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A B S T R A C T   

The recent advent of long read sequencing technologies, such as Pacific Biosciences (PacBio) and Oxford 
Nanopore technology (ONT), have led to substantial improvements in accuracy and computational cost in 
sequencing genomes. However, de novo whole-genome assembly still presents significant challenges related to 
the quality of the results. Pursuing de novo whole-genome assembly remains a formidable challenge, underscored 
by intricate considerations surrounding computational demands and result quality. As sequencing accuracy and 
throughput steadily advance, a continuous stream of innovative assembly tools floods the field. Navigating this 
dynamic landscape necessitates a reasonable choice of sequencing platform, depth, and assembly tools to 
orchestrate high-quality genome reconstructions. This comprehensive review delves into the intricate interplay 
between cutting-edge long read sequencing technologies, assembly methodologies, and the ever-evolving field of 
genomics. With a focus on addressing the pivotal challenges and harnessing the opportunities presented by these 
advancements, we provide an in-depth exploration of the crucial factors influencing the selection of optimal 
strategies for achieving robust and insightful genome assemblies.   

1. Introduction 

In recent years, remarkable advancements in the assemblies of both 
genomes and transcriptomes have been driven mainly by the emergence 
of high-throughput sequencing technologies. Next Generation Sequencing 
(NGS) platforms, both short reads and long reads, have revolutionized 
the field by generating vast amounts of data in a single sequencing run. 
In this sense, long read sequencing, led by PacBio and ONT, offers 
several advantages over short read sequencing, as it allows the genera
tion of accurate and contiguous genome assemblies. While short read 
sequencers such as Illumina’s NovaSeq, HiSeq, NextSeq, and MiSeq in
struments; BGI’s MGISEQ and BGISEQ models; PacBio Onso short read 
platform, the Element AVITI System or Thermo Fisher’s Ion Torrent 
sequencers produce reads of up to 600 bases, long read sequencing 
technologies routinely generate reads most ranging between 10 kb and 
100 kb, with a current record of 2.3 Mb [1]. To illustrate the impact of 
NGS, consider the initial draft of the human genome achieved through 
Sanger Sequencing, which incurred an exorbitant cost of $3 billion and 
took over a decade to complete [2,3]; however, with the NGS platforms, 
millions or even billions of reads can be produced in a single run within a 

few hours or days, making it more efficient than Sanger sequencing. In 
this sense, in a first foray, the development of short read NGS, such as the 
Illumina platform, could sequence tens of thousands of genomes within 
a year, with a typical accuracy rate surpassing 99% [4,5]; the incorpo
ration of unknown genomes at databases still continue to increase today. 
This way, Fig. 1A and B illustrate the quantity of short read (Illumina) 
and long read (ONT and PacBio) sequencing data archived in the NCBI, 
accompanied by access statistics, highlighting the importance of these 
technologies for the scientific community. So, these advancements in 
NGS technology have made large-scale genomics projects more feasible 
and opened up new possibilities for studying complex biological pro
cesses. The ability to obtain comprehensive genomics and tran
scriptomics data cost-effectively and efficiently has significantly 
accelerated research across various disciplines, enabling us to deepen 
our understanding of genetics, evolution, and disease mechanisms [6]. 

Despite the striking achievements of short read sequencing, as Illu
mina, in de novo assembly to constructing genomes, its limitations 
become evident when we need to detect long repetitive structures or 
long structural variants (SVs). Like that, short read methods identify 
rearrangements or deletions/insertions no larger than approximately 
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500 bp. However, larger-size insertions constitute a significant chal
lenge. In this sense, long reads have been shown to be more advanta
geous than short reads alone, because they can span longer repetitive or 
other problematic regions, boasting an accuracy rate of 99 9% [4,5]. 
Table 1 summarizes the key features and characteristics of short reads 
(Illumina) and long reads (PacBio and ONT). 

Moving on to other issues, the cost for long read sequencing is higher 
to obtain the same coverage compared to short read sequencing; hence, 
hybrid assembly, short read plus long read, approaches have continued 
to be a powerful strategy for achieving highly accurate and contiguous 
genome assemblies without high cost [10]. The integration of these 
complementary data types in hybrid assembly pipelines has demon
strated performance in terms of contiguity and accuracy, facilitating the 
reconstruction of highly contiguous genomes with reduced gaps and 
misassemblies [11–14]. 

Given the increasing interest in long read sequencing and the rapid 
progress in applications and software development, the primary objec
tive of this review is to provide a comprehensive exposition of the 
fundamental principles governing long read data analysis, including 

hybrid assembly strategies. Additionally, it aims to present a thorough 
survey of tools for various analytical tasks associated with long read 
sequencing, including hybrid assembly, while critically examining areas 
within long read analysis that require further refinement. In summary, 
long read sequencing technologies, with their ability to capture long- 
range information and resolve intricate genomics features, have pro
pelled the field of genomics forward. 

2. Long read sequencing technologies 

The emergence of long read sequencing technologies, such as PacBio 
and ONT, has simplified genomes reconstruction and improved assem
bly contiguity [15–19]. A brief and comprehensive summary of the key 
features and characteristics of PacBio and ONT sequencing technologies 
is presented in Tables 1. These technologies have revolutionized the 
study of genomics by enabling the coverage of long repetitive regions, 
closing gaps in existing reference assemblies, and facilitating the char
acterization of structural variations (SV), many of which have been 
linked to various diseases [20]. So, it is especially noteworthy that the 

A

B C

Fig. 1. Figure: Comprehensive View of Genomics Sequencing Advancements and Data Growth Trends. A) This figure provides an overview of the progress made in 
genomics sequencing technologies, specifically in the field of sequencing techniques. B and C) Analysis of the substantial growth in sequencing data archived within 
the NCBI repository. 
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number of SRA files in the NCBI database has increased in recent years 
(Fig. 1C). Despite this, several historical limiting factors, e.g., limited 
yield, high error rates, and high cost per base, have hindered the 
widespread adoption of these third-generation sequencing technologies 
in large-scale sequencing projects. However, significant progress in 
recent years has mitigated these limitations, leading to both substantial 
reductions in error rates and overall performance improvements. 

Table 2 summarizes the significant improvement in the sequencing 
technology from Sanger to the third sequencing technology, PacBio and 
ONT. These advances have opened up new possibilities and opportu
nities for leveraging the unique characteristics of long reads in genome 
assembly. It has enabled researchers can address complex genomics 
regions, resolve structural variations, and gain valuable insights into 
diseases and biological processes. As a result, long read sequencing has 
significantly increased innovative approaches and tools specifically 
designed for analyzing and assembling long reads. 

2.1. Single molecule real time sequencing (SMRT) 

This technology was developed by PacBio and was the first long read 
sequencing technology to achieve widespread deployment [21]. It is 
typically differentiated by two modes of SMRT sequencing: 1) the 
currently deprecated Continous long reads or CLR and 2) Circular 
Consensus Sequencing or CCS, which generates HiFi reads. 

2.1.1. PacBio continuous long read 
CLR reads come from the initial construction of standard SMRTbell 

template libraries with DNA inserts larger than 30 kb in length. Due to 
the large insert size in these molecules, the polymerase only performs 
one or a few passes around the template, which generates subreads with 
a typical length of 5–60 kb but can be up to 100 kb long. It provides a 
lower accuracy (typically of 85–92%) [21–25] concerning Illumina 

short reads (which reaches 99.9%). It becomes the usage of PacBio CLR 
inappropriate to detect SNVs or indels and requires the combination 
with another sequencing technology type (e.g., hybrid assembly with 
short or long reads) to detect all the different types of genetic variation, 
which increases the complexity and the cost of the projects. 

Sequel platforms can generate CLR reads with a yield of 160Gb per 
flow cell (compared to the 2 Gb and 20 Gb of data per flow cell achieved 
on RS II and Sequel platforms) with the Sequel II platform (see Table 1). 
However, the new system Revio is designed explicitly for high-fidelity 
(HiFi) long read sequencing and does not support CLR reads. 

2.1.2. PacBio high-fidelity reads (PacBio HiFi) 
HiFi reads exhibit exceptional accuracy (reads over 10 kb with an 

accuracy of over 99%). In this case, SMRTbell template libraries are 
assembled with smaller inserts of 10–30 kb and later sequenced via CCS 
mode. Due to the reduced length of the insert, the polymerase can 
perform several passes through the SMRTbell template. This leads the 
polymerase to produce exceptionally long reads (an N50 read length 
exceeding 150 kb), which have subreads from both the forward and 
reverse complements of the DNA template. Ultimately, the HiFi protocol 
enhances DNA polymerase efficiency, increasing subread throughput 
(over 200 Gbases compared to 100 Gbases with CLRs). However, longer 
run times (30h) are required for dataset generation, as accuracy relies on 
more passes. 

Later, these subreads are merged using the CCS algorithm to generate 
HiFi consensus, resulting in 15–25 Gbases of HiFi data from a single 
SMRT Cell 8 M, underperforming PacBio CLR (see Table 1). Usually, CCS 
algorithms need three or four subreads of the same molecule to remove 
most stochastic errors and achieve a minimum accuracy of 99% [26] (as 
referred to in Table 1). Nonetheless, once removed, several studies 
report an accuracy of up to 99.9% [25], with over 99.5% of homopol
ymers up to five bases in length accurately [25–27]. 

Table 1 
Overview of long read and short read sequencing technologies and platforms: An exploration of distinctive features, advantages, and applications, offering insights into 
their roles in genomics and research.  

Company Systems Data 
type 

Read Length 
(Maximum) 

Accuracy 
(%) 

Maximum throughput 
per flow cell 

Sequencing cost per 
Gb (USD) 

Equipment cost 
(USD) 

Pacific Biosciences 
(PacBio) 

Sequel II/Sequel 
IIe 

PacBio 
CLR 

>100*kb 87–92 160Gb 13–26 
approximately 
525,000 PacBio 

HiFi 
>20 kb >99 30Gb 43–86 

Revio 
PacBio 
HiFi 15–20 kb >99.9 90Gb 11 779,000 

Onso 
short 
read up to 2 × 150 bpb > 99.9 2400–3000 Gb 15 259,000 

ONT 

MinION/GridION 
Long 10–100 kb 

>99% 

48 Gb 
$∼14-24d 

from ~1000/ 
69,162 Ultra- 

long 
>100 kb ~72d 

PromethION 
Long 10–100 kb 

50–200 Gb $ ~ 3–4.6d from ~436,404 Ultra- 
long >100 kb 

Flongle 
Long 10–100 kb 

2.8 Gb $ ~ 9.31d from ~1510 Ultra- 
long 

>100 kb 

Illumina 

NextSeq 1000 & 
2000 

Single- 
end 

1 × 50 bpc 

>99.9% 

60Gbc 

30/20 210,000/335,000 
Paired- 
end up to 2 × 300 bpc 60–180 Gbc 

NovaSeq 6000 
series 

Single- 
end 1 × 35 bpd 280–350 Gbd 

10–35 985,000 
Paired- 
end 

up to 2 × 250 bpd 325–400 Gbd e 

NovaSeq X Series Paired- 
end 

up to 2 × 150 bpf up to ∼8 Tbf 2 985,000–1.25 
million 

aAll cost estimates exclude the cost of labor, instrumentation, maintenance, and computer resources. bRead length corresponding to 300 cycle sequencing kit. cOutput 
specifications based on a single flow cell using Illumina PhiX control library at supported cluster densities [7]. dSpecifications based on Illumina PhiX control library at 
supported cluster densities [8]. eWith a maximum read length of 2 × 150, the throughput is capable of reaching 2400–3000 Gb [8]. fSpecifications based on Illumina 
PhiX control library or a TruSeq DNA Library created with NA12878 at supported cluster densities [9]. gCurrent cost when performing sequencing with an SMRTbell 
Express Template Prep Kit 2.0 and SMRT Cell 8 M. hApproximate cost corresponding to the price of the flow cell R.10.4. 
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Despite the inherent accuracy, and as an example, it needs approx
imately three SMRT Cells 8 M to generate a 25× coverage, enough to de 
novo assembly of a human genome [26,28]. Consequently, since each 
SMRT Cell 8 M is run sequentially with the currently available systems 
(Sequel II and Sequel IIe), this process takes several days. However, 
these limitations are mitigated with the new system Revio (see Table 1), 
which reduces the run time to 24 h and supports four high-density SMRT 
cells (which support 25 million ZMWs vs. 8 million of Sequel IIe) that 
can run in parallel, which involves a 15× increase in HiFi read 
throughput. Thus, Revio can produce up to 90 Gbase per SMRT Cell, or 
360 Gbases of HiFi reads per day. 

All these enhancements become HiFi reads a prominent technology. 
The high accuracy of PacBio HiFi sequence data has had a significant 
impact on 1) improving variant discovery, 2) reducing the cost of the 
assembly, and 3) providing access to even more complex regions of re
petitive DNA, including the contiguous assembly of some human cen
tromeres. However, the cost (see Table 1) of both sequencing (likely 
mitigated with the new Revio system) and equipment has limited the 
usage of this technology. Additionally, the computational cost employed 
to generate HiFi data (2000 CPU hours per SMRT Cell 8 M of data with 
the recent improvements) could still be considered a disadvantage. 

2.2. Oxford Nanopore Technologies (ONT) 

ONT presents a remarkable ability to generate extensive reads up to 
hundreds to thousands of kilobases in length (outperforming PacBio by 
at least an order of magnitude). This length is achieved by the Nano
pore’s chemistry, which makes the displacement of molecules through 
the nanopore possible, regardless of their length. Studies suggest that 

high molecular weight DNA extraction and preparation may determine 
the ONT read lengths. It differentiates two main types of ONT data: 1) 
the conventional long read (10–100 kb) and 2) ultra-long read (>100 
kb).  

1. Long read: Up to now, the accuracy of the standard long read was 
around 87–98% logsdon2020long, with a small portion with a pre
cision of 69% according to some studies [22]. With the most recent 
Q20+ platform update and the combined application of the Ligation 
Sequencing Kit V14, the accuracy reaches over 99%. However, ONT 
raw read accuracy is highly dependent on the base-calling algorithm 
used [25,29,30].  

2. Ultra-long read: ONT ultra-long read can be up to several megabases 
in length [31] and present an accuracy similar to ONT long read (see 
Table 1). These were crucial to complete the human genome, 
enabling the resolution of repetitive regions that could not be 
resolved with other technologies [3]. 

Long and ultra-long nanopore sequencing reads can span complex 
genomic regions, like structural variants and repeats, which present 
several challenges to assemble accurately using traditional short read 
sequencing technologies. Also, long nanopore sequencing reads enhance 
haplotype phasing, enabling the assignment of sequencing data to 
maternally or paternally inherited chromosomes. 

These reads can be generated on any of the three standard ONT 
platforms: MinION, GridION, and PromethION, which differ in the low 
cell capacity, with a single flow cell for MinION and up to 5 and 48 flow 
cells for GridION and PromethION, respectively. Moreover, the MinION 
and the GridION share the same type of flow cell, with 512 nanopore 
channels. In contrast, PromethION uses a different type of flow cell with 
2675 nanopore channels. It results in a yield for the PromethION of 
50–100 Gbases of ultra-long native DNA reads, and 100–200 Gbases of 
native genomic DNA (gDNA) reads, in contrast to the GridION, which 
achieves up to 48 Gbases per MinION Flow Cell (see Table 1). Moreover, 
since PromethION can run up to 48 independently addressable, high- 
capacity Flow Cells, PromethION achieves notably higher throughput 
than PacBio (see Section 2.1 and Table 1). 

Moreover, while the handheld MinION is already established for 
portable DNA sequencing, ONT has recently started the development of 
an even smaller device known as SmidgION. It uses the same core 
nanopore sensing technology as MinION and PromethION but is 
designed for smartphones or other mobile, low-power devices. Finally, 
ONT provides an adapter compatible with the MinION and GridION 
platforms for low-throughput applications, namely Flongle (or flow cell 
dongle). It presents a different type of flow cell, which has 126 channels. 
Each nanopore channel is controlled and measured individually by the 
bespoke ASIC. This allows for multiple nanopores to be run in parallel. 
The main advantage of Flongle is that it can perform smaller, frequent, 
and rapid tests at a significantly lower cost than MinION or GridION 
flow cells. 

3. De novo assembly 

Regarding genome assembly using the advancements in sequencing 
technology, we encounter two strategies: 1) reassembly, accomplished by 
aligning reads to an existing reference genome, and 2) de novo whole- 
genome assembly. De novo whole-genome assembly can be likened to 
the meticulous assembly of an intricate jigsaw puzzle, where each piece 
corresponds to a nucleotide sequence (read) of the genome. This com
plex process involves the assembly of substrings or contigs, which are 
ingeniously pieced together to construct complete chromosomes by 
identifying overlapping regions between them. This intricate puzzle- 
solving underlines why obtaining the entirety of a genome’s sequence 
in one go remains beyond the reach of current sequencing technologies. 
A key advantage of de novo assembly concerning the mapping against a 
reference is that it avoids biases arising from evolutionary differences or 

Table 2 
Types of Errors in Genomics Sequencing Technologies: An overview of error 
categories in genomics sequencing.  

Type of Error Description Predominant 
Technology 

Random base errors Random errors in base 
identification. 

PacBio, ONT, 
Illumina, Sanger 

Repetitive sequence 
errors 

Errors related to sequencing regions 
of the genome containing 
repetitive, similar sequences. 

Illumina, Sanger 

End-of-read quality 
drop 

Decrease in base quality toward the 
end of sequencing reads. 

PacBio, ONT, 
Illumina, Sanger 

Polymerase eruptions Issues related to the length of reads, 
which can be truncated or 
elongated unexpectedly. 

PacBio, ONT 

Read correction errors Errors that may arise if error 
correction strategies are not applied 
correctly. 

PacBio, ONT, 
Illumina, Sanger 

Base call errors Errors in the identification of bases, 
more pronounced in high GC 
content (short reads). 

PacBio, ONT, 
Illumina 

Homonucleotide 
stretch errors 

Errors in sequences with stretches 
of identical nucleotides, 
particularly in long reads. 

PacBio, ONT 

InDels errors Insertion or deletion errors in the 
nucleotide sequence. 

PacBio, ONT, 
Illumina, Sanger 

Gaps Regions in the assembly where 
sequences are missing, possibly due 
to sequencing or assembly issues. 

PacBio, ONT, 
Illumina, Sanger 

Misplaced/merged 
haplotype errors 

Errors in identifying and placing 
haplotypes or genetic variants, 
especially in long reads. 

PacBio, ONT 

Gene prediction errors Errors in gene prediction from the 
DNA sequence, especially in long 
reads. 

PacBio, ONT 

Missing gene errors Errors resulting in missed gene 
identification, especially in long 
reads. 

PacBio, ONT 

Misplaced gene 
synteny 

Errors in the organization and 
arrangement of genes in the 
genome, especially in long reads. 

PacBio, ONT  
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genetic diversity between the reference and the sequenced genome. 
Remarkable projects such as the 1000 Genome Project [32], 10 k UK 
Genome Project [33], International Cancer Genome Consortium [34], 
Vertebrate Genome Project [35], Darwin Tree of Life [36], European 
reference Genome Atlas or ATLASeaand [37], Atlas des Génomes Marins 
or ATLASea [38] and 1001 Arabidopsis Genome Project [39] have 
effectively showcased the vast genetic variability present among in
dividuals and cells types. These endeavors have successfully unveiled 
single-nucleotide variations and structural differences. 

Nevertheless, de novo assembly has its substantial challenges. The 
process of genome assembly demands significant time and computa
tional resources. While assembling small genomes, such as those of 
prokaryotes, might be manageable with relatively modest computing 
resources and time investments, the story is quite different for eukaryote 
genome projects. Moreover, achieving high-quality genome assembly 
still grapples with biological complexities. Challenges arise when the 
genome reconstruction involves scenarios such as 1) significant het
erozygosity within the genome, 2) non-random repeat elements like long 
interspersed nuclear elements (LINEs), short interspersed nuclear ele
ments (SINEs), long terminal repeats (LTRs), and simple tandem repeats 
(STRs), 3) organisms with polyploid genomes. Repeated regions within 
the genome can introduce issues, leading to misassemblies between 
distant genomic regions or incorrect estimations of repeat counts. 
Frequently, regions of high repetition result in fragmented assemblies, 
as existing tools need help to navigate these regions and cease extending 
contigs at the boundaries of the repeats [40]. 

Interestingly, long read sequencing platforms, like those offered by 
PacBio or ONT, demonstrate improved capabilities in assembling 

genomes containing extensive repetitive elements. Genomes with high 
levels of heterozygosity can also lead to fragmented assemblies or 
introduce uncertainty regarding the homology of contigs, i.e., whether 
certain contigs share an evolutionary relationship or belong to different 
genomic regions. Furthermore, the challenges are compounded when 
dealing with highly polyploid genomes. 

Within the existing literature, two distinct types of long read as
sembly stand out: long read-only assembly and hybrid assembly (short 
reads and long reads). In terms of assembly strategies, three prominent 
methods emerge: OLC (Overlap Layout Consensus), DBG (De Bruijn 
Graph), and SG (String Graph). These approaches each offer unique ad
vantages and considerations, contributing to the complex landscape of 
genome assembly using the cutting-edge technologies at our disposal. 

3.1. Assembly algorithms 

There are two widely recognized methods for genome assembly: the 
De Bruijn Graph (DBG) approach and the Overlap-Layout-Consensus (OLC) 
method. Fig. 2 offers a visual representation of these two prominent 
techniques for genome reconstruction, providing a comprehensive 
overview of their respective processes in assembling genomes from 
sequencing data. 

3.1.1. De Bruijn Graph (DBG) 
The De Bruijn Graph (DBG) algorithm was initially proposed by 

Idbury and Waterman in 1946 to assemble sequence fragments. It in
volves breaking down the input sequence into multiple sub-sequences, 
known as k-mers, to identify overlaps between reads. These overlaps 

Fig. 2. Overview of de novo Genome Assembly Methods: An exploration of the methodologies and strategies.  
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construct a graph that establishes connections among all the k-mers. In 
the context of DBG assemblers, the graph nodes correspond to over
lapping regions, while the k-mers form the edges. It’s important to note 
that repeated k-mers create multiple edges, linking the same pair of 
nodes. Regions in the sequence with repetitive patterns and varying 
copy numbers are represented as individual nodes with numerous 
incoming and outgoing edges. The desired outcome is the formation of a 
single, unambiguous contig through which a singular path traverses the 
graph, visiting each edge exactly once. However, in practice, the graph 
often becomes divided into multiple disjointed sub-graphs due to 
inherent sequencing errors and incomplete coverage of k-mers. 

The DBG method gained more traction with the advent of Illumina/ 
Solexa sequencing technology. It initially successfully assembled smaller 
genomes, such as bacteria, and subsequently evolved to accommodate 
larger genomes. A critical computational advantage of DBG lies in its 
scalability, adapting to the size and intricacy of the genome. The 
quantity of graph nodes does not increase with multiple overlaps be
tween different reads; instead, it grows solely by adding new k-mers. 
Nonetheless, sequencing errors introduce erroneous k-mers into the 
dataset, leading to a higher count of graph edges and increased graph 
complexity. This phenomenon results in bubbles or bifurcations within 
the graph, where incorrect paths can be identified based on k-mer fre
quency. Furthermore, this elevated complexity necessitates a larger 
memory footprint. Finally, an inherent drawback of the DBG approach is 
the loss of information inherent in the original reads. 

3.1.2. Overlap Layout Consensus (OLC) 
The Overlap Layout Consensus (OLC) algorithm was introduced by 

Staden in 1980 and became a key issue with the widespread adoption of 
Sanger sequencing technology. It consists of three steps: (1) overlap, (2) 
layout and (3) consensus. First, overlaps (O) between all sequencing 
reads are identified. Second, the OLC algorithm creates the layout (L) of 
all reads and overlaps information on a graph. It is a Hamiltonian path 
problem NP-hard in contrast to DBG assembly where inferring the 
contigs sequence is an Euler path problem that is easier to resolve. 
Finally, in the consensus (C) step, sequence is inferred. 

This strategy exits two data structures: (1) the overlap graph and (2) 
the string graph. Kececioglu and Myers proposed the Overlap Graph (OG) 
and adopted a bidirectional architecture [41]. In this graph, vertices 
correspond to the input reads, and edges are defined by connections 
between reads where a suffix of one matches a prefix of another. 
Moreover, arrowheads on each edge denote the different ways in which 
two reads can overlap [42]. Conversely, the String Graph (SG), intro
duced by Myers and his collaborators [43], simplifies the classic overlap 
graph and removes the transitive edges. It results in a direct overlap 
graph [44]. Thus, a String Graph can be obtained from the overlap graph 
by eliminating duplicate and contained reads, followed by removing 
transitive edges from the graph. 

Since identifying overlap regions between each pair of reads involves 
all-versus-all pairwise alignment between all reads, this step represents 
the major performance bottleneck in OLC assemblers. A joint proposal to 
mitigate this limitation has been to create a mapping from the constit
uent k-mers (subsequences of fixed length k) to the sequences [45,46], 
and only compare sequences that share common k-mers. However, this 
proposal has a long memory footprint due to the many k-mers generated 
(potentially up to 4 k k-mers). To address this limitation, the usage of 
minimizers [47] has been proposed. The main idea is to select the 
minimal k-mer (minimizer) in each sliding window of each sequence and 
generate a fingerprint of each one, much smaller than the original 
sequence. If the fingerprint of a pair of sequences presents a large 
overlap, an overlap is likely to exist at the sequence level. Moreover, de 
novo assembly leverages efficient data structures to compute all exact 
maximal pairwise suffix-prefix overlaps, e.g., Burrows–Wheeler trans
form (BWT) [48] and FMindex [44,49]. Other recent research [50] 
proposes instead of computing all (irreducible) pairwise overlaps up- 
front, introduces multiple queries: (1) assessing one-to-one overlaps, 

(2) evaluating one-to-all overlaps, (3) reporting all overlaps longer than 
a given constant, (4) counting overlaps longer than a specified length, 
and (5) identifying and returning the top longest overlaps. 

One of the significant advantages of OLC approaches is that any re
petitive genome region shorter than the read length is automatically 
resolved. However, repeats larger than the read length can generate 
unresolvable ambiguous overlaps between reads from different genome 
parts. OLC algorithm addresses this issue by masking or hiding reads 
associated with repetitive regions. Consequently, ambiguous connec
tions between reads from different genomics regions are ignored, lead
ing to the breaking of the assembly graph at the start and end of 
extensive repetitive sequences. 

3.2. Assembly strategies 

We can find two approaches to performing an assembly with long 
reads: 1) based on long reads only, or 2) by combining shorts and/or 
long reads to enhance the assembly process. The assembly of long read 
requires the technology of PacBio (continuous long reads (CLRs) or high- 
fidelity (HiFi) reads) or ONT (long and ultra-long reads). In the hybrid 
assembly, short reads from Illumina are usually combined with long 
reads from PacBio and Nanopore; alternatively, long reads from both 
companies can be employed. Fig. 3 details the typical pipeline used in 
the genome assembly process, outlining the key stages and methodolo
gies involved. 

3.2.1. Long read only assembly 
Two primary approaches emerge when tackling the assembly of 

solely long reads: Overlap Layout Consensus (OLC) and De Bruijn Graph 
(DBG) methods. Nevertheless, current advancements in the field tend to 
favor the former approach due to its compatibility with the distinct 
characteristics of long reads. Table 3 presents an expanded list of long 
read assemblers and their distinguishing features. 

One notable OLC-based assembler is Canu [51], a fork of Celera 
assembler [52]. Canu introduces the MinHash algorithm and employs a 
sparse assembly graph construction technique. This strategy effectively 
avoids the difficulties of collapsing divergent repeats and haplotypes, 
enhancing the accuracy of the final assembly. The latest iterations of 
Canu include HiCanu, which was developed to assemble HiFi reads. 
HiCanu improves the assembly process through homopolymer 
compression, overlap-based error correction, and meticulous false 
overlap filtering steps. Similarly, another assembler, the Hifiasm, is 
explicitly designed for HiFi reads [18]. It ensures information preser
vation and the contiguity of haplotypes. Hifiasm accelerates the pairwise 
alignment by implementing a windowed version of Myer’s algorithm 
[53], which leverages data-level parallelism. Moreover, it implements a 
haplotype-aware long read error correction, preserving allelic hetero
zygosity. Thus, the phased assembly graph constructed by Hifiasm pre
sents a detailed representation of heterozygous alleles. 

Likewise, Shasta outperforms Canu for the assembly of ONT data, 
providing a faster and cheaper way to assemble human-scale genomes. It 
is an example of a DBG-based assembler that employs a compact rep
resentation of the marker graph, with edges connecting markers in the 
same reads. The weight of each edge corresponds to the number of reads 
containing that specific marker sequence. On the other hand, Flye 
(FALTA REFERENCIA), like Canu, takes a versatile approach, accom
modating both ONT and PacBio reads. It introduces a repeat graph 
framework, which approximates the behavior of DBG when a large k- 
mer size is utilized. This method proves particularly effective in 
resolving unbridged repeats, those not spanned by any individual reads. 
NextDenovo [54] also supports both PacBio and ONT reads. It follows a 
string graph approach and adopts a “correct-then-assemble” strategy 
similar to Canu but with a reduction of computing resources and storage. 
However, after assembly, NextPolish [55] is recommended to improve 
single base accuracy further. 

Finally, a widely used OLC-based de novo assembler for both PacBio 

E. Espinosa et al.                                                                                                                                                                                                                                



Genomics 116 (2024) 110842

7

and ONT reads is Miniasm [47]. It implements an overlap graph and 
leverages the Minimap [56] aligner for mapping all pairs of reads. 
Subsequently, it employs MinHash [57] sketches for k-mer comparison. 
Furthermore, combining different types of long reads in genome as
sembly provides a novel, powerful strategy to enhance genome assem
bly. Verkko [58] is a prominent assembler developed to address complex 
repetitive regions in the human genome by combining ONT and HiFi 
reads. Verkko corrects remaining errors in the HiFi/duplex reads using 
Canu, builds a multiplex De Bruijn Graph using MBG [59], and aligns the 
ONT reads to the graph using GraphAligner [60]. Progressively resolves 
loops and tangles using first HiFi reads, then aligned ONT reads, and 
finally, generates contig consensus sequences using the consensus 
module of Canu. It results in a phased, diploid assembly of both haplo
types, with many chromosomes automatically assembled from telomere 
to telomere. Verkko successfully assembled 20 out of 46 chromosomes 
using the HG002 human genome without any gaps, with an accuracy of 
99.9997% [58]Also, Wengan, the hybrid assembler described in 3.2.2, 
allows the long read-only assembly of PaBio and ONT data using the 
mode WenganM and the option -ccsont. However, it is specifically 
designed for the hybrid assembly with short and long reads. 

3.2.2. Hybrid assembly: integrating short and long reads 
The hybrid assembly approach leverages the advantages of short and 

long reads for comprehensive genomics reconstructions. Combining el
ements from the De Bruijn Graph (DBG) and Overlap Layout Consensus 
(OLC) methodologies has emerged as a powerful strategy for efficiently 
assembling hybrid datasets. We distinct four different approaches 
[61,62]:  

1. Direct Mapping and Ambiguity Resolution: Long reads can be directly 
mapped onto a DBG constructed from short reads. This initial 
alignment enables tackling DBG ambiguities, enhancing the resultant 
sequences’ overall coherence.  

2. De Novo Assembly and Error Correction: Using specialized assemblers, 
long reads are subjected to de novo assembly. After this assembly 
step, short reads are utilized to map and correct potential errors 
within the formed contigs.  

3. Short Read Correction and Joint Assembly: Short reads are employed to 
correct long read sequences, enabling more accurate representations. 
The corrected long reads and original short reads are assembled 
using algorithms designed for third-generation sequencing data.  

4. De Novo Short Read Assembly with Long Read Linkage: Short reads are 
independently assembled using specialized second-generation 
sequencing assemblers. Long reads are introduced to bridge the 
gaps and link the generated contigs. 

A prime example of the first strategy is the assembler Meraculous 
[63]. The Super-Read Celera Assembler (MaSuRCA [64]) represents the 
second strategy, emphasizing the independent de novo assembly of long 
reads before enhancing contig accuracy through short read mapping. 
DBG2OLC [65] and HASLR use the third approach. Finally, Hybrid
SPAdes [66] and Wengan [67], employ the last approach. 

Within the realm of hybrid assembly, it is noteworthy to emphasize 
the advances enabled by single cell Strand-seq (Strand sequencing). 
Strand-seq preserves the directionality of DNA in short read sequencing 
libraries. This has proven to be advantageous in overcoming challenges 
related to genomic variability and polymorphic inversions. 
Chromosome-length phasing enabled by Strand-seq was shown to 
enable more accurate and reliable genomic reconstructions [12–14]. 

3.2.3. Hi-C enhanced assembly 
The advances in sequencing technology have enabled assemblies to 

achieve long and accurate contigs. However, since they cannot deliver 
chromosome-scale contiguity, they can not generate quality genomes on 
their own. Using Hi-C data has improved the assembly in this context, 
leading to a genome chromosome-level assembly [68,69]. The Hi-C data 

Fig. 3. Overview of de novo Genome Assembly Pipeline: An insight into the workflow and key components of de novo Genome Assembly.  
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allow for correcting assembly errors, complementing linked reads and 
optical maps for improved scaffolding of contigs, and providing 
chromosome-spanning contiguity to the assembly. Specifically, Hi-C 
data can improve genome assemblies in four paramount manners: (i) 
Ordering and orienting contigs, (ii) Correcting misassemblies and/or 
identifying structural variation, (iii) linking contigs to chromosomes, 
and (iv) Generating phased assemblies by leveraging predictable pat
terns of intra-chromosomal or inter-chromosomal interactions to group 
and scaffold individual haplotypes. For instance, the Telomere-to- 
Telomere (T2T) consortium, a few years ago, completed the 
sequencing of the human X chromosome from telomere to telomere 
(T2T), nearly twenty years after the first sequencing of the human 
genome in 2001 [70], thanks to the employment of ultra-long read 
nanopore technology, single-molecule high-fidelity (HiFi) sequencing 
technology, and chromosome-spanning connectivity information from 
the Arima High Coverage Hi-C kit. Moreover, Hi-C was used to assemble 
and validate the complete sequence of the human genome [3]. However, 
the combination of PacBio HiFi and Hi-C has been employed for the 
chromosome-level of multiple organisms in recent research [71–82], 
and the integration with long and short reads have enhanced the un
derstanding of the structure of germline rearranged human genomes 
[83]. Thus, using Hi-C in the genome assembly pipeline may reduce the 
steps required to generate a chromosome-scale, phased genome assem
bly. The recent assembler Hifiasm [18,84] recently added the Hi-C data, 
improving the phasing and post-assembly scaffolding. 

4. Error correction strategies in sequence assembly 

The historical inaccuracies associated with long sequencing reads 
have led to the development of methods for correcting these noisy reads. 

Now, with the inherent improvement of long read sequencing, the usage 
of correction methods is controversial and relies on multiple factors such 
as characteristics of the sequencing sample, study type, and the selected 
software. This assessment is specially significant in applications like de 
novo genome assembly, where a high degree of accuracy is required, and 
may arise several challenges, e.g., repeats, homopolymers, or regions 
close to the centromere. 

4.1. Sequencing read error correction 

Long read sequencing technologies can exhibit lower per-read ac
curacy. To overcome this challenge, error correction emerges as a 
pivotal step, ensuring the precision and reliability of the sequenced 
genomic data. We outline the two primary methods employed for error 
correction: hybrid correction and self-correction. 

4.1.1. Hybrid error correction: leveraging short reads 
This hybrid correction approach utilizes short read data for error 

correction and relies on four distinct techniques: (1) Alignment of Short 
Reads to Long Reads: Examples include CoLoRMAP [85] and HECiL 
[86]. This technique corrects long reads by aligning short reads to them, 
determining a consensus sequence from the subset of short reads linked 
to each long read.(2) De Bruijn Graph Exploration: Implemented by 
tools like LoRDEC [87] and Jabba [88], this method involves con
structing a De Bruijn Graph from short reads. Once built, long reads can 
be aligned to the graph. Traversal of the graph helps identify paths 
linking anchored regions of long reads, facilitating correction in unan
chored regions. (3) Contigs Generation and Alignment: Tools like MiRCA 
[89] and HALC [90] use this technique to generate contigs from short 
reads and align long reads to these contigs. Long reads are corrected by 
leveraging the consensus sequences obtained from the aligned contigs. 
(4) Hidden Markov Models (e.g., Hercules): This model is initialized with 
long reads and trained with short reads, aiming to extract consensus 
sequences representing corrected long reads. 

Additionally, some algorithms combine different strategies. For 
instance, NaS [91] combines strategies 1 and 3, while HG-CoLoR [92] 
relies on strategies 1 and 2. So, in the era of first-generation long reads, 
characterized by low accuracy (approximately 15–30% error rates on 
average), the predominant approach was using short reads due to their 
wider availability. However, with advancements in long read technol
ogy, self-correction has become a viable and effective alternative. 

4.1.2. Self-correction: exploiting redundancy 
Self-correction of long reads encompasses two primary strategies: (1) 

Multiple Sequence Alignment of Long Reads: This strategy parallels the 
hybrid approach, as discussed in Section 4.1.1, where short reads or 
contigs are aligned. Following alignment, long reads undergo correction 
by estimating a consensus sequence for each, employing a similar 
strategy to the hybrid approach. Several tools leverage this method, such 
as PBDAGCon [93] (the correction module of HGAP [93] assembler), 
PBcR-BLASR [94], Sprai [95], PBcR-MHAP [46], FalconSense [96] (the 
correction module of Falcon assembler), Sparc [97], MECAT [98], FLAS 
[99], the correction module used in Canu [51]. (2) De Bruijn Graphs: 
Similar to the hybrid strategy outlined in Section 4.1.1, this method is 
employed to anchor long reads once the graph is constructed. Subse
quently, the graph is traversed to identify paths that join anchored re
gions of long reads, correcting unanchored regions. 

4.2. Assembly polishing 

Assembly polishing refers to the refinement of a draft sequence as
sembly, often a preliminary genome. This process entails analyzing the 
draft assembly (or region assembly) to eliminate artifacts introduced 
during the assembly process, thereby enhancing both local accuracy and 
the overall consensus accuracy of the assembled sequence. Pilon [100], a 
well-established polishing algorithm, is particularly effective when 

Table 3 
An Overview of long read Assemblers: Techniques and Sequencing Read Types 
Employed for Genome Assembly.  

Assembler Algorithm Graph 
Structure 

Sequencing 
data 

Documentation 

Miniasm OLC-based Overlap 
graph 

ONT, PacBio Miniasm 

Canu OLC-based Overlap 
graph 

ONT, PacBio Canu 

HiCanu OLC-based Overlap 
graph 

PacBio Canu 

Flye DBG- 
based 

Repeat 
graph 

ONT, PacBio Flye 

Shasta DBG- 
based 

Marker 
graph 

ONT Shasta 

Hifiasm OLC-based String 
graph 

PacBio Hifiasm 

Wtdbg2 DBG- 
based 

Fuzzy 
Bruijn 
graph 

ONT, PacBio Wtdbg2 

ABruijn DBG- 
based 

A-Bruijn 
graph 

ONT, PacBio ABruijn 

Marvel OLC-based Overlap 
graph 

PacBio Marvel 

Raven OLC-based Overlap 
graph 

ONT, PacBio Raven 

NECAT OLC-based String 
graph 

ONT NECAT 

Peregrine OLC-based Overlap 
graph 

PacBio Peregrine 

HINGE OLC-based Overlap 
graph 

PacBio HINGE 

FALCON OLC-based String 
graph 

PacBio FALCON 

FALCON- 
Unzip 

OLC-based String 
graph 

PacBio FALCON-Unzip 

SMARTdenovo OLC-based Overlap 
graph 

ONT + PacBio SMARTdenovo 

Verkko DBG- 
based 

Sparse 
graph 

PacBio+ONT, 
PacBio 

Verkko  
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provided with paired-end data from two Illumina libraries with small (e. 
g., 180 bp) and large (e.g., 3–5 Kb) inserts. Nanopolish [101–103] serves 
as a traditional Nanopore-based polishing tool. However, it’s worth 
noting that Nanopolish does not support R10.4 flowcells (ONT), as its 
variant and methylation calling accuracy do not necessitate signal-level 
analysis. On the other hand, algorithms such as Racon [104] and Medaka 
[105] represent widely adopted standards for nanopore-based polishing 
[106]. Racon selects high-quality segments of reads and subsequently 
refines the genome through a Partial Order Alignment (POA) with vec
torization. However, despite its correction of numerous errors, a 
considerable number of systematic errors persist in the genome, where 
the correct allele is a minority at specific loci [106]. To tackle this issue, 
ONT introduced Medaka, which employs a bidirectional Long-Short- 
Term Memory (LSTM) trained to rectify the systematic errors overlooked 
by Racon. As a result, the official protocol for genomes assembled from 
ONT reads involves initial polishing by Racon, followed by Medaka. 
Racon can also be applied to the reads from PacBio [106], although 
assemblers such as Hifiasm do not necessitate polishing, thereby 
streamlining the assembly pipeline and reducing processing time. 
Furthermore, alternative polishing pipelines for ONT data include 
MarginPolish and HELEN [15]. MarginPolish utilizes a hidden Markov 
model to estimate alignment statistics and constructs a weighted POA 
graph for processing by HELEN. Consequently, HELEN incorporates a 
multi-task recurrent neural network (RNN) to predict the nucleotide 
base and run length for each genomic position, leveraging contextual 
genomic features and POA weights. 

Furthermore, within the realm of polishing tools for ONT data, 
Homopolish [106] emerges as an innovative approach that rectifies sys
tematic errors, particularly indel errors in homopolymers, which exist
ing polishing tools fail to correct. Homopolish achieves this by leveraging 
homologous sequences from related genomes. This novel polishing tool 
surpasses existing pipelines like Medaka and HELEN across diverse mi
crobial genomes, providing superior accuracy in error correction. 

Results demonstrate that combining Homopolish with Medaka/ 
HELEN enhances genome quality, surpassing Q50 on R9.4 flow cells of 
ONT [106]. Other tools developed for ONT data in the past 1–2 years 
include Nextpolish [55], PEPPER [107], Apollo [108], and NeuralPolish. 
Despite these advancements, correcting diploid and polyploid assem
blies poses a significant challenge. In diploid genomes, the consensus of 
a given gene could involve a mixture of the two haplotypes, potentially 
resulting in a premature stop codon. Addressing these challenges,Hapo- 
G(Haplotype Aware Polishing Of Genomes) [109] proposes a new 
method allowing the incorporation of phasing information from high- 
quality reads (short or long reads) to polish assemblies, particularly 
those of diploid and heterozygous genomes. 

Other tools such as Purge_dups aims to mitigate the issues arising from 
haplotype divergence in regions of high heterozygosity during assembly. 
It leads to generate two copies rather than one copy of a region, breaking 
the contiguity and compromising downstream steps such as gene 
annotation. This tools is essential as an additional processing step in 
some assemblers such as Canu. Since, it generates a set of contigs rep
resenting all resolved alleles regardless of ploidy, you need to partition 
the contigs to obtain the primary and alternate allele sets. 

In any case, both raw read correction and assembly polishing can be 
controversial and require in-depth study. Hifieval aims to assist HiFi 
assemblers in enhancing assembly quality over the long term by evalu
ating the over- and under-corrections produced by error-correction 
tools, especially in challenging regions such as homopolymer regions, 
centromeric regions, and segmental duplications. 

5. Assessing the quality of de novo assembly 

Beyond the obstacle posed by sequencing errors, de novo assemblies 
can harbor inaccuracies arising from factors such as the incorrect fusion 
of genomic regions in improper orientations or locations or the inad
vertent dismissal of authentic regions as repeats, inversion, or 

translocation. Distinguishing between genuine errors and experimental 
artifacts, or even instances of missing information, can be an arduous 
task. Therefore, a thorough evaluation of the assembly becomes para
mount. This evaluation should delve into three critical dimensions: 
contiguity, correctness, and completeness, providing a comprehensive 
understanding of the assembly’s overall quality. 

5.1. Contiguity assembly 

This characteristic evaluates both the size and quantity of contigs. 
Higher contiguity suggests that genomic sequences are represented by 
fewer long contigs than numerous smaller contigs. The N50 parameter is 
the most commonly employed metric for assessing assembly quality 
regarding contiguity. It is defined as the sequence length of the shortest 
contig that covers 50% of the total genome length. In some cases, the 
N90 and N10 parameters are also used. Similarly, NG10, NG50, and 
NG90 use 10%, 50%, and 90%, respectively, of the reference genome 
instead of the total size of the assembled genome (such as N10, N50, and 
N90). Other parameters are L90, L50, and L10, which determine the 
count of the smallest number of contigs whose length sum makes up half 
of the genome size. 

5.2. Completeness assembly 

Completeness determines the content of the contigs, especially 
regarding the gene content. Completeness errors can come from the 
sequencing process (important genes may have yet to be sequenced) or 
arise during the assembly process (genes may end up in discarded con
tigs). Completeness is usually measured using BUSCO [110] (Bench
marking Universal Single-Copy Orthologs), which aims to determine the 
presence or absence of highly conserved genes. A BUSCO score above 
95% is considered good. Another way to assess the completeness is by 
comparing the k-mers present in the short reads from the same indi
vidual that are missing in the assembly. Merqury [111], developed by 
Arang Rhie in Adam Phillippy’s group, is one tool to do this. It is based 
on KAT [112] tool ideas, which introduced the genome assembly vali
dation using k-mer copy number analysis. Other tools such as Genome
Scope [113] use the k-mer information of the sequencing data to 
determine pre-assembly genome characteristics such as size, heterozy
gosity, and repetitiveness. 

5.3. Correctness assembly 

Correctness refers to the accuracy of each base pair in the assembled 
sequences. A correct assembly ensures that the order and the location of 
the contigs are correct. This evaluation is most often conducted by 
employing a gold standard reference, as an accurate genome [114,115] 
and covers parameters such as single or a few nucleotide polymorphisms 
(e.g., insertions, deletions, and substitutions) or structural variations (e. 
g., inversions, relocations, or translocations). A commonly used tool to 
do this analysis is QUAST [116]. It works with or without a genome 
reference and yields metrics to assess the correctness, contiguity, and 
completeness of the assembled genome. Other tools include misFinder 
[117], Mauve [118], and REAPR [119], which evaluate the accuracy of a 
genome assembly using mapped paired end reads without the use of a 
reference genome for comparison. Another measure of correctness is the 
number of frameshifting indels in coding genes. Frameshift mutations 
frequently interfere with the production of the protein encoded by the 
gene and are not usual. Therefore, most of the observed frameshifts 
correspond to assembly errors. This proposal is similar to BUSCO, but a 
more extensive set is used instead of analyzing a conserved set of genes. 
It requires a set of transcripts from the same (or very closely related) 
sample, commonly generated in the scope of a genome annotation. So, 
PacBio RNA sequencing, using the Iso-Seq method, represents a prom
ising approach for genome annotation. Finally, Merqury [111] also can 
track error bases in the assembly. It can generate files that are uploaded 
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as IGV tracks, allowing users to visualize misassembles or other errors. 
Since misjoins in the assembled genome result in misleading high 

contiguity parameters, the assessment of assembly correctness becomes 
crucial. Likewise, some measures of completeness are related to conti
guity. For example, fragmentation of the genome (a measure of conti
guity) is related to fragmentation of the genes. 

6. Future perspectives 

Long read sequencing technologies have transformed genome as
sembly, requiring careful tool and platform selection. Assessing the 
current state reveals progress and challenges in hybrid and non-hybrid 
assemblers. Recent advancements in tools like Hifiasm, Shasta, and 
HiCanu focus on PacBio and ONT reads, offering insights into their po
tential. Moreover, Wengan and Verkko aims to enhance the accuracy of 
the assembly by the integration of long reads (ONT + PacBio). Bench
marking with Miniasm anchors innovation, ensuring accuracy remains 
paramount. However, the chromosome-level assembly remains a chal
lenge without introduce long-range data. Nonetheless, A promising 
future for long read assembly emerges. Algorithm refinements, guided 
by genomic insights, promise more accurate and comprehensive results. 
Evolving sequencing technologies could unlock solutions for complex 
genomic regions and structural variations. In the foreseeable future, the 
synergy of advanced assemblers, robust benchmarking, and cutting- 
edge sequencing technologies will likely drive the field toward more 
accurate, comprehensive, and insightful genome assemblies. The 
journey promises a continued unraveling of the genome’s secrets, 
fueling discoveries in diverse fields from biology to medicine. 
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[83] R. Schöpflin, U.S. Melo, H. Moeinzadeh, D. Heller, V. Laupert, J. Hertzberg, 
M. Holtgrewe, N. Alavi, M.-K. Klever, J. Jungnitsch, et al., Integration of hi-c with 
short and long-read genome sequencing reveals the structure of germline 
rearranged genomes, Nat. Commun. 13 (1) (2022) 6470. 

[84] H. Cheng, E.D. Jarvis, O. Fedrigo, K.-P. Koepfli, L. Urban, N.J. Gemmell, H. Li, 
Haplotype-resolved assembly of diploid genomes without parental data, Nat. 
Biotechnol. 40 (9) (2022) 1332–1335. 

[85] E. Haghshenas, F. Hach, S.C. Sahinalp, C. Chauve, Colormap: correcting long 
reads by mapping short reads, Bioinformatics 32 (17) (2016) i545–i551. 

[86] O. Choudhury, A. Chakrabarty, S.J. Emrich, Hecil: a hybrid error correction 
algorithm for long reads with iterative learning, Sci. Rep. 8 (1) (2018) 9936. 

[87] L. Salmela, E. Rivals, Lordec: accurate and efficient long read error correction, 
Bioinformatics 30 (24) (2014) 3506–3514. 

[88] G. Miclotte, M. Heydari, P. Demeester, S. Rombauts, Y. Van de Peer, P. Audenaert, 
J. Fostier, Jabba: hybrid error correction for long sequencing reads, Algorithms 
Mol. Biol. 11 (1) (2016) 1–12. 

[89] M. Kchouk, M. Elloumi, Efficient hybrid de novo error correction and assembly 
for long reads, in: 2016 27th International Workshop on Database and Expert 
Systems Applications (DEXA), IEEE, 2016, pp. 88–92. 

[90] E. Bao, L. Lan, Halc: high throughput algorithm for long read error correction, 
BMC Bioinform. 18 (2017) 1–12. 

[91] M.-A. Madoui, S. Engelen, C. Cruaud, C. Belser, L. Bertrand, A. Alberti, 
A. Lemainque, P. Wincker, J.-M. Aury, Genome assembly using nanopore-guided 
long and error-free dna reads, BMC Genomics 16 (2015) 1–11. 

[92] P. Morisse, T. Lecroq, A. Lefebvre, Hg-color: hybrid graph for the error correction 
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