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SUMMARY

This paper presents an integrated approach for testing mobile applications (apps) against a set of extra-
functional properties to be used by app developers. The approach starts with the (manual or automatic)
extraction of the interaction model, that is, a formal model of the potential user interactions with the app.
The model is constructed to allow a model checking tool to exhaustively extract the so-called app user flows,
that is, the sequences of user actions, that constitute the test cases. In the final step, the app user flows
are executed on the app running on real devices. The resulting execution traces are enriched with different
measures and verified against a set of extra-functional properties of interest. The approach has been adapted
to analyse several applications running at the same time with several devices supporting the applications.
This paper presents the definition and formalization of both the modelling language for the interaction model
and the specification language to represent the extra-functional properties. It also describes a methodology
for automatically extracting the model. Finally, it presents an implementation focused on Android apps,
which is integrated in the TRIANGLE testing framework, and the evaluation of the approach. © 2019 The
Authors. Software Testing, Verification & Reliability Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

The automated analysis of applications that run on smartphones is a hot topic due to the increasing
role of these platforms as the main way for users to connect to the Internet. Execution errors and
underperformance in mobile apps (the usual name for applications) have a great impact on user
experience, on the overall behaviour of the smartphone and on the mobile communication network.
This potential negative impact is not negligible considering that more than 2 billion devices run
connected apps every day. In addition to the software’s functional properties, the analysis of extra-
functional properties (EFPs), such as energy consumption, response time, traffic generation and
memory use, is a central issue in developing new techniques to verify mobile apps.

The current application of formal methods, such as variants of static analysis or model checking,
does not effectively predict the behaviour of mobile apps regarding EFPs due to the difficulties in
constructing a realistic model of the whole environment where the application is running, includ-
ing user interaction, other apps running on the same device, the operating system and interaction
with the mobile networks. Approaches that work with models such as App Explorer [1] or Per-
fChecker [2] still need more accurate information on delays or energy consumption, which can be
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obtained only from real executions. On the other hand, approaches that rely only on runtime moni-
toring to characterize app behaviour lack the mechanics to generate all realistic scenarios and/or to
formally ensure the correctness or coverage of the analysis. For instance, tools such as AntMonitor
[3], NetworkProfiler [4] and ProfileDroid [5] support methods to explore several executions to pro-
duce statistics, identify reference patterns in the traffic or locate potentially suspicious behaviours,
but they lack a suitable formal framework to control the coverage of the executions and to describe
the EFPs to be analysed.

This paper presents a new approach to assist mobile application developers to test apps in dif-
ferent network scenarios. The approach combines model-based testing [6] and runtime verification
[7] techniques to verify whether a mobile app satisfies a given set of extra-functional properties. It
is worth noting that model checking [8] is the underlying method that makes it possible to auto-
mate both the generation of test cases and the analysis of traces. Thus, if the EFPs are violated, it is
possible to locate the execution traces of the app that causes the violation. This proposal has been
integrated into the TRIANGLE testing framework [9], which provides a mobile network in a lab-
oratory. In addition, the TRIANGLE framework provides application automation and monitoring
functionality to allow the execution of tests in different controlled network scenarios.

Figure 1 shows a high-level overview of the testing framework, clearly separating the proposed
methodology to describe both the interaction model and the expected properties (at the upper part
of the figure) and the particular implementation of these ideas in TRIANGLE (the lower part of the
figure). The app developer provides to the TRIANGLE Portal the binaries of the app (APK file
in Android) and the extra-functional property (EFP), the interaction model and a description of the
sequences of interactions suitable for the test cases (app user flow requirements). To ease the con-
struction of the interaction model, the framework provides a support tool that extracts the interaction
model from the application binaries. The interaction model and the app user flow requirements are
then transformed and analysed with the SPIN model checker in order to produce a set of app user
flows, that is, a set of realistic user actions suitable to evaluate the EFP. The Experiment Control
& Mobile Network Testbed is in charge of executing the sequence of actions in a real device under
different emulated network scenarios and providing the corresponding execution traces.

Figure 1. Overview of the testing framework.
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The verification of the EFP is performed by a monitor that compares events and states in the traces
with respect to formal descriptions of the EFPs. The main contributions of this paper, as shown in
Figure 1, are the following:

1. A model-based method to generate test cases for apps reacting to user interactions and internal
events from the device (most likely from the network). Such external and internal interactions
can be represented by a formal model (interaction model) with information provided by the
app designer and/or by automating the model extraction (automatic model extraction tool).
The formal model is then explored with a model checker to produce realistic sequences of
interactions with the running app. In addition, the method is optimized to generate only the
sequences of interactions that are suitable for each test case (app user flow requirement).

2. A formal language to describe EFPs related to the behaviour of apps in a given time slot,
for which a set of interval-based logic formulae are defined to represent desired patterns for
energy, traffic, memory, etc. with regard to time slots. Such basic patterns can be combined to
describe complex behaviours.

3. The formalization of the whole approach, providing operational formal semantics for both the
generation of test cases and the verification of the EFPs. Such semantics offer advantages such
as the expansion to many interacting apps, internal events or time aspects.

4. A testing workflow that allows the integration of test case generation, execution of the apps in
the device, control of additional monitoring hardware and verification of EFPs (using a model
checker). This workflow allows a fully automated testing process.

5. Implementation of the workflow for Android devices as part of the TRIANGLE testing
framework and validation with real applications.

Some of these contributions are new, while others are significant improvements of preliminary
work by the authors [10–13], which proposed earlier versions of the ideas on automatic test case
generation and the method to analyse energy-related properties. The current paper extends the initial
method to generate test cases [10], where UML state machines were used as the modelling language
for user interactions, with a precise definition of the variant of state machines that was finally imple-
mented in the tool chain. In previous work [13], the authors proposed a preliminary method to guide
the generation of app user flows by means of app user flow requirements. However, the interaction
model was written by the user, a potentially tedious and error-prone process. The implementation
described at present is completely new and is integrated into the TRIANGLE testing framework.
The semantics of both modelling languages to describe user behaviours and EFPs were separately
introduced in the previous papers, whereas this paper provides an updated and unified notation for
both, making them easier to use as a reference for implementation. The authors used an earlier pro-
totype to analyse traffic and energy in the well-known application Spotify for Android [12]. This
paper presents the evaluation of the integrated approach using a new case study, likewise using a real
app such as the Universal Music Player, and evaluates its behaviour in different network scenarios.
In addition, the extended comparison with related work is completely new.

The remainder of this paper is organized as follows. Section 2 describes and formalizes the
modelling language for the description of user behaviour. Section 3 introduces the language for
the specification of EFPs and its transformation into temporal logic formulae to be analysed by a
model checker. Section 4 introduces the TRIANGLE testing framework architecture and explains
the contributions of this paper within this framework. Section 5 provides some details on the im-
plementation. Section 6 presents the evaluation of the approach and some experimental results, and
Section 7 reviews related work and highlights the contributions of this work compared to the state
of the art. Finally, Section 8 summarizes the conclusions.

2. MODELLING EXPECTED USER BEHAVIOUR FOR TEST CASE GENERATION

Applications are defined by their behaviour. However, this behaviour is principally triggered through
user interactions with the application’s interface. Thus, this approach models applications from the
user perspective, describing actions and sequences that make sense to the user. As mentioned earlier,
the aim is to construct realistic test cases, that is, sequences of user actions that correspond to typical
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4 of 35 A. R. ESPADA ET AL.

user behaviours. This section presents the concepts needed to model the interaction of the user and
the mobile application, the modelling language and its formalization.

2.1. Elements of mobile applications

Users interact with a mobile application mainly through graphical elements called controls, for
example, buttons, text fields and lists. In a touch-based interface, these controls can be used in
several ways, from simple gestures such as tapping to more complex gestures such as pinch to
zoom. Not all controls respond to these gestures, for example, a button may react to taps but not to
swipes. In addition, some user actions may also depend on events that they do not directly control.
For instance, a ‘play’ button may be disabled while a song is being downloaded.

Due to the constraints of mobile devices and their small displays, most applications show only
part of their graphical interface at a time. The set of controls that fits into the display at the same
time comprises what is usually called a screen. While interacting with the application, the contents
of the current screen may be replaced with others. For instance, an email application may have a
screen with the list of emails in the inbox. When one of the emails is tapped, the application shows
a different screen with the contents of the message.

Figure 2 shows three screens of the Universal Music Player app, which will be used as a case
study throughout the paper. This music player is a sample app that is included in the Android Studio
IDE and can also be obtained from the Google Play Store. Each screen shows different controls.
For instance, initially, the app shows a list of songs (left screen). If a song name is clicked, then the
app starts to play the song and shows some playback controls and the album cover image (central
screen). In this state, if the album cover image is clicked, a completely new screen is shown with
the complete playback controls (right screen). Observe that some interactions happen within the
screen, such as tapping on a song to start playing, while others change the current screen, such as
tapping on an album photo to open the full-screen player.

Navigation between screens presents interesting challenges. Many applications organize their
screens hierarchically: new screens are higher in the hierarchy, and the user can also navigate back
to the previous screen at any time. This ‘go back’ action is usually supported directly by the mobile
device, such as Android’s system-level ‘back’ button, or the application framework, such as the iOS
navigation bar.

Figure 2. Universal Music Player – different UI states.
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 5 of 35

This navigation model can be pictured as a stack of screens, where the screen at the top of the
stack is the screen currently being displayed. When the user navigates to a new screen, that screen
is placed on top of the stack. When the user goes back, the top screen is popped off the stack. The
‘home screen’ of the mobile device is always at the bottom of this stack.

In addition, the same screen may be reached through more than one path. When users press back,
they expect to see the previous screen, not one of the other possible ‘previous screens’ from other
paths. However, in certain cases, past screens may be removed from the stack at a certain point. For
instance, after completing a multi-screen ‘wizard’, users may not be able to return to the wizard by
pressing back.

New applications can also be started from others; for example, an email application could start
the web browser application to load a website when a link is tapped. The new application might start
at a screen other than its ‘main’ screen depending on the request made by the first application.

Not all behaviours in mobile applications can be described solely through user actions. Some
depend at a certain point on events that are not directly controlled by the user, such an email being
received or an alarm going off. Such events are called system events and must be taken into account
in the proposed modelling language.

2.2. Modelling language

Given the elements of mobile applications identified in the previous section, a modelling language
based on state machines is now proposed to describe them. This modelling language adopts many
elements from UML state machines [14] and Harel statecharts [15], including their graphical nota-
tion, but is not a strict subset due to the introduction of additional elements to represent aspects of
mobile applications.

State machines consist of states connected through labelled transitions. States are represented
by rounded rectangles and transitions by directed arrows, both with an optional label. The unla-
belled circles with two ongoing transitions are connection states, which will be explained later. State
machines are also represented by rounded rectangles with a label, and they contain states and transi-
tions. There are two special types of states: initial and final. The former are represented as unlabelled
filled circles, while the latter are represented by circles with a cross inside.

Transitions represent user actions over the screen controls. Each transition is labelled with the
action that the user would perform to progress to a new state. These actions include pressing a
button, entering text into a field or scrolling up or down a list. Transitions may also be labelled with
system events, which represent an event or condition not controlled by the user. This distinction
is important for test case generation, as system events are not translated into actions performed on
the screen. System events are distinguished by a ‘-’ suffix in their names. Finally, the time elapsed
between the current transition and the next can be specified by including the attribute ‘{time=x}’ in
the label.

Describing almost any application with a single state machine is impractical. Here, therefore, state
machines are organized in two ways. First, a state machine may ‘call’ another state machine, for
example, with each one representing the user behaviour on a different application screen. Second,
state machines are contained in a hierarchy that mimics the elements identified earlier: devices,
applications and screens. At the top level of the hierarchy are the device state machines. Each device
contains one or more application state machines, which in turn may consist of one or more activity
state machines. Activity state machines are useful for grouping different user behaviours in the same
screen. At the bottom of the hierarchy are the state machines that define the different sets of user
behaviours. They are called user-view state machines and contain states and transitions labelled with
user/system events. This type of hierarchical composition is purely for convenience, as devices and
user-view state machines would be logically sufficient.

Figure 3 shows part of the Universal Music Player model, which includes different nested
state machines. ‘UniversalMusicPlayer’ is the application state machine. It contains three nested
state machines that represent the app activities: ‘MusicPlayerActivity’, ‘PlaceHolderActivity’ and
‘FullScreenActivity’. Similarly, these state machines include user-view state machines that specify
the user’s interaction with the app screen by means of states and transitions labelled with user or
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6 of 35 A. R. ESPADA ET AL.

Figure 3. Universal Music Player interaction model.

system events. For instance, in ‘MusicPlayerActivity_0’, the transition from state S4 to S5 is fired
when the user clicks on the play button, and the next transition takes place 300 s later.

A special type of state, called connection state, can be used to call another user-view state machine
on the same device. Connection states are represented as unlabelled empty circles and have two
outgoing unlabelled transitions: one to a target state machine and another to a returning state within
the source state machine. When a connection state is reached, the execution continues with the user-
view state machine referenced from the connection state. When the target state machine finishes,
that is, when it reaches an end state, the execution resumes in the returning state.

Connection states can also reference an activity state machine. In this case, any externally ac-
cessible state machine within the activity can be executed next. External accessibility is a feature
of applications, activities and user-view state machines and is represented with a pair of initial and
final states reflecting the opportunity for access. The execution of the whole model starts with a
user-view state machine that can be reached through a direct path of externally accessible elements,
that is, applications and activities. This organization allows any state machine to be called explicitly
from another.

In Figure 3, only the activity ‘MusicPlayerActivity’ is externally accessible, and thus when the
application starts, only the state machine ‘MusicPlayerActivity_0’ is accessible. The other state
machines are accessed through connection states. In this example, there is a connection state from
state S5 to the state machine ‘FullScreenPlayerActivity_0’, which is in a different activity. If the
current state is S5 and the user clicks on the control bar, the execution continues from the initial
state of ‘FullScreenPlayerActivity_0’. When this state machine reaches its final state, the connection
activity indicates that the returning state is S5. From the S5 state, the user can click the control bar
again or click the pause button.
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By following the available transitions from the initial state in the interaction model, an app user
flow, that is, a sequence of user actions, is generated. If there is more than one available transition
from a state, each one will lead to a different app user flow.

2.3. Formal semantics of the modelling language

In this section, the modelling language presented earlier and the method by which meaningful
app user f lows are constructed are formally defined. The use of mobile applications is formalized
through the composition of state machines at three different abstraction levels. User-view state ma-
chines are at the lowest level and represent the user behaviour on a mobile screen. Users can interact
with the active screen, firing user events. Sometimes one of these events activates a different screen.
This control transfer between views is modelled through the binary composition relation between
user-view state machines from which device state machines are constructed. Device state machines
use connection states to switch from the current user-view state machine to a different one. This
formalization does not take into account whether both user views belong to the same or different ap-
plications. Finally, the third level corresponds to the concurrent execution of device state machines.
At this level, different mobile devices are assumed to be executing and interacting through some ap-
plications. Note that activity state machines, as described in the previous section, are only structural
components of models that do not essentially affect the app description. Consequently, to simplify
the formalization in the description hereafter, they have been omitted.

2.3.1. User-view state machines.

Definition 1
A user-view state machine is a labelled transition system M D h†; I;

�
�! ; E; C; F i, where † is a

finite set of states, I � † are the initial states, C � † are the so-called connection states, F � †
is the set of final states, E is the set of user/internal events and

�
�!� † � E � † is the labelled

transition relation. Sets I , C and F are mutually disjoint.

Final states are states from which it is not possible to evolve. Connection states are states from
which it is possible to transit to a different state machine. These states are essential to model the
switching between typical views of smartphone devices.

Let F low.M/ be the set ¹s0
e1
�! � � �

en�1
���! sn�1 � � � js0 2 I; sn�1 2 F [C º of all finite sequences

of states allowed by M , starting at an initial state and ending at a final or connection state. Each
element of F low.M/ is named flow. The length of a flow is the number of its states.

Definition 2

Given a flow of length n, � D s0
e1
�! � � �

en�1
���! sn�1 2 F low.M/, the test case, test.�/, determined

by � is defined as the sequence of events occurring in �; that is, test.�/ D e1 � � � � � en. The set of
test cases allowed by M is defined as TC.M/ D ¹test.�/j� 2 F low.M/º.

The set of events E is divided into two disjoint sets: the set of user events, denoted by EC, with
events such pressing a button, and the set of system events, denoted by E�, which includes, for
instance, system responses to user requests. In the following, eC and e� represent user events and
system events, respectively, and e alone refers to events of either type.

According to Definition 2, test cases are finite sequences of user and system events. For instance,
sequence eC1 � e

C
2 � e

�
3 � e

C
4 represents a test case where the user first fires events eC1 and eC2 , the

system then fires e�3 and finally the user fires eC4 . Thus, user and system events are handled similarly
during the generation of test cases. The difference between them is important when test cases are
transformed into executable code, as described in Section 5. User events will be transformed into
non-synchronized calls to methods that simulate the real occurrence of the event, while system
events will correspond to calls to synchronized methods which wait for the arrival of the system
event.
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Published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2019;29:e1699.
DOI: 10.1002/stvr

 10991689, 2019, 4-5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1699 by C

bua-C
onsorcio D

e B
ibliotecas, W

iley O
nline L

ibrary on [18/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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2.3.2. Composition of user-view state machines. This section will describe how user-view state
machines are composed to construct flows that navigate through different user views. A binary
relation X , between connection and initial states, models this navigation. Assume that the flow in
execution belongs to a user-view state machine Mi and that a connection state cs of Mi has been
reached. If relation X defines a transition from cs to some initial state of another machine Mj , the
flow could jump from Mi to Mj and then proceed following the transition relations of Mj . This
jump implies a change in the active view fromMi toMj . Subsequently, the user-view state machine
that is visible in the device is called active, and the other user-view state machines, which have been
created but are not currently visible in the device, are called created.

Assume a finite family of n state machines Mi D h†i ; Ii ;
�
�!i ; Ei ; Ci ; Fi i such that no state is

shared between machines; that is, 81 � i; j � n: i 6D j implies †i \†j D ;. Then, the machine
nS

iD1

Mi D h†; I;
�
�!; E; C; F i is constructed, where

� † D
nS

iD1

†i , I D
nS

iD1

Ii , E D
nS

iD1

Ei , C D
nS

iD1

Ci , F D
nS

iD1

Fi , and

� si
e
�! s0i ” 91 � i � n:si

e
�!i s

0
i

In addition, E � E denotes the set of call events that provoke the switch between active user-view
state machines.

Definition 3
The connection of a finite family of n user-view state machines M1; � � � ;Mn is given by a binary
relation X � C � E � I , which enables the transition from connection states to initial states.

In the following, 3-tuples .si ; e; sj / of X are denoted as si
e
�!c sj . Note that the source and target

machines i and j could coincide.
When one view is left to continue in another view, the caller view usually stays active, which

means that the execution could return to that view in the future. To account for this behaviour, each
connection state s 2 Ci is assumed to have a related state return.s/ 2 †i , which represents the
state to be returned to when the caller view continues its execution.

When a new view is created, the call event could specify some parameters that determine how it
must be started or finished. For example, if the view has already been created, the caller can choose
whether to reuse the previously created view or create a new view. Additionally, when the newly
created view has finished its execution, the caller view could automatically become active or not.
The Boolean functions reuse; auto_return W E ! ¹false; t rueº establish these parameters for
the call events. Although there are other parameters that can be defined in the call events, these two
are sufficient to describe the mobile behaviour.

The device state machine is now defined as the composition of the behaviour displayed by the
user-view state machines along with the connection relation.

Definition 4
Given a finite family of n state machines M1; � � � ;Mn and a connection relation of X , as defined

earlier, the device state machine D D
nS

iD1

Mi

L
X is defined as the state machine h†� � †� �

E�; I; ��!d ; E; F i where †� and E� are the set of finite sequences of states of † and the set of call
events of E , respectively.

The states of device state machines are termed configurations. A configuration is a 3-tuple
hsh; rh; ehi in which sequence sh is the list of states s0 � s1 � � � sn that have been visited thus far in a
flow, where sn is the current state in the active user-view state machine. Sequence rh is the stack of
states r1 � r2 � � � rm that constitutes the history of the view machines that have been created (and not
yet destroyed) in the device but are not currently visible. Each state ri of r1 � r2 � � � rm is the return
state of a connection state of a user-view state machine that was previously active but became in-
active when a transition from this view to another user-view machine took place. Notably, s0 � � � sn
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 9 of 35

and r1 � � � rm both represent sequences of states, that is, subsets of †�, and the naming is purely to
distinguish between these two components of a configuration. Finally, eh D e1 � � � em is the history
of events that provoked a user-view switch in the current execution. Observe that stacks rh and eh
have the same length. If ei in eh is an event that fired a view switch, then ri is the state to be returned
to when this new state machine finishes. In the succeeding text, � represents the empty state/event
history and eh � em (similarly, rh � rm) denotes a non-empty stack with event em (state rm) at the top.

The following rules define the relation
�
�!d which is constructed from the transition relations of

user-view state machines
�
�!i , and the binary connection relation

�
�!c . In these rules, given a history

of states r1 � � � rm and an index j of a user-view state machine Mj , the function top W †� � N !
† [ ¹?º returns the last state of the user-view state machine Mj in the sequence r1 � � � rm. That is,
top.r1 � � � rm; j / returns rk , if 1 � k � m is the largest index such that rk 2 †j , or ?, if such a
state does not exist.

R1.
s
e
�!i s

0

hsh � s; rh; ehi
e
�!d hsh � s � s0; rh; ehi

R2.
s
e
�!c s

0;:reuse.e/

hsh � s; rh; ehi
e
�!d hsh � s � s0; rh � return.s/; eh � ei

R3.
s
e
�!c s

0; s0 2 Ij ; reuse.e/; top.rh; j / D ?

hsh � s; rh; ehi
e
�!d hsh � s � s0; rh � return.s/; eh � ei

R4.
s
e
�!c s

0; s0 2 Ij ; reuse.e/; top.r1 � � � rm; j / D rk

hsh � s; r1 � � � rm; e1 � � � emi
e
�!d hsh � s � rk; r1 � � � rk�1; e1 � � � ek�1i

R5.
s 2 F; auto_return.e/

hsh � s; rh � rm; eh � ei
�
�!d hsh � s � rm; rh; ehi

Rule R1 states that a transition inside a user-view state machine Mi corresponds to a transition
in the device state machine. The new state s0 is added to the list of visited states sh � s. Rules R2
and R3 model a transition from a machine to a new machine (Mj , for some index j ) when both
the new state s0 and the event e are added to the view and event histories of the current system
configuration. Rule R2 is applied when event e does not involve reusing a previously created view
(reuse.e/ is false), while R3 applies when a view of Mj should have been reused (reuse.e/ is
true) but the current view history does not contain one (top.r1 � � � rm; j / D ?). Rule R4 defines
a transition from a machine to Mj by reusing a previously created view of Mj (reuse.e/ is true)
stored in rh (top.r1 � � � rm; j / D rk). Finally, R5 defines the case when the flow of the currently
active view has finished, and the execution must continue with the state rm stored at the top of the
view history rh � rm. Otherwise, that is, if auto_return.e/ returns false, the current configuration
hsh; rh; ehi cannot evolve. Note that, for simplicity, this model omits the case when the developer
modifies the usual flow when finishing an activity: instead of returning to the previous activity in the
stack (auto_return is t rue), the developer can insert a different activity to jump from the closing
activity (auto_return is false).

Given a device state machine D D
nS

iD1

Mi

L
X , the trace-based semantics determined by

D (O.D/) is given by the set of finite/infinite sequences of configurations (flows) produced by
the transition relation

�
�!d from an initial state, in other words, O.D/ D ¹hs0; �; �i

e0
�!d hs1 �

s1; rh1; eh1i � � � js0 2 I º.

Definition 5

Given a flow � D c0
e1
�!d c1

e2
�!d c2 � � � 2 O.D/, the test case determined by � is the sequence

of events test.�/ D e1 � e2 � � � . The set of test cases determined by a set of flows T is TC.T / D
¹test.t/jt 2 T º.

© 2019 The Authors. Software Testing, Verification & Reliability
Published by John Wiley & Sons Ltd.
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10 of 35 A. R. ESPADA ET AL.

Thus, a flow � 2 O.D/ consists of a sequence of user-view state machine flows (Definition 2)
connected through connection states. Flow � may finish at a final state of some user-view state
machine or may be infinite. The length j�j of a flow � is the number of its states (configurations) if
it is finite or1, otherwise. Given a flow � D c0

e1
�!d c1

e2
�!d c2 � � � 2 O.D/, the truncated flow up

to length n, �n, is defined as � iff j�j � n or �n D c0
e1
�!d c1

e2
�!d c2 � � �

en�1
���!d cn�1, otherwise.

To address this circumstance, the set of traces On.D/ is defined as the set of all traces of O.D/ that
are truncated up to length n, in other words, On.D/ D ¹�nj� 2 O.D/º.

Observe that the state space of device state machines is not finite, given that the configurations
include the state, view and event histories, which may have arbitrary lengths. In addition, the state
space generated when an explicit model checker is constructing all the flows allowed by a device
state machine is non-finite. This circumstance is due not only to the state and event histories, but
also to the necessity for the matching algorithm, applied during the state space search, to account
for both the current state of the flow and the history of the previous states of the flow, as contained
in the first component of each configuration. For example, this approach allows both flows �1 D

hs0; �; �i
e
C

1
��!d hs0 �s1; �; �i

e
C

2
��!d hs0 �s1 �s2; �; �i

e
C

3
��!d hs0 �s1 �s2 �s3; �; �i and �2 D hs0; �; �i

e
C

4
��!d

hs0 � s4; �; �i
e
C

1
��!d hs0 � s4 � s1; �; �i

e
C

2
��!d hs0 � s4 � s1 � s2; �; �i

e
C

3
��!d hs0 � s4 � s1 � s2 � s3; �; �i to

be generated by the model checker. Even though both visit the states s1, s2 and s3, the path taken in
each flow is different.

As a consequence, the models of device state machines are not, in general, state finite, which
means that the model checking process does not, in general, terminate. The current implementation
solves this problem by bounding the depth of the execution flows analysed by generating On.D/ for
some fixed n.

2.3.3. Composing several devices. The extension of the state machine model to several devices is
carried out by composing the device state machines through interleaving. Thus, if c0

e1
�!d c1 and

c00
e0
1
�!d 0 c

0
1 are transitions in devices D and D0, respectively, then they allow the two transitions

hc0; c
0
0i

e1
�!d jjd 0 hc1; c

0
0i and hc0; c00i

e0
1
�!d jjd 0 hc0; c

0
1i in the interleaved composition of D and D0.

The communication between the two devices is modelled by a user event in the sender device
(the device that starts the communication) and a system event in the receiver device (the device that
receives the message). Thus, for instance, using the previous example, if e1 D eC1 is an event that
implies a communication from D to D0 and e01 D e�1 is the corresponding event to be read by D0
from D, the test cases eC1 �e

�
1 and e�1 �e

C
1 are generated. Note that in the second test case, the method

that implements the transition for the receiver event will suspend the execution of D0 until event eC1
is fired by D.

In addition, when addressing the use of more than one device, model checking optimization tech-
niques such as partial order reduction [8] are used to avoid the generation of multiple test cases that
correspond to a single feasible interaction between the devices.

3. SPECIFICATION LANGUAGE FOR EXTRA-FUNCTIONAL PROPERTIES

This section introduces the language to describe EFPs on execution traces. Usually, verification tech-
niques such as model checking evaluate properties over traces, abstracting the real time when each
state occurs. This abstraction is adequate, for example, to analyse functional (safety and liveness)
properties. However, the analysis of some non-functional properties, such as energy consumption,
requires taking into account (tracking and measuring) the values of some non-discrete variables
that evolve over time. For instance, to analyse the energy consumed by a device when downloading
a file, it is necessary to determine when the download starts and finishes and measure the energy
consumed by the device during this period.

Three interval formulae constitute the proposed simple specification language. In these for-
mulae, there exists an implicit synchronization between the discrete evolution of traces and the

© 2019 The Authors. Software Testing, Verification & Reliability
Published by John Wiley & Sons Ltd.
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 11 of 35

continuous evolution of the magnitudes to be checked on the traces. The interval formulae are first
presented on an intuitive level and then formalized. Finally, this section addresses their translation
into linear temporal logic (LTL) to be analysed by on-the-fly automata-based model checkers such
as SPIN.

3.1. Interval formulae

Assume that O.P / is the set of execution traces determined by a transition system P D h†;
�
7�!;

L; s0i. Traces are sequences of states of the form � D s0 7�! s1 7�! � � � .‡ This section uses the
term execution traces, or simply traces, to denote the sequences of states produced by a transition
system since this generality suffices to describe the syntax and semantics of the interval formulae.
In any case, in the following sections, the execution traces will correspond to the real sequences
of states generated when the test cases are executed on the mobile devices. Let F be a set of state
formulae to be evaluated on the states of †. The relation ˆ� † � F associates each state with
the state formulae that it satisfies, in other words, given s 2 †, and p 2 F , s ˆ p iff state s
satisfies formula p. As usual, the state formulae are assumed to be constructed from a set of atomic
propositions and Boolean operators.

Assume a set of variables C that represent continuous magnitudes to be analysed on the executions
of traces. Each c 2 C is a real-valued function c W R�0 ! R that defines the evolution of c with
time. Thus, c.t/ 2 R gives the value of c at time instant t . State formulae are used to determine
the state intervals on which it is necessary to measure the continuous variables. For example, the
state formulae wifi_on; wifi_off may serve to detect the states in the traces during which the wifi is
activated.

Following this idea, a simple language is proposed for the specification of non-functional prop-
erties, which will use the intervals of states to describe the periods during which the continuous
variables of interest are evolving and must be monitored.

Given p; q 2 F , c 2 C and K 2 R�0, three valid formulae are defined in the specification
language: ŒŒdiff_c � K��Œp;q�, 8ŒŒd iff _c � K��Œp;q� and 9ŒŒd iff _c � K��Œp;q�. The intuitive
semantics of 8ŒŒdiff_c � K��Œp;q� is as follows. An execution of trace � D s0 7�! � � � satisfies
8ŒŒdiff_c � K��Œp;q� iff for each pair of states si ; sj of � , with i � j and si ˆ p; sj ˆ q,
the following condition (Cond ) holds: ‘the difference between the values of variable c at the time
instants when si and sj took place is less than or equal to K’. That is, p and q determine the trace
interval si 7�! � � � 7�! sj on which the evolution of variable c must to be observed. The other two
formulae are similar, except that 9ŒŒd iff _c � K��Œp;q�/ŒŒd iff _c � K��Œp;q� holds iff condition
Cond holds for some/the first pair of states si ; sj with i � j , and si ˆ p; sj ˆ q.

For example, if variable c gives the energy consumed by a device, formula 8ŒŒd iff _c �
k��Œwifi_on;wifi_off� holds for an execution of a trace � iff each time the wifi is activated, the energy
consumed is less than or equal to K.

3.2. Interval formulae semantics

The traces � D s0 7�! � � � can be described as maps � W N ! † that associate each natural number
with the corresponding state in the trace, that is, �.i/ D si . Because the traces provided by the test
cases are finite, each trace � can be supposed to have an ending state o that repeats infinitely often.
Hence, assume that for each trace � , there exists a natural number n > 0 (the length of the trace,
denoted as length.�/) such that (i) �.n � 1/ 6D o § and (ii) 8k � n:�.k/ D o.

Although the execution time is abstracted in operational semantics, it is clear that the execution
of each trace takes time, during which many other things that influence or are affected by the trace
execution may occur. The following definition makes the time taken by the execution of the traces
explicit.

‡Because transition labels are not necessary, they are omitted from the transition relation.
§To simplify the presentation, it is assumed that traces have at least one non-ending state s0.

© 2019 The Authors. Software Testing, Verification & Reliability
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12 of 35 A. R. ESPADA ET AL.

Figure 4. Synchronization of trace � and continuous variable c using eŒ��.

Definition 6
Given a trace � 2 O.P /, an execution e of � is a function eŒ�� W N ! R�0 that associates each
state �.i/ of � with the time instant eŒ��.i/ 2 R�0 in which it occurs.¶||

Note that each trace � may have many executions eŒ��, each relating states to different time
instants. Once the execution of a trace eŒ�� has been fixed, the values of the continuous magnitudes
that evolve synchronously with the trace can be observed. The diagram in Figure 4 illustrates this
synchronization. The upper row shows the states of trace � D s0 7�! � � � . The middle row shows
the time passing, with each state si associated by means of eŒ�� with the time instant when it
occurs. Finally, the lowest row shows the evolution of the continuous variable c in time and its
synchronization with eŒ��.

The intervals of states (within the traces) are used to determine the periods of time during which
continuous variables should be observed. To accomplish this task, the interval calculus introduced
by Chaochen and Hansen [16] is used to give formal semantics to the language for EFPs presented
in Section 3.1. The interval logic domain is the set of time intervals Intv defined as ¹Œt1; t2�jt1; t2 2
R; t1 � t2º. An interval variable v is a function v W Intv ! R that associates each interval with
a real number. For instance, a continuous variable c W R�0 ! R can be used to define interval
variables, such as diff _c W Intv ! R given as diff _c.Œt1; t2�/ D c.t2/ � c.t1/.

Interval expressions that describe properties on intervals can be constructed by using a set of in-
terval variables, relational and boolean operators and real constants. For instance, ifK is a constant,
then diff _c � K W Intv ! ¹t rue; falseº defines the property on time intervals Œt1; t2� to be true
iff c.t2/ � c.t1/ � K.

Given a trace � and an interval of natural numbers Œi; j �, � # Œi; j � denotes the state inter-
val/subtrace of � from state �.i/ to �.j /. Similarly, given an execution e of � , eŒ�� # Œi; j �
represents the time interval ŒeŒ��.i/; eŒ��.j /� from the creation of state �.i/ to the creation of state
�.j / in execution eŒ��. Thus, state intervals and executions of traces provide time intervals on
which to evaluate interval expressions such as diff _c � K.

State formulae are used to construct state intervals as follows. Given the set of state formulae
F defined in Section 3.1, the term formula intervals is applied to expressions such as Œp; q� with
p; q 2 P rop. The satisfaction relationˆ on state intervals is extended as follows.

Definition 7
Given a trace � and an interval of natural numbers I D Œi; j � with i � j , the state interval � # I
satisfies Œp; q�, written as � # I ˆ Œp; q�, iff the following conditions hold:

1. �.i/ ˆ p
2. �.j / ˆ q
3. 8i < k < j:�.k/ 6ˆ q

that is, Œi; j � is a state interval of � such that �.i/ satisfies p, and �.j / is the first state after �.i/
that satisfies q.

¶It is assumed that eŒ��.i/ represents the time instant when state si is created.
||It is assumed that if � is a trace of length n, eŒ�� associates the final ending states of � with the time instant when the
last non-ending state took place, that is, 8k � n:eŒ��.k/ D eŒ��.n� 1/.

© 2019 The Authors. Software Testing, Verification & Reliability
Published by John Wiley & Sons Ltd.
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 13 of 35

The following assumes that the ending state o satisfies no formula of F , that is, 8p 2 F : o 6ˆ p.
Now, given a trace � and a proposition interval Œp; q�, � + Œp; q� denotes the finite sequence of

state intervals of � , written as I0 � I1 � � � Im�1, that satisfy Œp; q� in the sense described earlier, that
is, 80 � i < m: � # Ii ˆ Œp; q�.

The following two definitions show how the sequence of intervals � + Œp; q�may be constructed.

Definition 8
Given a state formula p, a finite trace � of length n, and k � 0, � #k p is the first state of � that
occurs after (including) �.k/ and that satisfies p, if it exists, or is1, otherwise. Then, � #k p can
be inductively defined as:

1. � #k p D k, iff �.k/ ˆ p
2. � #k p D � #kC1 p iff k < n; �.k/ 6ˆ p
3. � #k p D1 iff k � n

Definition 9
Given a finite trace � and two state formulae p; q, the sequence of state intervals determined by p; q,
� + Œp; q�, is inductively defined from operator +k with k � 0, as described in the succeeding text.

1. � +k Œp; q� D � ” � #k p D1; or � #k p D j ^ � #jC1 q D1
**

2. � +k Œp; q� D Œj; l� � .� +lC1 Œp; q�/ ” � #k p D j ^ � #jC1 q D l

Then, � + Œp; q� is defined as � +0 Œp; q�.

Thus, the two state formulae p; q 2 F determine a sequence of state intervals � + Œp; q� D
I0 � � � Im�1 in � that satisfy Œp; q�. This definition can be extended to executions e of � as eŒ�� +
Œp; q� D eŒ�� # I0 � � � eŒ�� # Im�1. This approach provides semantics for the three formulae
presented in Section 3.1.

The following definition applies when an execution e of a trace � satisfies an interval expression
ˆ such as diff _c � K.

Definition 10
Letˆ and Œp; q� be an interval expression and a formula interval, respectively. Let e be an execution
of a finite trace � . Then,

1. eŒ�� satisfies ˆ on the time intervals determined by Œp; q�, written as eŒ�� ˆ ŒŒˆ��Œp;q�, iff
eŒ�� + Œp; q� D T1 � � �Tm.m > 0/ and ˆ.T1/ holds.

2. eŒ�� satisfies 9ˆ on the time intervals determined by Œp; q�, written as eŒ�� ˆ 9ŒŒˆ��Œp;q�, iff
eŒ�� + Œp; q� D T1 � � �Tm.m > 0/ and 91 � i � m:ˆ.Ti / holds.

3. eŒ�� satisfies 8ˆ on the time intervals determined by Œp; q�, written as eŒ�� ˆ 8ŒŒˆ��Œp;q�, iff
eŒ�� + Œp; q� D T1 � � �Tm.m � 0/, if 81 � i � m:ˆ.Ti / holds.

That is, an execution e of trace � satisfies formula (1) ŒŒˆ��Œp;q� iff the first time interval de-
termined by � + Œp; q� and e satisfies ˆ; (2) 9ŒŒˆ��Œp;q� iff a time interval exists in the sequence
eŒ�� + Œp; q� that satisfies ˆ; (3) 8ŒŒˆ��Œp;q� iff all the time intervals determined by � + Œp; q�
and e satisfy ˆ. For instance, if ˆ D diff _c � K, then ŒŒˆ��Œswif i;ewif i� establishes that the time
interval determined by the first state interval on which Œswif i; ewif i� holds must satisfy ˆ.

3.3. From interval properties to LTL

This section discusses how the interval properties can be practically evaluated on execution traces.
Each type of interval property can be described by an LTL formula to be given to the model checker.
To simplify the presentation of the formulae, given two state formulae p and q, ˆ.p; q/ is defined
as:

ˆ.p; q/ 	 p ^ .:q U .q ^ˆ//

**� represents the empty sequence.

© 2019 The Authors. Software Testing, Verification & Reliability
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14 of 35 A. R. ESPADA ET AL.

Intuitively, ˆ.p; q/ is the LTL representation of property: ‘p holds on the current state, q will be
true in a future state and, at that moment, the time interval determined by p and q will satisfy ˆ’,
as the following diagram illustrates:

For ŒŒˆ��Œp;q� properties, the following LTL specification is used:

ŒŒˆ��Œp;q� 	 .:p/ U ˆ.p; q/ (1)

The intended meaning of this formula is as follows. First, search for the first state (si ) on which
p holds; then, search for the first state following si on which q holds (sj ). These two states si and
sj determine a time interval. If ˆ is true on this interval, then formula ŒŒˆ��Œp;q� holds. Otherwise, if
it is not possible to find either si or sj , or if the time interval does not satisfy ˆ, then the formula is
false. The following sequence shows a trace that satisfies ŒŒˆ��Œp;q�. Note that solid arrows are used
to identify intervals and dashed arrows otherwise.

For the property 9 ŒŒˆ��Œp;q�, following LTL specification is used:

9 ŒŒˆ��Œp;q� 	 ˆ.p; q/ _ Þ.:p ^ �ˆ.p; q// (2)

that is,ˆ.p; q/ should be true either in the first state or in some future instant. Note that �represents
the ‘next’ operator, which is safe to use in this case because the analysing addresses linear execution
traces rather than concurrent programs. The use of �is needed to ensure that the formula ˆ.p; q/ is
evaluated on a maximal time interval determined by p and q; that is, the state on which p is true must
be preceded, if it is not the initial state, by a state that does not satisfy p. The following sequence
shows an example of a trace for which ˆ.p; q/ holds on the second time interval determined by p
and q.

Finally, the LTL formula for 8 ŒŒˆ��Œp;q� is given by:

8 ŒŒˆ��Œp;q� 	 p ! ˆ.p; q/ ^ �..:p ^ �p/! �ˆ.p; q// (3)

that is, all maximal intervals determined by Œp; q� properties in their ending points should satisfy ˆ
at the instant when the right ending point occurs. The following sequence shows a trace with two
time intervals, determined by p and q, for whichˆ is true. Note that the last state is labelled with the
symbol o to indicate that the trace does not contain any state interval after Œsi2 ; sj2 � satisfying Œp; q�.

4. TRIANGLE TESTING FRAMEWORK

The goal of the TRIANGLE project†† is to provide app developers and device makers with bench-
marking services to ensure that their products are ready to meet the challenges presented by 5G
mobile networks. The improvements resulting from the upcoming standard will push existing use

††www.triangle-project.eu.
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 15 of 35

cases and enable new ones, for example, in connection with eHealth, smart cities and media stream-
ing, and will increase the expectations of the end users. In this context, the TRIANGLE project
focuses less on functional testing, which is covered by many existing tools and services, than on
quality of experience (QoE). The benchmarking process is built on a set of key performance indi-
cators (KPIs), which are organized around domains such as power consumption, network resource
usage and user experience. Each KPI will provide insight into a different aspect of the application
or device that influences user perception. The aggregation of the KPIs from each domain will be
compared against a set of reference apps or devices.

Figure 5 presents a high-level overview of the TRIANGLE platform. The project involves build-
ing a testing framework using state-of-the-art testing equipment, which enables the emulation of
many different network scenarios in a realistic manner, using real mobile devices and apps. This
equipment is expensive for most developers, and its configuration and use is a difficult, error-prone
task that requires a high degree of expertise. In addition, the framework consists of many pieces that
must be coordinated to conduct a test. The project aims to hide all this complexity behind a user-
friendly web interface allowing users to focus on their products and the results of the benchmarking.
Users will see only high-level network scenarios, such as urban pedestrian or high-speed train envi-
ronments, instead of the actual configuration of the emulation equipment. The user interacts with a
web portal, where the app under test must be provided along with additional relevant information,
such as the features supported by the app. The framework uses this information to decide which
test cases are applicable to the app and to prepare and execute them. The execution of a test case
involves coordinating the configuration of the network equipment, the automation of the user equip-
ment (UE), that is, the mobile device, the measurement equipment and tools and the automation of
the app itself. The processed results are shown to the user in the web portal.

This paper extends the original architecture of the TRIANGLE testing framework. First, the
Transform block is extended by a formal definition of the interaction model that describes the user
interactions with the app. A support tool has been implemented that automatically extracts the model
from the compiled applications and allows the refinement of the model. Given the interaction model,
model checking (exhaustive exploration) is used to obtain a set of app user flows that can be included

Figure 5. Overview of the TRIANGLE testing framework.
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16 of 35 A. R. ESPADA ET AL.

among the test cases to measure KPIs. Second, the Analysis and Reporting block is extended by
means of a formal language to define EFPs. It is now possible to verify whether the traces produced
during test case execution satisfy some of the properties.

4.1. App automation

One vital piece of the framework for benchmarking apps is guiding their execution. For instance,
to execute a test in which the performance of a video playback will be evaluated, the app must
be automated to play a video. The TRIANGLE framework uses Quamotion WebDriver [17], an
automation solution for mobile apps based on the WebDriver standard for web browser automation.
This tool can send commands to the mobile device that simulate actual user interactions with an
app, such as tapping a button or entering text in a field. The sequence of actions used to carry out
a test case in the TRIANGLE project is called the app user flow. The framework can take a JSON
[18] script with a sequence of app user flows and perform them on the device using the Quamotion
WebDriver.

Model-based testing [12] can help to automate the generation of app user flows as JSON scripts.
Furthermore, if the model is correctly annotated, only the app user flows that are useful to compute
any given KPI are generated (preliminary work [13]). If the requirements to measure a KPI change,
then new app user flows can be generated from the same model. Therefore, the web portal can accept
a single interaction model instead of a set of automation scripts. Section 5.1 presents an automatic
way of creating this interaction model from the app itself so that most of the work is performed for
the user. This process is based on the compiled version of the app (apk in Android). The generated
model should still be fine-tuned by the app developer, for example, to add meaningful event names,
but the bulk of the work will be performed automatically. The following sections presents the formal
languages for modelling the app and describing the EFPs.

5. IMPLEMENTATION FOR ANDROID DEVICES

This section describes the implementation of this proposal for analysing mobile applications in the
context of the TRIANGLE platform. Although this architecture can be adapted for different mobile
operating systems, this paper focuses on its implementation for Android devices.

As discussed earlier in Sections 2 and 3, model checking, in particular the SPIN model checker, is
the underlying formal technique (Figure 1), not only to generate app user flows that will be executed
on real devices as part of the test cases but also to carry out the effective verification of EFPs, such
as energy consumption, on these test cases.

5.1. Model extraction

Figure 6 shows an overview of the approach to automatically extract the interaction model. It is
based on three main elements: the app controller, the exploration algorithm and the model parser.
Given the application binaries, the app controller installs and manages the execution of the target
app. The app controller can perform user events and capture the hierarchy of visual elements. The
exploration algorithm decides the order in which the user events are performed and determines the
different interaction model states based on the app UI. Finally, the model parser transforms the states
and transitions obtained from the exploration into the interaction model. The following sections
explain each element in more detail.

5.1.1. App controller. The app controller is in charge of interacting with the device where the
application is running and is responsible for the following tasks:

1. Install, launch and close the application
2. Obtain the hierarchy of visual elements of the active view
3. Determine the list of visual elements that accept user events
4. Perform user events on specific visual elements (e.g. click, long click or scroll)
5. Fire system events (e.g. open/close keyboard or play/pause media)

© 2019 The Authors. Software Testing, Verification & Reliability
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 17 of 35

Figure 6. Automatic model extraction tool architecture.

Some of these tasks can be carried out with existing UI automation testing tools [19–22]. This
approach has implemented an app controller for Android devices based on two testing frameworks.
First, Quamotion WebDriver [17] is a test automation framework that automates iOS and Android
apps on real devices. WebDriver [23] is an open protocol for test automation originally designed for
web applications based on the exchange of JSON messages. Second, Android UIAutomator [22] is
a UI testing framework included in the Android SDK. All previous tasks can be implemented with
the SDK testing framework, but such implementation is less reusable. For this reason, UIAutomator
is used only for tasks that WebDriver cannot carry out or cannot perform efficiently. In particular,
UIAutomator’s main task is to extract the app’s Document Object Model (DOM), that is, the hierar-
chy of visual elements. For each visible element, the DOM includes a list of attributes: the resource
identifier, the class and the user events accepted. This information is especially useful for determin-
ing whether the UI has changed after performing a user event and obtaining the list of controls and
events that must be explored.

Mobile applications have complex UIs with multiple activities, fragments, overlays, controls, etc.
that accept different types of user events. The exhaustive exploration of all visual elements that react
to user events can lead, in the worst case, to large models with a poor performance in the generation
phase of the app user flow. To manage the size of the application model, the app controller includes
the following configurable options:

� Types of events considered in the exploration. For instance, if scrolling a layout produces the
same effect as clicking on a tab menu, the scrollable views can be ignored and only click events
analysed.
� Number of list items explored. In some apps, the effect of performing an event on any list item

is the same. For instance, in a music player with a list of playable songs, clicking on each song
will start playback. Thus, exploring only some of the items is sufficient to extract the model.
� Ignored elements. Some events in specific elements could have non-desired effects during the

model extraction or the test execution, such as elements that restore the account password or
open the configuration settings. For this reason, such elements are systematically excluded
from the exploration.
� Predefined text for specific EditText fields. This concern is relevant in apps whose behaviour

depends on the information provided in a form, for instance apps that require a login.
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18 of 35 A. R. ESPADA ET AL.

Observe that most of the configurable options are connected to obtaining the list of visual ele-
ments that will be explored. Thus, the exploration algorithm examines a reduced number of states.
In contrast, the configuration of EditText fields increases the number of explored states to include
all desirable app behaviours.

5.1.2. Exploration algorithm. The exploration algorithm defines a strategy to execute user events
in order to traverse the different app states. Amalfitano et al. [24] compared testing techniques
and tools for mobile apps and determined that the most widely used strategies are depth-first and
breath-first search. In the present work, both strategies were implemented, but only the results of the
depth-first search are used in the evaluation section because the number of times that the app has to
be initialized (or relaunched) is lower, which in turn decreases time required to extract the model.

An app state represents the app UI after the performance of a user event on a specific element.
Because a state can be reached by performing user events in different UI elements, the exploration
algorithm stores a 4-tuple (xPath, event, dom, exp), where xPath [25] identifies the element
in the source DOM, event is the event performed on the element, and dom is the DOM after
the event, in other words, the app state, and exp is a flag that, if true, indicates that the current
configuration and its successors have been explored. A configuration has successors if the dom has
controls that can handle user events. In the following, the term configurations is used for the 4-tuples
handled by the algorithm to distinguish them from the interaction model states.

© 2019 The Authors. Software Testing, Verification & Reliability
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 19 of 35

Listing 1 shows a simplified version of the algorithm in Java, which implements a depth-first
search strategy. The main data structures are the set of visited configurations, the path (list) of
configurations that leads to the current configuration and the stack of unvisited configurations.
This stack stores incomplete configurations in the sense that the dom is empty because the event
has not yet been performed. The input of the algorithm is the initial configuration s0, which is
stored in unvisited with xPath ‘/’, event ‘launch’ and an empty dom (line 9). While there are
unexplored configurations, the algorithm extracts one, requests that the app controller perform the
user event s.event on the visual element s.xpath (line 14) and stores the resulting dom. Then,
the algorithm checks whether a configuration in visited has an equivalent dom (line 15). If so,
the configuration is considered visited, and the interaction model is updated with a new transition.
Otherwise, the configuration s is new and is included in visited. In addition, the interaction
model is updated with the new state and the transition. If the configuration has successors, that
is, if the dom has controls that can handle user events, they are included in the stack of unvisited
configurations (line 32). Finally, the algorithm backtracks if the configuration s is in visited
(line 22) or if s has no successors (line 36).

5.1.2.1. Matching criterion. The matching criterion defines when two doms can be considered
equivalent to diminishing the number of configurations explored. In Listing 1, the matching criterion
is applied to determine if there is a configuration equivalent to s in visited (line 15). Listing 2
shows part of a dom provided by the app controller. Observe that it includes the hierarchy of visual
elements (node) and information about them (user events enabled, class or text content).

The matching criterion determines that two doms are equivalent if they are in the same activ-
ity, they have the same hierarchy (hierarchy relation and number of nodes), and their nodes are
equivalent:

� Two nodes are equivalent if the following attributes are equal: resource-id, class, package,
checkable, clickable, enabled, scrollable and long-clickable.
� If the nodes are editable, their text attributes must also be equal. A node is editable if its class

is android.widget.EditText or inherits from this class. This rule is required to generate models
of forms.
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20 of 35 A. R. ESPADA ET AL.

Figure 2 shows three different states of the Universal Music Player app. Applying the matching
criterion, (a) (list of songs) and (b) (list of songs with first song playing) are different states; although
they are in the same activity, they have a different number of nodes (observe that (b) includes new
playback controls).

5.1.2.2. Backtracking. The exploration algorithm backtracks to a previously visited configuration
when the explored configuration has been visited previously or when it has no successors (Listing 1,
lines 22 and 36). Listing 3 shows a simplified Java code of the backtracking algorithm. The back-
tracking process consists of finding a configuration in path (from last to first) that has at least one
unexplored successor (lines 4–13).

If path is not empty after this process, then the last configuration in path has a successor that
has not yet been explored and corresponds to the next configuration that will be extracted from
unvisited (Listing 1). In this case, the app controller closes the app and performs the list of user
events (on their corresponding elements) included in path. When the app controller ends, the app
will be running on the device and ready to accept the user event of the next unexplored configuration.
Otherwise, if the path is empty, the app controller closes the app and throws an exception to indicate
the end of the exploration.

5.1.3. Model parser. The model parser produces the interaction model that will be used to generate
the app user flows. The model parser interacts with the exploration algorithm when new states and/or
transitions are added (Listing 1, lines 19, 25 and 26). When the exploration algorithm ends, the
model parser dumps the interaction model into a file, using an XML-based internal representation
of the modelling language presented in Section 2.2. The model parser is based on Velocity‡‡, a Java
template engine that generates the XML representation of the interaction model from a template.

It is worth mentioning some limitations of the current implementation. Although the modelling
language can capture user and system events and delays between events, the automatically generated
models do not include temporal delays in transitions or interactions with other apps. However, app
user flow requirements can constrain the time elapsed after firing a particular event, which in practice
is equivalent to including the delay in the model. Figure 3 shows the graphical representation of the
Universal Music Player model.

‡‡http://velocity.apache.org/.
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Table I. Model extraction – Configuration.

App Max depth List items Events el. excluded

UAMP 10 1 click 0
iDo Calc. 5 1 click 0
Kolab Notes 8 2 click 2
Topeka 15 1 click 0
Word Press 8 1 click 7

5.1.4. Evaluation of the model extraction. This section presents an evaluation of the model extrac-
tion approach using the depth-first search exploration strategy. The evaluation has been performed
using a Samsung Galaxy S4 smartphone (non-instrumented) with Android 5.0.1 and a Windows 8
machine with an Intel Core i-7 3.600 GHz. The approach has been applied to five different apps,
all of which were obtained from the Google Play Store or the Android SDK. The configurable pa-
rameters are the maximum depth explored (number of consecutive user events), the number of list
items explored and the GUI elements excluded from the exploration. In addition, specific text can
be associated with text input elements (e.g. a login form). Table I shows the configuration of these
parameters for each app.

Universal Music Player (UAMP)§§ is a music player that presents to the user a list of songs that
can be streamed. From the point of view of the interaction model, playing any of the songs has the
same effect. Thus, the model extraction is set to explore only the first item of each list. Note that
UIAutomator has the limitation that it cannot obtain the DOM when the UI is changing dynamically,
for instance, if a video is playing. Thus, the application controller (Section 5.1.1) has to pause the
media playing before obtaining the DOM.

iDo Calculator¶¶ is a calculator with simple and scientific modes. Text input is performed by
clicking independent buttons for each digit and arithmetic operation. The maximum depth has been
set to 5 to obtain a model that considers arithmetic operations with 1 or two digits.

Kolab Notes|||| is an app for taking notes that can be local to a device, or shared by multiple devices
using an account. The model considers only the local mode, and the controls to share the notes were
excluded from the exploration. In addition, a colour picker component was excluded because it is
currently difficult to handle this component in the model. With respect to the text input, sample text
was provided for the note title and content.

Topeka*** is an app for performing quizzes. Generated quiz questions are random; some are
answered by choosing from four possible answers and others by writing text. To increase the prob-
ability of answering both types of questions during the exploration, the maximum depth was set to
a high value.

WordPress††† is an app for visualizing and managing WordPress sites. This app has an initial
login form, and thus, the form associates specific text with a valid user name and password. The app
provides links to recover the user name and password, create a new account or read the Terms of
Service, and these controls were excluded from the exploration. In addition, the app suggests a list
of sites to visit, which changes dynamically and includes different clickable elements. This situation
is similar to the dynamic questions in Topeka. However, to produce a first version of the model, the
number of sites explored was limited by the list items explored and the maximum depth.

Table II shows some results. Because the max depth of the algorithm was limited, the resulting
models may be a partial or incomplete representation of the app. On the one hand, for the UAMP
app, increasing the depth of the algorithm produces the same interaction model, which implies a
good representation of the app. On the other hand, the models of Topeka and WordPress, whose
behaviour have a random component, are partial. In addition, different models can be extracted in

§§Available at https://github.com/googlesamples/android-UniversalMusicPlayer.
¶¶Available at https://play.google.com/store/apps/details?id=com.ibox.calculators.
||||Available at https://play.google.com/store/apps/details?id=org.kore.kolabnotes.android.
***Available at https://github.com/googlesamples/android-topeka.
†††Available at https://play.google.com/store/apps/details?id=org.wordpress.android.
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Table II. Model extraction – Results.

App Activities St. Machines States Transitions Time (min) App launch

iDo Calc 2 2 9 93 49 23
UAMP 3 4 13 41 14 22
Kolab Notes 2 2 16 69 32 45
Topeka 3 3 16 51 33 38
Word Press 14 16 31 77 54 39

different executions of the model extraction algorithm. However, all these models present common
interaction patterns. Thus, it is recommended to manually tune the models to allow the common
patterns. Finally, the iDo Calculator model considers a click on each button as a different user event.
Although all these events leave the app in the same state, the number of transitions is too high to
produce a set of app user flows. In this situation, it is recommended to modify the model to abstract
the buttons, for example, by defining two types of buttons, numeric and arithmetic, and thereby
reducing the number of transitions.

5.2. App user flow generation

This section describes how to automatically produce app user flows, that is, sequences of user ac-
tions, using a model-based approach. The process starts with a model of the user interaction with
the app, provided by the developer or automatically extracted from the compiled app as explained
in Section 5.1. In both cases, the model is specified using the language described in Section 2.2.

The interaction model is explored exhaustively to generate all possible sequences of user actions.
For this step, the power of the SPIN model checker [8] is used. SPIN can be used to analyse the
correctness of concurrent software modelled using the PROMELA specification language. The focus
of the tool is on the design and validation of computer protocols, although it has also been applied
in other areas. SPIN checks the occurrence of a property over all possible executions of a system
specification and provides counterexamples when violations are found.
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In this case, SPIN performs an exhaustive exploration of the interaction model by translating
the XML representation into a PROMELA specification. Each device is represented by a PROMELA

process that models all of the state machines contained in that device. While the interaction model
is composed of nested state machines, the PROMELA code for a device consists of a single loop,
where each branch corresponds to a transition in the model. A global variable per device is used to
track its current state and decide which transitions can be performed next.

To implement connection states, each device keeps a backstack, that is, a record of the transitions
made in the past that lead to connection states. When a state machine finishes, the top of the back-
stack is checked. If it contains a connection state, then that information can be used to restore the
next state in a previous state machine. If it is empty, then the execution of the model terminates.

This specification is explored depth-first by SPIN and each transition taken is recorded. When
a valid end-state is reached, the sequence of transitions during the exploration contains the user
actions, that is, an app user flow. If more than one transition can be chosen at one point, SPIN will
first explore one of them and later return to explore the rest. In this way, the set of all possible app
user flows will be generated.

Listing 4 presents a simplified excerpt of the PROMELA specification generated for the Univer-
sal Music Player app, showing some transitions of the MusicPlayerActivity_0 state machine. The
process starting at line 3 models all the state machines contained on a device. The transition
function (e.g. line 8) records each transition and updates the top of the backstack. To enter a new
state machine from a connection state, its initial state is set first (line 13), and a new element is
then pushed to the top of the backstack (line 16). To leave a state machine, the top of the backstack
is popped (line 21), and the new top is checked to restore the state of the previous state machine
(line 22).

5.2.1. Optimized generation of app user flows. The previous section explained the production of
all possible app user flows from the interaction model. However, to evaluate an app against a set of
specific KPIs in the TRIANGLE testing framework (Figure 1), app user flows must activate some
features of the app under test. For instance, to test a video streaming app, the app user flows must
start and stop the video playback. The term app user flow requirements refers to the constraints that
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24 of 35 A. R. ESPADA ET AL.

the app user flows must satisfy to evaluate a KPI. In the example, the app user flow requirements
are to click on the play button and later on the stop button.

In previous work [13], the authors present an approach to optimize the generation of app user
flows. The idea is to verify the interaction model against a set of properties, so that counterexam-
ples represent the app user flows that satisfy the requirements. For this purpose, the requirements
are described as Büchi automata using a never claim, which is a special PROMELA process that
monitors the execution of the interaction model. Two different ways of defining these never claims,
called pruning and non-pruning, were evaluated. Since the pruning never claims obtained a better
performance, in this paper, all app user flow requirements are described in this way.

Currently, the TRIANGLE testing framework supports app user flow requirements described in
XML notation. Listing 5 shows an example of the XML notation. The requirements are classified
as invariants or constraints. Invariants describe conditions over states, events, views (activities) and
loops that must always be true. In the example, the invariant restricts the number of loops (line 7)
and forces the app user flow to avoid state S1 (line 8) and the activities FullScreenPlayerActivity and
PlaceholderActivity. In addition, only two back events (line 9) can occur in the app user flow, and
after them, a 10-s delay is included until a new event is fired. Constraints are restrictions over states,
events or activities that must eventually hold in a given order. In Listing 5, the app user flow must
pass at some point through state S6, then through state S7 and finally through state S8. Constraints
can be simple or complex. In the first case, the constraint affects only a state, event or activity. In
the second case, the constraint is defined as a set of restrictions that must hold simultaneously.

The interaction model and the app user flow requirements are given as XML files and have to be
compliant with their respective XML schemas. If they are not compliant, they cannot be translated
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 25 of 35

to PROMELA and the automatic generation of app user flows cannot continue. Listing 6 shows
the pruning never claim equivalent to the requirements of Listing 5. The body of the never claim
(lines 20–33) is a sequence of do blocks, each one with two guarded branches. The first branch is
guarded by the invariant and the constraint that must hold at some point, and if it is satisfied, the
execution jumps to the next block. The second branch is guarded by the invariant and the pruning
condition, which is essentially the negation of the constraint. If the guard is satisfied, the never
claim remains in this do block. The final do block is slightly different: the first branch executes
an assert(false) instead of a goto statement. Figure 6 presents a simplified definition of the
invariants and the constraints (lines 4–18). Note that these definitions include references to variables
and constants from the PROMELA model (Figure 5) and calls to auxiliary functions written in C.
For example, numEvents returns how many times a specific event has been fired in the current
app user flow.

The verification is carried out by the SPIN model checker. If the requirement contains references
to non-existing elements in the interaction model, such as misspelled event or state names, SPIN

reports the syntactical errors. The SPIN model checker is configured to detect assertion violations
and does not stop when an error is found. In this way, it produces a counterexample each time
the assert statement is executed, and each counterexample is an app user flow that satisfies the
requirements.

5.3. Execution of app user flows and test cases

This section describes how the app user flows are automatically executed. To execute the app user
flows, Quamotion WebDriver was used again [17]. Because it implements the standard WebDriver
protocol, a number of clients can interface with it. In TRIANGLE, the Keysight Testing Automation
Platform (TAP) [26] automates the whole process. TAP is a flexible platform that orchestrates the
interaction of the testing framework with a number of instruments that interact around the device
under test (DUT). A new TAP plugin has been developed to interact with the Quamotion WebDriver,
which executes an app user flow written as a JSON script. The TAP plugin translates each of the
user actions into calls to the WebDriver API. Before executing an action, the plugin checks and
waits for the action to be executable, for example, that the referenced xPath is indeed available in
the current contents of the screen. The TRIANGLE testing framework monitors the execution of the
app user flows, measures different parameters (average current, transmitted and received data, user
events, etc.) and stores this information in a database.

5.4. Verification of extra-functional properties

The final step of this approach is the analysis of the test case execution. This step involves the
analysis of execution traces to verify the given EFPs.

The TRIANGLE testing framework provides information about the device on which the app
runs (such as the average power, transmitted/received data and transmission/reception rate) and the
network conditions (cells, eNodeBs, etc.). In addition, the developer can instrument the app under
test to include in the traces when certain events or pieces of code are executed, which is needed
during the runtime verification process of EFPs. We call these new traces enriched traces.

Each EFP is transformed into a monitor whose implementation is described in the succeeding
text. The EFP monitor analyses the trace on the fly while the test case is running, and it returns
a verdict as soon as one is available. Currently, the TRIANGLE testing framework provides the
enriched trace after the test case ends and, as a consequence, the monitor analyses it offline.

The EFP monitor carries out two interrelated tasks. On the one hand, it has to read the states of the
enriched trace and, on the other, it has to simultaneously evaluate these states against the EFP. These
two tasks are implemented using a PROMELA specification with embedded C code such as the one
shown in Listing 7. Thus, the PROMELA monitor contains (i) code to translate on the fly the enriched
trace into a sequence of states [27] that constitutes the model analysed by SPIN (for example, the
code of Listing 7) and (ii) code that implements the evaluation of the EFP, which is implemented
as a never claim PROMELA process from the LTL formula, as described in Section 3.3. The never
claim process corresponds to the Büchi automaton of the LTL formula in SPIN notation. The tool
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26 of 35 A. R. ESPADA ET AL.

SPIN automatically transforms (the negation of) the LTL specifications into never claim processes
and executes them with the system model in a synchronized manner. This means that SPIN always
fires a transition in the model followed a transition in the never claim and that naturally acts as a
observer of the system execution searching for erroneous behaviours.

In the following, Listing 7, which shows a simplified fragment of the PROMELA specification for
the next formula, is used to detail how the SPIN model checker evaluates the formula on an enriched
trace.

8 ŒŒd iff _energy < P ��ŒtestStepDSTART ;testStepDEND�

The PROMELA specification contains global variables for each of the relevant variables in the
trace. The core of this specification is a loop (lines 20 to 35) that reads and reconstructs the trace.
Each iteration of the loop fetches a state from the trace (line 27) and updates SPIN’s global state
accordingly (line 32), in an atomic step. If SPIN has to backtrack during the exploration of the
trace, the loop can also correctly restore previously visited states. From SPIN’s point of view, each
new iteration leads to a new state to be explored. As commented earlier, to analyse the EFPs, the
corresponding LTL formula (Equations 1, 2 and 3 of Section 3.3) is negated and translated into a
never claim process.

Additional global variables and helper functions are used to address continuous variables and
interval properties. The current value of a given continuous variable c is stored in a floating point
variable c. These variables, like any other, are updated on each iteration of the core loop. The
example has one continuous variable, called energy (line 3). To evaluate an interval formula ˆ
in an interval Œt1; t2�, the initial and final values of the continuous variable c, that is, c.t1/ and
c.t2/, must be available. While the former is already stored in the global variable c, a new global
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AUTOMATIC ANALYSIS OF ANDROID APPLICATIONS 27 of 35

variable c_t1 is needed for the latter. These variables are updated automatically by the so-called
update functions, that is, C functions that compute the values of variables that are obtained from
the enriched trace.

Line 13 shows the update function for the energy_t1 variable (line 4). This function updates
the values of energy_t1 only at the start of a new interval. Another variable _interval, which
is automatically updated by another function (line 7), is introduced to detect the intervals. This
function encodes the start and end conditions of an interval formula. Both update functions are
executed inside the loop (line 29) after the variables for the next state have been retrieved, in the
same atomic step.

6. EVALUATION

In previous work [12], the authors applied the proposed model-based methodology to analyse the
network traffic produced by the Spotify app for Android devices. The implementation of this ap-
proach‡‡‡ was not integrated into the TRIANGLE testing framework, and some of its parts, such
as automatic model extraction or the optimization of app user flows, were not yet designed and
implemented. This section presents the evaluation of the approach using a real app as case study.

6.1. Description of the case study

The Universal Music Player is the application under test that will be used as case study. It is music
streaming app included in the Android Studio that includes a fixed play list. The main GUI com-
ponents are presented in Section 2.1 and Figure 2. When the user selects a song to play, the app
send a request to the music servers and start the download of the song and the playback. Clearly, the
network (network load, coverage, user mobility, etc.) can influence the quality of service, which is
reflected for example in the traffic transferred between the music servers and the app. Thus, the case
study objective is to evaluate if the UAMP satisfies the following EFP: ‘during the playback of the
first song of the playlist, the data received by the app are under a threshold’. If the EFP is satisfied,
then there is a low number of packet retransmissions during the playback.

6.2. Experiment set-up

This section summarizes the configuration used in the evaluation of each of the three phases of the
approach. The first phase consists of extracting of the interaction model from the app binaries, which
is independent of the TRIANGLE testbed and can be carried out manually or automatically. The
automatic model extraction has been performed using a Samsung Galaxy S4 (non-instrumented)
with Android 5.0.1 and a Windows 8 machine with an Intel Core i-7 3.600 GHz. In addition, the
exploration algorithm was configured with a maximum depth of 10 click events, and in case of list,
only the first item of lists is explored.

The second phase is the automatic generation of app user flows that activate the features necessary
to analyse the EFP. The specification of the app user flow requirement has to be consistent with the
interaction model obtained in the first phase. To facilitate this task, the (automatically extracted)
interaction model was modified to include more intuitive and unified event names, for example,
clicking the play/pause button or the back button takes place in multiple transitions. Figure 3 shows
the UAMP interaction model with the modified event names.

The app user flow requirement must at least start playing a song during a time interval and then
pause, which can be expressed in different ways. Three different app user flow requirements have
been defined in order to ensure the playback of video during the test case execution as well as other
extra requirements to reduce the number of app user flows generated. In addition, the maximum
app user flow length is configured to 10, which means that the app user flows will have, at most, 10
events.

‡‡‡http://www.morse.uma.es/tools/mve.
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� Req. 1: The app user flow must eventually reach state S6 with the event selectSong and then
eventually reach S6 with the event play/pause. In addition, each previous event can happen
only once.
� Req. 2: The app user flow must eventually reach state S6 with the event selectSong and

then eventually reach S6 with event play/pause. In addition, loops are not allowed, and
FullScreenPlayerActivity and PlaceHolderActivity are never entered.
� Req. 3: The app user flow must reach state S6 with the event selectSong, then eventually fire

the event skipNext and finally the event play/pause. In addition, loops are not allowed, and
states S1 and S9 are not visited.

The last phase is the execution of the test case and the analysis of the EFP in different network
scenarios. The app user flow (obtained in the previous phase) satisfies Requirement 3. The app user
flow starts playing a song, then skips to the next song and finally pauses the playback.

Figure 7 shows the TRIANGLE platform, which includes a mobile network testbed that emulates
complex radio and network conditions. The EFP included in the case study is especially relevant in
network scenarios with a high density of users and a heavily loaded network. This issue has been
considered to select the following network scenarios for the case study:

1. The urban pedestrian scenario emulates a user walking down an urban street at 1 to 3 km/h.
This scenario is considered as normal conditions.

2. The suburban festival scenario reproduces an outdoor event with many attendees, and thus,
some small cells are deployed to increase capacity.

3. The Internet café busy hours emulates an Internet café during busy hours in a dense urban
area, and thus, there is a dense number of users in a reduced area.

The TRIANGLE testing framework executes automatically generated app user flows to start and
pause the playback in three different network scenarios, and the resulting execution traces are used
to verify the EFP. Due to time and space limitations, each test case is executed twice.

The last two phases, the automatic generation of app user flows followed by the test case execu-
tion and the analysis of EFPs, are carried out in the TRIANGLE testbed, which emulates realistic
network scenarios that are wholly reproducible. In addition, the TRIANGLE testbed supports the
traceability and repeatability of the test. In this case, a rooted Samsung Galaxy S7 (instrumented)
with Android 6.0.1 has been connected to the testbed to execute the tests.

Figure 7. Smartphone connected to the TRIANGLE testing framework.

© 2019 The Authors. Software Testing, Verification & Reliability
Published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2019;29:e1699.
DOI: 10.1002/stvr

 10991689, 2019, 4-5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1699 by C

bua-C
onsorcio D

e B
ibliotecas, W

iley O
nline L

ibrary on [18/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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Table III. App user flow generation statistics.

No Req. Req. 1 Req. 2 Req. 3

State vector 144 148 148 148
Depth 151 183 175 176
States stored 27438 17624 12858 11542
Transitions 27438 22287 16097 14285
Atomic steps 57357 26283 20519 18875
Total mem.(MB) 6.543 8.168 7.484 7.289
Time elap. (s) 0.517 0.428 0.468 0.437
App user flows -/7906 260/4663 232/3239 268/2743

6.3. Analysis of the results

Section 5.1.4 included the evaluation of the model extraction technique using five different apps as
case studies, including the UAMP. This section presents the results obtained in the second and third
phases of the complete approach for the UAMP case study.

6.3.1. App user flow generation. Table III shows the statistics returned by SPIN and the number of
app user flows generated. The second column shows the statistics of exhaustive exploration of the
model without requirements, and the other three show the statistics for each requirement. The last
row includes two numbers. The first is the number of app user flows that satisfy the requirement,
and the second is the number of traces explored. In the previous work [12], the number of app user
flows generated was the number of app user flows explored without using requirements, which did
not ensure the activation of the app feature required to analyse the EFP. The definition of app user
flow requirements produces only the relevant app user flows and generally takes less time.

6.3.2. Test case execution and trace analysis. The execution of a test case entails the configuration
of the TRIANGLE testing framework, the execution of the app user flow, the post-processing of the
result and the verification of the EFPs. In this example, the time elapsed is approximately 10 min
for each test case. Due to time and space limitations, each test case was executed twice.

The TRIANGLE testbed returns six different execution traces. Figure 8 shows the data received
over time for each of the six traces, from the beginning of the test cases until the pause event
is captured. The slopes of the graphs show that in heavily loaded network scenarios (festival and
Internet café), the data are received slowly, with a smoother slope, than in the pedestrian scenario.
These graphs are analysed against the EFP expressed in the following formula:

8 ŒŒd iff _rxData < 8000.kb/��ŒStartP laying;PauseP laying�

This formula states that during the playback (events StartPlaying and PausePlaying), the traffic
received is always under a threshold of 8000 KB. This threshold is the baseline obtained in ideal
conditions. Figures 9, 10 and 11 show the received data and the StartPlaying and PausePlaying
events of three different execution traces. Clearly, the EFP is satisfied in the pedestrian trace. How-
ever, in the suburban and the Internet café scenarios, the threshold is exceeded. This behaviour can
be caused by the retransmission of packets due to network congestion. With this information, an app
developer or service provider can decide to implement an adaptive streaming algorithm that modi-
fies the audio quality based on network congestion to reduce the traffic load. However, it is not the
objective of the authors to determine whether UAMP implementation should be improved.

6.4. Threats to validity

The authors have detected two main threats to validity during the evaluation. The first one is related
to the automatic extraction of the interaction model. As commented in Section 5.1.4, the model
extracted can be a complete or partial representation of the user interactions with the app. This
problem arises due to the non-determinism of some apps or the use of very dynamic content. In
these cases, the automatic model extraction approach can produce different interactions models, and
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30 of 35 A. R. ESPADA ET AL.

Figure 8. Received data – all execution traces.

Figure 9. Received data – urban pedestrian, first execution.

Figure 10. Received data – suburban festival, first execution.

Figure 11. Received data – Internet café busy hours, second execution.
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some fine tuning of the model is required. However, the authors have observed that it is possible to
infer some common interaction patterns from the different models that can help the app developer
to manually tune or extract the model.

The second threat is the test coverage and the accuracy of the statistical results. Currently, the
TRIANGLE testbed can automatically run longer test campaigns with more network scenarios and
execute different app user flows selected from the pool of app user flows obtained in the second
phase. However, due to space and time limitations, the evaluation only considers the execution of
one app user flow two times per network scenario. More test cases must be executed to improve
the coverage of the results. It is worth mentioning that further results of ongoing work to apply the
proposed technique to commercial apps will be reported at TRIANGLE website.

7. COMPARISON WITH RELATED WORK

There are some existing proposals that apply model-based testing to Android applications. Some
of them assume that the testing process starts without a precise model of the expected behaviour
of the applications and focus on techniques to obtain such a model. The MobiGUITAR framework
[28] automatically constructs a state machine of one application by executing events in the running
application and recording a tree with fireable events for each new state. The authors use a ‘breadth-
first’ traversal of the app GUI for open source applications. They do not consider any knowledge
about how to use the application but instead conduct an exhaustive execution. Therefore, they need
criteria to make some states equivalent to prevent state explosion.

The Swift-Hand technique proposed by Choi et al. [29] employs machine learning to construct
an approximate model of the application during the testing process. Their aim is to cover as much
behaviour as possible, forcing the execution to enter unexplored parts of the state space. Other ap-
proaches also use a formal specification of the application to start the test generation. Jing et al. [30]
describe how to follow a property-driven method to build models in Alloy, a formal language based
on first-order logic. In their proposal, the role of the model checker in this approach is performed by
the Alloy analyser, which generates positive (expected) and negative (undesired) test cases.

In contrast to MobiGUITAR, this approach separates test generation from testing, and the states in
the high-level state machines are limited and differentiated by design. Thus, these models are more
compact. For example, compared with MobiGUITAR, it is unnecessary to conduct extra work to re-
move unrealistic test cases. In addition, this approach allows the generation of test cases for several
applications that interact using Android intents, while the complexity of the runtime-based mod-
elling process for MobiGUITAR and Swift-Hand makes them more suitable for single applications.
Similar to this approach, Jing et al. [30] use XML-based transformations to translate the test cases
to an executable form to activate the applications being tested. Apart from the inner technologies
(model checking vs constraint solver), the main difference between the proposals is how the refined
executable model is obtained. The Alloy specification presented by Jing et al. [30] is constructed
manually, while the PROMELA specification in this work is generated automatically from the high-
level design of the user-view state machines. Both should be applied to the same case study to obtain
a quantitative comparison of the human and computational effort required in these two approaches.

Many commercial and academic tools have been developed to monitor and analyse certain types
of EFP in mobile phones. One group of tools focuses on traffic analysis. AntMonitor [3] is a pow-
erful tool that monitors all connected apps in the Android device to produce statistics, such as how
each app contributes to the total network traffic, but does not monitor specific events or user in-
teractions systematically. NetworkProfiler [4] is a tool designed to help cellular operators identify
the traffic in their networks when transported over HTTP/HTTPS. NetworkProfiler uses device em-
ulators and machine learning techniques to create an app fingerprint by collecting information on
the hosts to which the app connects. Because the manual exploration of apps being tested will not
cover all behaviours, NetworkProfiler randomly generates user actions to interact with the apps.
This random strategy is also supported by other tools such as Monkey [19]. Other tools, such as
Monkeyrunner [20], Robotium [21] and Troyd [31], employ scripts to make the apps work with a
predefined sequence of user interactions. However, they do not provide an automated methodology
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to generate such scripts. ProfileDroid [5] is designed to systematically profile apps to discover in-
consistencies or surprising behaviours. It is based on a multilayer analysis of the apps, considering
the static analysis of byte code, user interactions, calls to the operating system and network traf-
fic. This tool requires a real user to interact with the phone, but the sequence of interactions can be
recorded and replayed later in a different scenario. The approach of Automatic Android App Ex-
plorer (A3E) [1] involves the novel use of static dataflow analysis on the app bytecode to construct
a high-level control flow graph that captures legal transitions among activities (i.e. app screens).
Depth-first exploration is then used to reach 64 per cent activity coverage and 36 per cent method
coverage in some typical Android apps. This flow graph plays the same role as the models in this
study that represent user interactions, and the depth-first search is similar to the approach used in
this study for exhaustive test generation. ProfileDroid and A3E are the closest proposals to this work
and could in fact be adopted in this methodology.

Compared with ProfileDroid and A3E, this methodology has the following main novel points: (i)
the controlled coverage of user interactions for one or several apps due to the model-based approach
for test generation; (ii) the ability to automatically find execution traces that violate the expected
behaviour of the app in terms of their effect over the Internet; (iii) the inclusion of time in the
models making possible to test realistic situations in which the time between user interactions is
relevant; (iv) the ability to combine models of several apps running in parallel; and (v) a technique
to automatically compare the actual behaviour of each execution of the apps with the expected
behaviour. ProfileDroid could be used to generate the reference patterns employed to analyse the
actual behaviour of the apps. A3E could be used to facilitate the construction of the interaction
models.

There are many references to existing research on one of the EFPs highlighted in this paper,
namely estimating power consumption. Phatak et al. [32] provided one of the first classifications of
energy bugs for hardware and software and proposed a roadmap towards developing a systematic
diagnostic framework for treating these energy bugs. Later, Phatak and other authors presented the
eprof tool [33], a fine-grained energy profiler used to gain insight into the energy usage of smart-
phones. Simultaneously, Yepang Liu [2] studied energy bugs (e.g. their types and manifestation) and
identified common patterns. They implemented a static code analyser, PerfChecker, to detect and
identify bug patterns. The E-loupe project [34] explores an alternative that mitigates the ill effects
of an energy-hungry application. The framework consists of monitoring data in the mobile phone,
which are then processed in the cloud to detect the risk of energy drain and to produce information
to isolate the dangerous applications. Memory leaks can also be a cause of energy consumption. Xia
et al. [35] design a light memory leaks detector that focuses on activity leak and a priority adjust-
ment module to prioritize the killing of leaking apps. In a different approach, a framework is built
by Zhang et al. [36] to detect energy leaks using dynamic taint analysis (a form of information flow
analysis). Finally, the energy consumed in different mobile platforms is studied in different works
[37–39]. The first approach compares energy bugs, the second compares energy efficiency and the
last developed a power estimation method based on battery traces.

The model-based framework in this study, also required energy consumption monitoring, similar
to most of the aforementioned proposals. However, this output is not used directly, but instead as an
input for a more sophisticated analysis. Interval logic is used to represent the energy properties to
drive the identification of bad behaviours by the applications running the smartphone. As a result,
this verification technique is able to detect leaking apps in a very precise way: it can provide the
exact execution sequence of one or several apps that are causing the system to lose more energy
than expected.

Thompson et al. present a methodology and tool [40], called SPOT, to model the architecture of
an application and emulate its energy consumption during the design phase. The application is mod-
elled using configurable abstractions of elements that typically contribute to energy consumption,
such as GPS and network connections, attached to activities or background services. The SPOT
tool running on the Android device uses this model to emulate each of the components. The en-
ergy consumption of an emulation is logged using an Android API and provided as feedback to the
programmer.
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While SPOT also uses a model-driven approach, the tool presented here is oriented towards
modelling user behaviours and using the real application code instead of a simplified architecture
and emulated components. Together with the TRIANGLE measuring and monitoring modules, this
approach provides a more accurate analysis of an application’s real power consumption profile.
In addition, the energy measurements can be correlated with other real runtime sources, such as
network traffic or debug information, to analyse other functional properties or EFP.

Finally, the use of model checking with EFPs has also been applied to estimate energy consump-
tion in wireless sensor networks. Schmitt and Werner [41] use a UPPAAL model of the network that
includes aspects such as time, bandwidth and energy. Then, they use model checking with different
scenarios to predict the influence of a given set of parameters on the energy consumption. In partic-
ular, they focus on sensors and routers. Nakajima [42] recently introduced two new formalisms to
address with this problem, the power consumption automaton to represent the system under anal-
ysis and a version of LTL with freeze quantifiers to represent expected energy consumption. The
presence of time and energy in the models and formulae make this model checking problem unde-
cidable, and the author proposes several practical subsets to run verification. Compared with these
proposals, the approach proposed in this study upholds the idea of one specific logic to represent
energy properties and the model checking mechanics to check this logic. In addition, instead of ex-
ploring a model of a system, this study addresses execution traces extracted from real devices with
precise energy consumption measures for each sampling period.

8. CONCLUSION AND FUTURE WORK

This paper presents the foundation for a complete platform to verify the EFP of Android mobile ap-
plications. The method is based on two formal languages to specify (i) user–application interactions
as the input for the automatic generation of test cases and (ii) the expected EFPs that the executions
of the app should satisfy. Both test generation and verification are performed with model checking.
In addition, a tool has been implemented to assist the developer in the modelling phase. This tool
automatically extracts the model of an app, which can be edited later to add/remove behaviours that
the tool is not able to capture due to the inherent complexity of apps. This paper also presents an
implementation, which is integrated in the TRIANGLE testing framework, and an evaluation of the
complete framework with a realistic application.

In future work, the implementation should be adapted to the iOS operating system. Due to
Quamotion WebDriver’s compatibility with iOS devices, most of the components could be reused
with minor or no changes, like the language for EFPs and the mechanisms to generate test cases,
and the automation of user events. However, it will be necessary to determine whether the man-
agement of activities/screens in iOS can be captured with the proposed modelling language. To
facilitate the definition of app user flow requirements, the authors plan to implement an edi-
tor supporting the modification of the interaction model as well as the generation of associated
app user flow requirements. To this end, the definition of templates or requirements meta-models
would be required. In addition, it would be desirable to define a complete interval logic that al-
lows the specification of richer properties. Moreover, the inclusion of runtime verification of EFPs
in the TRIANGLE testing framework will be examined. The objective is to stop the test case
execution if the EFP is not satisfied and to start the analysis of the next test case as soon as
possible.
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