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Simplification logic, a logic for attribute implications, was originally defined for Boolean sets. It 
was extended to distributive fuzzy sets by using a complete dual Heyting algebra. In this paper, 
we weaken this restriction in the sense that we prove that it is possible to define a simplification 
logic on fuzzy sets in which the membership value structure is not necessarily distributive. For 
this purpose, we replace the structure of the complete dual Heyting algebra by the so-called 
weak complete dual Heyting algebra. We demonstrate the soundness and completeness of this 
simplification logic, and provide a characterisation of the operations defining weak complete 
dual Heyting algebras.

1. Introduction

In this paper, our attention is directed towards attribute implications as key elements for describing information enclosed in 
datasets. The notion of attribute implication comes from the theory of formal concept analysis and is essentially the same as the 
notion of exact association rule in data mining, functional dependency in database theory, Horn’s clause in logic, etc. Attribute 
implications are pairs of sets of attributes (premise and conclusion) interpreted as “if-then” rules in the sense that “any object that 
has all the attributes of the premise also has all the attributes of the conclusion”. Even for the medium-sized datasets, the number of 
all implications held uses to be huge, making them difficult to handle. In contrast, an advantage of attribute implications is that all 
knowledge can be represented by a small part of the implications, and the rest can be inferred using inference mechanisms. One such 
mechanism is the well-known Armstrong axioms [1]. However, the most efficient and application-oriented alternative is provided by 
the family of logics called simplification logics. This family includes logics for the classical version of attribute implication and for 
some extensions of it [2–4]. Also for the fuzzy notion of attribute implication [5], in the framework of fuzzy formal concept analysis 
[6], Simplification Logic has been extended [7].

All of these logics are based on the so-called simplification paradigm, which, as its name suggests, allows the size of the represen-
tation to be reduced without losing knowledge by eliminating redundant information using a “difference” operation. This operator 
plays the role of a cornerstone to build an inference engine to simplify the sets of implications preserving the meaning (by means of 
equivalence transformations).

Simplification Logic for classical attribute implications builds its language on the Boolean algebra of the power set, so that 
the difference of sets can be used to remove redundancy. Extending to the fuzzy framework, no difference operator is available 
because the fuzzy power set is generally not a Boolean algebra. In [7], we paid attention to sufficient conditions for a suitable 
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difference operation to prove the soundness and completeness of the new Simplification logic. The complete dual Heyting algebra 
was the answer to this question. Our next step was to define a generalised framework to cover different approaches (fuzzy, temporal, 
etc.) [8]. The so-called Parameterised framework [9] established a guideline for introducing new approaches in the future: first, a 
suitable difference operator has to be defined for the new truth value structure, consistent with the Simplification paradigm.

This generalised framework was designed to be adaptable to a wide range of situations simply by redefining the difference 
operator in the appropriate extension. The aim of this paper is to identify and deal with the cases where this extension is not 
possible. In [10] we present one of these cases. There, following the line initiated in [11], we consider datasets that collect unknown 
or missing information, and for this purpose we consider a truth value set of three elements, as was done in [12], and later we extend 
it to consider a fourth element related to the inconsistency. An important result is that we cannot consider a complete dual Heyting 
algebra, and a weaker structure is needed. It should be noted that various generalisations of Heyting algebras or their duals appear 
in the literature [13–16], being considered as an important tool for different purposes.

Based on the notion of weak complete dual Heyting algebra introduced in [10], this paper presents a guideline for establishing a 
comprehensive framework that incorporates unknown information and consistently characterises the formal results.

After presenting the preliminary results and necessary notions used throughout this paper (Section 2), we first introduce the lan-
guage and present its semantics. In order to deal with unknown information in an abstract sense, a general set is used as the language 
and a complete lattice is our choice as its semantics (Section 3). Our next step in developing this generalisation of Simplification 
Logic is to introduce the axiomatic system. As we have explained, we first define a suitable difference operation, and we also prove 
the soundness of the axiomatic system by characterising the needed properties of the difference operation (Section 4).

One of the key points of the family of Simplification Logics is that they are intended to be executable logics. For this reason, we 
need to provide equivalence rules to manage the set of implications. The so-called weak complete dual Heyting algebra is introduced 
as the basic structure to ensure the equivalence issue (Section 4).

The natural next step in this guideline is to prove completeness, which has to be studied in two different situations according to 
the language classification. In the finite case it is sufficient to have a weak complete dual Heyting algebra. Otherwise we have to 
impose an additional condition on the algebraic structure: the compactness of the lattice elements (Section 5).

Having introduced the (very general) value set, its semantics and a logic for dealing with it, we formally characterise when the 
lattice behind the semantics provides a consistent structure to ensure soundness and completeness (Section 6). Finally, we show some 
conclusions and promising works to continue in this line of research (Section 7).

2. Preliminary definitions and results

2.1. Complete lattices and dual Heyting algebras

This subsection briefly introduces some of the mathematical backgrounds about ordered structures utilised in the paper. For more 
details, we recommend [17,18].

Definition 1. An ordered set (𝐿, ⩽) is a complete lattice if every subset 𝑋 ⊆ 𝐿 has both a supremum (denoted by 
⋁
𝑋) and an 

infimum (denoted by 
⋀
𝑋).

It follows that every complete lattice is bounded, with a maximum element (denoted by ⊤) and a minimum element (denoted 
by ⊥). Given 𝑥, 𝑦 ∈𝐿, as usual, 𝑥 ∨ 𝑦 denotes 

⋁
{𝑥, 𝑦} and 𝑥 ∧ 𝑦 denotes 

⋀
{𝑥, 𝑦}.

The comparability relationship, which we define below, will be relevant for the results presented in this paper.

Definition 2. Let (𝐿, ⩽) be a complete lattice and 𝑥, 𝑦 ∈ 𝐿. We say that 𝑥 and 𝑦 are comparable, denoted by 𝑥 ∦ 𝑦, if 𝑥 ⩽ 𝑦 or 𝑦 ⩽ 𝑥, 
whereas, if this condition is not fulfilled, we say that 𝑥 and 𝑦 are incomparable and denote it by 𝑥 ∥ 𝑦.

The notions of reducibility and irreducibility will also be relevant throughout this paper.

Definition 3. An element 𝑥 ∈𝐿 is said to be ∨-irreducible when, for all 𝑦, 𝑧 ∈𝐿, 𝑥 = 𝑦 ∨ 𝑧 implies that 𝑦 = 𝑥 or 𝑧 = 𝑥; otherwise, we 
say that 𝑥 is ∨-reducible. The notions of ∧-irreducible and ∧-reducible are introduced in the same way.

On the other hand, the relevance of the concept of the closure operator, and its counterpart closure system, in mathematics, logic 
and computer science is indisputable.

Definition 4. Let (𝐿, ⩽) be a complete lattice.

• A mapping 𝚌 ∶ 𝐿 → 𝐿 is a closure operator if it is isotone (i.e. 𝑥 ⩽ 𝑦 implies 𝚌(𝑥) ⩽ 𝚌(𝑦) for all 𝑥, 𝑦 ∈ 𝐿), extensive (i.e. 𝑥 ⩽ 𝚌(𝑥)
for all 𝑥 ∈𝐿), and idempotent (i.e. 𝚌(𝚌(𝑥)) = 𝚌(𝑥) for all 𝑥 ∈𝐿).
2

• A subset 𝑆 ⊆ 𝐿 is a closure system if 
⋀
𝑋 ∈ 𝑆 for all 𝑋 ⊆𝑆 .
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The mentioned closely relationship between both notions is the following: if 𝚌 is a closure operator, the set 𝚌(𝐿) = {𝚌(𝑥) ∣ 𝑥 ∈𝐿} =
{𝑥 ∈𝐿 ∣ 𝚌(𝑥) = 𝑥} is a closure system; conversely, if 𝑆 is a closure system, the mapping 𝚌∶ 𝐿 →𝐿 defined as 𝚌(𝑥) =

⋀
{𝑠 ∈ 𝑆 ∣ 𝑥 ⩽ 𝑠}

is a closure operator. In addition, both correspondences between closure operators and closure systems are bijective and each one is 
the inverse mapping of the other one.

As we mentioned in the introduction, a difference operation is considered a key notion in our development and, in particular, for 
the definition of the notions of complete dual Heyting algebra and its (weak) extension.

Definition 5. A tuple (𝐿, ⩽, ∖) is said to be a complete dual Heyting algebra (briefly, cdHa) if (𝐿, ⩽) is a complete lattice and ∖∶ 𝐿 ×𝐿 →
𝐿, named difference operation, satisfies the following adjoint property:

𝑎 ⩽ 𝑏 ∨ 𝑐 if and only if 𝑎 ∖ 𝑏 ⩽ 𝑐, for all 𝑎, 𝑏, 𝑐 ∈𝐿. (1)

It is well known that, for a complete lattice (𝐿, ⩽), the following condition is both necessary and sufficient for the presence of an 
operation ∖ such that (𝐿, ⩽, ∖) forms a cdHa:

min{𝑥 ∣ 𝑎 ⩽ 𝑏 ∨ 𝑥} exists, for all 𝑎, 𝑏 ∈𝐿. (2)

In fact, Condition (1) is equivalent to:

𝑎 ∖ 𝑏 =min{𝑥 ∣ 𝑎 ⩽ 𝑏 ∨ 𝑥}, for all 𝑎, 𝑏 ∈𝐿. (3)

Other characterisations of cdHas can be found in [14]. In addition, in [7], it was also proved that the following property holds in 
any cdHa:

𝑎 ∨ ((𝑎 ∨ 𝑏) ∖ 𝑐) = 𝑎 ∨ (𝑏 ∖ 𝑐), for all 𝑎, 𝑏, 𝑐 ∈𝐿. (4)

Remark 1. It is well known that every cdHa (𝐿, ⩽, ∖) satisfies that (𝐿, ⩽) is distributive. In fact, in the finite case, (𝐿, ⩽) is distributive 
if and only if (𝐿, ⩽, ∖) is a cdHa where 𝑎 ∖ 𝑏 =

⋀
{𝑥 ∣ 𝑎 ⩽ 𝑏 ∨ 𝑥}. This construction of cdHa can be extended, as we shall mention later, 

to complete (infinite) lattices by requiring the property of infinite distributivity.

As mentioned in the introduction, Simplification Logic for implications has been successfully extended in several ways. In partic-
ular, in [10], an extension to represent the unknown information was provided by considering an ad hoc instance of a weakening of 
complete dual Heyting algebras. This weakening of the cdHas was presented as follows:

Definition 6. A weak complete dual Heyting algebra (weak-cdHa for short) is an algebra (𝐿, ⩽, ∖) such that (𝐿, ⩽) is a complete lattice 
and the following properties hold:

[w1] 𝑦 ∨ 𝑥 ≠ ⊤ implies (𝑦 ∨ 𝑥) ∖ 𝑥 ⩽ 𝑦 for all 𝑥, 𝑦 ∈𝐿.
[w2] 𝑥 ∖ 𝑦 ⩽ 𝑥 for all 𝑥, 𝑦 ∈𝐿.
[w3] 𝑥 ∖ 𝑦 = ⊥ if and only if 𝑥 ⩽ 𝑦 for all 𝑥, 𝑦 ∈𝐿.
[w4] 𝑥 ∨ 𝑦 = 𝑥 ∨ (𝑦 ∖ 𝑥) for all 𝑥, 𝑦 ∈𝐿.

In addition, in [10] we also proved that any cdHa is a weak-cdHa, providing a counterexample for the opposite implication.

2.2. Formal Concept Analysis

We outline in this subsection only a few key ideas of Formal Concept Analysis (FCA). For more details, we recommend [19–21].
Initially, in classic FCA, the starting point is a formal context 𝕂 = (𝐺, 𝑀, 𝐼), where 𝐺 and 𝑀 are both finite and non-empty sets 

(the elements of which are called objects and attributes, respectively), and 𝐼 ⊆ 𝐺 ×𝑀 establishes the relationship between each 
object and its corresponding attributes. The information stored in the context is treated in two ways: extracting knowledge in terms 
of formal concepts or in terms of attribute implications.

Definition 7. Let 𝕂 = (𝐺, 𝑀, 𝐼) be a formal context, and (𝐺) and (𝑀) be the powerset of objects and attributes respectively. The 
concept forming operators are defined as follows:

↑ ∶ (𝐺) → (𝑀) where 𝐴↑ = {𝑚 ∈𝑀 ∶ 𝑔 𝐼 𝑚 for all 𝑔 ∈𝐴}.
↓ ∶ (𝑀) → (𝐺) where 𝐵↓ = {𝑔 ∈𝐺∶ 𝑔 𝐼 𝑚 for all 𝑚 ∈𝐵}.

A pair (𝐴, 𝐵) ∈ (𝐺) ×(𝑀) is said to be a formal concept if 𝐴↑ =𝐵 and 𝐵↓ =𝐴.

So a formal concept is a pair (𝐴, 𝐵) such that 𝐴 is the set of objects that have all the attributes in 𝐵, and 𝐵 is the set of attributes 
3

that are common to all the objects in 𝐴.
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Theorem 8. The pair (↑, ↓) is a Galois connection between the boolean algebras ((𝐺), ⊆) and ((𝑀), ⊆) and, therefore, both 
compositions ↑◦↓ and ↓◦↑ are closure operators on ((𝐺), ⊆) and ((𝑀), ⊆), respectively.

Corollary 9. The formal concepts are the fixed pairs of the Galois connection and, with the order ⩽, defined as

(𝐴1,𝐵1) ⩽ (𝐴2,𝐵2) iff 𝐴1 ⊆𝐴2 (or equivalently, iff 𝐵2 ⊆ 𝐵1),

forms a complete lattice, which is denoted by 𝔅(𝕂) and named concept lattice.

FCA provides an alternative and equivalent way of representing knowledge using attribute implications in addition to the concept 
lattice. An attribute implication 𝐴 →𝐵 is a pair of subsets of 𝑀 , and it holds in the context 𝕂 if each object having all the attributes 
in 𝐴 also has all the attributes in 𝐵.

Definition 10. Let 𝕂 = (𝐺, 𝑀, 𝐼) be a formal context, and 𝐴, 𝐵 ∈ (𝑀). We say that an attribute implication 𝐴 → 𝐵 holds in 𝕂 if 
𝐴↓ ⊆ 𝐵↓ or, equivalently, 𝐵 ⊆𝐴↓↑.

A set of implications Σ is said to be an implicational system for a formal context 𝕂 if every implication 𝐴 → 𝐵 ∈ Σ holds in 𝕂. 
We say that an implication 𝐴 → 𝐵 (semantically) follows from a set of implications Σ when, for all formal context 𝕂, if Σ is an 
implicational system for 𝕂, then 𝐴 →𝐵 holds in 𝕂. An implicational system for 𝕂 is said to be complete if any valid implication for 
𝕂 follows from Σ.

3. Simplification Logic in a more general framework

Classical attribute implications are pairs of subsets in the attribute power set, which is a boolean algebra. Fuzzy and graded 
attribute implications are pairs of fuzzy sets, i.e. elements in the 𝐿-power set, being 𝐿 the corresponding structure of membership 
values (usually some kind of lattice). Here, we present a generalised view of these approaches by considering implications as pairs of 
elements in a given set 𝐿 that can be instantiated as a classical power set, a graded power set or the particular lattice that we need 
to consider. Thus, given a set 𝐿, the language is defined as follows:

𝐿 = {𝑎→ 𝑏∶ 𝑎, 𝑏 ∈𝐿}.

The expressions 𝑎 → 𝑏 are called implications and the elements 𝑎 and 𝑏 are called the premise and the conclusion of the implication, 
respectively.

The following definition introduces the semantics.

Definition 11. An order ⩽ such that (𝐿, ⩽) is a complete lattice induces the model theory as follows: for all 𝑑 ∈ 𝐿, 𝐷 ⊆ 𝐿 and 
𝑎 → 𝑏 ∈𝐿, we say that

• 𝑑 is a model of 𝑎 → 𝑏, denoted by 𝑑 ⊧ 𝑎 → 𝑏, if 𝑎 ⩽ 𝑑 implies 𝑏 ⩽ 𝑑.
• 𝐷 is a model of 𝑎 → 𝑏, denoted by 𝐷 ⊧ 𝑎 → 𝑏, if 𝑑 ⊧ 𝑎 → 𝑏 for all 𝑑 ∈𝐷.

The set of models of an implication 𝑎 → 𝑏 ∈𝐿 will be denoted by ℳ(𝑎 → 𝑏). Thus, 𝐷 ⊧ 𝑎 → 𝑏 iff 𝐷 ⊆ℳ(𝑎 → 𝑏).
The study of model theory is closely connected to the concepts of closure system and closure operator, which are interchangeable 

(see Section 2.1).

Proposition 12. Let (𝐿, ⩽) be a complete lattice. For each 𝐷 ⊆ 𝐿, consider 𝚌
𝐷
∶ 𝐿 → 𝐿 defined as 𝚌

𝐷
(𝑥) =

⋀
{𝑑 ∈ 𝐷 ∣ 𝑥 ⩽ 𝑑} for all 

𝑥 ∈𝐿. Then,

1. The operator 𝚌
𝐷

is a closure operator.
2. The closure system induced by 𝚌

𝐷
is {

⋀
𝑋 ∣𝑋 ⊆𝐷}.

In addition, for all 𝑎, 𝑏 ∈𝐿, 𝐷 ⊧ 𝑎 → 𝑏 if and only if 𝑏 ⩽ 𝚌
𝐷
(𝑎).

Proof. Items 1 and 2 follow from [22, Theorems 19 and 20], but, in order to make the paper self-contained, we provide a direct 
proof in Appendix A. The last part of the proposition is proved as follows:

Assume that 𝐷 ⊧ 𝑎 → 𝑏. Then, {𝑑 ∈𝐷 ∣ 𝑎 ⩽ 𝑑} ⊆ {𝑑 ∈𝐷 ∣ 𝑏 ⩽ 𝑑} because 𝑎 ⩽ 𝑑 implies 𝑏 ⩽ 𝑑 for all 𝑑 ∈𝐷. Therefore, by item 1, 
we have that 𝑏 ⩽ 𝚌

𝐷
(𝑏) ⩽ 𝚌

𝐷
(𝑎).

Conversely, assume that 𝑏 ⩽ 𝚌
𝐷
(𝑎) =

⋀
{𝑑 ∈𝐷 ∣ 𝑎 ⩽ 𝑑}. Then, by the definition of infimum and transitivity, we have that 𝑎 ⩽ 𝑑
4

implies 𝑏 ⩽ 𝑑 for all 𝑑 ∈𝐷. That is, 𝐷 ⊧ 𝑎 → 𝑏. □
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Previous Definition 11 (Model Theory) and Proposition 12 (characterisation of the closure operator) are the base for the following. 
Definition 13 introduces the notion of semantic entailment, establishing a connection between an implication and a set of implications 
by means of its models. Then in Proposition 14, the semantic entailment relationship is characterised by means of the models of the 
theory. Definition 15 introduces the so-called complete theories and, finally, Proposition 16 relates all these previous notions and 
results.

Definition 13. Let (𝐿, ⩽) be a complete lattice, 𝑎 → 𝑏 ∈ 𝐿 and Σ ⊆ 𝐿. We say that Σ semantically entails 𝑎 → 𝑏, denoted by 
Σ ⊧ 𝑎 → 𝑏, if

ℳ(Σ)
𝑑𝑒𝑓
=

⋂

𝑥→𝑦∈Σ
ℳ(𝑥→ 𝑦) ⊆ℳ(𝑎→ 𝑏).

Proposition 14. Consider a complete lattice (𝐿, ⩽) and Σ ⊆ 𝐿. The set ℳ(Σ) ⊆ 𝐿 is a closure system and, for all 𝑎, 𝑏 ∈𝐿,

Σ ⊧ 𝑎→ 𝑏 if and only if 𝑏 ⩽ 𝚌ℳ(Σ)(𝑎).

Hereinafter, for readability matter, we write 𝚌Σ instead of 𝚌ℳ(Σ).

Proof. It is straightforward that 𝑋 ⊆ℳ(Σ) implies 
⋀
𝑋 ∈ℳ(Σ). Thus, ℳ(Σ) is a closure system.

Assume that Σ ⊧ 𝑎 → 𝑏 and consider 𝚌Σ(𝑥) =
⋀
{𝑑 ∈ℳ(Σ) ∣ 𝑥 ⩽ 𝑑}. Since ℳ(Σ) is a closure system, we have that 𝑎 ⩽ 𝚌Σ(𝑎) ∈ℳ(Σ)

and therefore 𝑏 ⩽ 𝚌Σ(𝑎). Conversely, assume that 𝑏 ⩽ 𝚌Σ(𝑎) =
⋀
{𝑑 ∈ℳ(Σ) ∣ 𝑎 ⩽ 𝑑}. Then, 𝑑 ∈ℳ(Σ) and 𝑎 ⩽ 𝑑 implies 𝑏 ⩽ 𝑐Σ(𝑎) ⩽ 𝑑. 

That is, ℳ(Σ) ⊆ℳ(𝑎 → 𝑏). □

Definition 15. Consider a complete lattice (𝐿, ⩽) and 𝐷 ⊆𝐿. A set Σ ⊆𝐿 is said to be a complete theory for 𝐷 if, for all 𝑎 → 𝑏 ∈𝐿, 
we have that

Σ ⊧ 𝑎→ 𝑏 if and only if 𝐷 ⊧ 𝑎→ 𝑏.

Straightforwardly, closures operators introduced in Propositions 12 and 14 agree for complete theories, and vice versa, as the 
following proposition states.

Proposition 16. Consider a complete lattice (𝐿, ⩽), 𝐷 ⊆ 𝐿 and Σ ⊆ 𝐿. Then, Σ is a complete theory for 𝐷 if and only if 𝚌Σ(𝑥) = 𝚌
𝐷
(𝑥)

for all 𝑥 ∈𝐿, or, equivalently, ℳ(Σ) = {
⋀
𝑋 ∣𝑋 ⊆𝐷}.

The semantics we have presented here is strongly inspired by the essence of the majority of the generalisations of FCA, specifically 
in the treatment of attribute implications (see Section 2.2).

Example 1. Classical formal concept analysis is an illustrative example of this framework. It can be described in terms of our 
framework as follows: Consider a formal context 𝕂 = (𝐺, 𝑀, 𝐼) and the family of sets  = {{𝑔}↑ ∣ 𝑔 ∈ 𝐺} ⊆ (𝑀). For all 𝐴, 𝐵 ∈
(𝑀), we have

 ⊧ 𝐴→𝐵 iff, for all 𝑔 ∈𝐺,{𝑔}↑ ⊧ 𝐴→𝐵

iff, for all 𝑔 ∈𝐺,𝐴 ⊆ {𝑔}↑ implies 𝐵 ⊆ {𝑔}↑

iff, for all 𝑔 ∈𝐺,𝑔 ∈𝐴↓ implies 𝑔 ∈𝐵↓

iff 𝐴↓ ⊆ 𝐵↓

iff 𝐴→ 𝐵 holds in 𝕂.

In addition, Proposition 12 defines a closure operator in ((𝑀), ⊆), i.e. 𝚌(𝑋) =
⋂
{𝐷 ∈ ∶ 𝑋 ⊆ 𝐷} for each 𝑋 ∈ (𝑀), which 

coincides with the closure operator ↓◦↑; and then their corresponding closure systems also coincide. Therefore, the mapping (𝐴, 𝐵) ↦
𝐵 is an isomorphism between the concept lattice 𝔅(𝕂) and the lattice 

(
{
⋂
𝑋 ∣𝑋 ⊆},⊆

)
.

Finally, a set of implications Σ is a complete implicational system for the formal context 𝕂 if and only if it is a complete theory 
for , and, therefore, ℳ(Σ) = {

⋂
𝑋 ∣𝑋 ⊆}.

4. Axiomatic system

After the definition of the language and the semantics, we introduce the inference engine; i.e. the axiomatic system.
As we mentioned in the introduction, the set difference in the boolean algebra (classical implications) was extended by using 

complete dual Heyting algebras in the fuzzy case. In this work, we generalise it further in order to extend the treatment of unknown 
5

information to graded environments. For this aim, complete dual Heyting algebras, used in [7], are replaced by weak complete dual 
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Heyting algebras. Using this algebraic framework, in the following, we introduce the inference rules (Definition 17) and the notion 
of syntactic derivation (Definition 18), and we prove the soundness of the axiomatic system (Theorem 19).

Definition 17. Let (𝐿, ≤, ∖) be a weak-cdHa. Simplification Axiomatic System consists of the rules {[𝙸𝚗𝚌], [𝚄𝚗], [𝚂𝚒𝚖𝚙]} where [𝙸𝚗𝚌], 
[𝚄𝚗] and [𝚂𝚒𝚖𝚙] are, respectively, defined as follows: for all 𝑎, 𝑏, 𝑐, 𝑑 ∈𝐿:

Inclusion: Infer 𝑎 ∨ 𝑏 → 𝑎.
Union: From 𝑎 → 𝑏 and 𝑎 → 𝑐 infer 𝑎 → 𝑏 ∨ 𝑐.
Simplification: From 𝑎 → 𝑏 and 𝑐→ 𝑑 infer 𝑎 ∨ (𝑐 ∖ 𝑏) → 𝑑.

The axiomatic system induces a syntactic derivation mechanism in the usual way:

Definition 18. An implication 𝑎 → 𝑏 ∈𝐿 is considered to be syntactically derived, or inferred, from Σ ⊆ 𝐿 if there exists a sequence 
(𝑥𝑖 → 𝑦𝑖 ∣ 1 ⩽ 𝑖 ⩽ 𝑛) such that 𝑥𝑛 = 𝑎, 𝑦𝑛 = 𝑏 and, for all 1 ⩽ 𝑖 ⩽ 𝑛, the implication 𝑥𝑖 → 𝑦𝑖 belongs to Σ or is obtained by applying one 
of the Simplification Axiomatic System rules to implications in {𝑥𝑗 → 𝑦𝑗 ∣ 1 ⩽ 𝑗 < 𝑖}. This situation is denoted by Σ ⊢ 𝑎 → 𝑏, and the 
sequence 𝑥1 → 𝑦1, ⋯ , 𝑥𝑛 → 𝑦𝑛 is said to be a proof for Σ ⊢ 𝑎 → 𝑏.

The keystones of an axiomatic system are soundness and completeness, i.e. whether (syntactic) derivation and (semantic) entail-
ment coincide. We will now concentrate on soundness and, leaving completeness for Section 5.

Theorem 19 (Soundness). Let (𝐿, ≤, ∖) be a weak-cdHa. For all implication 𝑎 → 𝑏 ∈ 𝐿 and all set Σ ⊆ 𝐿, we have that Σ ⊢ 𝑎 → 𝑏

implies Σ ⊧ 𝑎 → 𝑏.

Proof. It is enough to prove the soundness of the three primitive rules introduced in Definition 17.
First, the soundness of the inclusion rule is a straightforward consequence of the fact that ℳ(𝑎 ∨ 𝑏 → 𝑎) =𝐿.
Second, for the union rule, if 𝑚 ∈ ℳ(𝑎 → 𝑏) ∩ℳ(𝑎 → 𝑐) (i.e. 𝑎 ⩽ 𝑚 implies 𝑏 ⩽ 𝑚 and 𝑐 ⩽ 𝑚) then, obviously, 𝑚 is model for 

𝑎 → 𝑏 ∨ 𝑐.
Finally, we prove the soundness of the simplification rule. Consider 𝑚 ∈ℳ(𝑎 → 𝑏) ∩ℳ(𝑐 → 𝑑) and assume that 𝑎 ∨ (𝑐 ∖ 𝑏) ⩽ 𝑚. 

First, we have that 𝑎 ⩽ 𝑚 and, since 𝑚 ∈ℳ(𝑎 → 𝑏), we have that 𝑏 ⩽ 𝑚. Therefore, 𝑎 ∨ 𝑏 ∨ (𝑐 ∖ 𝑏) ⩽ 𝑚 and, by [w4], 𝑎 ∨ 𝑏 ∨ 𝑐 ⩽ 𝑚. 
Thus, 𝑐 ⩽𝑚 and, since 𝑚 ∈ℳ(𝑐→ 𝑑), we conclude that 𝑑 ⩽𝑚. □

4.1. The Simplification paradigm

Notice that, for the proof of the soundness, the only property we need, other than the lattice properties, is [w4]. However, the 
logics belonging to the Simplification family share a fundamental trait that we name the Simplification paradigm: their inference rules 
can be interpreted as equivalence rules, which enables the simplification of a set of implications while retaining the entirety of the 
knowledge. To achieve this goal we need all the properties that define weak-cdHas, as we will see in this section.

On the other hand, as we have already commented, the results presented here are a generalisation of those presented in [10]. 
There we introduced the Simplification logic built on just one particular weak-cdHa and some of the results presented used some 
particular features of that particular case. Here, we extend these results to any weak-cdHa. Obviously, once it is proved that the 
axiomatic system is correct in this general framework, any result obtained by syntactic derivation and using properties of (all) 
weak-cdHas will still hold. Thus, some of the proofs given in [10] can be considered in this framework.

Before providing the equivalence rules we present some inference rules that are derived from the axiomatic system in this 
framework.

Proposition 20. From Simplification Axiomatic System, the following inference rules can be derived: for all 𝑎, 𝑏, 𝑐, 𝑑 ∈𝐿,

[Aug] If 𝑎 ⩽ 𝑐 and 𝑑 ⩽ 𝑐 ∨ 𝑏, then {𝑎 → 𝑏} ⊢ 𝑐→ 𝑑.
[Comp] {𝑎 → 𝑏, 𝑐→ 𝑑} ⊢ 𝑎 ∨ 𝑐→ 𝑏 ∨ 𝑑.
[Tran] {𝑎 → 𝑏, 𝑏 → 𝑐} ⊢ 𝑎 → 𝑐.
[Frag] {𝑎 → 𝑏 ∨ 𝑐} ⊢ 𝑎 → 𝑏.

These inference rules are named augmentation, composition, fragmentation and transitivity, respectively.

Proof. The proof for [Aug] is those given in [10, Proposition 14] that is based on the axiomatic system and [w1]. It can also be 
read in Appendix A, in order to make this paper self-contained. The following sequence proves [Comp]:

(1) 𝑎→ 𝑏 By hypothesis.
6

(2) 𝑐→ 𝑑 By hypothesis.
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⊤

𝑐

𝑎 𝑏

⊥

(a) (𝐿, ⩽)

∖ ⊥ 𝑎 𝑏 𝑐 ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

𝑎 𝑎 ⊥ 𝑎 ⊥ ⊥

𝑏 𝑏 𝑏 ⊥ 𝑏 ⊥

𝑐 𝑐 𝑐 𝑎 ⊥ ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊥

(b) Difference operator

Fig. 1. A weak-cdHa (𝐿,≤, ∖).

(3) 𝑎 ∨ 𝑐→ 𝑏 By applying [Aug] to (1).

(4) 𝑎 ∨ 𝑐→ 𝑑 By applying [Aug] to (2).

(5) 𝑎 ∨ 𝑐→ 𝑏 ∨ 𝑑 By applying [Un] to (3) and (4).

From [w3], we have that [Tran] is a particular case of [Simp]. Finally, the following sequence proves [Frag]:

(1) 𝑎→ 𝑏 ∨ 𝑐 By hypothesis.

(2) 𝑏 ∨ 𝑐→ 𝑏 By [Inc].

(3) 𝑎→ 𝑏 By applying [Tran] to (1) and (2). □

The subsequent proposition offers a set of equivalences that can be utilized for implementing the Simplification paradigm (simpli-
fying the set of implications and preserving equivalency). As usual, two sets Σ1 and Σ2 are said to be equivalent, denoted by Σ1 ≡ Σ2, 
if it holds that Σ1 ⊢ 𝑥 → 𝑦 implies Σ2 ⊢ 𝑥 → 𝑦 and vice versa. Furthermore, this is true if Σ1 ⊢ 𝑥 → 𝑦 for all 𝑥 → 𝑦 ∈ Σ2 and Σ2 ⊢ 𝑥 → 𝑦

for all 𝑥 → 𝑦 ∈ Σ1.

Proposition 21. The following equivalence rules hold for any 𝑎, 𝑏, 𝑐, 𝑑 ∈𝐿:

[FragEq]: {𝑎 → 𝑏} ≡ {𝑎 → 𝑏 ∖ 𝑎}.
[UnEq]: {𝑎 → 𝑏, 𝑎 → 𝑐} ≡ {𝑎 → 𝑏 ∨ 𝑐}.
[⊥-Eq]: {𝑎 → ⊥} ≡∅.
[SimpEq]: {𝑎 → 𝑏, 𝑐→ 𝑑} ≡ {𝑎 → 𝑏, 𝑐 ∖ 𝑏 → 𝑑 ∖ 𝑏} when 𝑎 ⩽ 𝑐 ∖ 𝑏.

The proof for this proposition follows the same scheme as the proof of [10, Proposition 15], which is based on the axiomatic 
system and the properties [w2], [w3] and [w4]. To make the paper self-contained, we include the proof of Proposition 21 in 
Appendix A.

The Simplification paradigm is behind the previous proposition because if you read each equivalence from left to right, it enables 
to reduce the number of implications or to substitute the premise/conclusion by a lower element in the complete lattice. Notice that 
if the general case is instantiated and associated with a (generalised) power set, the number of attributes in the premise/conclusion 
is reduced.

Example 2. Let (𝐿, ≤, ∖) be the weak-cdHa where (𝐿, ≤) is the lattice given by Fig. 1a and ∖ is the difference operator shown in the 
table in Fig. 1b. Then, the set {𝑐→ 𝑎, 𝑎 → 𝑏, 𝑎 → 𝑐} can be simplified, by applying the equivalence rules, as follows:

1. By using [FragEq] and [⊥-Eq] we have that {𝑐 → 𝑎} ≡ {𝑐→ ⊥} ≡∅.
2. By using [UnEq] we have that {𝑎 → 𝑏, 𝑎 → 𝑐} ≡ {𝑎 → ⊤}.

Thus, we have that {𝑐→ 𝑎, 𝑎 → 𝑏, 𝑎 → 𝑐} ≡ {𝑎 → ⊤}.

5. Completeness of the axiomatic system

To ensure completeness, we must first address a preliminary question. The semantic component relies on the complete lattice 
structure, which guarantees the existence of arbitrary suprema and infima. In contrast, the syntactic component involves only binary 
operations and finite sequences of implications (i.e., proofs). In order to make the results as general as possible, we now introduce 
some conditions that will allow us to overcome these difficulties for infinite lattices. Our approach is based on the well-known 
definition of compactness.

Definition 22. Consider a weak-cdHa (𝐿, ⩽, ∖). An element 𝑘 ∈𝐿 is called compact if, whenever 𝐽 ⊆ 𝐿 satisfies 𝑘 ⩽
⋁
𝐽 , there exists 
7

a finite subset 𝐹 ⊆ 𝐽 such that 𝑘 ⩽
⋁
𝐹 . We denote by 𝐾 the set of all compact elements in 𝐿.
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We say that (𝐿, ⩽, ∖) is algebraic if it satisfies the following two conditions:

1. For every 𝑎 ∈𝐿, there exists a subset 𝑋 ⊆𝐾 such that 𝑎 =
⋁
𝑋.

2. For all 𝑎, 𝑏 ∈𝐾 , the element 𝑎 ∖ 𝑏 belongs to 𝐾 as well.

Note that, apart from what was previously stated, as it is well-known, 𝐾 is closed for finite suprema, that is, if 𝑥, 𝑦 ∈ 𝐾 then 
𝑥 ∨ 𝑦 ∈𝐾 .

In the following we will assume that (𝐿, ⩽, ∖) is an algebraic weak-cdHa. We will also restrict the language to 𝐾 = {𝑎 → 𝑏 ∣
𝑎, 𝑏 ∈𝐾}. Note that this restriction does not affect the semantics, and moreover, since 𝐾 is closed for both operations ∨ and ∖, any 
implication inferred from implications in 𝐾 also belongs to 𝐾 . Recall that 𝐾 =𝐿 when 𝐿 is finite.

Now, we introduce some preliminary notions and results that allow us to make the proof of completeness.
For each set of implications Σ ⊆ 𝐾 and each 𝑎 ∈𝐿, we define the set

Σ(𝑎) = {𝑦 ∈𝐾 ∣ Σ ⊢ 𝑥→ 𝑦 for some 𝑥 ∈𝐾 with 𝑥 ⩽ 𝑎} (5)

and, by using it, we define the mapping

[ ]Σ ∶ 𝐿→𝐿 where [𝑎]Σ =
⋁

Σ(𝑎) for all 𝑎 ∈𝐿. (6)

As a consequence of Theorem 26, which we will prove below, in the general case, the mapping is recognised as a closure operator 
with respect to Σ, and we have given it the name of syntactic closure. Previously, Proposition 24 below states its extensiveness 
and Theorem 25 proves the completeness of Simplification Logic in the compact framework.

Lemma 23. Let Σ ⊆ 𝐾 , 𝑏 → 𝑐 ∈𝐾 and 𝑎 ∈𝐿. If Σ ⊢ 𝑏 → 𝑐 and 𝑏 ⩽ [𝑎]Σ, then 𝑐 ∈Σ(𝑎).

Proof. Since 𝑏 ∈𝐾 and 𝑏 ⩽
⋁

Σ(𝑎), there exists finite subset {𝑦1, … , 𝑦𝑛} ⊆Σ(𝑎) ⊆𝐾 such that 𝑏 ⩽
⋁𝑛

𝑖=1 𝑦𝑖 and, for each 1 ⩽ 𝑖 ⩽ 𝑛, 
there exists 𝑥𝑖 ∈𝐾 with 𝑥𝑖 ⩽ 𝑎 and Σ ⊢ 𝑥𝑖 → 𝑦𝑖. Thus, by applying [Comp] 𝑛 times, we obtain that Σ ⊢

⋁𝑛

𝑖=1 𝑥𝑖 →
⋁𝑛

𝑖=1 𝑦𝑖. In addition, 
by [Aug], we have that Σ ⊢

⋁𝑛

𝑖=1 𝑥𝑖 → 𝑏 and, by [Tran] with Σ ⊢ 𝑏 → 𝑐, we have that Σ ⊢
⋁𝑛

𝑖=1 𝑥𝑖 → 𝑐. Finally, since 
⋁𝑛

𝑖=1 𝑥𝑖 ⩽ 𝑎, 
we conclude that 𝑐 ∈Σ(𝑎). □

The previous lemma yields a useful immediate consequence, which is that

Σ ⊢ 𝑏→ 𝑐 implies [𝑎]Σ ∈ℳ(𝑏→ 𝑐) for all 𝑎 ∈𝐿. (7)

Proposition 24. Let Σ ⊆ 𝐾 . The mapping [ ]Σ ∶ 𝐿 →𝐿 is extensive. Furthermore,

Σ ⊢ 𝑏→ 𝑐 if and only if 𝑐 ⩽ [𝑏]Σ.

Proof. Since (𝐿, ⩽, ∖) is algebraic, for any 𝑎 ∈ 𝐿 there is a subset 𝑋 ⊆ 𝐾 such that 𝑎 =
⋁
𝑋. On the other hand, for all 𝑥 ∈ 𝑋, 

we have that 𝑥 ⩽ 𝑎 and, by [Inc], Σ ⊢ 𝑥 → 𝑥. Therefore, 𝑋 ⊆ Σ(𝑎) and, thus, 𝑎 =
⋁
𝑋 ⩽

⋁
Σ(𝑎) = [𝑎]Σ, i.e. the operator [ ]Σ is 

extensive.
Assume now that Σ ⊢ 𝑏 → 𝑐. By extensiveness, 𝑏 ⩽ [𝑏]Σ and, by Lemma 23, we conclude that 𝑐 ≤ [𝑏]Σ. Conversely, if 𝑐 ≤ [𝑏]Σ =⋁
Σ(𝑏), since 𝑐 ∈𝐾 , there exists a finite subset {𝑦1, … , 𝑦𝑛} ⊆ Σ(𝑏) ⊆ 𝐾 such that 𝑐 ⩽

⋁𝑛

𝑖=1 𝑦𝑖 and, for each 1 ⩽ 𝑖 ⩽ 𝑛, there exists 
𝑥𝑖 ∈𝐾 with 𝑥𝑖 ⩽ 𝑏 and Σ ⊢ 𝑥𝑖 → 𝑦𝑖. Thus, by applying [Comp] 𝑛 times, we obtain that Σ ⊢

⋁𝑛

𝑖=1 𝑥𝑖 →
⋁𝑛

𝑖=1 𝑦𝑖. Finally, by [Aug], we 
have that Σ ⊢ 𝑏 → 𝑐. □

Theorem 25 (Completeness). Let Σ ⊆ 𝐾 and 𝑏 → 𝑐 ∈𝐾 . If Σ ⊧ 𝑏 → 𝑐 then Σ ⊢ 𝑏 → 𝑐.

Proof. First, [𝑏]Σ ∈ ℳ(Σ) because, for all 𝑥 → 𝑦 ∈ Σ, we have that Σ ⊢ 𝑥 → 𝑦 and, by (7), we conclude that [𝑏]Σ ∈ ℳ(𝑥 → 𝑦). 
Second, from Σ ⊧ 𝑏 → 𝑐, we have that [𝑏]Σ ∈ℳ(𝑏 → 𝑐). Finally, since 𝑏 ⩽ [𝑏]Σ, we conclude that 𝑐 ⩽ [𝑏]Σ and, by Proposition 24, 
Σ ⊢ 𝑏 → 𝑐. □

Combining the previous theorem with Theorem 19, we conclude that the fragment 𝐾 is both sound and complete within its 
axiomatic system. That is, for all Σ ⊆ 𝐾 and 𝑎 → 𝑏 ∈𝐾 ,

Σ ⊧ 𝑎→ 𝑏 if and only if Σ ⊢ 𝑎→ 𝑏.

Note that in some cases 𝐿 =𝐾 ; for example, when 𝐿 is finite, which is very common in practice. In any case, the following theorem 
extends the good connection between the semantic and syntactic facets to all the elements in 𝐿.
8

Theorem 26. Let Σ ⊆ 𝐾 . For all 𝑎 ∈𝐿, one has 𝚌Σ(𝑎) = [𝑎]Σ.
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⊤

𝑏𝑎 𝑐

⊥

(a) (𝐿, ⩽1)

⊤

𝑐

𝑎 𝑏

⊥

(b) (𝐿, ⩽2)

Fig. 2. Diamond and Pentagon lattices.

Proof. First, we prove that 𝚌Σ([𝑎]Σ) = 𝚌Σ(𝑎). On the one hand, by extensiveness of [ ]Σ and isotonicity of 𝚌Σ, we have that 𝚌Σ(𝑎) ⩽
𝚌Σ([𝑎]Σ). On the other hand, if 𝑑 ∈ℳ(Σ) and 𝑎 ⩽ 𝑑, then, by Theorem 19, for all 𝑥, 𝑦 ∈𝐾 such that 𝑥 ⩽ 𝑎 and Σ ⊢ 𝑥 → 𝑦, we have 
that 𝑦 ⩽ 𝑑. Therefore, 𝑑 is an upper bound of Σ(𝑎) and [𝑎]Σ ⩽ 𝑑. Thus, {𝑑 ∈ ℳ(Σ) ∣ 𝑎 ⩽ 𝑑} ⊆ {𝑑 ∈ ℳ(Σ) ∣ [𝑎]Σ ⩽ 𝑑} and, then, 
𝚌Σ([𝑎]Σ) ⩽ 𝚌Σ(𝑎).

Finally, we prove 𝚌Σ([𝑎]Σ) = [𝑎]Σ. On the one hand, since 𝚌Σ is extensive, we have that [𝑎]Σ ⩽ 𝚌Σ([𝑎]Σ). On the other hand, by (7)
and extensiveness of [ ]Σ, we have that [𝑎]Σ ∈ℳ(Σ) and 𝑎 ⩽ [𝑎]Σ. Therefore, 𝚌Σ([𝑎]Σ) =

⋀
{𝑑 ∈ℳ(Σ) ∣ 𝑎 ⩽ 𝑑} ⩽ [𝑎]Σ. □

The function [ ]Σ being a closure operator is a direct outcome of the preceding theorem, as previously noted.

6. Characterisation of the weak complete dual Heyting algebras

In the previous sections, we have presented the semantics based on an arbitrary complete lattice. Then we have introduced the 
axiomatic system after endowing the complete lattice with a new operation, called difference, which provides a weak-cdHa structure. 
Finally, we have also shown that, in order to guarantee the completeness of the axiomatic system, we need the weak-cdHa to be 
algebraic. The aim of this section is to find, given a complete lattice (𝐿, ⩽), necessary and sufficient conditions that must be satisfied 
to establish an operation ∖ that allows (𝐿, ⩽, ∖) to be a weak-cdHa. We will also study the uniqueness or not of such an operation in 
search of the algebraicity condition.

As mentioned in Section 2, every cdHa is a weak-cdHa. So, (2) is a sufficient condition, but not a necessary one. The following 
example shows two lattices in which Condition (2) is not satisfied and in which, not only can we define an operation that converts 
them to weak-cdHa, but there is more than one.

Example 3. Consider the complete lattices depicted in Fig. 2a and Fig. 2b, denoted by (𝐿, ⩽1) and (𝐿, ⩽2), and known as Diamond 
and Pentagon lattices, respectively.

Both lattices do not satisfy Condition (2) because, in both,

min{𝑥 ∣ 𝑐 ⩽ 𝑎 ∨ 𝑥} = min{𝑏, 𝑐,⊤}

do not exist. However, over (𝐿, ⩽1), not only can we define one weak-cdHa but we can define, at least, two different weak-cdHas: 
(𝐿, ⩽1, ∖1) and (𝐿, ⩽1, ∖2) where

∖1 ⊥ 𝑎 𝑏 𝑐 ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

𝑎 𝑎 ⊥ 𝑎 𝑎 ⊥

𝑏 𝑏 𝑏 ⊥ 𝑏 ⊥

𝑐 𝑐 𝑐 𝑐 ⊥ ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊥

∖2 ⊥ 𝑎 𝑏 𝑐 ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

𝑎 𝑎 ⊥ 𝑎 𝑎 ⊥

𝑏 𝑏 𝑏 ⊥ 𝑏 ⊥

𝑐 𝑐 𝑐 𝑐 ⊥ ⊥

⊤ ⊤ 𝑏 𝑐 𝑏 ⊥

Analogously, (𝐿, ⩽2, ∖3) and (𝐿, ⩽2, ∖4) are also two different weak-cdHas over the same lattice (𝐿, ⩽2), where

∖3 ⊥ 𝑎 𝑏 𝑐 ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

𝑎 𝑎 ⊥ 𝑎 ⊥ ⊥

𝑏 𝑏 𝑏 ⊥ 𝑏 ⊥

𝑐 𝑐 𝑐 𝑐 ⊥ ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊥

∖4 ⊥ 𝑎 𝑏 𝑐 ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

𝑎 𝑎 ⊥ 𝑎 ⊥ ⊥

𝑏 𝑏 𝑏 ⊥ 𝑏 ⊥

𝑐 𝑐 𝑐 𝑎 ⊥ ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊥

Furthermore, Remark 1 establishes that a necessary condition for (𝐿, ⩽, ∖) being a cdHa is that (𝐿, ⩽) need to be a distributive 
lattice. In addition, infinite distributivity is a sufficient condition to build a cdHa, which is also a weak-cdHa. However, it is not a 
9

necessary condition for being a weak-cdHa, as previous Example 3 shows.
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⊤

𝑑

𝑏𝑎 𝑐

⊥

Fig. 3. The Diamond lattice with one extra vertex.

We have shown examples where, over the same lattice, different operations define different weak-cdHas, contrary to the situation 
with cdHas. Our current inquiry is focused on the possibility of defining an operation ∖ ∶𝐿 ×𝐿 →𝐿 for all lattices (𝐿, ⩽) to create a 
weak-cdHa structure (𝐿, ⩽, ∖). However, our following counterexample states that this is not true.

Example 4. Consider the complete lattice (𝐿, ⩽) depicted in Fig. 3. Assume that there exists ∖ ∶ 𝐿 × 𝐿 → 𝐿 such that (𝐿, ⩽, ∖) is a 
weak-cdHa.

First, by [w4], we have that 𝑑 = 𝑑 ∨ 𝑎 = 𝑎 ∨ (𝑑 ∖ 𝑎) and, therefore,

𝑑 ∖ 𝑎 ∈ {𝑐, 𝑏, 𝑑}. (8)

Second, by [w1], we have that 𝑑 ∖ 𝑎 = (𝑎 ∨ 𝑏) ∖ 𝑎 ⩽ 𝑏, 𝑑 ∖ 𝑎 = (𝑎 ∨ 𝑐) ∖ 𝑎 ⩽ 𝑐, and 𝑑 ∖ 𝑎 = (𝑎 ∨ 𝑑) ∖ 𝑎 ⩽ 𝑑. As a consequence 𝑑 ∖ 𝑎 ⩽
𝑏 ∧ 𝑐 ∧ 𝑑 = ⊥, which contradicts (8).

Notice that, as expected, the lattice of the previous example is not distributive.
In summary, we have seen that there are lattices in which we can define more than one weak-cdHas and there are other lattices 

in which we can not define any. Now, the following theorem of characterisation of weak-cdHas will later provide us, sufficient and 
necessary conditions for the existence and uniqueness issues (see Corollary 28, Corollary 29 and Theorem 30, respectively.)

Theorem 27 (Characterisation). Consider a complete lattice (𝐿, ⩽) and a difference operation ∖∶ 𝐿 × 𝐿 → 𝐿. Then, (𝐿, ⩽, ∖) is a 
weak-cdHa if and only if the following conditions are satisfied:

𝑥 ∖ 𝑦 =min{𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} for all 𝑥, 𝑦 ∈𝐿 with 𝑥 ∦ 𝑦 and 𝑥 ≠ ⊤. (9)

⊤ ∖⊤ = ⊥. (10)

⊤ ∖ 𝑦 ∈ {𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = ⊤} for all 𝑦 ∈𝐿 with 𝑦 ≠ ⊤. (11)

𝑥 ∖ 𝑦 ∈ {𝑧 ∈𝐿 ∣ 𝑧 ⩽ 𝑥 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} for all 𝑥, 𝑦 ∈𝐿 with 𝑥 ∥ 𝑦. (12)

Proof. First, let’s suppose that (𝐿, ⩽, ∖) is a weak-cdHa and we prove that it holds the four assertions:
To prove (9), consider 𝑥, 𝑦 ∈𝐿 such that 𝑥 and 𝑦 are comparable, being 𝑥 ≠ ⊤, and distinguish two cases:

• If 𝑥 ∨ 𝑦 = 𝑦, by [w3], one has that 𝑥 ∖ 𝑦 = ⊥ =min{𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦}.
• In a different situation, i.e. if 𝑥 ∨ 𝑦 = 𝑥 ≠ ⊤, then 𝑥 ∖ 𝑦 ∈ {𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} by [w4]. In addition, for all 𝑧 ∈ {𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑦 =
𝑥 ∨ 𝑦}, one has that 𝑧 ∨ 𝑦 = 𝑥 ≠ ⊤ and, by [w1], 𝑥 ∖ 𝑦 ⩽ 𝑧. Consequently, 𝑥 ∖ 𝑦 =min{𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦}.

(10) is straightforward from [w3].
(11) is equal to (⊤ ∖ 𝑦) ∨ 𝑦 = ⊤ for all 𝑦 ∈𝐿 with 𝑦 ≠ ⊤, which is a particular case of [w4].
Finally, to prove (12) assume that 𝑥, 𝑦 ∈ 𝐿 being 𝑥 not comparable with 𝑦. By [w2] and [w4], one has that 𝑥 ∖ 𝑦 ∈ {𝑧 ∈ 𝐿 ∣ 𝑧 ⩽

𝑥 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦}.
Conversely, consider a complete lattice (𝐿, ⩽) and a difference operation ∖ ∶ 𝐿 ×𝐿 → 𝐿 fulfilling (9)–(12), and let us prove that 

(𝐿, ⩽, ∖) is a weak-cdHa, i.e. [w1], [w2], [w3] and [w4] hold.
Let 𝑥, 𝑦 ∈𝐿 with 𝑥 ∨𝑦 ≠ ⊤. By (9), (𝑥 ∨𝑦) ∖𝑦 =min{𝑧 ∈𝐿 ∣ 𝑧 ∨𝑦 = 𝑥 ∨𝑦}. Therefore, (𝑥 ∨𝑦) ∖𝑦 ⩽ 𝑧 for all 𝑧 ∈ {𝑧 ∈𝐿 ∣ 𝑧 ∨𝑦 = 𝑥 ∨𝑦}

and, in particular, (𝑥 ∨ 𝑦) ∖ 𝑦 ⩽ 𝑥, i.e. [w1] holds.
In all the cases, (9)–(12), it is straightforward that [w2] holds. Notice that (9)–(12) exhaustively describe all the situations for 

𝑥 ∖ 𝑦, depicting a classification in four disjoints cases.
Let’s prove [w3]. On the one hand, assume that 𝑥 ⩽ 𝑦. If 𝑥 = ⊤, by (10), ⊤ ∖ 𝑦 = ⊤ ∖ ⊤ = ⊥. In other case, 𝑥 ∖ 𝑦 = min{𝑧 ∈ 𝐿 ∣

𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦}, by (9), and this minimum element is ⊥ because ⊥ ∨ 𝑦 = 𝑦 = 𝑥 ∨ 𝑦. Thus, 𝑥 ⩽ 𝑦 implies 𝑥 ∖ 𝑦 = ⊥.
On the other hand, assume 𝑥  𝑦 and prove 𝑥 ∖ 𝑦 ≠ ⊥. If 𝑦 < 𝑥 ≠ ⊤, by (9), 𝑥 ∖ 𝑦 = min{𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦}, which is not ⊥

because ⊥ ∨ 𝑦 = 𝑦 ≠ 𝑥 ∨ 𝑦 = 𝑥. Analogously, by (11), it is proved that 𝑦 < 𝑥 = ⊤ implies 𝑥 ∖ 𝑦 ≠ ⊥. Finally, if 𝑥 is not comparable with 
10

𝑦, by (12), 𝑥 ∖ 𝑦 ∈ {𝑧 ∈𝐿 ∣ 𝑧 ⩽ 𝑥 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} and, therefore, 𝑥 ∖ 𝑦 ≠ ⊥ because ⊥ ∨ 𝑦 ≠ 𝑥 ∨ 𝑦.
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Finally, it is straightforward that [w4] holds in all the cases (9)–(12). □

Given a complete lattice, since the sets {𝑧 ∈ 𝐿 ∣ 𝑧 ⩽ 𝑥 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} and {𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑥 = ⊤} are always non empty, we can 
always define a ∖ operation holding (10)–(12). Thus, we focus on (9); i.e., on the existence of min{𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} for all 
𝑥, 𝑦 ∈ 𝐿 with 𝑥 comparable with 𝑦 and being 𝑥 ≠ ⊤. In addition, if 𝑥 ⩽ 𝑦, that minimum always exists and it is ⊥. Otherwise, if 𝑥 is 
∨-irreducible, {𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} = {𝑥} and the minimum also exists. In summary, there exists just one situation where (9) are 
not guaranteed: 𝑥 > 𝑦 and 𝑥 is a ∨-reducible element. The following corollary presents this situation that we have justified above:

Corollary 28. Consider a complete lattice (𝐿, ⩽). There exists a difference operation ∖ ∶ 𝐿 × 𝐿 → 𝐿 such that (𝐿, ⩽, ∖) is a weak-cdHa if 
and only if the following holds:

min{𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥} exists for all ∨-reducible 𝑥 ≠ ⊤ and all 𝑦 < 𝑥 (13)

Once we have characterised the existence, we focus on the uniqueness issue. Recall that in Example 3 we show two lattices 
where uniqueness does not fulfil. In the first one, {𝑧 ∈ 𝐿 ∣ 𝑧 ∨ 𝑎 = ⊤} is not a singleton (see (11)) whereas in the second one, 
{𝑧 ∈𝐿 ∣ 𝑧 ⩽ 𝑐 and 𝑧 ∨ 𝑏 = 𝑐 ∨ 𝑏} is either not a singleton (see (12)).

Since (9)–(12) exhaustively describe all the situations for 𝑥 ∖ 𝑦, depicting a classification in four disjoints cases, we have the 
following corollary from Theorem 27.

Corollary 29. Consider a complete lattice (𝐿, ⩽) such that there exists a difference operation ∖∶ 𝐿 × 𝐿 → 𝐿 satisfying that (𝐿, ⩽, ∖) is a 
weak-cdHa. Then, this operation ∖ is the unique one with (𝐿, ⩽, ∖) being a weak-cdHa if and only if the following properties hold:

{𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = ⊤} = {⊤} for all 𝑦 ∈𝐿 with 𝑦 ≠ ⊤. (14)

{𝑧 ∈𝐿 ∣ 𝑧 ⩽ 𝑥 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦} = {𝑥} for all 𝑥, 𝑦 ∈𝐿 with 𝑥 ∥ 𝑦. (15)

The subsequent theorem provides a criterion that establishes both the necessary and sufficient conditions for the uniqueness of 
the weak-cdHas.

Theorem 30 (Uniqueness). Consider a complete lattice (𝐿, ⩽) satisfying (13). There is just one difference operation ∖ ∶ 𝐿 × 𝐿 → 𝐿

being (𝐿, ⩽, ∖) a weak-cdHa if and only if the following conditions hold:

⊤ is ∨-irreducible. (16)

For all 𝑥, 𝑦, 𝑧 ∈𝐿, 𝑥 ∥ 𝑦 ∥ 𝑧 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦 implies 𝑧 = 𝑥. (17)

Proof. From the ∨-irreducibleness definition, (16) and (14) are equivalent. It is also straightforward that (17) implies (15). We 
conclude the proof showing that (13), (14) (or, equivalently, (16)) and (15) imply (17).

Let 𝑥, 𝑦, 𝑧 ∈ 𝐿 with 𝑥 ∥ 𝑦 ∥ 𝑧 and 𝑧 ∨ 𝑦 = 𝑥 ∨ 𝑦. Consider 𝑤 = 𝑥 ∨ 𝑦, which is ∨-reducible (because, the opposite contradicts that 
𝑥 ∥ 𝑦) and, therefore, by (16), we have that 𝑤 ≠ ⊤ and 𝑦 < 𝑤. In addition, by (13) we have that there exists 𝑣 = min{𝑡 ∣ 𝑡 ∨ 𝑦 =𝑤}. 
Thus, 𝑣 ⩽ 𝑥 and 𝑣 ⩽ 𝑧 because 𝑥, 𝑧 ∈ {𝑡 ∣ 𝑡 ∨𝑦 =𝑤}. Furthermore, 𝑣 ∨𝑦 =𝑤 = 𝑥 ∨𝑦. From (15), we have that 𝑣 = 𝑥 and, as consequence, 
𝑥 ⩽ 𝑧.

Repeating each step of the previous paragraph, but swapping the roles of 𝑥 and 𝑧, we have that 𝑧 ⩽ 𝑥, concluding that 𝑧 = 𝑥. □

Notice that (17) can be replaced by the following equivalent condition: for all ∨-reducible element 𝑥 ∈ 𝐿 and for any 𝑦 ∈ 𝐿 we 
have that {𝑧 ∈𝐿 ∣ 𝑧 ∨ 𝑦 = 𝑥} contains, at most, two elements.

7. Conclusions and further works

The focus of this paper is to develop a very general framework for dealing with unknown information. First, we provide a more 
general language that can be instantiated, for example, as graded information, positive, negative and unknown information, etc. 
Then we consider the structure of complete lattice as the layout for building the semantics. Later, a key point in the simplification 
paradigm is defined: the difference operation on the complete lattice. This operation must satisfy certain properties in order to 
achieve the soundness of Simplification logic and to provide a foundation for the corresponding inference engine. The paper places 
special emphasis on the weak complete dual Heyting algebra (weak-cdHa), which is a weakening of the properties of the complete 
dual Heyting algebra in an adequate way to preserve the necessary properties. Requiring the underlying lattice to be algebraic, we 
can prove that the corresponding Simplification logic is complete.

Finally, we have characterised the weak-cdHas in order to distinguish the lattices in which we can define this structure from 
those in which we cannot. In addition, we also characterise the properties of the difference operation to build such a structure in a 
11

consistent way, and provide the conditions that ensure the unicity of the difference operation.
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As further work, first, in the formal framework, it is relevant to study which weak-cdHas are algebraic and which are not. 
In addition, from the point of view of the applicability of this new framework, we propose to apply it to different purposes. In 
particular, we propose to extend the work done in [10] to the fuzzy FCA framework; in this line, one of the points to consider is [23]. 
Our approach is to incorporate the unknown information in the formal context by considering pairs of degrees in the following way: 
the first one will be the degree to which we know that an object has the attribute, while the second one will be the degree to which 
we know that an object does not have the attribute. Thus, this paper is the needed bridge to move from the particular case presented 
in [10] to a more general framework. In particular, we are interested to consider the multi-adjoint framework which is now a very 
popular issue [24,25]. We also plan to study the relationship with other related approaches [26]. Another interesting topic is the 
study of the impact of lattice distributivity [27,28] on the Simplification Logic.
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Appendix A. Some proofs

Proof for item 1 in Proposition 12. First, 𝚌
𝐷

is inflationary because 𝑥 ⩽ 𝚌
𝐷
(𝑥) =

⋀
{𝑑 ∈ 𝐷 ∣ 𝑥 ⩽ 𝑑} for all 𝑥 ∈ 𝐿. The operator 

𝚌
𝐷

is also isotone because, for all 𝑥, 𝑦 ∈ 𝐿, 𝑥 ⩽ 𝑦 implies {𝑑 ∈ 𝐷 ∣ 𝑦 ⩽ 𝑑} ⊆ {𝑑 ∈ 𝐷 ∣ 𝑥 ⩽ 𝑑}, and therefore we have that 𝚌
𝐷
(𝑥) =⋀

{𝑑 ∈𝐷 ∣ 𝑥 ⩽ 𝑑} ⩽
⋀
{𝑑 ∈𝐷 ∣ 𝑦 ⩽ 𝑑} = 𝚌

𝐷
(𝑦). Finally, 𝚌

𝐷
is idempotent because, since it is inflationary and isotone, we have that 

𝚌
𝐷
(𝑥) ⩽ 𝚌

𝐷
(𝚌

𝐷
(𝑥)), and, since {𝑑 ∈𝐷 ∣ 𝑥 ⩽ 𝑑} ⊆ {𝑑 ∈𝐷 ∣ 𝚌

𝐷
(𝑥) ⩽ 𝑑}, we also have that 𝚌

𝐷
(𝚌

𝐷
(𝑥)) =

⋀
{𝑑 ∈𝐷 ∣ 𝚌

𝐷
(𝑥) ⩽ 𝑑} ⩽

⋀
{𝑑 ∈

𝐷 ∣ 𝑥 ⩽ 𝑑} = 𝚌
𝐷
(𝑥). So, 𝚌

𝐷
is a closure operator. □

Proof for item 2 in Proposition 12. The closure operator 𝚌
𝐷

induces the closure system 𝚌
𝐷
(𝐿) = {𝑥 ∈𝐿 ∣ 𝚌

𝐷
(𝑥) = 𝑥}. It is straight-

forward that 𝚌
𝐷
(𝑧) ∈ {

⋀
𝑋 ∣ 𝑋 ⊆ 𝐷} for all 𝑧 ∈ 𝐿. Conversely, let 𝑧 =

⋀
𝑋 for some 𝑋 ⊆ 𝐷, then 𝑋 ⊆ {𝑥 ∈ 𝐷 ∣ 𝑧 ⩽ 𝑥} and 

𝚌
𝐷
(𝑧) ⩽

⋀
𝑋 = 𝑧. In addition, since 𝚌

𝐷
is inflationary, we conclude that 𝚌

𝐷
(𝑧) = 𝑧 and 𝑧 ∈ 𝑐𝐷(𝐿). □

Proof of the derivability of [Aug] in Proposition 20. The following sequence is a proof for [Aug]:

𝜑1 = 𝑎→ 𝑏 By hypothesis.

𝜑2 = 𝑐 ∨ 𝑏→ 𝑑 By [Inc].

𝜑3 = 𝑎 ∨ ((𝑐 ∨ 𝑏) ∖ 𝑏)→ 𝑑 By using [Simp] to 𝜑1 and 𝜑2.

𝜑4 = 𝑐→ 𝑎 ∨ ((𝑐 ∨ 𝑏) ∖ 𝑏) By [Inc] and [w1].

𝜑5 = 𝑐→ 𝑑 By using [Simp] to 𝜑4 and 𝜑3. □

Proof of Proposition 21. First, a proof for 𝑎 → 𝑏 ⊢ 𝑎 → 𝑏 ∖ 𝑎 is the following sequence:

𝜑1 = 𝑎→ 𝑏 By hypothesis.

𝜑2 = 𝑏→ 𝑏 ∖ 𝑎 By [w2] and [Inc].
12

𝜑3 = 𝑎→ 𝑏 ∖ 𝑎 Applying [Simp] to 𝜑1 and 𝜑2 using [w3].
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The opposite direction can be proved to apply [Aug] to 𝑎 → 𝑏 ∖ 𝑎 (which is the hypothesis) and using [w4].
Second, to prove that from {𝑎 → 𝑏, 𝑎 → 𝑐} we can derive {𝑎 → 𝑏 ∨ 𝑐} we use [Un] to both hypothesis. The opposite direction is 

straightforward from [Aug].
[⊥-Eq] is due to [FragEq] and [Inc].
Finally, the following sequence proves that from {𝑎 → 𝑏, 𝑐 → 𝑑} we can derive {𝑎 → 𝑏, 𝑐 ∖ 𝑏 → 𝑑 ∖ 𝑏} when 𝑎 ≤ 𝑐 ∖ 𝑏. We start 

proving that from 𝑎 → 𝑏 and 𝑐→ 𝑑 we derive 𝑎 → 𝑏 and 𝑐 ∖ 𝑏 → 𝑑 ∖ 𝑏 if 𝑎 ≤ 𝑐 ∖ 𝑏:

𝜑1 = 𝑎→ 𝑏 By hypothesis.

𝜑2 = 𝑐 ∖ 𝑏→ 𝑐 By using [Aug], 𝑎 ≤ 𝑐 ∖ 𝑏 and 𝑐 ≤ 𝑐 ∨ (𝑐 ∖ 𝑏).

𝜑3 = 𝑐→ 𝑑 By hypothesis.

𝜑4 = 𝑐 ∖ 𝑏→ 𝑑 By using [Simp] to 𝜑2 and 𝜑3.

𝜑5 = 𝑐 ∖ 𝑏→ 𝑑 ∖ 𝑏 By using [Aug] to 𝜑4 and [w2].

To prove the opposite direction, we use the following sequence.

𝜑1 = 𝑎→ 𝑏 By hypothesis.

𝜑2 = 𝑐 ∖ 𝑏→ 𝑑 ∖ 𝑏 By hypothesis.

𝜑3 = 𝑐 ∖ 𝑏→ 𝑑 ∨ 𝑏 Applying [Un] to 𝜑1 and 𝜑2.

𝜑4 = 𝑐→ 𝑑 By using [Aug] to 𝜑3 and [w2].

Notice that in 𝜑3 we use 𝑎 ≤ 𝑐 ∖ 𝑏 and (𝑑 ∖ 𝑏) ∨ 𝑏 = 𝑑 ∨ 𝑏 by [w4]. □
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