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Abstract In this paper we are concerned with two classes of conformally invariant
spaces of analytic functions in the unit disc D, the Besov spaces Bp (1 ≤ p < ∞)
and the Qs spaces (0 < s < ∞). Our main objective is to characterize for a given
pair (X,Y ) of spaces in these classes, the space of pointwise multipliers M(X,Y ),
as well as to study the related questions of obtaining characterizations of those
g analytic in D such that the Volterra operator Tg or the companion operator Ig
with symbol g is a bounded operator from X into Y .
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1 Introduction

Let D = {z ∈ C : |z| < 1} denote the open unit disc of the complex plane C and
let Hol(D) be the space of all analytic functions in D endowed with the topology
of uniform convergence on compact subsets.
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If 0 < r < 1 and f ∈ Hol(D), we set

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reit)|p dt
)1/p

, 0 < p <∞,

M∞(r, f) = sup
|z|=r

|f(z)|.

If 0 < p ≤ ∞ the Hardy space Hp consists of those f ∈ Hol(D) such that

‖f‖Hp
def
= sup

0<r<1
Mp(r, f) <∞.

We mention [18] for the theory of Hp-spaces.
If 0 < p < ∞ and α > −1, the weighted Bergman space Apα consists of those

f ∈ Hol(D) such that

‖f‖Apα
def
=

(
(α+ 1)

∫
D
(1− |z|)α|f(z)|p dA(z)

)1/p

<∞.

The unweighted Bergman space Ap0 is simply denoted by Ap. Here, dA(z) = 1
π dx dy

denotes the normalized Lebesgue area measure in D. We refer to [19], [36] and [58]
for the theory of these spaces.

We let Aut(D) denote the set of all disc automorphisms, that is, of all one-to-
one analytic maps ϕ from D onto itself. It is well known that Aut(D) coincides
with the set of all Möbius transformations from D onto itself:

Aut(D) = {λϕa : |λ| = 1, a ∈ D } ,

where ϕa(z) = (a− z)/(1− az) (z ∈ D).
A linear space X of analytic functions in D is said to be conformally invariant

or Möbius invariant if whenever f ∈ X, then also f ◦ ϕ ∈ X for any ϕ ∈ Aut(D)
and, moreover, X is equipped with a semi-norm ρ for which there exists a positive
constant C such that

ρ(f ◦ ϕ) ≤ Cρ(f), whenever f ∈ X and ϕ ∈ Aut(D).

The articles [8] and [44] are fundamental references for the theory of Möbius in-
variant spaces which have attracted much attention in recent years (see, e.g., [3,
16,17,30,47,57,58]).

The Bloch space B consists of all analytic functions f in D such that

ρB(f)
def
= sup

z∈D
(1− |z|2) |f ′(z)| <∞.

The Schwarz-Pick lemma easily implies that ρB is a conformally invariant semi-
norm, thus B is a conformally invariant space. It is also a Banach space with the
norm ‖·‖B defined by ‖f‖B = |f(0)| + ρB(f). The little Bloch space B0 is the set of
those f ∈ B such that lim|z|→1(1− |z|2)|f ′(z)| = 0. Alternatively, B0 is the closure
of the polynomials in the Bloch norm. A classical reference for the theory of Bloch
functions is [7]. Rubel and Timoney [44] proved that B is the largest “reasonable”
Möbius invariant space. More precisely, they proved the following result.
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Theorem A Let X be a Möbius invariant linear space of analytic functions in D and

let ρ be a Möbius invariant seminorm on X. If there exists a non-zero decent linear

functional L on X which is continuous with respect to ρ, then X ⊂ B and there exists

a constant A > 0 such that ρB(f) ≤ Aρ(f), for all f ∈ X.

Here, a linear functional L on X is said to be decent if it extends continuously
to Hol(D).

The space BMOA consists of those functions f in H1 whose boundary val-
ues have bounded mean oscillation on the unit circle ∂D as defined by F. John
and L. Nirenberg. There are many characterizations of BMOA functions. Let us
mention the following:

If f ∈ Hol(D), then f ∈ BMOA if and only if ‖f‖BMOA
def
= |f(0)| + ρ∗(f) <∞,

where

ρ∗(f) = sup
a∈D
‖f ◦ ϕa − f(a)‖H2 .

It is well known that H∞ ⊂ BMOA ⊂ B and that BMOA equipped with the
seminorm ρ∗ is a Möbius invariant space. The space VMOA consists of those
f ∈ BMOA such that lim|a|→1 ‖f ◦ ϕa − f(a)‖H2 = 0, it is the closure of the
polynomials in the BMOA-norm. We mention [28] as a general reference for the
space BMOA.

Other important Möbius invariant spaces are the Besov spaces and the Qs
spaces.

For 1 < p <∞, the analytic Besov space Bp is defined as the set of all functions
f analytic in D such that f ′ ∈ App−2. All Bp spaces (1 < p < ∞) are conformally
invariant with respect to the semi-norm ρBp defined by

ρBp (f)
def
= ‖f ′‖App−2

(see [8, p. 112] or [16, p. 46]) and Banach spaces with the norm ‖ · ‖Bp defined
by ‖f‖Bp = |f(0)| + ρBp (f). An important and well-studied case is the classical
Dirichlet space B2 (often denoted by D) of analytic functions whose image has a
finite area, counting multiplicities.

The space B1 requires a special definition: it is the space of all analytic func-
tions f in D for which f ′′ ∈ A1. Although the semi-norm ρ defined by ρ(f) = ‖f ′′‖A1

is not conformally invariant, the space itself is. An alternative definition of B1 with
a conformally invariant semi-norm is given in [8], where it is also proved that B1

is contained in any Möbius invariant space. A lot of information on Besov spaces
can be found in [8,16,17,37,56,58]. Let us recall that

VMOA ( B0, BMOA ( B,

B1 ( Bp ( Bq ( VMOA ( BMOA, 1 < p < q <∞.

If 0 ≤ s <∞, we say that f ∈ Qs if f is analytic in D and

sup
a∈D

∫
D
|f ′(z)|2g(z, a)s dA(z) <∞ ,

where g(z, a) = log(|1− az|/|a− z|) is the Green function of D. These spaces were
introduced by Aulaskari and Lappan [12] while looking for characterizations of
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Bloch functions (see [50] for the case s = 2). For s > 1, Qs is the Bloch space,
Q1 = BMOA, and

D ( Qs1 ( Qs2 ( BMOA, 0 < s1 < s2 < 1.

It is well known [14,46] that for every s with 0 ≤ s < ∞, a function f ∈ Hol(D)
belongs to Qs if and only if

ρQs (f)
def
=

(
sup
a∈D

∫
D
|f ′(z)|2(1− |ϕa(z)|2)s dA(z)

)1/2

< ∞.

All Qs spaces (0 ≤ s < ∞) are conformally invariant with respect to the semi-
norm ρQs . They are also Banach spaces with the norm ‖ · ‖Qs defined by ‖f‖Qs =
|f(0)| + ρQs (f). We mention [52,53] as excellent references for the theory of Qs-
spaces.

Let us recall the following two facts which were first observed in [10].

If 0 < p ≤ 2, then Bp ⊂ Qs for all s > 0. (1)

If 2 < p <∞, then Bp ⊂ Qs if and only if 1− 2

p
< s. (2)

For g analytic in D, the Volterra operator Tg is defined as follows:

Tg(f)(z)
def
=

∫ z

0

g′(ξ)f(ξ) dξ, f ∈ Hol(D), z ∈ D.

We define also the companion operator Ig by

Ig(f)(z)
def
=

∫ z

0

g(ξ)f ′(ξ)dξ, f ∈ Hol(D), z ∈ D.

The integration operators Tg and Ig have been studied in a good number of papers.
Let us just mention here that Pommerenke [43] proved that Tg is bounded on H2

if and only if g ∈ BMOA and that Aleman and Siskakis [4] characterized those
g ∈ Hol(D) for which Tg is bounded on Hp (p ≥ 1), while Aleman and Cima
characterized in [1] those g ∈ Hol(D) for which Tg maps Hp into Hq. Aleman and
Siskakis [5] studied the operators Ig and Tg acting on Bergman spaces.

For g ∈ Hol(D), the multiplication operator Mg is defined by

Mg(f)(z)
def
= g(z)f(z), f ∈ Hol(D), z ∈ D.

If X and Y are two Banach spaces of analytic function in D continuously embedded
in Hol(D) and g ∈ Hol(D) then g is said to be a multiplier from X to Y if Mg(X) ⊂
Y . The space of all multipliers from X to Y will be denoted by M(X,Y ) and
M(X) will stand for M(X,X). Using the closed graph theorem we see that for the
three operators Tg, Ig, Mg, we have that if one of them maps X into Y then it is
continuous from X to Y . We remark also that

Tg(f) + Ig(f) = Mg(f)− f(0)g(0). (3)

Thus if two of the operators Tg, Ig,Mg are bounded from X to Y so is the third
one.
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It is well known that if X is nontrivial then M(X) ⊂ H∞ (see, e. g., [2,
Lemma 1. 1] or [48, Lemma 1. 10]), but M(X,Y ) need not be included in H∞ if
Y 6⊂ X. However, when dealing with Möbius invariant spaces we have the follow-
ing result.

Proposition 1 Let X and Y be two Möbius invariant spaces of analytic functions in

D equipped with the seminorms ρX and ρY , respectively. Suppose that there exists a

non-trivial decent linear functional L on Y which is continuous with respect to ρY . Let

g ∈ Hol(D). Then the following statements hold.

(i) If Mg is continuous from (X, ρX ) into (Y, ρY ), then g ∈ H∞.

(ii) If Ig is continuous from (X, ρX ) into (Y, ρY ), then g ∈ H∞.

Before embarking into the proof of Proposition 1, let us mention that, as usual,
throughout the paper we shall be using the convention that C = C(p, α, q, β, . . . )
will denote a positive constant which depends only upon the displayed parameters
p, α, q, β . . . (which sometimes will be omitted) but not necessarily the same at
different occurrences. Moreover, for two real-valued functions E1, E2 we write E1 .
E2, or E1 & E2, if there exists a positive constant C independent of the arguments
such that E1 ≤ CE2, respectively E1 ≥ CE2. If we have E1 . E2 and E1 & E2

simultaneously then we say that E1 and E2 are equivalent and we write E1 � E2.
Also, if 1 < p <∞, p′ will stand for its conjugate exponent, that is, 1

p + 1
p′ = 1.

Proof of Proposition 1. Since X is conformally invariant, Aut(D) ⊂ X [8, p. 114] and

ρX (ϕa) � 1, a ∈ D. (4)

Suppose that Mg is continuous from (X, ρX ) into (Y, ρY ). Using this, Theo-
rem A, and (4) we obtain

ρB(g ϕa) . ρY (g ϕa) . ρX (ϕa) . 1, a ∈ D.

This implies that

(1− |a|2)
∣∣g′(a)ϕa(a) + g(a)ϕ′a(a)

∣∣ . 1, a ∈ D.

Since ϕ(a) = 0 and ϕ′a(a) = −(1− |a|2)−1, it follows that

|g(a)| . 1, a ∈ D,

that is, g ∈ H∞.
Similarly, if we assume that Ig is continuous from (X, ρX ) into (Y, ρY ), we

obtain
ρB (Ig(ϕa)) . 1, a ∈ D.

This implies that

(1− |a|2)
∣∣(Ig(ϕa))

′ (a)
∣∣ = (1− |a|2)|ϕ′a(a)||g(a)| = |g(a)| . 1, a ∈ D.

�

For notational convenience, set

BQ = {Qs : 0 ≤ s < ∞} ∪ {Bp : 1 ≤ p <∞}.
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The main purpose of this paper is characterizing, for a given pair of spaces X,Y ∈
BQ, the functions g ∈ Hol(D) such that the operators Mg, Tg and/or Ig map X

into Y . When X and Y are Besov spaces this question has been extensively studied
(see, e. g. [9,26,32,45,49,59]). Thus we shall concentrate ourselves to study these
operators when acting between a certain Besov space Bp and a certain Qs space
and when acting between Qs1 and Qs2 for a certain pair of positive numbers s1, s2.

2 Multipliers and integration operators from Besov spaces into Qs-spaces

For α > 0, the α-logarithmic Bloch space Blog,α is the Banach space of those functions
f ∈ Hol(D) which satisfy

‖f‖log,α
def
= |f(0)|+ sup

z∈D
(1− |z|2)

(
log

2

1− |z|2

)α
|f ′(z)| <∞. (5)

For simplicity, the space Blog,1 will be denoted by Blog.
It is clear that Blog,α ⊂ B0, for all α > 0. Using the characterization of VMOA

in terms of Carleson measures [28, p. 102], it follows easily that

Blog,α ⊂ VMOA, for all α > 1/2.

In particular, Blog ⊂ VMOA.
Brown and Shields [15] showed that M(B) = Blog ∩H∞. The spaces M(Bp,B)

(1 ≤ p < ∞) were characterized in [25]. Namely, Theorem 1 of [25] asserts that
M(B1,B) = H∞ and

M(Bp,B) = H∞ ∩ Blog,1/p′ , 1 < p < ∞, (6)

where p′ is the exponent conjugate to p, that is, 1
p + 1

p′ = 1.
In this section we extend these results. In particular, we shall obtain for any

pair (p, s) with 2 < p < ∞ and 0 < s < ∞ a complete characterization of the
space of multipliers M(Bp, Qs).

Let us start with the case s ≥ 1 which is the simplest one.

Theorem 1 Let g ∈ Hol(D). Then:

(i) Ig maps B1 into B if and only if g ∈ H∞.

(ii) Mg maps B1 into B if and only if g ∈ H∞.

(iii) Tg maps B1 into B if and only if g ∈ B.

Proof. If Ig(B
1) ⊂ B then, using Proposition 1, it follows that g ∈ H∞.

To prove the converse it suffices to recall that B1 ⊂ B. Indeed, suppose that
g ∈ H∞ and take f ∈ B1. Then

(1− |z|2)
∣∣(Ig(f))

′ (z)
∣∣ = (1− |z|2)|f ′(z)||g(z)| ≤ ‖f‖B‖g‖H∞ .

Thus Ig(f) ∈ B.
Hence (i) is proved. Now, (ii) is contained in [25, Theorem 1].
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It remains to prove (iii). If Tg(B
1) ⊂ B then Tg(1) = g − g(0) ∈ B and, hence

g ∈ B. Conversely, if g ∈ B and f ∈ B1 then, using the fact that B1 ⊂ H∞, we
obtain

(1− |z|2)
∣∣(Tg(f))

′ (z)
∣∣ = (1− |z|2)|g′(z)||f(z)| ≤ ‖g‖B‖f‖H∞ .

Thus Tg(f) ∈ B. Hence (iii) is also proved. �

Theorem 2 Suppose that 1 < p <∞, 1
p + 1

p′ = 1, and let g ∈ Hol(D). Then:

(i) Ig maps Bp into B if and only if g ∈ H∞.

(ii) Mg maps Bp into B if and only if g ∈ H∞ ∩ Blog,1/p′ .
(iii) Tg maps Bp into B if and only if g ∈ Blog,1/p′ .

Proof. If Ig maps Bp into B then Proposition 1 implies that g ∈ H∞. Conversely,
using that Bp ⊂ B, we see that if g ∈ H∞ and f ∈ Bp then

(1− |z|2)
∣∣(Ig(f))

′ (z)
∣∣ = (1− |z|2)|f ′(z)||g(z)| ≤ ‖f‖B‖g‖H∞ .

Hence, Ig(f) ∈ B. Thus (i) is proved and (ii) reduces to (6).
Finally, (iii) follows from the following more precise result.

Theorem 3 Suppose that 1 < p < ∞, 1
p + 1

p′ = 1, and let g ∈ Hol(D). Then the

following conditions are equivalent.

(a) Tg maps Bp into B.

(b) g ∈ Blog,1/p′ .
(c) Tg maps Bp into B0.

Proof of Theorem 3. (a)⇒ (b) Suppose (a). By the closed graph theorem Tg is a
bounded operator from Bp into B, hence

(1− |z|2)|g′(z)f(z)| . ‖f‖Bp , z ∈ D, f ∈ Bp. (7)

For a ∈ D with a 6= 0, set

fa(z) =

(
log

1

1− |a|2

)−1/p

log
1

1− a z , z ∈ D. (8)

It is readily seen that fa ∈ Bp for all a and that ‖fa‖Bp � 1. Using this and taking
f = fa and z = a in (7), we obtain

(1− |a|2)|g′(a)|
(

1

1− |a|2)

)1/p′

. 1,

that is g ∈ Blog,1/p′ .
(b)⇒ (c) Suppose (b) and take f ∈ Bp. It is well known that

|f(z)| = o

((
log

1

1− |z|2

)1/p′
)
, as |z| → 1,

(see, e. g., [37,56]). This and (b) immediately yield that Tg(f) ∈ B0.
The implication (c)⇒ (a) is trivial. Hence the proof of Theorem 3 is finished

and, consequently, Theorem 2 is also proved. �
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Let us turn now to the case 0 < s ≤ 1. We shall consider first the Volterra
operators Tg. For 0 < s <∞ and α > 0 we set

Qs,log,α =

{
f ∈ Hol(D) : sup

a∈D

(
log

2

1− |a|

)2α ∫
D
|f ′(z)|2(1− |ϕa(z)|2)s dA(z) <∞

}
.

We have the following results.

Theorem 4 Suppose that 0 < s ≤ 1 and let g ∈ Hol(D). Then:

(i) Tg maps B1 into Qs if and only if g ∈ Qs.

(ii) If 1 < p <∞, 0 < s ≤ 1, and Tg maps Bp into Qs, then g ∈ Qs,log,1/p′ .
(iii) If 1 < p <∞, then Tg maps Bp into Q1 = BMOA if and only if g ∈ Q1,log,1/p′ .

(iv) If 2 < p < ∞, 0 < s < 1, and 1 − 2
p < s then Tg maps Bp into Qs if and only if

g ∈ Qs,log,1/p′ .

Before we get into the proofs of these results we shall introduce some notation
and recall some results which will be needed in our work.

If I ⊂ ∂D is an interval, |I| will denote the length of I. The Carleson square

S(I) is defined as S(I) = {reit : eit ∈ I, 1 − |I|2π ≤ r < 1}. Also, for a ∈ D, the
Carleson box S(a) is defined by

S(a) =
{
z ∈ D : 1− |z| ≤ 1− |a|,

∣∣∣arg(az̄)

2π

∣∣∣ ≤ 1− |a|
2

}
.

If s > 0 and µ is a positive Borel measure on D, we shall say that µ is an
s-Carleson measure if there exists a positive constant C such that

µ (S(I)) ≤ C|I|s, for any interval I ⊂ ∂D,

or, equivalently, if there exists C > 0 such that

µ (S(a)) ≤ C(1− |a|)s, for all a ∈ D.

A 1-Carleson measure will be simply called a Carleson measure.

These concepts were generalized in [55] as follows: If µ is a positive Borel
measure in D, 0 ≤ α < ∞, and 0 < s < ∞, we say that µ is an α-logarithmic
s-Carleson measure if there exists a positive constant C such that

µ (S(I))
(

log 2π
|I|

)α
|I|s ≤ C, for any interval I ⊂ ∂D

or, equivalently, if

sup
a∈D

µ (S(a))
(

log 2
1−|a|2

)α
(1− |a|2)s

<∞.

Carleson measures and logarithmic Carleson measures are known to play a basic
role in the study of the boundedness of a great number of operators between
analytic function spaces. In particular we recall the Carleson embedding theorem
for Hardy spaces which asserts that if 0 < p <∞ and µ is a positive Borel measure
on D then µ is a Carleson measure if and only if the Hardy space Hp is continuously
embedded in Lp(dµ) (see [18, Chapter 9]).

In the next theorem we collect a number of known results which will be needed
in our work.



Multipliers and integration operators between conformally invariant spaces 9

Theorem B (i) If 0 < s ≤ 1 and f ∈ Hol(D), then f ∈ Qs if and only if the Borel

measure µ on D defined by

dµ(z) = (1− |z|2)s|f ′(z)|2 dA(z)

is an s-Carleson measure.

(ii) If 0 ≤ α < ∞, 0 < s < ∞, and µ is a positive Borel measure on D then µ is an

α-logarithmic s-Carleson measure if and only if

sup
a∈D

(
log

2

1− |a|2

)α ∫
D

(
1− |a|2

|1− a z|2

)s
dµ(z) < ∞.

(iii) If 1 < p ≤ 2 then Bp ⊂ Qs for all s > 0.

(iv) If 2 < p <∞ and 1− 2
p < s, then Bp ⊂ Qs.

(v) For s > −1, we let Ds be the space of those functions f ∈ Hol(D) for which

‖f‖Ds
def
= |f(0)| +

(∫
D
(1− |z|2)s|f ′(z)|2 dA(z)

)1/2

< ∞.

Suppose that 0 < s < 1 and α > 1, and let µ be a positive Borel measure on D. If

µ is an α-logarithmic s Carleson measure, then µ is a Carleson measures for Ds,

that is, Ds is continuously embedded in L2(dµ).

Let us mention that (i) is due to Aulaskari, Stegenga and Xiao [13], (ii) is due
to Zhao [55], (iii) and (iv) were proved by Aulaskari and Csordas in [10], and (v)
is due to Pau and Peláez [41, Lemma 1].

Using Theorem B (ii) and the fact that

1− |ϕ(z)|
2 =

(1− |a|2)(1− |z|2)

|1− a z|2 ,

we see that for a function f ∈ Hol(D) we have that f ∈ Qs,log,α if and only
if the measure µ defined by dµ(z) = (1 − |z|2)s|f ′(z)|2 dA(z) is a 2α-logarithmic
s-Carleson measure.

Proof of Theorem 4 (i). Suppose that Tg maps B1 into Qs. Since the constant func-
tions belong to B1, we have that Tg(1) = g − g(0) ∈ Qs and, hence, g ∈ Qs.

To prove the converse, suppose that g ∈ Qs. Then the measure µ defined by

dµ(z) = (1− |z|2)s|g′(z)|2 dA(z)

is an s-Carleson measure. Take now f ∈ B1, then f ∈ H∞ and, hence,

(1− |z|2)s
∣∣(Tg(f))

′ (z)
∣∣2 = (1− |z|2)s|g′(z)|2|f(z)|2 ≤ ‖f‖2H∞(1− |z|2)s|g′(z)|2.

Since µ is an s-Carleson measure, it follows readily that the measure ν given by

dν(z) = (1− |z|2)s
∣∣(Tg(f))

′ (z)
∣∣2 dA(z) is also an s-Carleson measure and, hence,

Tg(f) ∈ Qs. �

Proof of Theorem 4 (ii).

Suppose that 0 < s ≤ 1, 1 < p < ∞, and that Tg maps Bp into Qs. For
a ∈ D \ {0}, set

fa(z) =

(
log

1

1− |a|2

)−1/p

log
1

1− a z , z ∈ D,
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as in (8). We have that ‖fa‖Bp � 1 and it is also clear that

|fa(z)| �
(

log
1

1− |a|2

)1/p′

, z ∈ S(a).

Using these facts, we obtain(
log 1

1−|a|2

)2/p′
(1− |a|2)s

∫
S(a)

(1− |z|2)s|g′(z)|2 dA(z)

� 1

(1− |a|2)s

∫
S(a)

(1− |z|2)s|g′(z)fa(z)|2 dA(z)

=
1

(1− |a|2)s

∫
S(a)

(1− |z|2)s| (Tg(fa))
′ (z)|2 dA(z).

The fact that Tg is a bounded operator from Bp into Qs, implies that the mea-
sures (1− |z|2)s| (Tg(fa))

′ (z)|2 dA(z) are s-Carleson measures with constants con-
trolled by ‖Tg‖2. Then it follows that the measure (1 − |z|2)s|g′(z)|2 dA(z) is a
2/p′-logarithmic s-Carleson measure and, hence, g ∈ Qs,log,1/p′ . �

Proof of Theorem 4 (iii) and (iv). In view of (ii) we only have to prove that if g ∈
Qs,log,1/p′ then Tg maps Bp into Qs.

Hence, take g ∈ Qs,log,1/p′ and set

K(g) = sup
a∈D

(
log

2

1− |a|

)2/p′ ∫
D
|g′(z)|2(1− |ϕa(z)|2)s dA(z),

and take f ∈ Bp. Set F = Tg(f), we have to prove that F ∈ Qs or, equivalently,
that the measure µF defined by

dµF (z) = (1− |z|2)s|F ′(z)|2 dA(z)

is an s-Carleson measure. Let a ∈ D. Using the well known fact that

1− |a|2 � |1− a z|, z ∈ S(a),

we obtain

1

(1− |a|2)s

∫
S(a)

|F ′(z)|2(1− |z|2)s dA(z) �
∫
S(a)

|F ′(z)|2 (1− |z|2)s(1− |a|2)s

|1− a z|2s dA(z)

=

∫
S(a)

|f(z)|2|g′(z)|2(1− |ϕa(z)|2)s dA(z)

≤ 2

∫
D
|f(a)|2|g′(z)|2(1− |ϕa(z)|2)s dA(z)

+ 2

∫
D
|f(z)− f(a)|2|g′(z)|2(1− |ϕa(z)|2)s dA(z)

= 2T1(a) + 2T2(a). (9)
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Using the fact that

|f(a)− f(0)| . ‖f‖Bp
(

log
2

1− |a|2

)1/p′

, (10)

we obtain

T1(a) . ‖f‖2Bp
(

log
2

1− |a|2

)2/p′ ∫
D
|g′(z)|2(1− |ϕa(z)|2)s dA(z) . K(g)‖f‖2Bp .

(11)

To estimate T2(a) we shall treat separately the cases s = 1 and 0 < s < 1.
Let us start with the case s = 1. Then

T2(a) =

∫
D
|f(z)− f(a)|2|g′(z)|2(1− |ϕa(z)|2) dA(z).

Making the change of variable w = ϕ(z) in the last integral, we obtain

T2(a) =

∫
D
|(f ◦ ϕa)(w)− f(a)|2|(g ◦ ϕa)′(w)|2(1− |w|2) dA(w).

Since Q1,log,1/p′ ⊂ Q1 = BMOA, g ∈ BMOA and then it follows that, for all a ∈ D,
g ◦ ϕa ∈ BMOA and ρ∗(g ◦ ϕa) = ρ∗(g). This gives that all the measures (1 −
|w|2)|(g ◦ϕa)′(w)|2 dA(w) (a ∈ D) are Carleson measures with constants controlled
by ‖g‖2BMOA. Then, using the Carleson embedding theorem for H2 and the fact
that Bp is continuously embedded in BMOA, it follows that

T2(a) . ‖g‖2BMOA‖f ◦ ϕa − f(a)‖2H2 . ‖g‖2BMOA‖f‖
2
BMOA . ‖g‖

2
BMOA‖f‖

2
Bp .

Putting together this, (9), and (11), we see that the measure µF is a Carleson
measure. This finishes the proof of part (iii).

To finish the proof of part (iv) we proceed to estimate T2(a) assuming that
2 < p <∞, 0 < s < 1, and 1− 2

p < s. Notice that

T2(a) = (1− |a|2)s
∫
D

∣∣∣∣f(z)− f(a)

(1− a z)s

∣∣∣∣2 |g′(z)|2(1− |z|2)s dA(z).

Since 0 < s < 1, 2/p′ > 1, and the measure (1 − |z|2)s|g′(z)|2 dA(z) is a 2/p′-
logarithmic s-Carleson measure, using Theorem B (v), it follows that

T2(a) . (1− |a|2)s

|f(a)− f(0)|2 +

∫
D

∣∣∣∣∣
(
f(z)− f(a)

(1− a z)s

)′∣∣∣∣∣
2

(1− |z|2)s dA(z)

 .

The growth estimate (10) and simple computations yield

T2(a) . ‖f‖2Bp(1− |a|2)s
(

log
2

1− |a|2

)2/p′

+

∫
D
|f ′(z)|2(1− |ϕa(z)|2)s dA(z)

+

∫
D

|f(z)− f(a)|2

|1− a z|2 (1− |ϕa(z)|2)s dA(z)

. ‖f‖2Bp +

∫
D
|f ′(z)|2(1− |ϕa(z)|2)s dA(z) +

∫
D

|f(z)− f(a)|2

|1− a z|2 (1− |ϕa(z)|2)s dA(z).
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By Theorem B (iv), our assumptions on s and p imply that Bp is continuously
embedded in Qs. Hence, f ∈ Qs. This implies that∫

D
|f ′(z)|2(1− |ϕa(z)|2)s dA(z) ≤ ‖f‖2Qs . ‖f‖

2
Bp

and that ∫
D

|f(z)− f(a)|2

|1− a z|2 (1− |ϕa(z)|2)s dA(z) . ‖f‖2Qs . ‖f‖
2
Bp ,

by a result proved by Pau and Peláez in [41, pp. 551–552]. Consequently, we have
proved that T2(a) . ‖f‖2Bp . This, together with (9) and (11), shows that µF is an
s-Carleson measure as desired. Thus the proof is also finished in this case. �

The case when 1 < p ≤ 2 and 0 < s < 1 remains open. This is so because if we
set α = 2/p′, then α ≤ 1 and, hence, α is not in the conditions of Theorem B (v).
We can prove the following result.

Theorem 5 Suppose that 1 < p ≤ 2 and 0 < s < 1, and let g ∈ Hol(D). The following

statements hold.

(i) If Tg maps Bp into Qs then g ∈ Qs,log,1/p′ .
(ii) If α > 1/2 and g ∈ Qs,log,α then Tg maps Bp into Qs.

Proof. (i) follows from part (ii) of Theorem 4.
Let us turn to prove (ii). Suppose that 0 < s < 1, α > 1/2, and g ∈ Qs,log,α.

Set

K(g) = sup
a∈D

(
log

2

1− |a|

)2α ∫
D
|g′(z)|2(1− |ϕa(z)|2)s dA(z),

and take f ∈ Bp. Set F = Tg(f), we have to prove the F ∈ Qs or, equivalently,
that the measure µF defined by

dµF (z) = (1− |z|2)s|F ′(z)|2 dA(z)

is an s-Carleson measure. Now we argue as in the proof of Theorem 4 (iv). For
a ∈ D, we obtain

1

(1− |a|2)s

∫
S(a)

|F ′(z)|2(1− |z|2)s dA(z) . 2T1(a) + 2T2(a), (12)

where T1(a) and T2(a) are defined as in the proof of Theorem 4. Using (10) and
the fact that 1

p′ ≤
1
2 < α, we obtain

|f(a)− f(0)| . ‖f‖Bp
(

log
2

1− |a|2

)α
.

This yields

T1(a) . ‖f‖2Bp
(

log
2

1− |a|2

)2α ∫
D
|g′(z)|2(1− |ϕa(z)|2)s dA(z) . K(g)‖f‖2Bp .

(13)

To estimate T2(a), observe that the measure (1 − |z|2)s|g′(z)|2 dA(z) is a 2α-
logarithmic s-Carleson measure. Since 2α > 1, using Lemma 1 of [41], this implies
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that the measure (1 − |z|2)s|g′(z)|2 dA(z) is a Carleson measure for Ds. Then,
arguing as in the proof of Theorem 4 (iv), we obtain T2(a) . ‖f‖2Bp . This, together
with (13) and (12), implies that the measure µF is an s-Carleson measure. �

Regarding the operators Ig and Mg we have the following results.

Theorem 6 Let g ∈ Hol(D), then:

(1) If 1 < p ≤ 2 and 0 < s ≤ 1 then:

(1a) Ig maps Bp into Qs if and only if g ∈ H∞.

(1b) If Mg maps Bp into Qs then g ∈ Qs,log,1/p′ ∩H∞.

(1c) If g ∈ Qs,log,α ∩H∞ for some α > 1/2 then Mg maps Bp into Qs.

(2) If 2 < p <∞ and 1− 2
p < s ≤ 1 then:

(2a) Ig maps Bp into Qs if and only if g ∈ H∞.

(2b) Mg maps Bp into Qs if and only if g ∈ Qs,log,1/p′ ∩H∞.

(3) If 2 < p <∞ and 0 < s ≤ 1− 2
p then:

(3a) Ig maps Bp into Qs if and only if g ≡ 0.

(3b) Mg maps Bp into Qs if and only if g ≡ 0.

Proof of Parts (1) and (2) of Theorem 6. Using Proposition 1 it follows that if either
Ig or Mg maps Bp into Qs for any pair (s, p) with 0 < s <∞ and 1 < p <∞ then
g ∈ H∞.

Suppose now that s and p are in the conditions of (1) or (2) and that g ∈ H∞.
Take f ∈ Bp. We have to prove Ig(f) ∈ Qs or, equivalently, that the measure

(1− |z|2)s|f ′(z)|2|g(z)|2 dA(z)is an s-Carleson measure. (14)

Using (1) and (2), we see that Bp ⊂ Qs. Hence f ∈ Qs which is the same as
saying that (1 − |z|2)s|f ′(z)|2 dA(z) is an s-Carleson measure. This and the fact
that g ∈ H∞ trivially yield (14). Thus (1a) and (2a) are proved. Then (1b), (1c),
and (2b) follow using Proposition 1, the fact that if two of the operators Tg, Ig,
Mg map Bp into Qs so does the third one, Theorem 4, and Theorem 5. �

In order to prove Theorem 6 (3), for 2 < p < ∞ we shall consider the function
Fp defined by

Fp(z) =
∞∑
k=1

1

k1/22k/p
z2
k

, z ∈ D. (15)

Using [10, Corollary 7] or [14, Theorem 6], we see that Fp ∈ Bp and Fp /∈ Q1− 2
p
.

Hence

Fp ∈ Bp \Qs, 0 < s ≤ 1− 2

p
, 2 < p <∞. (16)

Let us estimate the integral means M2(r, F ′p). We have

zF ′p(z) =
∞∑
k=1

2k/p
′
k−1/2z2

k

, z ∈ D

and, hence,

M2(r, F ′p)
2 &

∞∑
k=1

22k/p′k−1 r2
k+1

, 0 < r < 1.
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Set rn = 1− 2−n (n = 1, 2, . . . ). Then

M2(rn, F
′
p)

2 &
∞∑
k=1

22k/p′k−1 r2
k+1

n

& 22n/p′n−1 r2
n+1

n & 22n/p′n−1 � 1

(1− rn)2/p′ log 2
1−rn

, n = 1, 2, . . . .

This readily yields

M2(r, F ′p)
2 &

1

(1− r)2/p′ log 2
1−r

, 0 < r < 1. (17)

Proof of part (3) of Theorem 6. Suppose that 2 < p < ∞ and 0 < s ≤ 1 − 2
p and

g ∈ Hol(D) is not identically zero.
Suppose first that either Ig or Mg maps Bp into Qs. We know that then g ∈ H∞

and then, by Fatou’s theorem and the Riesz uniqueness theorem, we know that
g has a finite non-tangential limit g(eiθ) for almost every θ ∈ [0, 2π] and that
g(eiθ) 6= 0 for almost every θ. Then it follows that there exist C > 0, r0 ∈ (0, 1),
and a measurable set E ⊂ [0, 2π] whose Lebesgue measure |E| is positive such that

|g(reiθ)| ≥ C, θ ∈ E, r0 < r < 1. (18)

Since Fp is given by a power series with Hadamard gaps, Lemma 6. 5 in [60, Vol. 1,
p. 203] implies that∫

E

|F ′p(reiθ)|2 dθ � M2(r, F ′p)
2, 0 < r < 1. (19)

Using the fact that s ≤ 1− 2
p , (18), (19), and (17), we obtain∫ 1

0

(1− r)sM2(r, F ′p g)
2 dr ≥

∫ 1

r0

(1− r)1−
2
pM2(r, F ′p g)

2 dr

&
∫ 1

r0

(1− r)1−
2
p

∫
E

|F ′p(reiθ)|2 |g(reiθ)|2 dθ dr &
∫ 1

r0

(1− r)1−
2
p

∫
E

|F ′p(reiθ)|2 dθ dr

&
∫ 1

r0

(1− r)1−
2
p M2(r, F ′p)

2 dr &
∫ 1

r0

dr

(1− r) log 2
1−r

=∞. (20)

If we assume that Ig maps Bp into Qs then Ig(Fp) ∈ Qs and then, using [11,
Proposition 3. 1], it follows that∫ 1

0

(1− r)sM2(r, F ′p g)
2 dr <∞.

This is in contradiction with (20).
Assume now that Mg maps Bp into Qs. Since 1 and Fp belong to Bp, we have

that g and Fp g belong to Qs and then, by [11, Proposition 3. 1],∫ 1

0

(1− r)sM2(r, g′)2 dr < ∞ (21)
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and ∫ 1

0

(1− r)sM2(r, (Fpg)
′)2 dr < ∞. (22)

Notice that Fp ∈ H∞ and then

M2(r, Fp g
′) . M2(r, g′), 0 < r < 1.

This and (21) imply that∫ 1

0

(1− r)sM2(r, F ′p g)
2 dr < ∞. (23)

We have arrived to a contradiction because it is clear that (20) and (23) cannot
be simultaneously true. �

In the other direction we have the following result.

Theorem 7 Suppose that 0 < s < ∞ and 1 ≤ p < ∞ and let g ∈ Hol(D). Then the

following conditions are equivalent

(i) Mg maps Qs into Bp.

(ii) g ≡ 0.

Proof. Suppose that g 6≡ 0. Choose an increasing sequence {rn}∞n=1 ⊂ (0, 1) with
lim{rn} = 1 and a sequence {θn}∞n=1 ⊂ [0, 2π] such that

|g(rneiθn)| = M∞(rn, g), n = 1, 2, . . . .

For each n set

fn(z) = log
1

1− e−iθnz
, z ∈ D.

Notice that M(r1, g) > 0 and that the sequence {M(rn, g)} is increasing. Set

fn(z) = log
1

1− e−iθnz
, z ∈ D, n = 1, 2, . . . .

We have that fn ∈ Qs for all n and

‖fn‖Qs � 1.

Assume that Mg maps Qs into Bp. Then, by the closed graph theorem, Mg is
bounded operator from Qs into Bp. Hence the sequence {g fn}∞n=1 is a bounded
sequence on Bp, that is,

‖g fn‖Bp . 1.

Then it follows that

M(r1, g) log
1

1− rn
≤M(rn, g) log

1

1− rn
= |g(rneiθn)fn(rne

iθn)|

.‖g fn‖Bp
(

log
1

1− rn

)1/p′

.

(
log

1

1− rn

)1/p′

.

This is a contradiction. �
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3 Multipliers and integration operators between Qs spaces

As we mentioned above the space of multipliers M(B) = M(Qs) (s > 1) was
characterized by Brown and Shields in [15]. Ortega and Fàbrega [40] characterized
the space M(BMOA) = M(Q1). Pau and Peláez [41] and Xiao [54] characterized
the spaces M(Qs) (0 < s < 1) closing a conjecture formulated in [51]. Indeed,
Theorem 1 of [41] and Theorem 1. 2 of [54] assert the following.

Theorem C Suppose that 0 < s ≤ 1 and let g be an analytic function in the unit disc

D. Then:

(i) Tg maps Qs into itself if and only if g ∈ Qs,log,1.

(ii) Ig maps Qs into itself if and only if g ∈ H∞.

(ii) Mg maps Qs into itself if and only if g ∈ Qs,log,1 ∩H∞.

We shall prove the following results.

Theorem 8 Suppose that 0 < s1 ≤ s2 ≤ 1 and let g ∈ Hol(D). Then:

(i) Tg maps Qs1 into Qs2 if and only if g ∈ Qs2,log,1.

(ii) Ig maps Qs1 into Qs2 if and only if g ∈ H∞.

(iii) Mg maps Qs1 into Qs2 if and only if g ∈ Qs2,log,1 ∩H
∞.

Theorem 9 Suppose that 0 < s1 < s2 ≤ 1 and let g ∈ Hol(D). Then the following

conditions are equivalent:

(i) Ig maps Qs2 into Qs1 .

(ii) Mg maps Qs2 into Qs1 .

(iii) g ≡ 0.

Proof of Theorem 8. For a ∈ D we set

ha(z) = log
2

1− a z , z ∈ D.

Then ha ∈ Qs1 for all a ∈ D and

‖ha‖Qs1 � 1. (24)

• If Tg maps Qs1 into Qs2 then Tg is a bounded operator from Qs1 into Qs2 . Us-
ing this and (24), it follows that for all a ∈ D the measure (1−|z|2)s2 |g′(z)|2|ha(z)|2 dA(z)
is an s2-Carleson measure and that∫

S(a)

(1− |z|2)s2 |g′(z)|2|ha(z)|2 dA(z) . (1− |a|2)s2 , a ∈ D. (25)

Since

|ha(z)| � log
2

1− |a|2 , z ∈ S(a),

(25) implies that(
log

2

1− |a|2

)2 ∫
S(a)

(1− |z|2)s2 |g′(z)|2 dA(z) . (1− |a|2)s2 .
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This is the same as saying that the measure (1 − |z|2)s2 |g′(z)|2 dA(z) is a 2-
logarithmic s2-Carleson measure or, equivalently, that g ∈ Qs2,log,1.

If g ∈ Qs2,log,1 then, by Theorem C, Tg maps Qs2 into itself. Since Qs1 ⊂ Qs2 ,
it follows trivially that Tg maps Qs1 into Qs2 . Hence (i) is proved
• Proposition 1 shows that if Ig maps Qs1 into Qs2 then g ∈ H∞.
Conversely, suppose that g ∈ H∞. In order to prove that Ig maps Qs1 into Qs2 ,

we have to prove that for any f ∈ Qs1 the measure (1− |z|2)s2 |g(z)|2|f ′(z)|2 dA(z)
is an s2-Carleson measure. So, take f ∈ Qs1 . Then (1 − |z|2)s1 |f ′(z)|2 dA(z) is an
s1-Carleson measure. Then it follows that∫

S(a)

(1− |z|2)s2 |g(z)|2|f ′(z)|2 dA(z)

≤‖g‖2H∞(1− |a|2)s2−s1
∫
S(a)

(1− |z|2)s1 |f ′(z)|2 dA(z)

. (1− |a|2)s2 .

This shows that (1 − |z|2)s2 |g(z)|2|f ′(z)|2 dA(z) is an s2-Carleson measure as de-
sired, finishing the proof of (ii).
• If Mg maps Qs1 into Qs2 then, Proposition 1, g ∈ H∞. Then (i) implies that Ig

maps Qs1 into Qs2 . Since Mg(f) = Ig(f) + Tg(f) +f(0)g(0), it follows that Tg maps
Qs1 into Qs2 . Then (i) yields g ∈ Qs2,log,1. Then we have that g ∈ Qs2,log,1 ∩H

∞.
Conversely, if g ∈ Qs2,log,1 ∩H

∞ then (i) and (ii) immediately give that both
Tg and Ig map Qs1 into Qs2 and then so does Mg. �

Some results from [11] will be used to prove Theorem 9. As we have already

noticed if 0 < s ≤ 1 and f ∈ Qs then
∫ 1

0
(1 − r)sM2(r, f ′)2 dr < ∞. Using ideas

from [27], Aulaskari, Girela and Wulan [11, Theorem 3. 1] proved that this result
is sharp in a very strong sense.

Theorem D Suppose that 0 < s ≤ 1 and let ϕ be a positive increasing function defined

in (0, 1) such that ∫ 1

0

(1− r)s ϕ(r)2 dr <∞.

Then there exists a function f ∈ Qs given by a power series with Hadamard gaps such

that M2(r, f ′) ≥ ϕ(r) for all r ∈ (0, 1).

Proof of Theorem 9. Suppose that g 6≡ 0 and that either Ig or Mg maps Qs2 into Qs1 .
By Proposition 1, g ∈ H∞ and then it follows that there exist C > 0, r0 ∈ (0, 1),
and a measurable set E ⊂ [0, 2π] whose Lebesgue measure |E| is positive such that

|g(reiθ)| ≥ C, θ ∈ E, r0 < r < 1.

• Suppose that Ig maps Qs2 into Qs1 . Then we use Theorem D to pick a function
F ∈ Qs2 given by a power series with Hadamard gaps so that

M2(r, F ′) ≥ 1

(1− r)(1+s1)/2
, 0 < r < 1. (26)

Since Ig(F ) ∈ Qs1 , ∫ 1

0

(1− r)s1M2(r, F ′g)2 dr < ∞. (27)
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However, using Lemma 6. 5 in [60, Vol. 1, p. 203] and (26), it follows that∫ 1

0

(1− r)s1M2(r, F ′g)2 dr &
∫ 1

r0

(1− r)s1
∫
E

|F ′(reiθ)|2|g(reiθ)|2 dθ dr

&
∫ 1

r0

(1− r)s1
∫
E

|F ′(reiθ)|2 dθ dr

�
∫ 1

r0

(1− r)s1M2(r, F ′)2 dr

&
∫ 1

r0

(1− r)−1 dr

= ∞.

This is in contradiction with (27).
• Suppose now that Mg maps Qs2 into Qs1 . Take ε > 0 with s2−s1−ε > 0 and

use Theorem D to pick a function H ∈ Qs2 given by a power series with Hadamard
gaps so that

M2(r,H ′) ≥ 1

(1− r)(1+s1+ε)/2
, 0 < r < 1. (28)

Since gH ∈ Qs1 we have that∫ 1

0

(1− r)s1M2(r, g′H + gH ′)2 dr < ∞. (29)

Using Lemma 6. 5 in [60, Vol. 1, p. 203] and (28), we obtain as above that∫ 1

0

(1− r)s1+εM2(r,H ′g)2 dr &
∫ 1

r0

(1− r)s1+ε
∫
E

|H ′(reiθ)|2 dθ dr

&
∫ 1

r0

(1− r)s1+εM2(r,H ′)2 dr

&
∫ 1

r0

dr

1− r

=∞. (30)

Notice that g ∈ Qs1 . Using this and the fact that

|H(z)| . log
2

1− |z| , z ∈ D,

it follows that∫ 1

0

(1− r)s1+εM2(r,Hg′)2 dr .
∫ 1

0

(1− r)s1+ε
(

log
2

1− r

)2

M2(r, g′)2 dr

.
∫ 1

0

(1− r)s1+
ε
2M2(r, g′) dr < ∞. (31)

We have arrived to a contradiction because (29), (30), and (31) cannot hold si-
multaneously. �
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Remark 1 The implication (ii) ⇒ (iii) in Theorem 9 was obtained by Pau and
Peláez [42, Corollary 4] using the fact that there exists a function f ∈ Qs2 , f 6≡ 0,
whose sequence of zeros is not a Qs1 -zero set.

This idea gives also the following:

M(B, Qs) = {0}, 0 < s ≤ 1.

Indeed, it is well known that there exists a function f ∈ B, f 6≡ 0, whose
sequence of zeros does not satisfy the Blaschke condition [7,31]. If g 6≡ 0 were a
multiplier from B into Qs for some s ≤ 1 then the sequence of zeros of fg would
satisfy the Blaschke condition. But this is not true because all the zeros of f are
zeros of gf .

4 Some further results

The inner-outer factorization of functions in the Hardy spaces plays an outstanding
role in lots of questions. In many cases the outer factor Of of f inherits properties
of f . Working in this setting the following concepts arise as natural and quite
interesting.

A subspace X of H1 is said to have the f -property (also called the property of
division by inner functions) if h/I ∈ X whenever h ∈ X and I is an inner function
with h/I ∈ H1.

Given v ∈ L∞(∂D), the Toeplitz operator Tv associated with the symbol v is
defined by

Tvf(z) = P (vf)(z) =
1

2πi

∫
∂D

v(ξ)f(ξ)

ξ − z dξ, f ∈ H1, z ∈ D.

Here, P is the Szegö projection.
A subspace X of H1 is said to have the K-property if Tψ(X) ⊂ X for any

ψ ∈ H∞.

These notions were introduced by Havin in [34]. It was also pointed out in
[34] that the K-property implies the f -property: indeed, if h ∈ H1, I is inner and
h/I ∈ H1 then h/I = TIh.

In addition to the Hardy spaces Hp (1 < p < ∞) many other spaces such as
the Dirichlet space [34,38], several spaces of Dirichlet type including all the Besov
spaces Bp (1 < p < ∞) [20–22,39], the spaces BMOA and VMOA [35], and the
Qs spaces (0 < s < 1) [23] have the K-property. The Hardy space H1, H∞ and
VMOA ∩H∞ are examples of spaces which have the f -property bur fail to have
the K-property [35].

The first example of a subspace of H1 not possessing the f -property is due to
Gurarii [33] who proved that the space of analytic functions in D whose sequence
of Taylor coefficients is in `1 does not have the f -property. Anderson [6] proved
that the space B0 ∩H∞ does not have the f -property. Later on it was proved in
[29] that if 1 ≤ p <∞ then Hp ∩ B fails to have the f -property also.

Since as we have already mentioned the Besov spaces Bp (1 < p <∞) and the
Qs spaces (0 < s ≤ 1) have the K-property (and, also, the f -property), it seems
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natural to investigate whether the spaces of multipliers and the spaces Qs,log,α
that we have considered in our work have also these properties. We shall prove the
following results.

Theorem 10 The spaces of multipliers M(Bp, Qs) (0 < s ≤ 1, 1 ≤ p <∞), M(Qs1 , Qs2)
(0 < s1, s2 ≤ 1), and M(Bp, Bq) (1 ≤ p, q <∞) have the f-property.

Theorem 11 For α > 0 and 0 < s < 1 the space Qs,log,α has the K-property.

Theorem 10 follows readily from the following result.

Lemma 1 Let X and Y be to Banach spaces of analytic functions which are contin-

uously contained in H1. Suppose that X contains the constants functions and that Y

has the f-property. Then the space of multipliers M(X,Y ) also has the f-property.

Proof. Since X contains the constants functions M(X,Y ) ⊂ Y ⊂ H1.
Suppose that F ∈M(X,Y ), I is an inner function, and F/I ∈ H1. Take f ∈ X.

Then fF ∈ Y ⊂ H1 and then fF/I ∈ H1. Since Y has the f -property, it follows
that fF/I ∈ Y . Thus, we have proved that F/I ∈M(X,Y ). �

Theorem 11 will follows from a characterization of the spaces Qs,log,α in terms
of pseudoanalytic continuation. We refer to Dyn’kin’s paper [24] for similar descrip-
tions of classical smoothness spaces, as well as for other important applications of
the pseudoanalytic extension method.

Let, D− denotes the region {z ∈ C : |z| > 1}, and write

z∗
def
= 1/z, z ∈ C \ {0}.

We shall need the Cauchy-Riemann operator

∂ =
∂

∂z

def
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, z = x+ iy.

The following result is an extension of [23, Theorem 1].

Theorem 12 Suppose that 0 < s < 1, α > 0, and f ∈ ∩0<q<∞Hq. Then the following

conditions are equivalent.

(i) f ∈ Qs,log,α.

(ii) sup
|a|<1

(
log

2

1− |a|

)2α ∫
D
|f ′(z)|2

(
1

|ϕa(z)|2
− 1

)s
dA(z) <∞.

(iii) There exists a function F ∈ C1(D−) satisfying

F (z) = O(1), as z →∞,

lim
r→1+

F (reiθ) = f(eiθ), a.e. and in Lq([−π, π]) for all q ∈ [1,∞) ,

sup
|a|<1

(
log

2

1− |a|

)2α ∫
D−

∣∣∂F (z)
∣∣2 (|ϕa(z)|2 − 1

)s
dA(z) <∞.

Theorem 12 can be proved following the arguments used in the proof of [23,
Theorem 1], we omit the details. Once Theorem 12 is established, noticing that if
α > 0 and 0 < s < 1 then Qs,logα ⊂ Qs ⊂ BMOA, Theorem 11 can be proved
following the steps in the proof of [23, Theorem 2]. Again, we omit the details.
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