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Abstract: The cell wall (CW) is the dynamic border of plant cells. In grape berries, the CW decisively 

accounts for the difference between the pulp and skin cells, with direct consequences on the grape 

characteristics, wine quality and wine-making methods. The softening of mature berries results from the de-

polymerisation and solubilisation of CW polymers. Modifications of grape pulp and skin CW provide the 

flexibility for cell expansion during fruit growth and to modulate the final texture. Wine making and berry 

processing methods are directly related with the absence, in white wines, or the presence, in red wines, of 

skin CW in the fermenting must. Anthocyanin extraction depends directly on skin yielding of the pigment 

upon CW degradation. During fruit growth and ripening, the cooperative action between different enzyme 

families is capital in CW metabolism. The sequencing and public availability of the Vitis genome allowed us 

to focus on individual pathways, to profile the expression pattern of isoforms associated with each tissue, 

developmental phase or stress response, anticipating the effects on berry (and wine) production and quality. 

Retrieving the sequences of genomic coding regions and the predicted enzymes that act on the Vitis, CW 

allows us for the first time to tackle the grape berry Cell Wallome. 

Keywords: Cell wall enzymes, Cellulose, Glycoproteins, Hemicelluloses, Lignin, Microfibrils, Pectins, 

Phenolic compounds, Polysaccharides, Primary cell wall, Secondary cell wall, Wallome, Xyloglucans. 

INTRODUCTION 

The plant cell wall (CW) is a complex macromolecular structure that surrounds and protects the cell. 

Functions of the primary wall include plant structural and mechanical support, determination and 

maintenance of cell shape, resistance to internal turgor pressure of the cell, control over growth at a precise 

rate and direction, regulation of diffusion through the apoplast, and protection against pathogens, 

dehydration and environmental factors [1]. Thus, the CW is an important source of biologically active 

signalling molecules, regulating cell-to-cell interactions and also a carbohydrate storage reserve. 

Remodelling of the fruit CW is mandatory to provide the flexibility required for cell expansion during fruit 

growth and to modulate final texture attributes which, together with flavour and aroma, render the fruit 

attractive to a variety of seed-dispersing organisms [2]. Therefore modifications of the wall polymers must 

be fine-tuned to regulate the CW dynamics needed to accommodate growth and ripening. 

The nutraceutical effect of wine, grape and grape derivatives is commonly associated with the antioxidant 

properties of the phenolic species they contain [3, 4]. The colour, astringency and antioxidant properties of 

wines, in particular of red wines, can be assigned to phenolic acids, to simple flavonoids like anthocyanins 

or to condensed flavonoids as proanthocyanidins (PA) and tannins [3, 5]. These phenolic compounds can be 

solubilised into the vacuole or linked to the CW polysaccharides. Hence, the CW of grape berry skin cells 

is also of main relevance to wine- making and other grapevine processing methods, since it forms a 

hydrophobic barrier to the diffusion of phenols, holding the main control of extractability [6]. 

The release of the Vitis genome [7, 8] hastens omics-related research. Profiling the expression patterns of 

genes associated with Vitis berry CW during growth, development and in response to abiotic and biotic 

stresses provides the understanding of CW impact on grape and wine production and quality. 
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THE PLANT CELL WALL STRUCTURE AND COMPOSITION 

Primary Cell Wall 

The primary CW of dicotyledonous and non-commelinoid monocot species (Type-I cell walls, according to 

Carpita and Gibeaut [9]) is composed of approximately 90% polysaccharides [10] from three major classes 

that form its structural elements: cellulose, matrix cross-linking glycans (henceforth referred to as 

hemicelluloses) and pectic polysaccharides, which, in fruits, represent about 35%, 15% and 40% of the CW 

mass, respectively [1]. Structural glycoproteins, phenolic esters, minerals, and enzymes are also present, 

directing modifications on its physical and chemical properties. 

Cellulose is a linear polysaccharide consisting of long unbranched  -1,4-linked cellobiose chains. It forms a 

crystalline or semi-crystalline microfiber phase, via extensive hydrogen bonding between individual strands 

(microfibrils) that, winded together, provide most of the tensile strength to the plant cell matrix and forms 

the framework around which the other components are positioned. Cellulose microfibrils are embedded in a 

matrix phase consisting of hemicelluloses and pectic polysaccharides. 

Hemicelluloses are cross-linking glycans that can interact non-covalently trough hydrogen-bonds to 

cellulose microfibrils, having the capacity to coat and tether them together to form an extensive framework. 

Hemicelluloses consist of polysaccharides with a backbone of 1,4- linking  -D-pyranosyl residues in which 

O-4 is in the equatorial orientation. They differ from cellulose due to its substitution with other sugars, 

which results in considerable variation in their composition and structure. 

Xyloglucans (XGs) are the predominant hemicelluloses in the dicot primary CW, representing 15-25% [9]. 

Non-Solanaceae Type-I CW XGs are composed of repeating heptasaccharide units to which variable amounts 

of sugar residues are added during synthesis up to about 75% of the  -1,4-D-Glcp backbone residues [11], 

resulting in a family with large heterogeneity. Short side chains holding xylose-containing mono- (xylose), di- 

(xylose-galactose) or tri- (xylose-galactose-fucose) saccharides are linked by !-1,6 bonds at regular sites to the 

O-6 position of the glucose units of the linear backbone of XG. XGs occur at distinct locations in the wall, 

either binding tightly to portions of exposed faces of glucan chains in the cellulose microfibrils, or spanning the 

distance between adjacent microfibrils to lock them into place. Recently, XGs and xylans have been localised to 

cell junctions in ripening fruits, suggesting a role of hemicelluloses in cell adhesion [12], which was previously 

attributed to pectic homogalacturonans (see below). 

Other hemicelluloses include mannans (a  -1,4-mannose backbone, with or without galactose linked by an 

!-1,6 bond), including glucomannans, galactomannans and galactoglucomannans, and xylans (a backbone 

of  -1,4-linked xylosyl residues, substituted by  -linked 4-O-methylglucuronic acid and by acetyl esters on 

C2, and !-linked arabinose on C2 or C3) of some xylosyl residues, forming arabinoxylans, glucuronoxylans 

and glucuronoarabinoxylans.  

Pectins are embedded within the cellulose/hemicellulose network, forming hydrophilic gels that impose 

mechanical features to the wall, such as regulation of the hydration status and ion transport, definition of 

the porosity and stiffness which, in this way, determines the water holding capacity, controls the 

permeability of the wall for enzymes and provides additional strength to the matrix. Molar mass, neutral 

sugar content, proportions of smooth and hairy regions, ferulic acid substitution, amounts of methoxyl and 

acetyl esters and distribution of ester groups on the polymer characteristically define its fine structure 

which, in turn, determines functional properties of micro-domains, such as surface charge, pH and ion 

balance and establishes the biological roles within the CW. Pectins are complex, structurally heterogeneous 

acidic polysaccharides composed of a range of 1,4-linked !-D-galactosyluronic acid (GalpA) residue-

containing linear chains, assembled with a range of modifications and substitutions with variable degrees of 

ramifications by single sugars or complex side chains [13]. Structural classes of pectins include 

homogalacturonan (HG), rhamnogalacturonan-I (RG-I), rhamnogalacturonan-II (RG-II) and, at a lower 

extent, arabinan, arabinogalactan-I (AG-I) and arabinogalactan-II (AG-II), as well as substituted 

galacturonans like apiogalacturonan (AGA) and xylogalacturonan (XGA). 
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HGs are polymers formed by !-1,4-linked linear chains of more than 72-100 GalpA residues [14], and can 

account for more than 60-65% of the total plant pectins. The walls of fruits such as tomato and mango have 

up to 35% and 52% of uronic acid, respectively [15, 16]. HG GalpA residues may be methyl-esterified at 

the C-6 carboxyl and/or acetylated at the O-2 or O-3 position. Methyl-esterification is tightly regulated in a 

developmental and tissue-specific way. Methyl-esterified regions have neutral charge, but the unmethylated 

GalpA residues are negatively charged and may be ionically cross-linked with Ca2+ to form stable gels with 

other pectic molecules, when stretches of 10 or more consecutive un-methyl-esterified residues occur. The 

hypothesised in vivo structure of the HG-calcium complex is referred to as the “egg-box” [17] and 

describes the close packing of HG that occurs upon Ca2+-induced gelling in the CW of plants. Methyl-

esterification neutralises the charge on GalpA residues and thereby abolishes their ability to cross-link 

calcium ions. The occurrence of micro-domains inside the pectic polysaccharides means the localisation of 

precise areas with distinct properties as the result, to some extent, of a different, localised demethylation 

mechanism which may lead to stiffening or loosening of the wall (reviewed by Goulao [18]). 

RG-I is the major branched, heterogeneous and hydrated component of the middle lamella and primary 

CWs. It consists of a backbone holding a variable number of !-1,4-linked GalpA and !-1,2-linked 

rhamnose repeats, and three types of neutral sugar side groups attached to the 4-position of approximately 

20-80% of the rhamnose backbone units, depending on the source of the polysaccharide [19]. These side-

chains can derive from single or polymeric substitutions and are mainly composed of !-1,5-L-arabinans,  -

1,4-D-galactans and arabinogalactans, where arabinose is usually terminal and galactose links can be 

connected through C-4, C-3 or C-6. Its abundance is developmentally and differentially regulated [20]. 

RG-II molecules are stretches of HG backbone approximately 7-9 !-1,4-D-GalpA residues long, substituted 

with clusters of four highly complex and well-defined conserved side chains that contain 12 different types 

of sugars, in more than 20 different linkages [21]. Its structure consists of self-associated dimers cross-

linked by single borate diesters [22, 23] and stabilised by the presence of calcium [24].  

The three main pectin domains, HG, RG-I and RG-II, are described as being covalently linked to form the pectic 

matrix, envisioned as a unique and complex macromolecule [25-27], although the nature of their covalent 

arrangements is still unclear. A representation of the pectin network was proposed by Vincken et al. [26] and 

afterwards supported by Coenen et al. [27], in which RG-I supplies the main backbone to which HG, RG-II and 

the other less abundant pectic domains are covalently cross-linked to form side-chains of the same molecule. 

In addition to the polysaccharides, primary CW contains about 10% structural proteins, and protein rods act 

as supporting brackets to the long polysaccharide chains [28]. Five classes of structural apoplastic proteins 

have been described: extensins, glycine-rich proteins (GRPs), proline-rich proteins (PRPs), arabinogalactan 

proteins (AGPs), and solanaceous lectins [29]. Extensins are rich in hydroxyproline amino acid residues 

that may covalently cross-link polysaccharides to form an interlocking framework where the ends of the 

protein rods are wrapped around the cellulose microfibrils [30]. AGPs are proteoglycans that have been 

mainly implicated in cell adhesion [31]. 

Secondary Cell Wall 

When the cell stops dividing and expanding, in some tissues lignin is deposited within the cellulose 

microfibrils and matrix carbohydrates, establishing chemical bonds with non-cellulosic carbohydrates, 

forming a thick secondary CW. According to the chemical groups that stabilise polysaccharide-phenol 

complexes, two types of bonds are identified: hydrogen bonds between the hydroxyl groups of phenols and 

the oxygen atoms of CW polysaccharides sugar moieties or hydrophobic interactions with secondary 

structures of some polysaccharides [3]. Generally, secondary CWs consist of three layers: outer (S1), 

middle (S2), and inner (S3) [3, 32]. The formation of secondary walls occurs mainly in xylem vessels, 

structural fibers, seed pods and seed integument, as in grapevine berry seeds [33, 34]. The process starts in 

the middle lamella and the primary wall (initiation of S1 formation). When the polysaccharide matrix of the 

S2 layer is completed, lignification proceeds through the secondary wall [35], in particular at the final stage 

of xylem differentiation [36]. Lignin deposition is then developmentally programmed assuring structural 
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integrity and waterproof of the CW and enabling the transport of water and solutes through the vascular 

system, although its biosynthesis can also be induced by biotic and abiotic stress conditions [35, 37]. 

Lignin, the second most abundant plant organic compound, is a branched heteropolymer of 

phenylpropanoids synthesised from the polymerisation of the three most abundant p-hydroxycinnamyl 

monolignols, p-coumaryl, p-coniferyl and p-sinapyl alcohols, which, once incorporated into the polymer, 

are referred to as p-hydroxyphenyl (H), guaiacyl (G) and syringil (S) units, respectively [34, 38, 39]. The 

relative amount of each unit varies between species, tissues and environmental conditions [34]. 

Dehydrogenated monolignols can form dimers through covalent bonds between the central carbon of the 

monolignol tail  -  type [34], or between the   carbon and C atoms of the aromatic ring, e.g.  -O-4 or  -5. 

After a new dehydrogenation of the dimer, another covalent bond can be established by a polymerisation 

process of one unit at a time. Molecular species other than the canonical monolignols can be integrated in 

the lignin polymer, which explains the plasticity of the polymerisation process and the variability of the 

final polymer [34, 36]. The lignin of angiosperms, as stands for the grapevine, is almost exclusively 

composed by G and S subunits. In poplar, a woody plant, the linear lignin length is between 13 and 20 units 

[40], but no reports are available for the length of the grapevine lignin chain. 

MODELS OF SUPRA-MOLECULAR ARCHITECTURE OF THE PRIMARY CELL WALL 

The CW is represented as a three-dimensional network containing interconnected fluid-filled pores that 

form pathways for solutes through the walls. Although the complexity of the primary CW 

supraorganisation and architecture is under continuous debate, a model of supramolecular organisation of 

the dicot primary CW based on the “tethered network” model [11, 41] has been the most consensual in the 

last years. In this model, XG is proposed to form hydrogen bonds with cellulose microfibrils, acting as a 

load bearing tether between the microfibrils, which reinforces the CW. Its location both in the inner and 

outer surfaces of microfibrils allows for the binding of adjacent microfibrils, while preventing hydrogen 

bonding between cellulose microfibrils, and thus facilitating each microfibril to slide during cell expansion. 

Yet, only about ca 8% [42] of the cellulose microfibril surfaces are covered with XGs and not all of the XG 

is adsorbed to cellulose [42, 43]. Moreover, XGs bind to the surface of cellulose microfibrils making CW-

XG a composite structure in which cellulose crystallites are embedded in a matrix of XG with a semi-rigid 

(straightened backbone) conformation, that is, a matrix that is partly ordered rather than amorphous [44]. 

This XG-cellulose network is considered to be organised independently and embedded in a second network 

formed by an amorphous pectin matrix, which acts as a cement (reviewed by Cosgrove [45]) where the 

negatively charged chains of polygalacturonic acid provide the capacity of interacting and binding with 

positively charged molecules such as polyamines, cations and positive charges of proteins. However, in muro 

covalent linkages between RG-I-arabinan side chains and cellulose microfibrils [46-51], and anionic complexes 

derived from covalent linkages between XG and pectins have been reported [52-57]. RG-I was found to be very 

firmly integrated into the wall [58, 59], providing structural links between the two major CW networks, which 

are expected to have a role in maintaining the structure of the wall. Pectic polymers operating in cell adhesion 

are possibly tethered into CW structures by links through XG located in CW regions that are important for 

maintaining cell adhesion [12]. Moreover, as pectic chains are much more flexible than hemicellulose 

molecules [60], the alignment of the rod-like chain segments with the microfibrillar surface is less likely, and it 

seems possible that the hydrogen-bonded interface is relatively disordered [61].  

Finally, a third network of structural proteins covalently bound to each other and to other cell components 

is also often considered [62]. Several models have been proposed to explain the CW architecture (reviewed 

in [18, 45, 63]) but, to date, there seems to be no definitive evidence favouring a given model over the 

others. Realistic wall models should consider a highly cross-linked wall wherein pectin-pectin, pectin-XG, 

pectin-cellulose, pectin-phenolics, pectin-protein and XG-cellulose provide a cohesive network. 

COMPOSITION OF THE GRAPE BERRY CELL WALL 

The mesocarp of mature grapes follows the typical Type-I CW model, consisting of approximately 90% by 

weight of polysaccharides and less than 10% of a protein fraction rich in arginine and hydroxyproline 
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residues. Cellulose and polygalacturonans are the major constituents, each accounting for ca 30-40% by 

weight of the polysaccharide component of the walls [64, 65]. They display, however, significant varietal 

differences in the relative abundance of the two polysaccharides. While the mesocarp cells of Traminer and 

Sauvignon Blanc berries have thin CWs, skins, on the other hand, consist of thick-walled epidermal and 

hypodermal cells [66]. In the exocarp, polysaccharides account for 50% of the CW material [67], with a 

glycosyl-residue composition similar to mesocarp walls [64, 68]. Neutral polysaccharides (cellulose, XG, 

arabinan, galactan, xylan and mannan) account for 30%, while acidic pectin substances (of which ca 62% 

are methylesterified) account for 20%. The remaining part is composed of 15% insoluble 

proanthocyanidins, <5% structural proteins [67] and lignin [69].  

The pectic fraction is composed of 65% HG, 10% RG-I, 2% RG-II and 23% neutral side chains [64, 65, 

68]. Arabinans and AGI contribute with 4-6% by weight to the pectic polysaccharides [64]. Noticeably, all 

berries contain overall high amounts of HG in comparison with other fruits, and grapes have higher 

proportions of RG-I compared to other berries [70]. Differences in pectin composition have been observed 

between the pulp and the skin [65]. Seventy-five percent of the grape berry walls (by weight) originate 

from the skin, representing 25% of the total fresh berry weight [65, 71]. The relative molar distribution 

(mol %) of the different polysaccharides in the red wine grape skins was estimated to be 57-62 HG, 6-14 

cellulose, 10-11 XG, 7 mol %, 4.5-5 RGI, 3.5-4 RGII, 3 mol % AG, and 0.5-1 mannans [72]. Also, the 

relative abundance of grape skin CW polymers differs from the pulp. A three-fold higher content of pectic 

polysaccharide fractions was detected in the skin as compared to flesh tissues [65]. On the other hand, pulp 

tissues contain a 2-fold more buffer-soluble AGPs and pectins than skins [65, 68]. 

Hemicellulosic polysaccharides consisting mainly of XGs, comprise approximately 8-12% of the total wall 

polysaccharide fraction, both in the pulp and skin [64, 71], and the remainder is made up of smaller 

amounts of mannans, heteroxylans, arabinans, galactans and arabinogalactans [64, 67, 71]. Although grape 

XG and XGs isolated from the walls of other dicot plants have similar structures, the amount is lower than 

the typical XG content of dicot walls [71]. XGs isolated from mesocarp and exocarp CWs of grape berries 

are composed of eight types of oligosaccharides (XXXG, XLXG, XXLG, XLLG, XXFG, XLFG, XFFG 

and XXG; see Fry et al. [73] for nomenclature) in similar proportions in the skin and pulp, except for 

XXFG, which is more abundant in the pulp, and XLFG, which is more abundant in the skin [71].  

Concerning secondary compounds, it is assumed that most phenolic compounds are nearly absent from the 

grape berry flesh, mainly embodied in the skin and seeds. The CW of grape skins includes ca 15% tannins 

with an average degree of polymerisation of 28 [3]. Recently, Bidon et al. [69] have reported a PA skin 

fraction accounting for 54% of the total extractable PA. Interestingly, a different interaction pattern occurs 

between flesh and skin CW material and PA, with possible effects on PA extraction and winemaking. 

CELL WALL MODIFICATIONS DURING BERRY GROWTH AND RIPENING 

Remodelling of the fruit CW is mandatory to provide the flexibility required for cell expansion during fruit 

growth and to modulate final texture attributes which, together with flavour and aroma, render the fruit 

attractive to a variety of seed-dispersing organisms. In fact, fruit softening during ripening is one of the 

developmental events whereby most changes occur in the CWs, which explains why most research on fruit 

CW metabolism has focused primarily on the ripening phase of development. 

Grapes develop according to a double sigmoidal curve. The first growth phase (phase I) is due to cell division 

and subsequently to cell enlargement followed by the lag phase (phase II), which is characterised by the lack of 

changes in berry weight and volume. The end of this phase coincides with the onset of ripening (veraison, V) 

and takes place ca 5-8 weeks before maturity. Following veraison, the second growth phase (phase III) occurs 

with increasing size of the central mesocarp cells, entirely due to cell expansion within the berry. Grape 

ripening represents the last third of berry development, so grapes soften at the same time as they expand, during 

this second growth stage. In grapes, after the onset of ripening, in addition to sugar accumulation and water 

influx, growth results from the synthesis of new CW material [74]. 
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Changes in Pulp Cell Walls 

During ripening, the fruit CW experiences a general increase in pectin solubility, losses of non-glucosyl 

neutral sugars from pectin side-chains, and loosening of the xyloglucan-cellulose network [75-77]. These 

events are common to every fruit species and may or not be accompanied by a decrease in the molecular 

mass of matrix polysaccharides [76, 77]. Depolymerisation varies among fruit species and, even within a 

species, different timing and extent of modifications may occur according to specific genotypes [77].  

In grape berries, dissolution of the pulp CW during ripening is observed [78], but apparently no dramatic 

changes in wall polysaccharide composition seem to occur [74]. Instead, more subtle structural 

modifications of specific constituent components may contribute to softening.  

The total amount of uronic acids (UA) per berry increases rapidly during phase I due to marked increases of 

newly synthesised highly methyl-esterified HGs [79]. However, this new synthesis of HG occurs more 

slowly during phases II and III, concomitantly with slower cell enlargement and thinning of walls to 

accommodate fruit expansion [80], and it is not sufficient to offset thickening and enlargement of walls 

during these stages [81], as grape pericarp CWs do not thicken appreciably during ripening [66]. However, 

as a consequence of the increase in cell volume without concomitant wall synthesis, the CW becomes in 

fact thinner at the end of maturation [74, 82] both in mesocarp and exocarp [83], which can explain the 

lower amount of isolated CW material as ripening progresses, particularly during the last weeks of grape 

development [82]. 

The most significant change in the composition and chemical properties of the wall of berry mesocarp cells 

during the onset of ripening is the decrease in its galactose/galactan content, particularly the  -1,4-linked 

GalpA residues [74] corresponding to a significant loss of AG-I from side chains of pectic polysaccharides, 

from before veraison (BV) to ripe berries [74]. This event has been reported as a crucial step associated 

with the initiation of softening [82].  

Total pectins from Muscat Gordo grapes decline from 58%, two weeks BV, to 47%, four weeks post-

veraison (PV) [74]. The type of pectin found in grape berries also changes during ripening, as CW-bound 

pectins decrease together with an increase in the water-soluble fraction [84]. In fact, at PV, the decrease in 

wall-bound pectins is accompanied by a two-fold increase in water-soluble polysaccharides [74, 82], 

disclosing solubilisation mainly of galacturonan as ripening progresses and the grapes soften [74, 84]. A 

higher solubility of polygalacturonic acid (PGA), AG-II and arabinan is also noticed [74]. However, during 

veraison, galactose and arabinose content in the water-soluble fraction did not specifically change [85], 

suggesting that the increase in UA content of the water-soluble fraction is due to degradation or 

demethylation of pectin, more easily extracted in hot water. It has been suggested that de-esterification 

increases pectin solubilisation by creating electronic repulsion between negatively-charged molecules that 

could result in the loosening of weakly attached pectins [18, 86]. The presence of high molecular mass 

pectic polysaccharides at BV probably reflects differences in the degree of esterification from initial to later 

stages. Changes in the degree of pectin methylation seem to be cultivar-specific. While in Gordo an initial 

decline in the degree of esterification is observed during ripening, in Ugni Blanc, it decreases from 68% in 

green stages to less than 20% as ripening progresses [74, 81].  

A decrease of the molecular masses of both pectic and hemicellulosic polysaccharides and a reduction in 

the cellulose and total hemicellulose content are observed at V and proceed throughout subsequent phases 

[85]. It should be noted that, according to Nunan et al. [74] at PV cellulose and XG levels decrease on a 

fresh weight basis but not on a mol% basis.  

In pectin fraction, total amount and the neutral and acidic sugars of the water soluble fraction, temporally 

increase from BV to V stages, decreasing rapidly PV [84, 85]. In contrast, neutral sugar of the 

hemicellulosic fraction decrease from BV and throughout V [85]. This discloses a pattern of temporal 

modifications in grape berry softening in which CW polysaccharides of the mesocarp are promptly 

modified from BV to V [85] (Fig. 1). 
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Another noteworthy wall modification in grape ripening is an important increase in the content of proteins 

at PV [74]. From phase II throughout final maturity, the protein content of the mesocarp CW increase by 

more than 50% [74]. Amino acid analyses reveal that such increase is largely due to hydroxyproline-rich 

proteins, including extensins [74, 87] (Fig. 1). 

 

Figure 1: Cell wall modifications during berry growth and ripening. Most significant changes in the composition and 

chemical properties of the wall of berry cells take place at veraison and post veraison stages, at phases II and III of 

growth and ripening. 

Changes in Skin Cell Walls  

In all development phases the active metabolism of the skin severely influences the final characteristics of 

the grape berry. Berry size does not change from BV to V, even with the advent of softening, most likely 

due to the unchanged stiffness of the outer skin [85]. Besides differences in composition (see previous sub-

chapter), there are also differences in the skin CW dynamics when compared to pulp tissues. In fact, the 

massive dissolution of CW found in the pulp PV [78] was not observed in the skin [66]. However, skin 

loosens continuously PV. Ultra-structural changes of the loosening skin include wall swelling in epidermis 

and sub-epidermis cells and degradation of the middle lamella in the hypodermis cells. Additionally, the 

wall surfaces become ‘‘wavy’’ as the ionic calcium bridge among pectin molecules is broken [88]. 

Similarly to the pulp, changes in the constituents of the grape skin CW are well related with the degree of 

ripening, namely the decrease in the amount of CW material and galactose [83] in solubilisation of AGP-I, 

and in the degree of pectin methyl- and acetyl- esterification (most varieties) [89]. Changes in the degree of 

pectin methylation seems to be cultivar specific since it decreases as ripening progresses in some cultivars 

like Cabernet Sauvignon, Merlot and Monastrell, while it hardly changes in Syrah [83]. These changes are 

accompanied by the accumulation of glucose, while other neutral sugars showed no significant variations. 

However, the amount of skin CW polysaccharides was estimated to correspond to ca 4.2 mg/berry in Shiraz 

grapes, remaining constant during ripening [89]. 

During ripening, a more than two-fold increase in water-soluble fraction occurs both in the pulp and the 

skin. However, while it stands for 10 to 23% of the mesocarp CW material [74], it represents a small 

fraction (3 to 8%) in the skin [89]. Even considering that in grapes the pulp to skin weight ratio is about 

1:5, a smaller proportion of water-soluble polysaccharides is present in the skin [89], which corresponds to 

increases of 450-920 µg/berry in the pulp of Gordo Muscat compared to a 220-270 µg/berry increase for 
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the Shiraz skin tissue [74, 89]. Likewise, in Grenache Blanc grapes, the water-soluble fraction accounts for 

30% and 13% of the pulp and skin, respectively [65]. Partial loss of wall structural polysaccharides is 

compensated by the incorporation of structural proteins and formation of phenolic cross-linkages that 

happen at the end of the maturation period especially in the walls of epidermis and sub-epidermis cells [88]. 

Since proteins are confined to the outmost four layers of skin cells, they might contribute to the necessary 

strength of the tissue to maintain berry integrity, acting as a protective tissue [83, 88]. This aspect may be 

an important difference in CW modification between the skin and the pulp [88]. 

Therefore, changes in the skin CWs are continuous but restrained in comparison to other fruits or other 

grapevine tissues, particularly the small proportion of water-soluble polysaccharides [89], making skin 

more resistant to solubilisation and maintaining berry integrity. 

Modulation of Berry Growth by Mesocarp and Exocarp Cell Wall Modifications  

During phase I, cellular expansion proceeds throughout all tissues, while during the transition between 

phases II and III only the exocarp cells expand [82], and during phase III (berry growth and ripening) only 

the expansion of the mesocarp cells occurs. Therefore, grape berry skin controls PV growth by remodelling 

its CW [88, 90-92]. The loosening of mesocarp CW allows for the accumulation of soluble sugars and takes 

place prior to the loosening of exocarp CW [91]. Since veraison is observed at the end of the slow growth 

phase between the first and the second growth stages, little differences occur in berry size during this 

period, suggesting that rapid structural modifications of CW polysaccharides verified during veraison 

without any large change in berry size are due to the unchanged stiffness of the outer skin [85]. This 

evidence is further supported by differential transcription of genes encoding CW-modifying enzymes (as 

discussed below). Taken as a whole, changes in CW components lead to skin loosening and consequently 

berry enlargement at early PV, and loosening of pulp tissue CW contributes to berry softening [88, 91]. 

Secondary Cell Wall 

Intense research has focused on the phenylpropanoid metabolism but little attention was given to the 

characterization of its role in fruit development, particularly in grape berries [38]. In the grape berry and other 

fleshy fruits, both xylem and phloem vessels deliver water, depending mainly on the developmental stage of the 

fruit. As a fleshy fruit matures, there is a clear reduction in the proportion of water entering the fruit via the 

xylem. It was accepted that lignified xylem cells are unable to increase in length during the second stage of 

berry growth, occurring then a disruption in xylem continuity. However, as under the influence of a hydrostatic 

gradient, the water movement was recovered, and it is now accepted that the second growth stage is apparently 

not related to a lack of functionality of xylem vasculature but to an increase in phloem transport [93]. Clues for 

monolignol polymerisation were reported in Gamay rouge berries as being distributed in the whole fruit but 

specifically localised to berry xylem vessels at veraison [94]. 

In mature grape seeds, lignin accounts for 44% of the CW [95]. In grape seeds, a histochemical study 

showed that lignin is present in cells of medium integument in increasing amounts as the seed matures. BV 

lignin is slightly detected in the thin walls of large cells, while at V and until harvest the staining with 

specific dyes for lignin was visible in thick walls of increasingly smaller sized cells [33]. The deposition of 

seed phenolics is associated with berry development and maturation: changes in seed coat colour are related 

to berry anthocyanins and total skin phenolics, so the colour of the seed coat can be used as an indicator of 

ripeness [96]. 

CONNECTION OF THE CELL WALL CHARACTERISTICS TO BERRY TECHNOLOGICAL 

APPLICATIONS 

Differences between Cultivars  

Contrasting softening behaviours during ripening between fruit genotypes and cultivars from the same 

species are associated with distinct CW composition and related enzymatic metabolism [77]. In grapes, the 

CW composition differs sufficiently between varieties to allow for their discrimination, even with respect to 

technological differences [83]. The most striking difference between the mesocarp walls of the firm table 
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grape cultivar Ohanez and the softer, multipurpose cultivar Muscat Gordo Blanco lies in the relative 

proportions of cellulose and pectic polysaccharides, and in the hydroxyproline composition of wall-

associated structural proteins [64], with Ohanez having significantly higher cellulose and hydroxyproline 

contents than Muscat Gordo Blanco [64]. In fact, among the most abundant polysaccharides of the grape 

berry walls, the measured cellulose content is 39% and 31% by weight in the Ohanez and Muscat Gordo 

Blanco cultivars, respectively. Additionally, in Ohanez walls the extensin network is more abundant, which 

is consistent with its firmer texture [64]. In contrast, galacturonans account for 29% to 41% in the same 

varieties. Therefore, Gordo walls appear to require a larger pectic matrix phase than the firmer Ohanez 

grapes. Similarly, XG which are probably closely associated with cellulose microfibrils [9], account for 8% 

by weight of the walls in Gordo and 12% in walls from Ohanez [64]. 

Implications of the Cell Wall in Winemaking  

Different wine processing methods are directly related with the CW. White wines are made by fermenting 

grape juice, which contains little amounts of skin CW, in contrast to the process of fermenting whole 

berries in red wines. A first consequence is the amount of RG-II, which is a major polysaccharide 

component of red wine. One litre of red wine may contain between 100 to 150 mg of RG-II while white 

wine typically contains 20 to 30 mg of RG-II per litre. 

In addition, the CW of grape berry skin cells is of main relevance to wine making, since it forms a 

hydrophobic barrier to the diffusion of phenols, holding the main control of extractability [6, 97]. Pinelo et 

al. [3] propose that phenolic substances, including tannins, can be deposited into the lignin-polysaccharide 

matrix of lignified secondary CW or bind to macromolecules, including CW polysaccharides. It is assumed 

that most phenolic compounds are nearly absent from the grape berry flesh, mainly embodied in the skin 

and seeds, and can be released during the wine making process [3]. However, normally there is no 

reference to lignin, although this phenylpropanoid polymer ornates the secondary walls of xylem vascular 

bundles in a network that crosses the whole volume of the flesh layer, the main contributor to wine volume 

[98]. On a per berry basis, tannins accumulate during the first growth period and decline during the second 

growth stage (phase III) [99]. Then, the degradation of CW polysaccharides is crucial for the yield of 

phenolic compounds from grape skin cells [69]. The retention of phenols by the CW depends on the 

composition, structure and molecular weight of the phenol molecule and of CW physical traits [69, 97]. 

Porosity, structure and chemical composition can influence the aggregation between conformational CW 

polysaccharides and phenolic substances. The curious concept of phenolic ripeness [100] is associated with 

anthocyanin content and extractability. Anthocyanin extraction from the grape skin and diffusion into must 

and wine depends on anthocyanin content but also on the capacity of the berry skin to yield up the pigment 

as a consequence of CW degradation. When phenolic ripeness is attained, the pectin-rich middle lamella 

between cells is degraded, and the CWs are perforated and allow for extraction and diffusion [6].  

In berry seeds, tannins have the same constitutive units as the skin tannins but a lower degree of 

polymerisation [3]. Along with seed growth and development, tannins accumulate when the seed acquires a 

green colour (phase I); they reach a maximum accompanied by tannin oxidation when seeds show a yellow 

colour (phase II); and they decrease as the seed dries and matures, taking a brown colour (phase III). The 

decrease in tannin level is probably related to aggregation of the oxidised forms of the seed coat. 

THE VITIS CELL WALLOME 

Vitis Cell Wall Key Enzymes  

The covalent modifications of CW polysaccharides during fruit growth and ripening result largely from the 

concerted activity of a set of hydrolases and transglycosylases [2, 77, 101]. The cooperative action between 

members of several different enzyme families, including expansins, endo- -1,4-glucanases (EGase), 

xyloglucan endotransglycosylases/hydrolases (XTH),  -xylanases (Xyn), endomannanases, 

polygalacturonases (PG) or pectate lyases (PL) are of primary interest in CW metabolism during fruit 

development. On the other hand, esterases like pectin methylesterases (PME) and pectin acetylesterases 

(PAE), exo-acting hydrolases and other glycosidases such as  -galactosidases ( -gal), !-L-
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arabinofuranosidases (AFase) or xylosidases (Xyl) are also involved through cooperative action with 

hydrolases in the pectic or hemicellulosic polymer metabolism [101, 102]. Removal of side chains 

containing neutral sugar may be necessary to expose the polysaccharide’s backbone for cleavage, thus 

facilitating its solubilisation [103] and promoting a decrease in the degree of polymerisation which, in turn, 

can modify the binding between polymers [104]. Cooperative events can result from the disassembly of the 

hemicellulosic network proved necessary for modifications in the pectic network due to the physical 

accessibility of pectolytic enzymes to pectin substrates. The panorama is even more complex because new 

components are synthesised and integrated into the CW, even during ripening [105, 106]. Nonetheless, the 

real contribution of the referred enzymes still remains to be fully elucidated.  

As far as the secondary CW is concerned, after the deamination of phenylalanine by phenylalanine 

ammonia lyase (PAL) to form cinnamic acid, the lignin synthesis pathway includes hydroxylations of the 

aromatic ring, methylation of one or two hydroxyl groups and two reductions of the carboxylic to the 

monolignol alcohol side chain [34]. The crucial enzymes and respective coding genes are cinnamate 4-

hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cynnamoyl CoA reductase (CCR),  -

hydroxycinnamoyl-CoA:quinate/shikimate/p-hydroxy-cinnamoyl transferase (HCT), cinnamyl alcohol 

dehydrogenase (CAD) and ferulate 5-hydroxylase (F5H). The end products are the monolignols p-

coumaroyl, p-coniferyl and p-sinapyl which differ in their methylation degree [3, 34]. Polymerisation 

occurs after monolignol dehydrogenation by large families of apoplastic peroxidases and laccases which 

can vary in specificity according to each type of monolignol [34, 36]. 

The Vitis Cell Wall-Related Genome  

The sequencing and public availability of the Vitis genome [7, 8] makes it possible to focus on individual 

pathways, to profile the expression pattern of isoforms associated with each tissue, developmental phase 

and response to the different stresses affecting grape berries during their development, and anticipating the 

effects on wine production and quality. For that reason, retrieving the sequences of coding regions and 

predicted amino acid primary structure of enzymes known to act on the Vitis CW is mandatory to support 

omics-related research. Table 1 provides a list of the number of genes related with primary CW 

biosynthesis and modification and with secondary CW biosynthesis present in the genome of higher plant 

sequenced species Vitis vinifera, Oryza sativa, Populus trichocarpa and Arabidopsis thaliana. 

In silico analysis shows that, in Vitis, most of the primary CW related gene families present a number of 

members similar to Arabidopsis, rice and Populus, suggesting the conservation of mechanisms associated with 

CW biosynthesis and modification along plant evolution (Table 1). As expected, a higher number of genes 

involved in the biosynthesis of lignin were retrieved in the woody species Vitis and Populus as compared with 

Arabidopsis and Oryza, (Table 1) but it is worthy to note that Vitis genome holds more genes than Populus [107]. 

CesA (Cellulose synthase), XTH (Xyloglucan endotransglucosylase/hydrolase), EGase ( -1,4-endoglucanase), 

PME (Pectin methylesterase), PMEI (Pectin methylesterase/nvertase inhibitor), PAE (Pectin acetylesterase), PG 

(Polygalacturonase), PL (Pectate lyase), C4H (Cinnamate 4-hydroxylase), HCT (Hydroxycinnamoyl-CoA 

shikimate/quinate hydroxycinnamoyl transferase), C3H (Coumarate 3-hydroxylase), CCR (Cinnamoyl-CoA 

reductase), F5H (Ferulate 5-hydroxylase), CAD (cinnamyl alcohol dehydrogenase). The protein sequences were 

extracted from public databases: Arabidopsis sequences from TAIR (http://www.arabidopsis.org/ index.jsp) and 

Cell Wall Navigator (http://bioweb.ucr.edu/Cellwall/); rice sequences from orygenesdb 

(http://orygenesdb.cirad.fr/cgi-bin/gbrowse/odb_japonica/?name=Os_1:1..10000) and Cell Wall Navigator; 

Populus sequences from JGI (http://genome.jgi-psf.org/Poptr1/poptr1.home.html) and Vitis sequences from 

Genoscope genomic database 8X (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/). Databases last 

access September 2010. 

Amino acid sequence similarity analyses reveal that Vitis CW-related sequences cluster with orthologs from 

monocot, dicot and woody model species in most families (Fig. 2A, B). Noticeably, in families such as 

XTHs some clusters are enriched with Vitis sequences, suggesting specification with respect to evolution or 

a possible correlation with substrate specificity (Fig. 2C). This aspect may be important to unravel CW 

dynamics in this species and deserves further investigation. 
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Table 1: Number of genes related to primary cell wall biosynthesis and modification and to secondary cell wall 

biosynthesis retrieved in silico from the higher plant sequenced species Vitis vinifera, Oryza sativa, Populus 

trichocarpa and Arabidopsis thaliana genomes. 

 Vitis vinifera Oryza sativa Populus trichocarpa Arabidopsis thaliana 

Primary Cell Wall      

CesA  11 10 18 10 

Expansin 30 56 36 36 

XTH  33 29 24 33 

 -1,3-glucanase 43 65 73 49 

EGase 21 24 31 25 

PME 36 37 84 66 

PMEI 11 22 48 33 

PAE 7 10 11 9

PG  60 48 45 66 

PL 16 10 27 27 

Secondary Cell Wall      

C4H  5 3 2 1

HCT 16 9 11 2

C3H  3 1 2 1

CCR 20 12 18 7

F5H 3 2 3 2

CAD 8 12 12 9

The Grape Berry Cell Wall Transcriptome 

One way of tackling the pathways of a given physiological event is to understand the regulation of the 

transcription of related genes. Initial studies based on “candidate gene” approaches in grapes associated  -

gal, !-gal, PME, PL enzyme activity and gene expression with changes in mesocarp CW pectin 

composition, during berry ripening [81, 82, 87, 109]. These events were accompanied by the up-regulation 

of genes involved in the cellulose:hemicellulose network, such as expansins and XTH, at veraison, 

coincidently with the depolymerization of XG [87, 109, 110]. In grape berries, the expression of EGase 

genes seems to be confined to the initial growth stages and was not detected during ripening [87], which 

contrasts with the large majority of fruit species, except for apple [111, 112]. Therefore these genes are 

pointed out as strong candidates to be involved in the metabolism of the grape berry CW. 

In the skin, as stated above, the remodelling of the CW apparently exerts a marked influence on the control of 

berry growth during phases I and III [92]. The transcription profiles of candidate genes for CW-modifying 

enzymes support this assumption. A bimodal trend is observed, with high levels of expression coincident with 

periods of rapid berry growth as well as cellular expansion and low expression levels during growth arrest [92]. 

Despite major differences in grape cell morphology between the exocarp and mesocarp, most genes for CW 

metabolic processes follow similar expression profiles in both tissues throughout berry development [92]. 

However, different patterns in genes for some CW-modifying families, including  -1,3-endoglucanase, PME, 

PL, and two genes from the expansin family (EXP3 and EXPL) were observed [92]. The differences are more 

evident during the rapid growth phase associated with the beginning of phase III, with an up-regulation of  -

1,3-endoglucanase, EXP3 and EXL gene expression in the exocarp accompanied by a down-regulation in the 

mesocarp, and a lag in the up-regulated expression of exocarp PL, PME and EXPL during phase II [92]. 

Noticeably, the up-regulation of exocarp transcripts during transition phases II and III is accompanied by a 

tissue-specific expansion of both epidermal and hypodermal cells. This exocarp up-regulation followed by the 
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down-regulation of  -1,3-endoglucanase and expansin-like genes discloses patterns of gene expression 

concurrent with changes in the epidermis and hypodermis CW thickness, indicating a role in CW loosening to 

accommodate expansion of the mesocarp tissues [92]. Moreover, exocarp tissues exhibit a larger increase in 

transcript level of PME and EGase, in contrast to the increased transcription of EXPL in the mesocarp [92]. It 

should be emphasised that this research followed a “candidate gene” approach, so the possible involvement of 

other isoforms and gene families is expected. 
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Figure 2: Phylogenetic dendrogram of cellulose synthases (CesA, A), cynnamoyl CoA reductases (CCR, B) and 

xyloglucan endotransglycosylases/hydrolases (XTH, C; magnification of cluster enriched in Vitis sequences, C’). 

Dendrograms were generated using ClustalX and TreeView software [108] based on mature protein sequences 

extracted as in Table 1 of all Vitis (red) family members annotated so far and representative members of Arabidopsis 

(black), Oryza (green) and Populus (blue) protein families. 
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With large Expressed Sequence Tags (EST)-based microarrays, new insights about the regulation of CW in 

Vitis berries was achieved, taking advantage of sequence annotation and high throughput gene expression. 

The public release of the Vitis genome and the annotation of Vitis genes allowed for the in-depth study of 

the functional genomics of berry CW, including the genes coding for enzymes associated with CW 

biosynthesis, modification during cell growth and fruit ripening as well as the deposition of secondary wall 

polymers, providing a better picture of the associated pathways. In general, large scale high-throughput 

transcriptomic microarray data indicate several categories of genes that are significantly differentially 

expressed during berry development (Table 2). An incidence of genes related to CW organisation and 

biogenesis are included in clusters showing overexpression during development, thus disclosing the 

prevalence of metabolic processes involved in CW synthesis and loosening PV [113]. 

Table 2: Summary of representative primary cell wall biosynthesis (CesA) and modification gene families (cellulose-

hemicellulose network: XTH and expansin; pectin network: PG, PME, PMEI) strongly differentially expressed in grape 

berry tissues during developmental phases or imposed treatments. 

Gene 

family 
Method Condition Tissue Reference 

CesA Affymetrix Vitis GeneChip® Microarray Berry development Deseeded berry [113] 

   Whole berry [114] 

 Array-Ready Oligo Set™ for Vitis C2H4 (ethylene) treatment Whole berry a [115] 

XTH Affymetrix Vitis GeneChip® Microarray Berry development Deseeded berry [113] 

   Whole berry [114] 

  Water deficit Pulp, skin, seed [116] 

 Array-Ready Oligo Set™ for Vitis C2H4 (ethylene) treatment Whole berry a [115] 

 Oligo Array Berry development Whole berry [117] 

Expansin Affymetrix Vitis GeneChip® Microarray Berry development Deseeded berry [113] 

   Whole berry [114] 

  Water deficit Pulp, skin, seed [116] 

 Array-Ready Oligo Set™ for Vitis C2H4 (ethylene) treatment Whole berry a [115] 

 Oligo Array Berry development Whole berry [117] 

 EST sequencing Berry development Whole berry [118, 119] 

PG Affymetrix Vitis GeneChip® Microarray Water deficit Pulp, skin, seed [116] 

  ABA treatment Skin [120] 

 Array-Ready Oligo Set™ for Vitis C2H4 (ethylene) treatment Whole berry a [115] 

PME Affymetrix Vitis GeneChip® Microarray Berry development Deseeded berry [113] 

   Whole berry [114] 

  Water deficit Pulp, skin, seed [116] 

  ABA treatment Skin [120] 

 Array-Ready Oligo Set™ for Vitis C2H4 (ethylene) treatment Whole berry a [115] 

 Oligo Array Berry development Whole berry [117] 
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 EST sequencing Berry development Whole berry [119, 121] 

PMEI Affymetrix Vitis GeneChip® Microarray Berry development Deseeded berry [113] 

   Whole berry [114] 

  Water deficit Pulp, skin, seed [116] 

 EST sequencing Berry development Whole berry [118] 

a Gene expression was further investigated individually in the pulp, skin and seed via quantitative real-time RT-PCT. 

The previously described involvement of some gene families in berry growth and softening was confirmed 

with large-scale transcriptomics. Among these are included pectin modifying enzymes (PME, PG and PL) 

and cellulose-hemicellulosic ones (expansins and XTH). However, in moving from “candidate gene” 

approaches to “large scale high throughput” transcriptomics, it was possible to identify in the berry 

members of previously CW-related overlooked families such as pectin methylesterase inhibitors (PMEIs) 

or cellulose synthases (CesA) [114], as well as additional members of previously studied families 

associated with CW modifications. For instance, by using the Affymetrix Vitis GeneChip genome array, 10 

members of the XTH family were modulated during development, four of them strongly up-regulated 

during ripening [113] compared to the two “candidate genes” previously investigated both in berry skin and 

flesh [87, 109]. Moreover, comprehensive comparisons of gene expression between pulp, skin and seed 

tissues are now facilitated [116]. 

Functional genomics of lignin biosynthesis is established for Arabidopsis with key genes identified by 

screening of mutant and transgenic plants, gene silencing, overexpression and other reverse-genetics 

approaches [34, 39, 122]. In the general lignin biosynthetic pathway, C4H, a cytochrome P450-dependent 

mono-oxygenase, converts cinnamic acid, the product of phenylalanine deamination, into p-coumaric acid, 

which is esterified with CoA to p-coumaroyl-CoA by 4CL. Then CCR, the first enzyme of the monolignol 

specific biosynthetic pathway converts the lateral chain of coumaroyl-CoA ester to its respective aldehyde. 

A further reduction step catalysed by CAD forms p-coumaryl alcohol - the monomer for H lignin. At p-

coumaroyl- CoA level the pathway can give rise to a distinct branch: HCT converts p-coumaroyl-CoA to p-

coumaroyl shikimic acid, which is converted to caffeoyl shikimic acid by C3H (also a cytochrome P450-

dependent mono-oxygenase), then converted to caffeoyl-CoA by HCT, which is methylated to feruoyl-CoA 

and finally converted to coniferyl aldehyde by CCR. From this metabolite two new branches can proceed: 

one catalysed by CAD giving rise to coniferyl alcohol, the monomer for G lignin; a second one with F5H, 

the third cytochrome P450-dependent mono-oxygenase of the pathway, catalysing the hydroxylation of 

coniferyl aldehyde to hydroxyconiferyl aldehyde, which is methylated to sinapyl aldehyde and finally 

dehydrogenated by CAD to sinapyl alcohol, the monomer for S lignin. 

The expression of genes for most of the enzymes catalysing specific steps of lignin biosynthesis is 

suggested in the grape berry [114], although no experimental evidence is available at cellular or 

biochemical levels to support the above hypothesis. Furthermore, no reports are available on the crosslinks 

between lignin and polysaccharides in the grape seed secondary CW. In the grape berry pulp vascular 

tissue, immunogold labelling localised PAL to primary and secondary CW and 4CL to secondary thick 

walls [38]. The authors refer to a previous localisation of PAL to the cytoplasm and organelles, and C4H to 

the endoplasmic reticulum. The physiological significance of the compartmentalisation of phenylpropanoid 

pathway enzymes is therefore not totally clarified.  

So far, only a few transcriptomic analyses of grape berry through Affymetrix Vitis GeneChip genome array 

refer the expression of genes for lignin biosynthesis enzymes. One transcript subset includes transcripts 

assigned to “phenolic acid” function. Quoting the NCBI GeneBank and Genoscope annotations, it was 

possible to establish the correspondence with specific genes coding for lignin biosynthesis enzymes (Table 

3). The CCR and the first CAD listed express in ripening grapes eventually due to seed lignification at the 

maturation stage; whereas the second listed CAD, expressed in berries at the green stage, could be 

associated with xylem vasculature. 
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Table 3: Correspondence between transcripts related to the grape berry “Phenolic acid metabolism” [114] pool, Unique 

Gene in Genoscope and ESTs and Proteins from NCBI GeneBank grape berry libraries. 

Families of genes for 

lignin biosynthesis 

GeneBank 

annotation [114]  

Genoscope unique gene GeneBank EST GeneBank protein 

CCR CF517687 GSVIVP00033763001 CF415449; 

CABSAU36 

XP_002273454

CAD CF512464 GSVIVP00008719001 CV179328; 

CABSAU36 

XP_002279832

CAD CF517155 GSVIVP00024587001 BQ798918 XP_002285368

When grape berry mRNA expression profiles were analysed in the skin, pulp and seed tissues [123], two 

CCRs showed seed specific expression, one showed skin specific expression and two others were expressed 

in the pulp and skin or in the skin and seed. Four CAD isoforms showed preferential accumulation in the 

skin or in the skin and pulp, certainly in relation to vascular bundle formation. In a study oriented to 

identify genes specifically involved in berry ripening [113], transcripts associated with primary CW were 

mostly repressed before veraison and induced onwards, while a number of secondary metabolism genes 

were repressed BV but a higher number was induced PV. This category included genes of the 

phenylpropanoid pathway. The authors interpret the pattern of expression of one 4CL isoform, negatively 

modulated throughout the ripening process, as being involved in lignin biosynthesis, while a second 4CL 

isoform, positively modulated throughout the whole period of berry development and ripening, would be 

involved in the anthocyanin pathway. 

ABBREVIATIONS 

4CL = 4-coumarate:CoA ligase 

AFase = !-L-arabinofuranosidase 

AGA = Apiogalacturonan 

AG-I = Arabinogalactan-I 

AG-II = Arabinogalactan-II 

AGP = Arabinogalactan protein 

BV = Before veraison 

C3H = Coumarate 3-hydroxylase 

C4H = Cinnamate 4-hydroxylase  

CAD = Cinnamyl alcohol dehydrogenase 

CCR = Cinnamoyl-CoA reductase 

CesA = Cellulose synthase 

CW = Cell wall 

EGase =  -1,4-endoglucanase 
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EST = Expressed Sequence Tags 

F5H = Ferulate 5-hydroxylase 

Galpa = !-D-galactosyluronic acid 

GRP = Glycine-rich proteins 

HCT = Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase 

HG = Homogalacturonan 

PA = proanthocyanidin 

PAE = Pectin acetylesterase 

PAL = Phenylalanine ammonia lyase 

PG = Polygalacturonase 

PGA = Polygalacturonic acid 

PL = Pectate lyase 

PME = Pectin methylesterase 

PMEI = Pectin methylesterase/nvertase inhibitor 

PRP = Proline-rich proteins 

PV = Post-Veraison 

RG-I = Rhamnogalacturonan-I 

RG-II = Rhamnogalacturonan-II 

UA = Uronic acid 

V = Veraison 

XG = Xyloglucan 

XGA = Xylogalacturonan 

XTH = Xyloglucan endotransglucosylase/hydrolase 

Xyl = Xylosidase 

Xyn = Xylanase 

  -Gal =  -galactosidase 
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