments was 

observed in agreement with the PC1 separations (Fig. 2a). The overall results pinpoint cellulose and 

pectins as major candidates to be affected by mineral stress, what prompted us to a more detailed 

investigation.

3.3 Cellulose and lignin content

Cellulose is the main constituent of the CW. Figure 4a shows the variation in cellulose amount in 

response to mineral stress imposition. A significant reduction in cellulose was observed at the extent 

of ca. 43% in the absence of nitrogen and, to a less extent of ca. 12%, in the absence of phosphorus 

(Fig. 4a), when compared to the control. Sulfur depletion did not affect significantly the synthesis or 

deposition of cellulose. Although lignin Klason levels were small compared with cellulose or other 

cell wall components, lignin quantification in control and stressed calluses reveled an increase of ca. 

36% relative to the control when nitrogen is removed from the growing medium (Fig. 4b). The 

absence of phosphorus and sulfur did not affect the amount of lignin in the CW of Vitis callus after 6 

weeks growth.

3.4 Degree of pectin methyl–esterification 

To further examine the putative modifications in pectin esterification suggested by FT-IR analysis, the 

extent of pectin methyl esterification was determined by quantification of the released methanol. The 

decrease in the methanol released observed in samples from callus growing under absence of nitrogen 

in the culture medium, indicates a lower degree of methyl esterification in comparison with the control 

(Fig. 4c), confirming the FT-IR results for this stress. Neither phosphorus nor sulfur absence affected 

the total degree of pectin esterification.

3.5 Immunodot-blot of cell wall polysaccharide specific antibodies

The results of immunodot assays are presented in Figure 5. The abundance of pectins with a degree of 

esterification up to 40% was tested by immunodetection using 2F4 monoclonal antibody [56]. As 

expected, labeling was only detected in the CDTA and, to a less extent, in the 0.1M KOH-soluble 

fraction. A stronger signal was detected under –N and –S conditions (Fig. 5). The LM1 antibody, 

specific to an extensin epitope [57], showed a higher labeling under stress conditions in all soluble 

fractions, indicating that mineral stress increases the deposition of this structural protein. This is more 

striking in –N and –S conditions, the former more tightly attached to the CW. LM5 and LM6 

antibodies recognize 1,4-β-galactan and 1,5-α-arabinan epitopes, respectively [58, 59]. Under –N, the 
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amount of 1,5-α-arabinan and 1,4-β-galactan decreases relative to the control in the CDTA-soluble 

fraction. A reduction of labeling was observed in the 0.1M KOH-soluble fraction in all stresses for 

both antibodies. Conversely, an increase in 1,5-α-arabinan is suggested to occur under –S conditions, 

both in weakly and tightly CW attached polysaccharides (CDTA- and 6M KOH-soluble fractions, 

respectively).

3.6 Sugar analysis in CW fractions

CW fractionation showed that the majority of polysaccharides were extracted from the CW by the 

strong alkaline treatment (Fig. 6). All mineral stress treatments decreased the amount of 

polysaccharides solubilized in CDTA and 0.1M KOH. Conversely in 6M KOH-soluble fractions, they 

were more abundantly detected in the –N and –P treatments (Fig. 6). 

As expected, the majority of pectins (quantified as uronic acids, UA) were extracted by the CDTA and 

0.1M KOH (Fig. 7a and b). GC analysis of CW fractions showed that the more significant neutral 

monosaccharide present in all fractions was arabinose followed by galactose, xylose and glucose (Fig. 

7a, b and c). The amount of uronic acids decreased in alkaline soluble fractions upon the three mineral 

stress treatments imposed (Fig. 7b and c).

Arabinose-containing polysaccharides responded to –N by decreasing its amount in weak alkaline–

soluble fraction but increasing significantly in 6M KOH-soluble one. A different trend was observed 

for xylose- and galactose-containing polysaccharides, with a decrease in both alkali–soluble fractions. 

Regarding xylose, an increase in the 6M KOH-soluble fraction was noticed in the –S treatment. 

Finally, glucose-containing polysaccharides showed increased extraction by both alkaline solutions 

from –P CWs.

The increase in neutral sugars observed in the 6M KOH soluble fraction, under nitrogen starvation 

(Fig. 7c), is only due to the increase in arabinose, since all other monosaccharides decreased or 

maintain the same levels relative to control when nitrogen is withdrawn from the culture media.

4 Discussion

Plant model systems analyzed in controlled experimental conditions are useful tools to assess limiting 

nutrient situations. Using the model described, we observed that during the first three weeks of 

development, callus growth was impaired by the absence of phosphates and sulfates (Fig. 1). Callus

from plates depleted in nitrates was less affected, probably due to previous nitrogen accumulation, 

since the nitrate concentration in the MS medium is much higher than those of phosphate or sulfate. 

By the sixth week, in the second culture cycle, the callus growth was drastically reduced to levels 



Page 12 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

12

significantly lower than those observed at –P and similar to –S (Fig. 1). The collective results confirm 

the essential role of these elements and validate the experiment model employed to access the effect of 

mineral nutrition in CW constituents and dynamics. Previous studies also report the effect of mineral 

depletion on growth [60, 24], including of Vitis callus [23]. 

Our goal was to address changes in CW composition triggered by mineral deficiency. FT-IR proved to 

be a readily-employed and efficient method for simultaneously identifying a broad range of structural 

differences in CWs [36]. The overall FT-IR results suggest changes in all of the main components of 

the CW as candidate events, such as modifications in the biosynthesis or rearrangements of cellulose 

microfibrils and of matrix linked glycans, in pectin biochemistry and in the amounts of structural 

proteins (Fig. 2b and Fig. 3). Moreover, PCA analysis (Fig. 2a) showed that CW is differentially 

affected, according to the specific stress imposed. These results prompted us to pursue a more detailed 

biochemical analysis of the stressed material. 

The statistically significant reduction in cellulose content observed under –N and –P (Fig. 4a) could 

compromise the CW integrity and, probably, the viability of the cells to survive. Due to the paramount 

importance of the CW in survival and environment adaptation, plants are equipped with compensatory 

alternative mechanisms to reinforce their CWs when the biosynthesis or deposition of a given 

component is impaired [61, 62]. Our results agree with such model. In fact, CWs from callus growing 

in medium exhausted in nitrates respond to low levels of cellulose (Fig. 4a) by slightly increasing their 

lignin content (Fig. 4b) and reducing their degree of pectin methyl esterification (Fig. 4c). If occurring 

in long stretches of the galacturonic acid chains as suggested by immunodot detection with the 2F4 

antibody (Fig. 5), it could lead to reinforce the wall via the formation of calcium bridges, eg “egg–

box” structures [63] and supramolecular pectic gels, both important in controlling the porosity and 

mechanical properties of CW and maintenance of intercellular adhesion [4, 64]. Moreover, an 

expected looser cellulose network prods arabinan-containing polysaccharides to become more cross–

linked to the cellulose-hemicellulose network (Fig. 7b and c), providing the wall with additional 

mechanical support and instigates the formation of extensin networks (Fig. 5). Likewise, the lower 

cellulose quantified in –P callus is accompanied by an increase in neutral sugars enriched in arabinose 

polysaccharides (Fig. 7b) including 1,5-α-arabinans (Fig. 5) detected in polysaccharides tightly 

bonded to the CW (Fig. 6). 

Alterations in the biosynthesis of individual CW constituents can affect the synthesis and/or deposition 

of othe CW polymers. In fact, changes in the cellulose content are known to be compensated by an 

increase in lignin polymers. It was demonstrated that cinnamoyl-CoA reductase (CCR) down-

regulation in transgenic tobacco (Nicotiana tabacum L.) lines lead to a 24.7% reduction of its Klason 

lignin with a concomitant increase of 15% in cellulose content [65]. Similarly, different works report 

that high nitrate availability reduces the lignin in the CW [66, 67, 68], so the opposite trend is 

expected to happen. In fact, a mutation in CesA3, one of the genes encoding cellulose synthases, was 
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proved to lead to CW reinforcement through lignin synthesis [69]. It has also been suggested that, 

under conditions where cellulose synthesis is inhibited, compensation with a higher quantity of 

hemicellulosic polysaccharides occurs [26]. Several other lines of evidence have demonstrated 

alterations in the CW architecture of the kor1-1 Arabidopsis mutant [70, 71], in which a deficiency in 

an endo-1,4-β-glucanase that is not directly implicated in pectin metabolism, induces a 150% increase 

of pectins in the primary CW [72]. Moreover, other cellulose synthase Arabidopsis mutant, 

MUR10/CesA7, showed an increase in pectic arabinan contents in response to impaired cellulose 

biosynthesis [73]. On the other hand, augmented arabinose levels may indicate a higher substitution by 

arabinosyl residues in the rhamnogalacturonan–I (RGI) side chains of pectic polysaccharides. RGI

arabinosyl side chains can work as plasticizers in CWs that undergo large physical remodeling under 

abiotic stresses such as extreme water deficient conditions [74]. Ulvskov et al. [75] analyzed the 

mechanical properties of the CW of potato (Solanum tuberosum) tubers from wild-type and 

transformed plants with decreased contents of arabinan and certified that the force needed to induce 

failure of the CW decreased in transgenic tubers.

Absence of sulfates in the media impaired callus growth in levels similar to those observed under 

nitrate deficiency (Fig. 1), but no significant reduction in cellulose was noticed (Fig. 4a). Nonetheless, 

among the assays conducted in our work, increases in weakly and tightly bonded extensins (Fig. 5) 

and increases in arabinose- and xylose- containing polysaccharides in alkali-soluble fractions (Fig. 7b 

and c) were detected, unveiling CW modifications. Extensins are abundant constituents of the primary 

CW [7], known to increase in response to several stresses [76, 77, 78]. These structural proteins have 

been implicated in the control of CW extension and strengthening by the formation of peroxidase-

mediated intermolecular cross-links [38]. 

In summary, grapevine calluses submitted to individual mineral stresses are impaired on specific CW 

components or suffer reorganization of their deposition. Our results highlight that V. vinifera callus

followed different strategies to overcome the adverse effects induced in the CW by the imposed 

mineral stress according to the severity perceived and its primary biological role, confirming previous 

assumptions that plants have evolved fine–tuned mechanisms to turn on different pathways related 

with specific wall components, in response to different stimulus.

Acknowledgements The research was funded by Fundação para a Ciência e Tecnologia (FCT) grant 

SFRH/BD/64047/2009 to JCF and CBAA (PestOE/AGR/UI0240/2011).



Page 14 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

14

References

[1] S.C. Fry, Cross–linking of matrix polymers in the growing cell walls of angiosperms, Ann. Rev.

Plant Physiol. 37 (1986) 165-186.

[2] S. Vorwerk, S. Somerville, C. Somerville, The role of plant cell wall polysaccharide composition 

in disease resistance, Trends Plant Sci. 9 (2004) 203–209.

[3] R. Zhong, Z.–H. Ye, Regulation of cell wall biosynthesis, Curr. Opin. Plant Biol. 10 (2007) 564–

572.

[4] N.C. Carpita, D.M. Gibeaut, Structural models of primary cell walls in flowering plants: 

consistency of molecular structure with the physical properties of the walls during growth, Plant J. 3

(1993) 1–30.

[5] W.G. Willats, L. McCartney, W. Mackie, J.P. Knox, Pectin: cell biology and prospects for 

functional analysis, Plant Mol. Biol. 47 (2001) 9–27.

[6] L.F. Goulao, Pectin de–esterification and fruit softening: revisiting a classical hypothesis, Stewart 

Postharvest Review 6 (2010) 1-12.

[7] A.M. Showalter, Structure and function of plant cell wall proteins, Plant Cell 5 (1993) 9–23.

[8] D.J. Cosgrove, Assembly and enlargement of the primary cell wall in plants, Annu Rev. Cell Dev.

Biol. 13 (1997) 171-201.

[9] W. Boerjan, J. Ralph, M. Baucher, Lignin biosynthesis, Annu. Rev. Plant Biol. 54 (1993) 519-546.

[10] R. Vanholme, K. Morreel, J. Ralph, W. Boerjan, Lignin engineering, Curr. Opin. Plant Biol. 11

(2008) 278–285.

[11] D.J. Cosgrove, Wall structure and wall loosening. A look backwards and forwards, Plant Physiol. 

125 (2001) 131-134.

[12] A. Zykwinska, J.F. Thibault, M.C Ralet, Organization of pectic arabinan and galactan side chains 

in association with cellulose microfibrils in primary cell walls and related models envisaged, J. Exp.

Bot. 58 (2007) 1795–1802.

[13] Z.A. Popper, S.C. Fry, Widespread occurrence of a covalent linkage between xyloglucan and 

acidic polysaccharides in suspension–cultured angiosperm cells, Ann. Bot. 96 (2005) 91–99.

[14] S.E. Marcus, Y. Verhertbruggen, C. Hervé, J.J. Ordaz–Ortiz, V. Farkas, H.L. Pedersen, W.G.T.

Willats, J.P. Knox, Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell 

walls, BMC Plant Biol. 8 (2008) 60.



Page 15 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

15

[15] T.J. Bootten, P.J. Harris, L.D. Melton, R.H. Newman, Solid–state NMR spectroscopy shows that 

the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: 

a new model for xyloglucan–cellulose interactions in the cell wall, J. Exp. Botany 55 (2004) 571–583.

[16] J. Hanus, K. Mazeau, The xyloglucan–cellulose assembly at the atomic scale, Biopolymers 81

(2006) 59–73.

[17] Y.B. Park, D.J. Cosgrove, A revised architecture of primary cell walls based on biomechanical 

changes induced by substrate-specific endoglucanases, Plant Physiol. 158 (2012) 1933-1943.

[18] G. Freshour, R.P. Clay, M.S. Fuller, P. Albersheim, A.G. Darvill, M.G. Hahn, Developmental and 

tissue–specific structural alterations of the cell–wall polysaccharides of Arabidopsis thaliana roots,

Plant Physiol. 110 (1996) 1413-1429.

[19] N.M. Iraki, R.A. Bressan, P.M. Hasegawa, N.C. Carpita, Alteration of the physical and chemical 

structure of the primary cell wall of growth–limited plant cells adapted to osmotic stress, Plant 

Physiol. 91 (1989) 39–47.

[20] E. Shedletzky, M. Shmuel, T. Trainin, S. Kalman, D. Delmer, Cell wall structure in cells adapted 

to growth on the cellulose–synthesis inhibitor 2,6–Dichlorobenzonitrile : A comparison between Two 

Dicotyledonous Plants and a Graminaceous Monocot, Plant Physiol. 100 (1992)120-130.

[21] H. Mélida, P. García–Angulo, A. Alonso–Simón, A. Encina, J. Alvarez, J.L. Acebes, Novel type 

II cell wall architecture in dichlobenil–habituated maize calluses, Planta 229 (2009) 617–631.

[22] A. Amtmann, P. Armengaud, Effects of N, P, K and S on metabolism: new knowledge gained 

from multi–level analysis, Curr. Opin. Plant Biol. 12 (2009) 275–283.

[23] J. Fernandes, S. Tavares, S. Amâncio, Identification and exprexssion of cytokinin signaling and 

meristem identity genes in sulfur deficient grapevine (Vitis vinifera L.), Plant Signal. Behav. 4 (2009)

1128–1135.

[24] H. Tschoep, Y. Gibon, P. Carillo, P. Armengaud, M. Szecowka, A. Nunes–Nesi, A.R. Fernie, K.

Koehl, M. Stitt, Adjustment of growth and central metabolism to a mild but sustained nitrogen 

limitation in Arabidopsis, Plant Cell Environ. 32 (2009) 300–318.

[25] X.F. Zhu, G.J. Lei, T. Jiang, Y. Liu, G.X. Li, S.J. Zheng, Cell wall polysaccharides are involved 

in P-deficiency-induced Cd exclusion in Arabidopsis thaliana, Planta 236 (2012) 989-997.

[26] G. Potters, T.P. Pasternak, Y. Guisez, K.J. Palme, M.A. Jansen, Stress–induced morphogenic 

responses: growing out of trouble? Trends Plant Sci. 12 (2007) 98-105.



Page 16 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

16

[27] S.J. Palmer, D.M. Berridge, A.J.S. McDonald, W.J. Davies, Control of leaf expansion in 

sunflower (Helianthus annuus L.) by nitrogen nutrition, J. Exp. Bot. 47 (1996) 359–368.

[28] G. Taylor, A.J.S. McDonald, I. Stadenberg, P.H. Ereer Smith, Nitrate supply and the biophysics 

of leaf growth in Salix viminalis, J. Exp. Bot. 44 (1993) 155-164.

[29] N. Snir, P.M. Neumann, Mineral nutrient supply, cell wall adjustment and the control of leaf 

growth, Plant Cell Environ. 20 (1997) 239–246.

[30] J.W. Radin, M.P. Eidenbock, Hydraulic conductance as a factor limiting leaf expansion of 

phosphorus deficient cotton plants, Plant Physiol. 75 (1984) 372–377.

[31] E.S. Chapin, C.H.S. Walter, D.T. Clarkson, Growth response of barley and tomato to nitrogen 

stress and its control by abscisic acid, water relations and photosynthesis, Planta 173 (1988) 352–366.

[32] W. Guo, L. Zhang, J. Zhao, H. Liao, C. Zhuang, X. Yan, Identification of temporally and 

spatially phosphate–starvation responsive genes in Glycine max, Plant Sci. 175 (2008) 574–584.

[33] H. Takahashi, C.E. Braby, A.R. Grossman, Sulfur economy and cell wall biosynthesis during 

sulfur limitation of Chlamydomonas reinhardtii, Plant Physiol. 127 (2001) 665–673.

[34] L.F. Goulao, J.C. Fernandes, P. Lopes, S. Amâncio, Tackling the Cell Wall of the Grape Berry, In

H. Gerós, M. Manuela Chaves, S. Delrot (Eds) Bentham eBooks, pp. 172-193, eISBN: 978-1-60805-

360-5 (2012)

[35] G. Mouille, S. Robin, M. Lecomte, S. Pagant, H. Hofte, Classification and identification of 

Arabidopsis cell wall mutants using Fourier–transform infrared (FT–IR) microspectroscopy, Plant J 35

(2003) 393–404.

[36] A. Alonso–Simón, A.E. Encina, P. García–Angulo, J.M. Álvarez, J.L. Acebes, FTIR 

spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris

L.) callus cultures to dichlobenil, Plant Sci. 167 (2004) 1273-1281.

[37] J. Knox, Revealing the structural and functional diversity of plant cell walls, Curr. Opin. Plant 

Biol. 11 (2008) 308–313.

[38] P. Jackson, C. Galinha, C. Pereira, A. Fortunato, N. Soares, S. Amâncio, C. Pinto Ricardo, Rapid 

deposition of extensin during the elicitation of grapevine callus cultures is specifically catalysed by a 

40 kDa peroxidase, Plant Physiol. 127 (2001) 1065-1076.

[39] T. Murashige, F. Skoog, A revised medium for rapid growth and bioassays with tobacco tissue. 

Physiol. Plant. 15 (1962) 493–497.



Page 17 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

17

[40] K.W. Talmadge, K. Keegstra, W.D. Bauer, P. Albersheim, The structure of plant cell walls I. The 

macromolecular components of the walls of suspension–cultured sycamore cells with a detailed 

analysis of the pectic polysaccharides, Plant Physiol. 51 (1973) 158-173.

[41] D.M. Updegraff, Semi–micro determination of cellulose in biological materials, Anal. Biochem. 

32 (1969) 420–424.

[42] J.F. Saeman, W.E. Moore, M.A. Millet, Sugar units present. Hydrolysis and quantitativepaper 

chromatography. In Methods in Carbohydrate Chemistry, Vol. 3, Cellulose (R.L. Whistler, ed.) pp. 

54–69. Academic Press, New York (1963).

[43] Z. Dische. General color reactions. In: R. L. Whistler, M. L. Wolfran, Carbohydrate Chemistry. 

pp. 477–512 New York: Academic (1962).

[44] R.D. Hatfield, H.G. Jung, J. Ralph, D.R. Buxton, P.J. Weimer, A comparison of the insoluble 

residues produced by the Klason lignin and acid detergent lignin procedures, J. Sci. Food Agric. 65

(1994) 51−58.

[45] P.J. Wood, I.R. Siddiqui, Determination of methanol and its application to measurement of pectin 

methyl ester content and pectin methylesterase activity, Anal. Biochem. 39 (1971) 418–428.

[46] R.R. Selvendran, M.A. O'Neill, Isolation and analysis of cell walls from plant material, Methods 

Biochem. Anal. 32 (1987) 25-153.

[47] M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for 

determination of sugars and related substances, Anal. Chem. 28 (1956) 350–356.

[48] N. Blumenkrantz, G. Asboe–Hansen, New method for quantitative determination of uronic acids,

Anal Biochem. 54 (1973) 484–489.

[49] P. Albersheim, P.D. Nevins, P.D. English, A. Karr, A method for the analysis of sugar in plant 

cell wall polysaccharides by gas liquid chromatography, Carbohydr. Res. 5 (1967) 340–345.

[50] P. García–Angulo, W.G.T. Willats, A.E. Encina, A. Alonso–Simon, J.M. Alvarez, J.L. Acebes,

Immunocytochemical characterization of the cell wall of bean cell suspenion cutures during 

habituation and dehabituation to doclobenil, Physiol. Plant. 127 (2006) 87–99.

[51] R.H. Wilson, A.C. Smith, M. Kačuráková, P.K. Saunders, N. Wellner, K.W. Waldron, The 

mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier–

transform infrared spectroscopy, Plant Physiol. 124 (2000) 397–405.



Page 18 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

18

[52] M. Kačuráková, P. Capek, V. Sasinková, N. Wellner, A. Ebringerová, FT–IR study of plant cell 

wall model compounds: pectic polysaccharides and hemicelluloses, Carbohydr. Polym. 43 (2000)

195–203.

[53] M. Sekkal, V. Dincq, P. Legrand, J.P. Huvenne, Investigation of the linkages in several 

oligosaccharides using FT–IR and FT Raman spectroscopies, J. Mol. Struct. 349 (1995) 349–352.

[54] M.A. Coimbra, A. Barros, D.N. Rutledge, I. Delgadillo, FTIR spectroscopy as a tool for the 

analysis of olive pulp cell–wall polysaccharide extracts, Carbohydr. Res. 317 (1999) 145-154.

[55] C.F.B. Séné, M.C. McCann, R.H. Wilson, R. Grinter, Fourier-transform Raman and Fourier-

transform infrared spectroscopy an investigation of five higher plant cell walls and their components,

Plant Physiol. 106 (1994) 1623-1631.

[56] F. Liners, J.J. Letesson, C. Didembourg, P. Van Cutsem, Monoclonal antibodies against pectin. 

Recognition of a conformation induced by calcium, Plant Physiol. 91 (1989) 1419-1424.

[57] M. Smallwood, H. Martin, J.P. Knox, An epitope of rice threonine– and hydroxyproline–rich 

glycoprotein is common to cell wall and hydrophobic plasma–membrane glycoproteins, Planta 196

(1995) 510–522.

[58] L. Jones, G.B. Seymour, J.P. Knox, Localization of pectic galactan in tomato cell walls using a 

monoclonal antibody specific to (1[–>]4)–[beta]–D–Galactan, Plant Physiol. 113 (1997) 1405-1412.

[59] W.G. Willats, S.E. Marcus, J.P. Knox, Generation of monoclonal antibody specific to (1––>5)–

alpha–L–arabinan, Carbohydr. Res. 308 (1998)149–52.

[60] P. Wu, L. Ma, X. Hou, M. Wang, Y. Wu, F. Liu, X.W. Deng, Phosphate starvation triggers 

distinct alterations of genome expression in Arabidopsis roots and leaves, Plant Physiol. 132 (2003) 

1260-1271.

[61] E. Pilling, H. Höfte, Feedback from the wall, Curr. Opin. Plant Biol. 6 (2003) 611–616.

[62] S. Wolf, K. Hématy, H. Höfte, Growth control and cell wall signaling in plants, Annu. Rev. .Plant 

Biol. 63 (2012) 381–407.

[63] M.C. Jarvis, Structure and properties of pectin gels in plant cell walls, Plant Cell Environ. 7

(1984) 153-164.

[64] J.P. Knox, Cell adhesion, cell separation and plant morphogenesis, Plant J. 2 (1992) 137-141.

[65] S. Prashant, M. Srilakshmi Sunita, S. Pramod, R.K. Gupta, S. Anil Kumar, S. Rao Karumanchi, 

S.K. Rawal, P.B. Kavi Kishor, Down–regulation of Leucaena leucocephala cinnamoyl CoA reductase 



Page 19 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

19

(LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in 

transgenic tobacco, Plant Cell Rep. 30 (2011) 2215–2231.

[66] J.A. Entry, G.B. Runion, S.A. Prior, R.J. Mitchell, H.H. Rogers, Influence of CO2 enrichment and 

nitrogen fertilization on tissue chemistry and carbon allocation in longleaf pine seedlings, Plant Soil 

200 (1998) 3-11.

[67] J.T. Blodgett, D.A. Herms, P. Bonello, Effects of fertilization on red pine defense chemistry and 

resistance to Sphaeropsis sapinea, For Ecol. Manag. 208 (2005) 373-382.

[68] F.E. Pitre, B. Pollet, F. Lafarguette, J.E. Cooke, J.J. MacKay, C. Lapierre, Effects of increased 

nitrogen supply on the lignification of poplar wood, J. Agric. Food Chem. 55 (2007) 10306-10314.

[69] A. Caño–Delgado, S. Penfield, C. Smith, M. Catley, M. Bevan, Reduced cellulose synthesis 

invokes lignification and defense responses in Arabidopsis thaliana, Plant J. 34 (2003) 351–362.

[70] F. Nicol, I. His, A. Jauneau, S. Vernhettes, H. Canut, H. Höfte, A plasma membrane–bound 

putative endo-1, 4–β–D–glucanase is required for normal wall assembly and cell elongation in 

Arabidopsis, EMBO J. 17 (1998) 5563–5576.

[71] S. Sato, T. Kato, K. Kakegawa, T. Ishii, Y.G. Liu, T. Awano, K. Takabe, Y. Nishiyama, S. Kuga, 

S. Sato, Y. Nakamura, S. Tabata, D. Shibata, Role of the putative membrane–bound endo-1,4–beta–

glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana, Plant Cell 

Physiol. 42 (2001) 251–263.

[72] I. His, A. Driouich, F. Nicol, A. Jauneau, H. Höfte, Altered pectin composition in primary cell 

walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane–bound endo-1,4–β–

glucanase, Planta 212 (2001) 348–358.

[73] S. Bosca, C.J. Barton, N.G. Taylor, P. Ryden, L. Neumetzler, M. Pauly, K. Roberts, G.J. Seifert,

Interactions between MUR10/CesA7–dependent secondary cellulose biosynthesis and primary cell 

wall structure, Plant Physiol. 142 (2006) 1353-1363.

[74] J. Harholt, A. Suttangkakul, H. Vibe Scheller, Biosynthesis of pectin, Plant Physiol. 153 (2010)

384–395.

[75] P. Ulvskov, H. Wium, D. Bruce, B. Jorgensen, K.B. Qvist, M. Skjot, D. Hepworth, B. Borkhardt, 

S.O. Sorensen, Biophysical consequences of remodeling the neutral side chains of 

rhamnogalacturonan I in tubers of transgenic potatoes, Planta 220 (2005) 609–620.

[76] A.M. Showalter, A.D. Butt, S. Kim, Molecular details of tomato extensin and glycine–rich 

protein gene expression, Plant Mol. Biol. 19 (1992) 205-215.



Page 20 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

20

[77] C. Hirsinger, Y. Parmentier, A. Durr, J. Fleck, E. Jamet, Characterization of a tobacco extensin 

gene and regulation of its gene family in healthy plants and under various stress conditions, Plant Mol.

Biol. 33 (1997) 279–289.

[78] A. Ueda, Y. Yamamoto–Yamane, T. Takabe, Salt stress enhances proline utilization in the apical 

region of barley roots, Biochem. Biophys. Res. Commun. 355 (2007) 61–66.

Figure legends

Fig. 1. Absolute growth (AG) of Vitis callus growing under nitrogen deficient (-N), phosphorus 

deficient (-P), sulfur deficient (-S) and with full nutrients (Control) for three and 6 weeks. Bars 

represent means of the AG of Vitis callus from 10 petri dishes (n=10) ± SD. In each subgraph, 

different letters indicate significant differences at p=0.05

Fig. 2. Principal Component Analysis (PCA) of all callus spectra. a) Plot of the first and second PCs 

based on the FTIR spectra obtained from 6 weeks callus grown in the absence of nitrogen (–N), 

phosphorus (–P), sulfur (–S) and under full nutrients (control) (n>11); b) Loading factor plot for PC1 

(–––) and PC2 (----) explaining PCA clustering. Arrows point to meaningful wavenumbers (1-1650

cm-1; 2-1630 cm-1; 3- 1430 cm-1; 4-1160 cm-1; 5-1120 cm-1; 6-1041 cm-1; 7-988 cm-1; 9-870 cm-1)

Fig. 3. Differences between normalized and baseline-corrected FT-IR spectra of CW obtained from 

callus in the absence of nitrogen (-N) (a), phosphorus (-P) (b), or sulfur (-S) (c) relative to control

(n>11). Vertical lines represent wavenumbers assigned to CW polymers. 

Fig. 4. a) Cellulose content, b) Lignin content and c) Total methyl–esterification extent of 6 weeks 

CW callus grown in nitrogen deficient (–N), phosphorus deficient (–P), sulfur deficient (–S) and full 

nutrient media (control). Bars represent means of 6 Vitis callus ± SD (n = 10). Different letters indicate 

significant differences at p=0.05 significance

Fig. 5. Immunodot assays of CW-soluble fractions from callus grown in nitrogen deficient (–N), 

phosphorus deficient (–P), sulfur deficient (–S) and full nutrients (Control), probed with monoclonal 
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antibodies with specificity for homogalacturonan with a degree of methyl esterification up to 40% 

(2F4), for extensin hydroxyproline–rich glycoproteins (LM1), for 1,4-β-galactan (LM5) and 1,5-α-

arabinan (LM6). In each row the antibody was used to probe samples at a 1:5 sequential dilution

Fig. 6. Total sugars quantified in CW fractions obtained from callus grown for 6 weeks in the absence 

of nitrogen (–N), phosphorus (–P), sulfur (–S) and in full nutrient media (Control) Units are μg of 

glucose equivalents (mg CW)-1 Bars represent means of 6 replicates ± SD. In each sub-graph, different 

letters within each four bar block indicate significant differences at p=0.05

Fig. 7. Monosaccharide composition of CW CDTA-soluble fraction (a), 0.1M KOH-soluble fraction 

(b) and 6M KOH-soluble fraction (c) obtained by GC analysis and uronic acids levels measured by the 

m–hydroxybiphenyl assay of callus grown in nitrogen deficient (–N), phosphorus deficient (–P), sulfur 

deficient (–S) and full nutrients (Control) media. Units are μg of each monosaccharide and 

galacturonic acid equivalents  for uronic acids (UA) (mg CW)-1. Bars represent means of 6 replicates ± 

SD Different letters within each four bar block indicate significant differences at p=0.05
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Highlights

Mineral stress alters the composition of the cell wall

Nitrogen deficiency causes a decrease in cellulose and an increase in lignin

Lack of nitrogen alters the degree of pectin methyl esterification

Polysaccharides are more tightly bound under nitrogen and phosphorus deficiency

Cell wall structural proteins increase upon sulfur deficiency
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