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Abstract
In this survey we recognize Enrique Arrondo’s contributions over the whole of his  career, 
recalling his professional history and collecting the results of his mathematical production.

Keywords  Congruences · ACM bundles · Grassmannians · Steiner bundles · Hartshorne’s 
conjecture · Hartshorne-Serre correspondence

Mathematics Subject Classification  14M15 · 14J60 · 14N05 · 14M07 · 14F17 · 14C22

1  Introduction

At July 10th–13th, 2023, we celebrated Enrique Arrondo’s 60th birthday. On this occa-
sion we could see and appreciate the professional esteem and the personal affection that so 
many people, in the mathematical community, have for Enrique.

As a continuation of this celebration, the purpose of this survey is twofold.
First, we would like to briefly recall, as done in the dedicated talk of the congress, 

Enrique’s academic background and professional history, drawing a global picture of 
the vast network that he has built over the years and underlying how much he deeply 
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influenced the community (and especially his Ph.D. students) with his unique and natu-
ral way of doing mathematics. In doing so, we hope we managed to mention most of 
the people that played a role in his career and apologize in advance if we have missed 
someone.

Furthermore, we also would like to collect in this work most of Enrique’s contri-
butions in algebraic geometry, regarding especially Grassmannian varieties and vector 
bundles.

Enrique obtained his Degree in Mathematical Science in the Universidad Com-
plutense de Madrid (with extraordinary bachelor’s degree award) in 1985. He obtained 
his Ph.D. in Mathematical Sciences in 1990 from the Universidad Complutense de 
Madrid (with extraordinary Ph.D. award), presenting the thesis Congruencias de rectas 
en ℙ3 (Congruences of lines in ℙ3 ), with advisor Ignacio Sols. Since 1990, he is a pro-
fessor at the Universidad Complutense de Madrid.

During this period, he provided an important contribution in the training of young 
researchers, also by mentoring and teaching in summer schools and training courses. 
His enthusiasm, mastery of algebraic geometry and, at the same time, eagerness to 
learn, have been, over the years, an inspiration to many. The following genealogy tree 
shows all of Enrique’s mathematical descendants, most of which are now themselves 
university professors.

We now pass to Enrique’s contributions in algebraic geometry.
Being aware of how hard and unfair it is to divide a life’s work in sections, we 

have decided to start by presenting the research developed during his doctoral studies, 
focused on congruences over projective spaces and Grassmannian varieties. Among his 
collaborators on this topic over the years we would like to mention Marina Bertolini, 
Sofía Cobo, Beatriz Graña, Mark Gross and Cristina Turrini. Nevertheless, more details 
on this topic can be found in Sect. 2.

To continue this division, an efficient way to detect Enrique’s mathematical interests 
is given by considering the topics proposed to his Ph.D. students.

Hence, wee see that another point of interest consists in vector bundles without inter-
mediate cohomology. Together with Beatriz Graña, Francesco Malaspina and Alicia 
Tocino these bundles were investigated on Grassmannians of lines. Furthermore, this 
study was extended for Fano threefold and quartic threefolds together with Daniele Fae-
nzi, Laura Costa and Carlo Madonna. Details on this topic can be found in Sect. 3.

Moving forward, the works together with Raffaella Paoletti, Jose Carlos Sierra and 
Luca Ugaglia provide the next point: projections of Grassmannians. Details on this 
topic can be found in Sect. 4.

The following item of our list is given by Steiner and Schwarzenberger bundles. 
They were first studied by Enrique for projective spaces and subsequently generalized, 
first for Grassmannians, with Simone Marchesi, and then for projective varieties, jointly 
with Simone Marchesi and Helena Soares. Details on this topic can be found in Sect. 5.
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The next area of interest is to be found in the famous Hartshorne’s conjecture, the 
study of which inspired various lines of research. An example of this is the subcanonic-
ity of codimension two submanifolds of �(1, 4) , he studied together with Maria Lucia 
Fania, as well as the Picard group of low codimension subvarieties, studied with Jorge 
Caravantes. Details on this topic can be found in Sect. 6.

Finally, Sect. 7 collects “miscellaneous” topics and Sect. 8 represents an exhibit of 
Enrique’s unique point of view in understanding algebraic geometry.

We cannot finish this introduction without thanking Enrique again, who helped us 
grow professionally and personally, and whose friendships we hold dear.

2 � Congruences

As we mentioned before, Enrique’s Ph.D. thesis is entitled Congruencias de rectas en 
ℙ3 ; it has been developed under the supervision of Ignacio Sols and defended in 1990. 
In their joint published work [41], they mainly study smooth congruences, which are 
surfaces in the Grassmannian of lines in ℙ3 , that is, �(1, 3) . They also inquire the paral-
lelism with surfaces in ℙ4 . They prove that the only indecomposable bundles on �(1, 3) , 
without intermediate cohomology, are line bundles and twists of the spinor bundle (we 
will briefly explain the concept of vector bundles without intermediate cohomology in 
the next section). They also describe the Hilbert schemes of all smooth congruences 
of degree up to nine, enhancing the results obtained previously in [39] and by Ales-
sandro Verra in [62]. The most relevant result is [41, Theorem 5.1], where they give a 
complete classification of the smooth congruences that can be obtained as a projection 
from another surface in �(1, 4) (projections will be another important topic of Enrique’s 
research that will be detailed later on). Although it is an analogue of Severi’s theorem 
for ℙ4 (see [61]) they use a completely different approach. In fact, they obtain five dif-
ferent classes of such smooth congruences geometrically, more concretely by looking at 
the geometry of lines in ℙ3 . Moreover, with the collaboration of Manuel Pedreira, they 
prove:

Theorem  ([41], Theorem 6.18) Except for a finite number of components, each component 
of the Hilbert scheme of smooth congruences consists of surfaces of general type.
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Indeed, an analogous result for surfaces in ℙ4 was proven by Geir Ellingsrud and 
Christian Peskine in [47].

Let us continue with more congruences, jointly with Mark Gross, [27]. Contrary to 
the preferred setting of the classical authors (see [50]), they study smooth congruences 
having a fundamental curve. The fundamental curve of a congruence is formed by its 
singular points that are points in ℙ3 with infinitely many lines of the congruence passing 
through them. The number a of lines of a congruence Y passing through a general point 
of ℙ3 is called order of Y. Dually, the number b of lines of a congruence contained in a 
general plane of ℙ3 is called class of Y. So, the pair (a, b) is called the bidegree of the 
congruence. They provide a more comprehensive classification of smooth congruences 
in �(1, 3) , listing the possible degrees of the fundamental curve and, in case this is not a 
line, giving all the possible bidegrees of the congruences, that we collect below.

Theorem  ([27], Theorem 2.1) Let Y be a smooth congruence having a curve C in ℙ3 of sin-
gular points. Then one of the following holds: 

(a)	 The curve C is a line.
(b)	 The congruence consists of the bisecants to C, which is either a twisted cubic, Y being 

a (1, 3) congruence, or an elliptic quartic and Y is a (2, 6) congruence.
(c)	 The congruence Y is a scroll of degree bigger than two and hence is either a (1, 2) or 

a (2, 2) (with C being a conic) or a (3, 3) congruence and C is a smooth plane cubic.
(d)	 The curve is a smooth plane cubic and Y is the (3, 6) conic bundle over C of Example 

1.5 of [27] (that consists of a concrete surface with an infinite number of singular points 
of bidegree (3, 6)).

In addition, they introduce a vector bundle construction for various smooth congru-
ences in Section 3. In particular, in Example 3.7, they give a smooth (5, 8) congruence, 
thanks to an observation of Peskine, being the first example found so far.

A generalization of these arguments comes about through his collaboration with 
Marina Bertolini and Cristina Turrini.

As a first step, the three of them study, in [14], the congruences of lines, which are 
defined as (n − 1)-dimensional subvarieties of �(1, n) . Again, the fundamental curve of 
the congruence is a curve C ⊂ ℙn which meets all lines of the congruence. They give a 
classification of all smooth congruences having a fundamental curve C, obtaining two 
cases. Firstly, when C is a line (Theorem 1), there are infinitely many families of these 
congruences. Secondly, if deg(C) ≥ 2 (Theorem 2), there are finitely many of such fami-
lies. They continue these investigations in [15], studying congruences of small degree 
in �(1, 4) . A classification of all smooth threefolds in �(1, 4) is provided in terms of the 
bidegree (a, b) with a = 0 or b ≤ 2 and collected in Lemma 5.1, Lemma 5.2, Lemma 
5.3 and Lemma 5.4. Furthermore, all the possible numerical invariants of smooth three-
folds in �(1, 4) of degree less than or equal to 10 are also given. In Table 1 they collect 
the list of congruences of degree d ≤ 8 , developing all the details in Sections 8, 9 and 
10. In Table 2 and Table 3 they provide a maximal list of congruences of degree 9 and 
10 (which is far from being effective due the presence of unknown cases). In order to 
obtain these results, they use different classification results of varieties of small degree, 
in particular the one given by Paltin Ionescu in [54] and the one given by Maria Lucia 
Fania and Elvira Laura Livorni in [49].
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They also continue studying quadric bundle congruences in �(1, n) with n ≥ 4 in [16]. 
A quadric bundle congruences in �(1, n) is a quadric fibrations embedded in �(1, n) with 
dimension equal to codimension. They describe all the possible smooth congruences in 
�(1, n) , for n ≥ 4 , which have a quadric bundle structure over a curve. In particular, Sec-
tion 3 is devoted to the case n = 6 , Section 4 to the case n = 5 , Section 6 details the case 
n = 4 and Section 8 collects all the information in a table. The main tool they use is Castel-
nuovo’s bound for the genus of projective curves as well as a generalization for curves in 
an arbitrary Grassmannian variety (which was obtained by Luis Giraldo in [51]). Much 
more articles have been published with Marina Bertolini and Cristina Turrini concerning 
congruences (see [17, 18] and [19]). Among them, we would like to highlight the following 
result.

Theorem  ([18], Theorem 5.1) The only smooth congruences X of the trisecant lines to a 
surface S in ℙ3 (with at most ordinary singularities) are those listed in the following: 

	 (i)	 the congruence of trisecants to S1 , which is the hyperplane section of �(1, 4) and has 
bidegree (1, 2) and sectional genus 1. ( S1 is the projected Veronese surface)

	 (ii)	 the congruence of trisecants to S3 , which is the dependency locus of two sections of 
Q2 and has bidegree (0, 2) and sectional genus 0. ( S3 = Blq,p1,…,p7

(ℙ2) is the Castel-
nuovo surface of degree 5, that is, the blowingup of ℙ2 in eight points embedded by 
plane quartics with a given double and other seven base points and Q is the quotient 
bundle of rank 2 of �(1, 4))

	 (iii)	 the congruence of trisecants to S4 , which is the zero locus of section of Sym2Q and 
has bidegree (0, 4) and sectional genus 1. ( S4 = V(2, 3) is the smooth complete 
intersection of a quadric and a cubic hypersurface)

	 (iv)	 the congruence of trisecants to S5 , which is the dependency locus of four sections of 
Q3 and has bidegree (1, 8) and sectional genus 10. ( S5 = Blp1,…,p10

(ℙ2) is the Bordiga 
surface of degree 6, embedded by plane quartics with ten base points)

	 (v)	 the congruence of trisecants to S6 , which is the dependency locus of three sections 
of Q⊕ Sym2Q and has bidegree (2, 15) and sectional genus 33. ( S6 = Blp(K3) is the 
inner projection of the complete intersection V(2, 2, 2) of three quadric hypersur-
faces in ℙ5 from a point in it)

	 (vi)	 the congruence of trisecants to S7 , which is the dependency locus of two sections of 
Sym3Q and has bidegree (6, 42) and sectional genus 181. ( S7 = V(3, 3) is the smooth 
complete intersection of two cubic hypersurfaces)

Furthermore, Enrique studies on his own line congruences of low order, see [4]. As for 
ℙ3 , the order is defined as the number of lines of the family passing through a general point 
of ℙn . More concretely, Proposition 2.1 characterizes line congruences of order 0 in ℙ4 , 
Theorem 2.1 gives a complete list of congruences of order one in ℙ3 and Propositions 3.1, 
3.2 and 3.3 provide some results concerning congruences of order two in ℙ3.

Let us keep on going with more congruences, in this case provided together with Beat-
riz Graña and Sofía Cobo, both Ph.D. students of Enrique. Beatriz defended her thesis in 
2003, entitled Escisión de fibrados en �(1, 4) y sus variedades, in which congruences on 
�(1, 4) with split universal quotient bundle are studied. Moreover, Enrique and Beatriz 
give in [26, Theorem  2.8] a complete classification of the smooth threefolds in �(1, 4) , 
in the case that the restriction of the universal quotient bundle Q is a direct sum of two 
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line bundles. Sofía Cobo obtained her Ph.D. in 2008, presenting the work Estabilidad del 
fibrado universal restringido a congruencias. In the corrisponding published paper [21], 
Enrique and Sofia try to discover if there is a congruence in �(1, 3) with any preassigned 
bidegree (a, b) obtaining as main result in this sense Theorem 2.1.

3 � Vector bundles without intermediate cohomology

Now, it is time for arithmetically Cohen-Macaulay (aCM for short) vector bundles, equiva-
lently, vector bundles without intermediate cohomology. Our story starts when Geoffrey 
Horrocks obtains in [53] a criterion that states that a vector bundle F over ℙn splits as a 
direct sum of line bundles if and only if Hi(ℙn,F ⊗Oℙn (t)) = 0 for all t ∈ ℤ and 0 < i < n , 
that is, F does not have intermediate cohomology. In this direction, Horst Knörrer proves 
that line bundles and twists of the spinor bundles are the only indecomposable aCM vec-
tor bundles over quadrics in [55]. In a kind of converse result, Buchweitz, Greuel and 
Schreyer show in [46] that the only smooth hypersurfaces in a projective space for which 
there exists, up to a twist, a finite number of aCM bundles are the hyperplanes and the 
quadrics. Continuing our story, Giorgio Ottaviani generalizes Horrocks’ criterion for quad-
rics and Grassmannians, respectively in [58] and [59]. In the last case, he states that a vec-
tor bundle F over �(k, n) splits if and only if Hi(�(k, n),∧i1Q⊗…⊗ ∧isQ⊗ F(t)) = 0 
for all 0 ≤ i1,… , is ≤ n − k , s ≤ k , t ∈ ℤ and 0 < i < (k + 1)(n − k) where Q is the quo-
tient bundle on �(k, n) . In the same sense as Horrocks’ and Ottaviani’s criterion, Enrique 
Arrondo and Beatriz Graña characterize exactly which are the concrete vector bundles on 
�(1, 4) without intermediate cohomology in [25, Theorem 3.3]. Following the Mumford-
Castelnuovo regularity of sheaves on the projective space, Enrique Arrondo and Francesco 
Malaspina obtain an analogue of Evans and Griffith’s theorem (see [48]) on Grassmann-
ians of lines. They give in [30] two criteria (Theorem 3.1 and 3.2) stating that a vector 
bundle contains, as a direct summand, an exterior power of the universal sub-bundle or a 
symmetric power of the universal quotient bundle, if certain cohomologies vanish. They 
also characterize (Theorem 3.3) those vector bundles that are direct sums of twists of the 
above exterior and symmetric powers. As a consequence of these results, Alicia Tocino’s 
thesis was carried out under Enrique Arrondo’s supervision in 2015, entitled Cohomologi-
cal characterization of universal bundles of the Grassmannian of lines. More concretely, 
in [43, Theorem 4.14] a characterization is provided according to directs sums of twists of 
symmetric powers of the universal quotient bundle over �(1, n) (also using derived catego-
ries and Beilinson’s spectral sequence).

We continue with more vector bundles without intermediate cohomology beyond 
Grassmannians. Enrique, together with Laura Costa, proves in [22, Theorem  3.4] that 
there exist, up to a twist, only three indecomposable rank-2 bundles without intermediate 
cohomology on Fano threefolds. For vector bundles of higher rank, they give a table of 
concrete examples and characterize which are the Chern classes of vector bundles with-
out intermediate cohomology (verifying some general conditions), see [22, Table 4.6 and 
Theorem 4.9]. With Daniele Faenzi, Enrique focuses on rank-2 vector bundles without 
intermediate cohomology on prime Fano threefold X of index 1 and genus 12, prov-
ing that there are only five different classes and providing a description of their moduli 
spaces, see [23]. They mainly use elliptic curves in X and the resolution of the diagonal 
on X × X to prove such result. In addition, in [29] with Carlo G. Madonna, he studies 
aCM vector bundles F of rank greater or equal than 3 on hypersurfaces Xr inside ℙ4 of 
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degree r ≥ 1 . The main result is Theorem 1.5, focusing on an aCM vector bundle F of 
rank 3 and 4 on a general quartic threefold X4 ⊂ ℙ4 which satisfies a concrete condition, 
defined in Definition 1.2.

4 � Projections and Grassmannian variety

The study of projective varieties of small codimension that are not linearly normal, that is, 
isomorphically projected from higher projective spaces, is a classical problem. Note that 
any n-dimensional variety can be projected isomorphically to ℙ2n+1 , but it produces sin-
gular points when it is projected to ℙ2n . So, it is expected that the n-dimensional varieties 
of codimension at most n are linearly normal. In the first place, Francesco Severi proves in 
[61] that the only nondegenerate, that is, not contained in a hyperplane, smooth complex 
surface in ℙ5 that can be isomorphically projected to ℙ4 is the Veronese surface. Subse-
quently, Fyodor L. Zak proves in [63] that for n ≥ 2 , the only nondegenerate n-dimensional 
smooth subvariety of ℙn(n+3)∕2 that can be isomorphically projected to ℙ2n is the dou-
ble Veronese embedding of ℙn , together with a large amount of projectability results in 
terms of the secant varieties. Enrique shows in [3] an analogous result for the Grassmann-
ian of lines. He gives a characterization of the double Veronese embedding of ℙn as the 
only variety that, under certain general conditions, can be isomorphically projected from 
�(1, 2n + 1) to �(1, n + 1) (Theorem 3.1 and Theorem 3.2). This was the first step for a 
huge variety of papers. Also by his own, he studies the same problem for �(n − 1, n) and 
�(n − 2, n) , assuming some general conditions, in [2, Proposition 2.1 and Theorem 2.3]. 
The topic of projections of Grassmannians is addressed with the thesis, under Enriques’s 
supervision, of Luca Ugaglia, in 2001, with title Projection of subvarieties of Grassmann-
ians of lines. On a similar topic, Jose Carlos Sierra defends his thesis in 2004, entitled 
Proyecciones en Grassmannianas e inmersiones dobles de Veronese, supervised also by 
Enrique. Consequently, in [38] all three of them give a classification of the varieties that 
are projectable to �(1, n + 1) coming from �(1, 2n) and obtaining as a result:

Theorem  ([38],  Theorem  3.1) The only smooth, n-dimensional ( n ≥ 3 ), nondegenerate, 
uncompressed varieties that can be isomorphically projected from �(1, 2n) to �(1, n + 1) 
are the Veronese variety and the blow-up of ℙn in one point.

where X ⊂ �(1,N) ( dim(X) = n ) is said to be uncompressed if dim(X̄) = n + 1 with X̄ 
denoting the union inside ℙN of the lines in X (as defined in Definition 1.3 of [38]).

As an extension of these arguments, Enrique, together with Raffaella Paoletti, obtains in 
[34] a result concerning Grassmann varieties of higher-dimensional linear subspaces, more 
concretely, projections from �(d − 1, nd + d − 1) into �(d − 1, n + 2d − 3) under suitable 
conditions:

Theorem  ([34], Theorem 3.1) Let X ⊂ �(d − 1, nd + d − 1) be a smooth irreducible non-
degenerate n-dimensional variety such that any two (possibly infinitely close) (d − 1)-planes 
of X do not meet. If X has positive defect and is 1-projectable to �(d − 1, n + 2d − 3) , then 
X is the Veronese variety.
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They also study the relation of this problem with the Steiner bundles over ℙn . Indeed, in 
Proposition 4.3, they prove that the Schwarzenberger bundles never appear if n ≥ 3 . This 
last remark connects us to the following section.

5 � Steiner and Schwarzenberger bundles

The difficulty of working with a given family of vector bundles is often related with how 
complicated its resolution is. In this direction, a vector bundle F on a projective variety 
is called a Steiner bundle if it is defined as a cokernel of copies of two bundles that 
form an strongly exceptional pair (see [57]). In particular, in the projective space ℙn , the 
classical definition is given considering a linear resolution of length 1. When the linear 
map defining a vector bundle is given by a particular cohomological multiplication, the 
Steiner bundle is called a Schwarzenberger bundle. In [9], Enrique introduces a certain 
class of Steiner bundles that generalize the construction of Schwarzenberger and are 
therefore called generalized Schwarzenberger bundles. Furthermore, he inquires when-
ever it is possible to describe a given Steiner bundle as a generalized Schwarzenberger 
bundle. To do this, he defines the concept of jumping subspaces of a Steiner bundle, 
bounding the dimension of the jumping locus (Theorem  2.8). Finally, he proves that 
any Steiner bundle whose jumping locus has maximal dimension is in fact a generalized 
Schwarzenberger bundle and, specifically, every one of such bundles falls in one of four 
particular families (Theorem 3.7).

Together with Simone Marchesi, as part of Simone’s doctoral project, the latter work 
has been extended to Grassmannian varieties. These results can be found in Simone’s 
Ph.D. thesis Jumping pairs of Steiner bundles, followed by the published work [32]. More 
in detail, they gave a general definition of a Steiner bundle on a Grassmannian, finding 
lower bounds for its possible ranks, and also provide the notion of generalized Schwarzen-
berger bundle on a Grassmannian. Furthermore, they introduce the notion of jumping pairs 
associated to a Steiner bundle, bound the dimension of the jumping variety (Theorem 4.9) 
and prove once again that any Steiner bundle on �(k, n) whose jumping locus is maxi-
mal belongs to a finite list of possible Schwarzenberger bundles (Theorem 5.5). Later on, 
Enrique, in a joint work with Simone Marchesi and Helena Soares, generalizes the same 
ideas for smooth projective varieties, see [33].

6 � On the path to Hartshorne’s conjecture

In 1974, Robin Hartshorne states in [52] his celebrated conjecture:

Conjecture  If X is a nonsingular subvariety of dimension n of ℙN , and if n >
2

3
N , then X is 

a complete intersection.

In other words, subvarieties of low codimension must be complete intersections. 
This problem has been deeply investigated by many members of the mathematical com-
munity and opened many lines of research, for example the study of curves in a three-
fold which lead to the definition of reflexive sheaves. Wolf Paul Barth states in [44] that 
Hi(X,ℚ) ≅ Hi(ℙN ,ℚ) if i ≤ 2n − N . Subsequently, together with Mogens Esrom Larsen, 
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they prove in [45] that �1(X) = 0 , or equivalently, X is simply connected, if N ≤ 2n − 1 . 
Finally, Mogens Esrom Larsen shows in [56] that Hi(X,ℤ) ≅ Hi(ℙN ,ℤ) if i ≤ 2n − N . 
In particular, this implies that the Picard group of such X is generated by the class of its 
hyperplane section if N ≤ 2n − 2 and the cohomology of X “behaves like the one of a com-
plete intersection”. In the codimension two case, the conjecture can be restated as:

Conjecture  For N > 6 , any codimension two smooth X ⊂ ℙN has to be a complete 
intersection.

More concretely, as a consequence of the Barth-Larsen theorem, any codimension two 
variety in the conditions above is subcanonical, that is, the canonical bundle is a multiple of 
the hyperplane section. In [6], Enrique proves the following.

Proposition  ([6], Proposition 1.1) Let X ⊂ ℙN be a smooth subvariety of codimension two. 
If N ≥ 6 , then X is rationally numerically subcanonical.

He then studies the same problem changing ℙn with a Grassmannian or a quadric. Being 
the limit and interesting case when the ambient space has dimension six, he focuses on G(1, 4) 
and Q6 , which denotes the smooth six-dimensional quadric, obtaining as main results Theo-
rem 2.1 and 2.2 and Corollary 2.3 for Grassmannians and Theorem 3.2 for quadrics.

Theorem  ([6],  Theorem  2.1 and Theorem  2.2) Any smooth subvariety X ⊂ �(1, n) with 
n ∈ {4, 5} of codimension two is rationally numerically subcanonical.

Corollary  ([6], Corollary 2.3) Let X ⊂ �(1, n) be a smooth codimension two subvariety. If 
n ≥ 4 then X is rationally numerically subcanonical.

Theorem  ([6], Theorem 3.2) Let X ⊂ Q6 be a smooth codimension two subvariety of Q6 . 
Then X is rationally numerically subcanonical if and only if g1 = g2 (where g1, g2 are the 
genera of the curves obtained by intersecting X with a three-dimensional linear space of 
each of the two families of such linear spaces contained in Q6).

In a joint work with Maria Lucia Fania, see [24], he proves that any smooth codimension 
two projective subvariety of �(1, 4) , of degree less than or equal to 25, is subcanonical, pro-
viding a classification of such subvarieties (Theorem  4.1). As a consequence, any smooth 
codimension two projective subvariety of �(1, 4) , which is not of general type, has degree less 
than or equal to 32 (Theorem 5.4) and such subvarieties are completely determined in Table 3 
of Example 5.1.

Following this path, Enrique continues to study low-codimension subvarieties in collabo-
ration with Jorge Caravantes, a work which lead to Jorge’s Ph.D. thesis: Sobre el grupo de 
Picard en subvariedades de codimensión pequeña. In the corresponding published paper, 
see [20], they try to determine whenever an n-dimensional smooth subvariety of an ambi-
ent space of dimension at most 2n − 2 inherits the Picard group from the ambient space, and 
observe that a key step to do this is knowing if the subvariety is simply connected. In particu-
lar, they focus on the case of Grassmannian of lines (Theorem 2.1), where some Schubert 
varieties come into play, and on a product of two projective spaces of the same dimension 
(Theorem 3.1).
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7 � More algebraic geometry topics

This section is a collection, in chronological order, of Enrique’s remaining papers deal-
ing with different topics of algebraic geometry that are not easily classifiable due to 
their variety and complexity. Together with Manuel Pedreira and his supervisor, Igna-
cio Sols, he publishes [35], concerning ruled surfaces. They denote by Qn ∈ ℙn+1 the 
smooth n-dimensional quadric and by Hd,q(Q4) the Hilbert scheme of smooth curves 
of degree d and genus q. A ruled surface in ℙ3 means the image of a ruled surface as a 
scroll of ℙ3 with no multiple generators, or equivalently, a smooth curve C in �(1, 3) . 
Moreover, Rd,q(Q4) and Sd,q(Q4) represent the open subschemes of Hd,q(Q4) correspond-
ing respectively to regular and stable ruled surfaces (that is, surfaces in ℙ3 not having 
unisecants of degree less than or equal to d/2). Their main result is the following.

Theorem  ([35],  Theorem) If d ≤ 2q + 2 then Rd,q(Q4) and Sd,q(Q4) are irreducible open 
subschemes of dimension 4d − q + 1 in the same component of Hd,q(Q4).

Hermann Schubert proves in [60] two formulas concerning the number of double 
contacts among the curves of two families in ℙ2 and also conjectures four other formu-
las. The aim of [31], written together with Raquel Mallavibarrena and Ignacio Sols, is 
to give a proof of these six formulas, in the framework of Hilbert’s 15th problem, by 
finding bases of the Chow groups of Hilb2�  , the Hilbert scheme of the point-line flag 
variety 𝔽 = {(P, l) ∈ ℙ2 × ℙ2∗ |P ∈ l}.

Again with Ignacio Sols, Enrique gives in [40] some bounds on the global sections 
of vector bundles over a smooth, complete and connected curve and discuss their sharp-
ness. In order to state the main results, we reproduce here the notation they use. Con-
sider C a smooth irreducible curve of genus g and E a rank two vector bundle of degree 
d on it. Denote by −e the minimum degree of a twist E⊗ L−1 having sections, for any 
line bundle L on C (which is an invariant of the ruled surface ℙ(E) ). They propose the 
following conjecture:

Conjecture  In the above notations, if −e ≤ d ≤ 4g − 4 + e and ℙ(E) is not C × ℙ1 , then 
h0(E) ≤

d+e

2
+ 1.

They prove that the conjecture is true for the semistable case and for hyperelliptic 
curves.

Proposition  ([40],  Proposition 2) If C is not hyperelliptic, E is semistable and 
−e ≤ d ≤ 4 g − 4 + e , then h0(E) ≤ d

2
+ 1 unless E is either OC ⊕OC or 𝜔C ⊕𝜔C.

Proposition  ([40],  Proposition 3) If C is hyperelliptic and −e ≤ d ≤ 4g − 4 + e , then 
h0(E) − h0(E) ≤

d+e

2
 and for any values of d and e such that d ≡ e − 2(mod 4) there exists a 

vector bundle E achieving the bound.

Corollary  ([40], Corollary 6) Let E be a semistable vector bundle of degree d and rank R 
which is generically generated by global sections and assume that h0(E∨ ⊗𝜔C) ≠ 0 . Then 
h0(E) ≤

d

2
+ R.
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Finally, consider Wd,R the moduli space of semistable rank R vector bundles on C 
of degree d and Wr

d,R
(C) the subscheme parameterizing those bundles E having at least 

r + 1 global sections. With these notations, they also prove the following.

Proposition  ([40], Proposition 9) Let Y be a component of Wr
d,R

(C) such that the bundle E 
corresponding to its generic point is spanned by its sections, has not automorphisms differ-
ent from the identity and E⊗ ∧RE is strongly special. Then, dim(Y) ≤ (R + 1)(

d

2
− r).

In 1996, his first Ph.D. student, Raquel Díaz, defends her thesis entitled Matrices de 
Gram y espacios de ángulos diédricos de poliedros.

One year later, Enrique with Ignacio Sols and Robert Speiser study in [42] what hap-
pens when two embedded varieties, smooth or not (regardless of their dimensions), make 
specific contact with each other. The main result is Theorem  7.4 in terms of some data 
schemes Dr

k
X constructed in Section 4.

Aside, jointly with Juana Sendra and Juan Rafael Sendra, he publishes [36], in which 
they extend the classical notion of offset to the concept of generalized offset to a hyper-
surface, and [37] in which the same authors compute the genus of irreducible generalized 
offset curves to projective irreducible plane curves with only affine ordinary singularities 
over an algebraically closed field.

Together with Alessandra Bernardi, Enrique publishes [12]. The purpose of this paper 
is to relate the variety of splitting forms (namely Splitd(ℙn) , see Definition 1.1), that is, the 
variety whose points are classes of degree d forms splitting as a product of d linear forms in 
n + 1 variables with �(n − 1, n + d − 1) obtaining also results concerning the higher secant 
varieties of the varieties of splitting forms. For example, in Theorem 5.4, they provide a 
result on the intersection between �(n − 1, n + d − 1) and Splitd(ℙn) when d = 3 . The case 
d = 2 is also studied in Section 2.

Jointly with Antonio Lanteri and Carla Novelli, he publishes [28]. They define the 
notion of “delta-genus” for ample vector bundles E of rank two on a smooth projective 
threefold X as a couple of integers (�1, �2) (Definition 1.1) which extends the classical defi-
nition for ample line bundles. Furthermore, a classification of (X, E) with low �1 and �2 is 
provided under suitable additional assumptions on E. They summarize the main results in 
the theorem stated in page 138 in the Introduction section.

More recently, with Alessandra Bernardi, Pedro Macias Marques and Bernard Murrain, 
problems related to skew-symmetric tensor decomposition are considered in [13], but from 
an algebraic geometry point of view, resulting in the study of higher secant varieties of 
Grassmannians. Moreover, from the skew-symmetric action, they define the skew-catalec-
ticant matrices stating the skew-apolarity lemma (Lemma 12) which is the analogue of the 
classical apolarity lemma for symmetric tensors.

8 � How Enrique understands algebraic geometry

It is common knowledge, especially among his former students, that Enrique has a unique 
way of understanding mathematics. Throughout his career, this lead to the publications of 
papers and extremely useful notes about several topics in algebraic geometry.

For example, we would like to recall [5] and [8], where it is possible to find an alter-
native proof of the Hartshorne-Serre correspondence and represent now a widely used 
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reference for this result. In [8, Section 1], it is recalled the standard approach to the Hart-
shorne-Serre construction.

Theorem  ([8], Theorem 1.1: Hartshorne-Serre correspondence) Let X be a smooth alge-
braic variety and let Y be a local complete intersection subscheme of codimension two 
in X. Let N be the normal bundle of Y in X and let L be a line bundle on X such that 
H2(X, L∗) = 0 . Assume that ∧2N ⊗ L∗|Y has r − 1 generating global sections s1,… , sr−1 . 
Then there exists a rank r vector bundle E over X such that: 

	 (i)	 ∧rE = L;
	 (ii)	 E has r − 1 global sections �1,… , �r−1 whose dependency locus is Y and 

s1�1|Y +…+ sr−1�r−1|Y = 0.

Moreover, if H1(X, L∗) = 0 , conditions (i) and (ii) determine E up to isomorphism.
The elementary proof of this theorem is divided in three sections. In Section 3, he stud-

ies the main properties that are required to an open covering of our general ambient variety 
leading to Lemmas 3.1 and 3.2. In order to reproduce here these lemmas, we recall the 
notation used. Let us take a covering of Y by affine sets Y ∩ Ui with i ∈ I such that Ui is an 
affine set of X, the vector bundle L trivializes on Ui with transition functions hij and �(Ui) is 
generated by the vanishing of two regular functions fi, gi on Ui (where �(Ui) denotes the 
ideal of Y ∩ Ui inside Ui ). Regarding the intersection of two of those open sets, Ui , Uj , one 
can find a matrix Aij satisfying 

(
fi
gi

)
= Aij

(
fj
gj

)
=
(

aij bij
cij dij

)(
fj
gj

)
 where aij, bij, cij, dij are regular 

functions on Ui ∩ Uj and detAij does not have zeros on Ui ∩ Uj . Note that the vector bundle 
N trivializes on Y ∩ Ui and has as transition matrices the restriction Āij of Aij to Y ∩ Ui ∩ Uj . 
As before, we consider s1,… , sr−1 the global sections generating ∧2N ⊗ L⋆ . These sections 
can be represented locally at each Y ∩ Ui by a regular function s̄it such that s̄it =

det Āij

h̄ij
s̄jt . 

Since s̄i1,… , s̄i,r−1 do not vanish simultaneously on Y ∩ Ui , one can refine the covering and 
assume that there is ti ∈ {1,… , r − 1} such that s̄iti does not have zeros in Y ∩ Ui . By 
replacing Ui with its intersection with {siti ≠ 0} , we can assume that siti does not have zeros 
in Ui , so, it is a unit in OX(Ui).

Lemma  ([8], Lemma 3.1) With the above notations, it is possible to choose regular func-
tions fi , gi such that siti = (−1)ti . In particular, det Āij = (−1)ti

h̄ij

s̄jti

.

The affine covering can be extended to a covering of the whole X. So, he covers X ⧵ Y  
by a new affine open sets Ui and defines the matrices Aij for any choice of open sets Ui,Uj . 
More accurately:

•	 If Y ∩ Ui ≠ � ≠ Y ∩ Uj , Aij =
(

aij bij
cij dij

)
 , as before.

•	 If Y ∩ Ui = � = Y ∩ Uj , Aij is the identity matrix.

•	 If Y ∩ Ui ≠ � = Y ∩ Uj , Aij =
(

uj vj
−gj fj

)
 , with uj, vj such that ujfj + vjfj = 1.

•	 If Y ∩ Ui = � ≠ Y ∩ Uj , Aij =
(

fi − vi
gi ui

)
 , with ui, vi such that uifi + vifi = 1.
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Lemma  ([8], Lemma 3.2) With the above choices and notations, it is possible to choose the 
matrices Aij such that detAij = (−1)ti

hij

sjti

.

In Section 4, he constructs the r − 1 sections of the desired vector bundle reaching to 
Lemmas 4.1 and 4.3 and Corollary 4.4. For the purpose of stating the first lemma and the 
corollary, we continue with the appropriate notation. Consider �1,… , �r−1 r − 1 sections of 
the vector bundle E. Since 𝛼1,… , 𝛼̂ti ,… , 𝛼r−1 are linearly independent on Ui , it can be 
extended to a basis of E|Ui

 so that it is possible to represent �1,… , �r−1 on Ui in terms of 
this basis as the columns of an r × (r − 2) matrix Mi =

(
Δti

T�
i

T��
i

)
 , where

and ΔtN is the submatrix of N obtained by removing its t-th row. Similarly, NΔ�
t
 is the sub-

matrix of N obtained by removing its t-th column.

Lemma  ([8], Lemma 4.1) For a covering and choices as in Lemma 3.2, if for each i ∈ I we 
take Mi as before, then an r × r matrix Zij =

(
Pij Qij
Rij Sij

)
 satisfies the equality Mi = ZijMj if and 

only if the following equalities hold: 

(1)	 Pij = Δti
T �
i
Δ�

tj

(2)	 Rij = T ��
i
Δ�

tj

(3)	 Qij

(
fj
gj

)
= (−1)tjΔti

T �
i

(
sj1
⋮

sjr−1

)

(4)	 Sij

(
fj
gj

)
= (−1)tj sjti

(
fi
gi

)

Moreover, such a matrix always exists and, when taking Aij as in Lemma 3.2, it follows 
det Sij = (−1)ti sjti hij and det Zij = hij.
Corollary  ([8], Corollary 4.4) If the matrices {Zij}i,j∈I are chosen as in the previous lemma, 
then for any i, j, k ∈ I there exist regular functiones �ijk1,… , �ijk,r−1 on Ui ∩ Uj ∩ Uk such 
that Zik − ZijZjk =

(
0 Bijk

)
 , with

The end of the proof culminates with Proposition 5.6 in Section 5 in which the existence 
and uniqueness of the vector bundle is proven due to cohomological conditions on L∗ . So, 
the correspondence is obtained gluing together the explicit local description in order to 
construct the section of a vector bundle.

T �
i
=

⎛⎜⎜⎝

1 0 … − (−1)ti si1 … 0

0 1 … − (−1)ti si2 … 0

⋮ ⋱ ⋮ ⋮

0 0 … 1 … 0

⋮ ⋮ ⋱ ⋮

0 0 … − (−1)ti si,r−1 … 1

⎞
⎟⎟⎠
, T ��

i
=
�
0 0 … fi … 0

0 0 … gi … 0

�

Bijk =

�
Qik − PijQjk − QijSjk
Sik − RijQjk − SijSjk

�
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛽ijk1
⋮

𝛽ijkti
⋮

𝛽ijk,r−1
𝛽ijkti fi
𝛽ijkti gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠

�
gk,−fk

�
.
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Moreover, he provides Another elementary proof of the Nullstellensatz in [7] and The 
Nullstellensatz without the Axiom of Choice in [10]. In addition, he gives a new innovative 
approach to construct representations of finite groups without the necessity of calculat-
ing character tables in [11] under the name Representation theory of finite groups through 
(basic) algebraic geometry.

Finally, we would like to remind the reader of Enrique’s useful lecture notes on sev-
eral topics, starting from lecture notes on bachelor degree level to arrive to more compli-
cated aspects of algebraic geometry. In particular, we would like recall [1], which provides 
an introduction to Grassmannians and its subvarieties, that, as we could aprreciate in this 
survey, represent a common factor in Enrique’s work. All of these notes are available at 
Enrique’s webpage https://​blogs.​mat.​ucm.​es/​arron​do.
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