Multipliers and integration operators between conformally invariant spaces

Daniel Girela · Noel Merchán

Received: date / Accepted: date

Abstract In this paper we are concerned with two classes of conformally invariant spaces of analytic functions in the unit disc \mathbb{D} , the Besov spaces B^p $(1 \leq p < \infty)$ and the Q_s spaces $(0 < s < \infty)$. Our main objective is to characterize for a given pair (X, Y) of spaces in these classes, the space of pointwise multipliers $M(X, Y)$, as well as to study the related questions of obtaining characterizations of those g analytic in $\mathbb D$ such that the Volterra operator T_g or the companion operator I_g with symbol g is a bounded operator from X into Y .

Keywords Möbius invariant spaces · Besov spaces · Q_s spaces · multipliers · integration operators · Carleson measures

Mathematics Subject Classification (2010) 30H25 · 47B38

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denote the open unit disc of the complex plane \mathbb{C} and let $\mathcal{H}ol(\mathbb{D})$ be the space of all analytic functions in $\mathbb D$ endowed with the topology of uniform convergence on compact subsets.

Universidad de Málaga, 29071 Málaga, Spain E-mail: girela@uma.es

N. Merchán Departamento de Matemática Aplicada, Universidad de Málaga, 29071 Málaga, Spain E-mail: noel@uma.es

This research is supported in part by a grant from "El Ministerio de Ciencia, Innovación y Universidades", Spain (PGC2018-096166-B-I00) and by grants from la Junta de Andalucía (FQM-210 and UMA18-FEDERJA-002).

D. Girela

Departamento de Análisis Matemático, Estadística e Investigación Operativa, y Matemática Aplicada,

If $0 < r < 1$ and $f \in Hol(\mathbb{D})$, we set

$$
M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt\right)^{1/p}, \quad 0 < p < \infty,
$$

$$
M_\infty(r, f) = \sup_{|z|=r} |f(z)|.
$$

If $0 < p \leq \infty$ the Hardy space H^p consists of those $f \in Hol(\mathbb{D})$ such that

$$
||f||_{H^p} \stackrel{\text{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty.
$$

We mention [18] for the theory of H^p -spaces.

If $0 < p < \infty$ and $\alpha > -1$, the weighted Bergman space A^p_α consists of those $f \in Hol(\mathbb{D})$ such that

$$
||f||_{A_{\alpha}^p} \stackrel{\text{def}}{=} \left((\alpha+1) \int_{\mathbb{D}} (1-|z|)^{\alpha} |f(z)|^p dA(z) \right)^{1/p} < \infty.
$$

The unweighted Bergman space A_0^p is simply denoted by A^p . Here, $dA(z) = \frac{1}{\pi} dx dy$ denotes the normalized Lebesgue area measure in D. We refer to [19], [36] and [58] for the theory of these spaces.

We let $Aut(\mathbb{D})$ denote the set of all disc automorphisms, that is, of all one-toone analytic maps φ from $\mathbb D$ onto itself. It is well known that Aut($\mathbb D$) coincides with the set of all Möbius transformations from D onto itself:

$$
Aut(\mathbb{D}) = {\lambda \varphi_a : |\lambda| = 1, a \in \mathbb{D}} ,
$$

where $\varphi_a(z) = (a-z)/(1-\overline{a}z)$ $(z \in \mathbb{D})$.

A linear space X of analytic functions in D is said to be *conformally invariant* or Möbius invariant if whenever $f \in X$, then also $f \circ \varphi \in X$ for any $\varphi \in \text{Aut}(\mathbb{D})$ and, moreover, X is equipped with a semi-norm ρ for which there exists a positive constant C such that

$$
\rho(f \circ \varphi) \leq C\rho(f)
$$
, whenever $f \in X$ and $\varphi \in \text{Aut}(\mathbb{D})$.

The articles $[8]$ and $[44]$ are fundamental references for the theory of Möbius invariant spaces which have attracted much attention in recent years (see, e.g., [3, 16, 17,30, 47, 57, 58]).

The Bloch space β consists of all analytic functions f in $\mathbb D$ such that

$$
\rho_{\mathcal{B}}(f) \stackrel{\text{def}}{=} \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.
$$

The Schwarz-Pick lemma easily implies that ρ_B is a conformally invariant seminorm, thus B is a conformally invariant space. It is also a Banach space with the norm $\|\cdot\|_{\mathcal{B}}$ defined by $\|f\|_{\mathcal{B}} = |f(0)| + \rho_{\mathcal{B}}(f)$. The little Bloch space \mathcal{B}_0 is the set of those $f \in \mathcal{B}$ such that $\lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0$. Alternatively, \mathcal{B}_0 is the closure of the polynomials in the Bloch norm. A classical reference for the theory of Bloch functions is [7]. Rubel and Timoney [44] proved that β is the largest "reasonable" Möbius invariant space. More precisely, they proved the following result.

Theorem A Let X be a Möbius invariant linear space of analytic functions in \mathbb{D} and let ρ be a Möbius invariant seminorm on X. If there exists a non-zero decent linear functional L on X which is continuous with respect to ρ , then $X \subset \mathcal{B}$ and there exists a constant $A > 0$ such that $\rho_B(f) \leq A \rho(f)$, for all $f \in X$.

Here, a linear functional L on X is said to be decent if it extends continuously to $\mathcal{H}ol(\mathbb{D})$.

The space BMOA consists of those functions f in $H¹$ whose boundary values have bounded mean oscillation on the unit circle $\partial\mathbb{D}$ as defined by F. John and L. Nirenberg. There are many characterizations of BMOA functions. Let us mention the following:

If $f \in Hol(\mathbb{D})$, then $f \in BMOA$ if and only if $||f||_{BMOA} \stackrel{def}{=} |f(0)| + \rho_*(f) < \infty$, where

$$
\rho_*(f) = \sup_{a \in \mathbb{D}} ||f \circ \varphi_a - f(a)||_{H^2}.
$$

It is well known that $H^{\infty} \subset BMOA \subset B$ and that $BMOA$ equipped with the seminorm ρ_* is a Möbius invariant space. The space VMOA consists of those $f \in BMOA$ such that $\lim_{|a| \to 1} ||f \circ \varphi_a - f(a)||_{H^2} = 0$, it is the closure of the polynomials in the BMOA-norm. We mention [28] as a general reference for the space BMOA.

Other important Möbius invariant spaces are the Besov spaces and the Q_s spaces.

For $1 < p < \infty$, the *analytic Besov space* B^p is defined as the set of all functions f analytic in $\mathbb D$ such that $f' \in A_{p-2}^p$. All B^p spaces $(1 < p < \infty)$ are conformally invariant with respect to the semi-norm ρ_{BP} defined by

$$
\rho_{B^p}(f) \stackrel{\text{def}}{=} \|f'\|_{A^p_{p-2}}
$$

(see [8, p. 112] or [16, p. 46]) and Banach spaces with the norm $\|\cdot\|_{B_p}$ defined by $||f||_{B^p} = |f(0)| + \rho_{B^p}(f)$. An important and well-studied case is the classical Dirichlet space B^2 (often denoted by \mathcal{D}) of analytic functions whose image has a finite area, counting multiplicities.

The space B^1 requires a special definition: it is the space of all analytic functions f in $\mathbb D$ for which $f'' \in A^1$. Although the semi-norm ρ defined by $\rho(f) = ||f''||_{A^1}$ is not conformally invariant, the space itself is. An alternative definition of B^1 with a conformally invariant semi-norm is given in $[8]$, where it is also proved that $B¹$ is contained in any Möbius invariant space. A lot of information on Besov spaces can be found in [8, 16, 17, 37, 56, 58]. Let us recall that

$$
VMOA \subsetneq B_0, BMOA \subsetneq B,
$$

$$
B^1 \subsetneq B^p \subsetneq B^q \subsetneq VMOA \subsetneq BMOA, 1 < p < q < \infty.
$$

If $0 \leq s \leq \infty$, we say that $f \in \mathcal{O}_s$ if f is analytic in $\mathbb D$ and

$$
\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f'(z)|^2g(z,a)^s\,dA(z)<\infty\,,
$$

where $g(z, a) = \log(|1 - \overline{a}z|/|a - z|)$ is the Green function of D. These spaces were introduced by Aulaskari and Lappan [12] while looking for characterizations of Bloch functions (see [50] for the case $s = 2$). For $s > 1$, Q_s is the Bloch space, $Q_1 = BMOA$, and

$$
\mathcal{D} \subsetneq Q_{s_1} \subsetneq Q_{s_2} \subsetneq BMOA, \qquad 0 < s_1 < s_2 < 1.
$$

It is well known [14,46] that for every s with $0 \leq s < \infty$, a function $f \in Hol(D)$ belongs to Q_s if and only if

$$
\rho_{Q_s}(f) \stackrel{\text{def}}{=} \left(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2)^s dA(z) \right)^{1/2} < \infty.
$$

All Q_s spaces $(0 \le s < \infty)$ are conformally invariant with respect to the seminorm ρ_{Q_s} . They are also Banach spaces with the norm $\|\cdot\|_{Q_s}$ defined by $\|f\|_{Q_s} =$ $|f(0)| + \rho_{Q_s}(f)$. We mention [52,53] as excellent references for the theory of Q_s spaces.

Let us recall the following two facts which were first observed in [10].

If
$$
0 < p \le 2
$$
, then $B^p \subset Q_s$ for all $s > 0$. (1)

If
$$
2 < p < \infty
$$
, then $B^p \subset Q_s$ if and only if $1 - \frac{2}{p} < s$. (2)

For g analytic in \mathbb{D} , the Volterra operator T_g is defined as follows:

$$
T_g(f)(z) \stackrel{\text{def}}{=} \int_0^z g'(\xi) f(\xi) d\xi, \ \ f \in \mathcal{H}ol(\mathbb{D}), \ \ z \in \mathbb{D}.
$$

We define also the companion operator I_g by

$$
I_g(f)(z) \stackrel{\text{def}}{=} \int_0^z g(\xi) f'(\xi) d\xi, \ \ f \in \mathcal{H}ol(\mathbb{D}), \ \ z \in \mathbb{D}.
$$

The integration operators T_g and I_g have been studied in a good number of papers. Let us just mention here that Pommerenke [43] proved that T_g is bounded on H^2 if and only if $g \in BMOA$ and that Aleman and Siskakis [4] characterized those $g \in Hol(\mathbb{D})$ for which T_g is bounded on H^p ($p \geq 1$), while Aleman and Cima characterized in [1] those $g \in Hol(\mathbb{D})$ for which T_g maps H^p into H^q . Aleman and Siskakis [5] studied the operators I_g and T_g acting on Bergman spaces.

For $g \in Hol(\mathbb{D})$, the multiplication operator M_g is defined by

$$
M_g(f)(z) \stackrel{\text{def}}{=} g(z)f(z), \quad f \in Hol(\mathbb{D}), \ z \in \mathbb{D}.
$$

If X and Y are two Banach spaces of analytic function in D continuously embedded in $Hol(\mathbb{D})$ and $g \in Hol(\mathbb{D})$ then g is said to be a multiplier from X to Y if $M_q(X) \subset$ Y. The space of all multipliers from X to Y will be denoted by $M(X, Y)$ and $M(X)$ will stand for $M(X, X)$. Using the closed graph theorem we see that for the three operators T_g , I_g , M_g , we have that if one of them maps X into Y then it is continuous from X to Y . We remark also that

$$
T_g(f) + I_g(f) = M_g(f) - f(0)g(0).
$$
\n(3)

Thus if two of the operators T_g , I_g , M_g are bounded from X to Y so is the third one.

It is well known that if X is nontrivial then $M(X) \subset H^{\infty}$ (see, e.g., [2, Lemma 1. 1] or [48, Lemma 1. 10]), but $M(X, Y)$ need not be included in H^{∞} if $Y \not\subset X$. However, when dealing with Möbius invariant spaces we have the following result.

Proposition 1 Let X and Y be two Möbius invariant spaces of analytic functions in D equipped with the seminorms ρ_X and ρ_Y , respectively. Suppose that there exists a non-trivial decent linear functional L on Y which is continuous with respect to ρ_Y . Let $g \in Hol(D)$. Then the following statements hold.

(i) If M_g is continuous from (X, ρ_X) into (Y, ρ_Y) , then $g \in H^{\infty}$. (ii) If Ig is continuous from (X, ρ_X) into (Y, ρ_Y) , then $g \in H^{\infty}$.

Before embarking into the proof of Proposition 1, let us mention that, as usual, throughout the paper we shall be using the convention that $C = C(p, \alpha, q, \beta, \dots)$ will denote a positive constant which depends only upon the displayed parameters $p, \alpha, q, \beta, \ldots$ (which sometimes will be omitted) but not necessarily the same at different occurrences. Moreover, for two real-valued functions E_1, E_2 we write $E_1 \lesssim$ E_2 , or $E_1 \gtrsim E_2$, if there exists a positive constant C independent of the arguments such that $E_1 \leq CE_2$, respectively $E_1 \geq CE_2$. If we have $E_1 \leq E_2$ and $E_1 \geq E_2$ simultaneously then we say that E_1 and E_2 are equivalent and we write $E_1 \times E_2$. Also, if $1 < p < \infty$, p' will stand for its conjugate exponent, that is, $\frac{1}{p} + \frac{1}{p'} = 1$.

Proof of Proposition 1. Since X is conformally invariant, $Aut(D) \subset X$ [8, p. 114] and

$$
\rho_X(\varphi_a) \asymp 1, \quad a \in \mathbb{D}.\tag{4}
$$

Suppose that M_g is continuous from (X, ρ_X) into (Y, ρ_Y) . Using this, Theorem A, and (4) we obtain

$$
\rho_{\mathcal{B}}(g\,\varphi_a) \lesssim \rho_Y(g\,\varphi_a) \lesssim \rho_X(\varphi_a) \lesssim 1, \quad a \in \mathbb{D}.
$$

This implies that

$$
(1-|a|^2)|g'(a)\varphi_a(a) + g(a)\varphi'_a(a)| \lesssim 1, \quad a \in \mathbb{D}.
$$

Since $\varphi(a) = 0$ and $\varphi'_a(a) = -(1 - |a|^2)^{-1}$, it follows that

$$
|g(a)| \lesssim 1, \quad a \in \mathbb{D},
$$

that is, $q \in H^{\infty}$.

Similarly, if we assume that I_g is continuous from (X, ρ_X) into (Y, ρ_Y) , we obtain

$$
\rho_{\mathcal{B}}\left(I_g(\varphi_a)\right) \lesssim 1, \quad a \in \mathbb{D}.
$$

This implies that

$$
(1-|a|^2) | (I_g(\varphi_a))'(a)| = (1-|a|^2) |\varphi'_a(a)||g(a)| = |g(a)| \lesssim 1, \quad a \in \mathbb{D}.
$$

 \Box

For notational convenience, set

$$
\mathcal{BQ} = \{Q_s : 0 \le s < \infty\} \cup \{B^p : 1 \le p < \infty\}.
$$

The main purpose of this paper is characterizing, for a given pair of spaces $X, Y \in$ BQ, the functions $g \in Hol(\mathbb{D})$ such that the operators M_g , T_g and/or I_g map X into Y . When X and Y are Besov spaces this question has been extensively studied (see, e.g. $[9, 26, 32, 45, 49, 59]$). Thus we shall concentrate ourselves to study these operators when acting between a certain Besov space B^p and a certain Q_s space and when acting between Q_{s_1} and Q_{s_2} for a certain pair of positive numbers s_1, s_2 .

2 Multipliers and integration operators from Besov spaces into Q_s -spaces

For $\alpha > 0$, the α -logarithmic Bloch space $\mathcal{B}_{\log,\alpha}$ is the Banach space of those functions $f \in Hol(\mathbb{D})$ which satisfy

$$
||f||_{\log,\alpha} \stackrel{\text{def}}{=} |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) \left(\log \frac{2}{1 - |z|^2} \right)^{\alpha} |f'(z)| < \infty. \tag{5}
$$

For simplicity, the space $\mathcal{B}_{\log,1}$ will be denoted by \mathcal{B}_{\log} .

It is clear that $B_{\log,\alpha} \subset \mathcal{B}_0$, for all $\alpha > 0$. Using the characterization of VMOA in terms of Carleson measures [28, p. 102], it follows easily that

$$
B_{\log,\alpha} \subset VMOA
$$
, for all $\alpha > 1/2$.

In particular, $\mathcal{B}_{\log} \subset VMOA$.

Brown and Shields [15] showed that $M(\mathcal{B}) = \mathcal{B}_{\log} \cap H^{\infty}$. The spaces $M(B^p, \mathcal{B})$ $(1 \leq p < \infty)$ were characterized in [25]. Namely, Theorem 1 of [25] asserts that $M(B^1, \mathcal{B}) = H^{\infty}$ and

$$
M(B^p, \mathcal{B}) = H^{\infty} \cap \mathcal{B}_{\log, 1/p'}, \quad 1 < p < \infty,
$$
\n⁽⁶⁾

where p' is the exponent conjugate to p, that is, $\frac{1}{p} + \frac{1}{p'} = 1$.

In this section we extend these results. In particular, we shall obtain for any pair (p, s) with $2 < p < \infty$ and $0 < s < \infty$ a complete characterization of the space of multipliers $M(B^p, Q_s)$.

Let us start with the case $s \geq 1$ which is the simplest one.

Theorem 1 Let $q \in Hol(\mathbb{D})$. Then:

(i) I_g maps B^1 into $\mathcal B$ if and only if $g \in H^{\infty}$.

(ii) M_g maps B^1 into $\mathcal B$ if and only if $g \in H^\infty$.

(iii) T_g maps B^1 into β if and only if $g \in \mathcal{B}$.

Proof. If $I_g(B^1) \subset \mathcal{B}$ then, using Proposition 1, it follows that $g \in H^{\infty}$.

To prove the converse it suffices to recall that $B^1 \subset \mathcal{B}$. Indeed, suppose that $g \in H^{\infty}$ and take $f \in B^{1}$. Then

$$
(1-|z|^2)\left|\left(I_g(f)\right)'(z)\right| = (1-|z|^2)|f'(z)||g(z)| \leq ||f||_B||g||_{H^{\infty}}.
$$

Thus $I_g(f) \in \mathcal{B}$.

Hence (i) is proved. Now, (ii) is contained in [25, Theorem 1].

It remains to prove (iii). If $T_g(B^1) \subset \mathcal{B}$ then $T_g(1) = g - g(0) \in \mathcal{B}$ and, hence $g \in \mathcal{B}$. Conversely, if $g \in \mathcal{B}$ and $f \in \mathcal{B}^1$ then, using the fact that $B^1 \subset H^{\infty}$, we obtain

$$
(1-|z|^2)\left|\left(T_g(f)\right)'(z)\right| = (1-|z|^2)|g'(z)||f(z)| \leq ||g||_B||f||_{H^{\infty}}.
$$

Thus $T_g(f) \in \mathcal{B}$. Hence (iii) is also proved. \Box

Theorem 2 Suppose that $1 < p < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, and let $g \in Hol(\mathbb{D})$. Then:

- (i) I_g maps B^p into B if and only if $g \in H^{\infty}$.
- (ii) M_g maps B^p into $\mathcal B$ if and only if $g \in H^\infty \cap \mathcal B_{\log,1/p'}$.
- (iii) T_g maps B^p into $\mathcal B$ if and only if $g \in \mathcal B_{\log,1/p'}$.

Proof. If I_g maps B^p into β then Proposition 1 implies that $g \in H^{\infty}$. Conversely, using that $B^p \subset \mathcal{B}$, we see that if $g \in H^{\infty}$ and $f \in B^p$ then

$$
(1-|z|^2)\left|\left(I_g(f)\right)'(z)\right| = (1-|z|^2)|f'(z)||g(z)| \leq ||f||_B||g||_{H^{\infty}}.
$$

Hence, $I_g(f) \in \mathcal{B}$. Thus (i) is proved and (ii) reduces to (6).

Finally, (iii) follows from the following more precise result.

Theorem 3 Suppose that $1 < p < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, and let $g \in Hol(D)$. Then the following conditions are equivalent.

- (a) T_g maps B^p into \mathcal{B} .
- (b) $g \in \mathcal{B}_{\log, 1/p'}$.
- (c) T_g maps B^p into \mathcal{B}_0 .

Proof of Theorem 3. (a) \Rightarrow (b) Suppose (a). By the closed graph theorem T_g is a bounded operator from B^p into β , hence

$$
(1-|z|^2)|g'(z)f(z)| \lesssim ||f||_{B^p}, \quad z \in \mathbb{D}, \ f \in B^p. \tag{7}
$$

For $a \in \mathbb{D}$ with $a \neq 0$, set

$$
f_a(z) = \left(\log \frac{1}{1-|a|^2}\right)^{-1/p} \log \frac{1}{1-\overline{a}z}, \quad z \in \mathbb{D}.
$$
 (8)

It is readily seen that $f_a \in B^p$ for all a and that $||f_a||_{B^p} \ge 1$. Using this and taking $f = f_a$ and $z = a$ in (7), we obtain

$$
(1-|a|^2)|g'(a)|\left(\frac{1}{1-|a|^2}\right)^{1/p'}\lesssim 1,
$$

that is $g \in \mathcal{B}_{\log,1/p'}$.

 $(b) \Rightarrow (c)$ Suppose (b) and take $f \in B^p$. It is well known that

$$
|f(z)| = o\left(\left(\log \frac{1}{1-|z|^2}\right)^{1/p'}\right), \text{ as } |z| \to 1,
$$

(see, e.g., [37,56]). This and (b) immediately yield that $T_g(f) \in \mathcal{B}_0$.

The implication $(c) \Rightarrow (a)$ is trivial. Hence the proof of Theorem 3 is finished and, consequently, Theorem 2 is also proved. \Box

Let us turn now to the case $0 < s \leq 1$. We shall consider first the Volterra operators T_g . For $0 < s < \infty$ and $\alpha > 0$ we set

$$
Q_{s,\log,\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{a \in \mathbb{D}} \left(\log \frac{2}{1-|a|} \right)^{2\alpha} \int_{\mathbb{D}} |f'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z) < \infty \right\}.
$$

We have the following results.

Theorem 4 Suppose that $0 < s \leq 1$ and let $g \in Hol(\mathbb{D})$. Then:

(i) T_g maps B^1 into Q_s if and only if $g \in Q_s$.

(ii) If $1 < p < \infty$, $0 < s \leq 1$, and T_g maps B^p into Q_s , then $g \in Q_{s,\log,1/p'}$.

- (iii) If $1 < p < \infty$, then T_g maps $B^{\overline{p}}$ into $Q_1 = BMOA$ if and only if $g \in Q_{1,\log,1/p'}$.
- (iv) If $2 < p < \infty$, $0 < s < 1$, and $1 \frac{2}{p} < s$ then T_g maps B^p into Q_s if and only if $g \in Q_{s,\log,1/p'}$.

Before we get into the proofs of these results we shall introduce some notation and recall some results which will be needed in our work.

If $I \subset \partial \mathbb{D}$ is an interval, |I| will denote the length of I. The Carleson square $S(I)$ is defined as $S(I) = \{ re^{it} : e^{it} \in I, \quad 1 - \frac{|I|}{2\pi} \le r < 1 \}.$ Also, for $a \in \mathbb{D}$, the Carleson box $S(a)$ is defined by

$$
S(a) = \left\{ z \in \mathbb{D} : 1 - |z| \le 1 - |a|, \, \left| \frac{\arg(a\bar{z})}{2\pi} \right| \le \frac{1 - |a|}{2} \right\}.
$$

If $s > 0$ and μ is a positive Borel measure on \mathbb{D} , we shall say that μ is an s-Carleson measure if there exists a positive constant C such that

 $\mu(S(I)) \leq C|I|^s$, for any interval $I \subset \partial \mathbb{D}$,

or, equivalently, if there exists $C > 0$ such that

$$
\mu(S(a)) \le C(1-|a|)^s, \text{ for all } a \in \mathbb{D}.
$$

A 1-Carleson measure will be simply called a Carleson measure.

These concepts were generalized in [55] as follows: If μ is a positive Borel measure in $\mathbb{D}, 0 \leq \alpha < \infty$, and $0 < s < \infty$, we say that μ is an α -logarithmic s-Carleson measure if there exists a positive constant C such that

$$
\frac{\mu(S(I)) \left(\log \frac{2\pi}{|I|} \right)^{\alpha}}{|I|^{s}} \leq C, \quad \text{for any interval } I \subset \partial \mathbb{D}
$$

or, equivalently, if

$$
\sup_{a\in\mathbb{D}}\frac{\mu\left(S(a)\right)\left(\log\frac{2}{1-|a|^2}\right)^{\alpha}}{(1-|a|^2)^s}<\infty.
$$

Carleson measures and logarithmic Carleson measures are known to play a basic role in the study of the boundedness of a great number of operators between analytic function spaces. In particular we recall the Carleson embedding theorem for Hardy spaces which asserts that if $0 < p < \infty$ and μ is a positive Borel measure on $\mathbb D$ then μ is a Carleson measure if and only if the Hardy space H^p is continuously embedded in $L^p(d\mu)$ (see [18, Chapter 9]).

In the next theorem we collect a number of known results which will be needed in our work.

Theorem B (i) If $0 < s \le 1$ and $f \in Hol(\mathbb{D})$, then $f \in Q_s$ if and only if the Borel measure μ on D defined by

$$
d\mu(z) = (1 - |z|^2)^s |f'(z)|^2 dA(z)
$$

is an s-Carleson measure.

(ii) If $0 \leq \alpha < \infty$, $0 < s < \infty$, and μ is a positive Borel measure on $\mathbb D$ then μ is an α -logarithmic s-Carleson measure if and only if

$$
\sup_{a\in\mathbb{D}}\left(\log\frac{2}{1-|a|^2}\right)^\alpha\int_{\mathbb{D}}\left(\frac{1-|a|^2}{|1-\overline{a}\,z|^2}\right)^s\,d\mu(z)<\infty.
$$

- (iii) If $1 < p \leq 2$ then $B^p \subset Q_s$ for all $s > 0$.
- (iv) If $2 < p < \infty$ and $1 \frac{2}{p} < s$, then $B^p \subset Q_s$.
- (v) For $s > -1$, we let \mathcal{D}_s be the space of those functions $f \in Hol(\mathbb{D})$ for which

$$
||f||_{\mathcal{D}_s} \stackrel{def}{=} |f(0)| + \left(\int_{\mathbb{D}} (1-|z|^2)^s |f'(z)|^2 dA(z) \right)^{1/2} < \infty.
$$

Suppose that $0 < s < 1$ and $\alpha > 1$, and let μ be a positive Borel measure on \mathbb{D} . If u is an α -logarithmic s Carleson measure, then u is a Carleson measures for \mathcal{D}_{α} . that is, \mathcal{D}_s is continuously embedded in $L^2(d\mu)$.

Let us mention that (i) is due to Aulaskari, Stegenga and Xiao [13], (ii) is due to Zhao $[55]$, (iii) and (iv) were proved by Aulaskari and Csordas in $[10]$, and (v) is due to Pau and Peláez $[41, Lemma 1]$.

Using Theorem B (ii) and the fact that

$$
1-|\varphi(z)|^2 = \frac{(1-|a|^2)(1-|z|^2)}{|1-\overline{a}z|^2},
$$

we see that for a function $f \in Hol(D)$ we have that $f \in Q_{s,\log,\alpha}$ if and only if the measure μ defined by $d\mu(z) = (1 - |z|^2)^s |f'(z)|^2 dA(z)$ is a 2 α -logarithmic s-Carleson measure.

Proof of Theorem 4 (i). Suppose that T_g maps $B¹$ into Q_s . Since the constant functions belong to B^1 , we have that $T_g(1) = g - g(0) \in Q_s$ and, hence, $g \in Q_s$.

To prove the converse, suppose that $g \in Q_s$. Then the measure μ defined by

$$
d\mu(z) = (1 - |z|^2)^s |g'(z)|^2 dA(z)
$$

is an s-Carleson measure. Take now $f \in B^1$, then $f \in H^{\infty}$ and, hence,

$$
(1-|z|^2)^s \left| (T_g(f))'(z) \right|^2 = (1-|z|^2)^s |g'(z)|^2 |f(z)|^2 \leq ||f||_{H^\infty}^2 (1-|z|^2)^s |g'(z)|^2.
$$

Since μ is an s-Carleson measure, it follows readily that the measure ν given by $d\nu(z) = (1-|z|^2)^s |(T_g(f))'(z)|$ $\int^2 dA(z)$ is also an s-Carleson measure and, hence, $T_g(f) \in Q_s$.

Proof of Theorem 4 (ii).

Suppose that $0 < s \leq 1, 1 < p < \infty$, and that T_g maps B^p into Q_s . For $a \in \mathbb{D} \setminus \{0\}$, set

$$
f_a(z) = \left(\log \frac{1}{1-|a|^2}\right)^{-1/p} \log \frac{1}{1-\overline{a}z}, \quad z \in \mathbb{D},
$$

as in (8). We have that $||f_a||_{B^p} \ge 1$ and it is also clear that

$$
|f_a(z)| \asymp \left(\log \frac{1}{1-|a|^2}\right)^{1/p'}, \quad z \in S(a).
$$

Using these facts, we obtain

$$
\frac{\left(\log \frac{1}{1-|a|^2}\right)^{2/p'}}{(1-|a|^2)^s} \int_{S(a)} (1-|z|^2)^s |g'(z)|^2 dA(z)
$$

$$
\approx \frac{1}{(1-|a|^2)^s} \int_{S(a)} (1-|z|^2)^s |g'(z)f_a(z)|^2 dA(z)
$$

$$
= \frac{1}{(1-|a|^2)^s} \int_{S(a)} (1-|z|^2)^s |(T_g(f_a))'(z)|^2 dA(z).
$$

The fact that T_g is a bounded operator from B^p into Q_s , implies that the measures $(1-|z|^2)^s \left| (T_g(f_a))^{\prime}(z) \right|^2 dA(z)$ are s-Carleson measures with constants controlled by $||T_g||^2$. Then it follows that the measure $(1 - |z|^2)^s |g'(z)|^2 dA(z)$ is a $2/p'$ -logarithmic s-Carleson measure and, hence, $g \in Q_{s,\log,1/p'}$.

Proof of Theorem 4 (iii) and (iv). In view of (ii) we only have to prove that if $g \in$ $Q_{s,\log,1/p'}$ then T_g maps B^p into Q_s .

Hence, take $g \in Q_{s,\log,1/p'}$ and set

$$
K(g) = \sup_{a \in \mathbb{D}} \left(\log \frac{2}{1 - |a|} \right)^{2/p'} \int_{\mathbb{D}} |g'(z)|^2 (1 - |\varphi_a(z)|^2)^s dA(z),
$$

and take $f \in B^p$. Set $F = T_g(f)$, we have to prove that $F \in Q_s$ or, equivalently, that the measure $\mu_{\scriptscriptstyle F}$ defined by

$$
d\mu_F(z) = (1 - |z|^2)^s |F'(z)|^2 dA(z)
$$

is an s-Carleson measure. Let $a \in \mathbb{D}$. Using the well known fact that

$$
1-|a|^2 \asymp |1-\overline{a}z|, \quad z \in S(a),
$$

we obtain

$$
\frac{1}{(1-|a|^2)^s} \int_{S(a)} |F'(z)|^2 (1-|z|^2)^s dA(z) \approx \int_{S(a)} |F'(z)|^2 \frac{(1-|z|^2)^s (1-|a|^2)^s}{|1-\overline{a}z|^{2s}} dA(z)
$$
\n
$$
= \int_{S(a)} |f(z)|^2 |g'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z)
$$
\n
$$
\leq 2 \int_{\mathbb{D}} |f(a)|^2 |g'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z)
$$
\n
$$
+ 2 \int_{\mathbb{D}} |f(z) - f(a)|^2 |g'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z)
$$
\n
$$
= 2T_1(a) + 2T_2(a). \tag{9}
$$

Using the fact that

$$
|f(a) - f(0)| \lesssim ||f||_{B^p} \left(\log \frac{2}{1 - |a|^2}\right)^{1/p'},\tag{10}
$$

we obtain

$$
T_1(a) \lesssim ||f||_{B^p}^2 \left(\log \frac{2}{1-|a|^2} \right)^{2/p'} \int_{\mathbb{D}} |g'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z) \lesssim K(g) ||f||_{B^p}^2.
$$
\n(11)

To estimate $T_2(a)$ we shall treat separately the cases $s = 1$ and $0 < s < 1$. Let us start with the case $s = 1$. Then

$$
T_2(a) = \int_{\mathbb{D}} |f(z) - f(a)|^2 |g'(z)|^2 (1 - |\varphi_a(z)|^2) dA(z).
$$

Making the change of variable $w = \varphi(z)$ in the last integral, we obtain

$$
T_2(a) = \int_{\mathbb{D}} |(f \circ \varphi_a)(w) - f(a)|^2 |(g \circ \varphi_a)'(w)|^2 (1 - |w|^2) dA(w).
$$

Since $Q_{1,\log,1/p'} \subset Q_1 = BMOA, g \in BMOA$ and then it follows that, for all $a \in \mathbb{D}$, $g \circ \varphi_a \in BMOA$ and $\rho_*(g \circ \varphi_a) = \rho_*(g)$. This gives that all the measures $(1 |w|^2$ $\left| \frac{g \circ \varphi_a}{u} \right|^2 dA(w)$ $(a \in \mathbb{D})$ are Carleson measures with constants controlled by $||g||^2_{BMOA}$. Then, using the Carleson embedding theorem for H^2 and the fact that B^p is continuously embedded in $BMOA$, it follows that

$$
T_2(a) \lesssim \|g\|_{BMOA}^2 \|f \circ \varphi_a - f(a)\|_{H^2}^2 \lesssim \|g\|_{BMOA}^2 \|f\|_{BMOA}^2 \lesssim \|g\|_{BMOA}^2 \|f\|_{B^p}^2.
$$

Putting together this, (9), and (11), we see that the measure μ_F is a Carleson measure. This finishes the proof of part (iii).

To finish the proof of part (iv) we proceed to estimate $T_2(a)$ assuming that $2 < p < \infty$, $0 < s < 1$, and $1 - \frac{2}{p} < s$. Notice that

$$
T_2(a) = (1-|a|^2)^s \int_{\mathbb{D}} \left| \frac{f(z)-f(a)}{(1-\overline{a}z)^s} \right|^2 |g'(z)|^2 (1-|z|^2)^s dA(z).
$$

Since $0 < s < 1, 2/p' > 1$, and the measure $(1 - |z|^2)^s |g'(z)|^2 dA(z)$ is a $2/p'$ logarithmic s-Carleson measure, using Theorem B (v), it follows that

$$
T_2(a) \lesssim (1-|a|^2)^s \left(|f(a)-f(0)|^2 + \int_{\mathbb{D}} \left| \left(\frac{f(z)-f(a)}{(1-\overline{a}z)^s} \right)' \right|^2 (1-|z|^2)^s dA(z) \right).
$$

The growth estimate (10) and simple computations yield

$$
T_2(a) \lesssim ||f||_{B^p}^2 (1-|a|^2)^s \left(\log \frac{2}{1-|a|^2}\right)^{2/p'} + \int_{\mathbb{D}} |f'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z) + \int_{\mathbb{D}} \frac{|f(z)-f(a)|^2}{|1-\overline{a}z|^2} (1-|\varphi_a(z)|^2)^s dA(z) \lesssim ||f||_{B^p}^2 + \int_{\mathbb{D}} |f'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z) + \int_{\mathbb{D}} \frac{|f(z)-f(a)|^2}{|1-\overline{a}z|^2} (1-|\varphi_a(z)|^2)^s dA(z).
$$

By Theorem B (iv), our assumptions on s and p imply that B^p is continuously embedded in Q_s . Hence, $f \in Q_s$. This implies that

$$
\int_{\mathbb{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2)^s dA(z) \leq ||f||_{Q_s}^2 \lesssim ||f||_{B^p}^2
$$

and that

$$
\int_{\mathbb{D}}\frac{|f(z)-f(a)|^2}{|1-\overline{a}z|^2}(1-|\varphi_a(z)|^2)^s dA(z) \lesssim ||f||_{Q_s}^2 \lesssim ||f||_{B^p}^2,
$$

by a result proved by Pau and Peláez in $[41, pp. 551-552]$. Consequently, we have proved that $T_2(a) \lesssim ||f||_{B^p}^2$. This, together with (9) and (11), shows that μ_F is an s-Carleson measure as desired. Thus the proof is also finished in this case. \Box

The case when $1 < p \le 2$ and $0 < s < 1$ remains open. This is so because if we set $\alpha = 2/p'$, then $\alpha \le 1$ and, hence, α is not in the conditions of Theorem B (v). We can prove the following result.

Theorem 5 Suppose that $1 < p \leq 2$ and $0 < s < 1$, and let $g \in Hol(\mathbb{D})$. The following statements hold.

(i) If T_g maps B^p into Q_s then $g \in Q_{s,\log,1/p'}$. (ii) If $\alpha > 1/2$ and $g \in Q_{s,\log,\alpha}$ then T_g maps B^p into Q_s .

Proof. (i) follows from part (ii) of Theorem 4.

Let us turn to prove (ii). Suppose that $0 < s < 1$, $\alpha > 1/2$, and $g \in Q_{s,\log,\alpha}$. Set

$$
K(g) = \sup_{a \in \mathbb{D}} \left(\log \frac{2}{1 - |a|} \right)^{2\alpha} \int_{\mathbb{D}} |g'(z)|^2 (1 - |\varphi_a(z)|^2)^s dA(z),
$$

and take $f \in B^p$. Set $F = T_g(f)$, we have to prove the $F \in Q_s$ or, equivalently, that the measure μ_F defined by

$$
d\mu_F(z) = (1 - |z|^2)^s |F'(z)|^2 dA(z)
$$

is an s-Carleson measure. Now we argue as in the proof of Theorem 4 (iv). For $a \in \mathbb{D}$, we obtain

$$
\frac{1}{(1-|a|^2)^s} \int_{S(a)} |F'(z)|^2 (1-|z|^2)^s dA(z) \lesssim 2T_1(a) + 2T_2(a), \qquad (12)
$$

where $T_1(a)$ and $T_2(a)$ are defined as in the proof of Theorem 4. Using (10) and the fact that $\frac{1}{p'} \leq \frac{1}{2} < \alpha$, we obtain

$$
|f(a) - f(0)| \lesssim ||f||_{B^p} \left(\log \frac{2}{1-|a|^2}\right)^{\alpha}.
$$

This yields

$$
T_1(a) \lesssim \|f\|_{B^p}^2 \left(\log \frac{2}{1-|a|^2}\right)^{2\alpha} \int_{\mathbb{D}} |g'(z)|^2 (1-|\varphi_a(z)|^2)^s dA(z) \lesssim K(g) \|f\|_{B^p}^2.
$$
\n(13)

To estimate $T_2(a)$, observe that the measure $(1-|z|^2)^s|g'(z)|^2 dA(z)$ is a 2α logarithmic s-Carleson measure. Since $2\alpha > 1$, using Lemma 1 of [41], this implies

that the measure $(1-|z|^2)^s|g'(z)|^2dA(z)$ is a Carleson measure for \mathcal{D}_s . Then, arguing as in the proof of Theorem 4 (iv), we obtain $T_2(a) \lesssim ||f||_{B^p}^2$. This, together with (13) and (12), implies that the measure μ_F is an s-Carleson measure. \Box

Regarding the operators I_g and M_g we have the following results.

Theorem 6 Let $g \in Hol(\mathbb{D})$, then:

(1) If $1 < p < 2$ and $0 < s < 1$ then:

- (1a) Ig maps B^p into Q_s if and only if $g \in H^{\infty}$.
- (1b) If M_g maps B^p into Q_s then $g \in Q_{s,\log,1/p'} \cap H^{\infty}$.
- (1c) If $g \in Q_{s,\log,\alpha} \cap H^{\infty}$ for some $\alpha > 1/2$ then M_g maps B^p into Q_s .
- (2) If $2 < p < \infty$ and $1 \frac{2}{p} < s \le 1$ then:
	- (2a) Ig maps B^p into Q_s if and only if $g \in H^{\infty}$.
	- (2b) M_g maps B^p into Q_s if and only if $g \in Q_{s,\log,1/p'} \cap H^{\infty}$.
- (3) If $2 < p < \infty$ and $0 < s \leq 1 \frac{2}{p}$ then:
	- (3a) I_g maps B^p into Q_s if and only if $g \equiv 0$.
	- (3b) M_g maps B^p into Q_s if and only if $g \equiv 0$.

Proof of Parts (1) and (2) of Theorem 6. Using Proposition 1 it follows that if either Ig or M_g maps B^p into Q_s for any pair (s, p) with $0 < s < \infty$ and $1 < p < \infty$ then $g \in H^{\infty}$.

Suppose now that s and p are in the conditions of (1) or (2) and that $g \in H^{\infty}$. Take $f \in B^p$. We have to prove $I_g(f) \in Q_s$ or, equivalently, that the measure

$$
(1-|z|^2)^s |f'(z)|^2 |g(z)|^2 dA(z)
$$
is an s-Carleson measure. (14)

Using (1) and (2), we see that $B^p \subset Q_s$. Hence $f \in Q_s$ which is the same as saying that $(1-|z|^2)^s |f'(z)|^2 dA(z)$ is an s-Carleson measure. This and the fact that $g \in H^{\infty}$ trivially yield (14). Thus (1a) and (2a) are proved. Then (1b), (1c), and (2b) follow using Proposition 1, the fact that if two of the operators T_q , I_q , M_g map B^p into Q_s so does the third one, Theorem 4, and Theorem 5. \Box

In order to prove Theorem 6 (3), for $2 < p < \infty$ we shall consider the function F_p defined by

$$
F_p(z) = \sum_{k=1}^{\infty} \frac{1}{k^{1/2} 2^{k/p}} z^{2^k}, \quad z \in \mathbb{D}.
$$
 (15)

Using [10, Corollary 7] or [14, Theorem 6], we see that $F_p \in B^p$ and $F_p \notin Q_{1-\frac{2}{p}}$. Hence

$$
F_p \in B^p \setminus Q_s, \quad 0 < s \le 1 - \frac{2}{p}, \quad 2 < p < \infty. \tag{16}
$$

Let us estimate the integral means $M_2(r, F_p')$. We have

$$
zF_p'(z) = \sum_{k=1}^{\infty} 2^{k/p'} k^{-1/2} z^{2^k}, \quad z \in \mathbb{D}
$$

and, hence,

$$
M_2(r, F_p')^2 \, \gtrsim \, \sum_{k=1}^\infty 2^{2k/p'} k^{-1} \, r^{2^{k+1}}, \quad 0 < r < 1.
$$

Set $r_n = 1 - 2^{-n}$ $(n = 1, 2, ...)$. Then

$$
M_2(r_n, F_p')^2 \gtrsim \sum_{k=1}^{\infty} 2^{2k/p'} k^{-1} r_n^{2^{k+1}}
$$

$$
\gtrsim 2^{2n/p'} n^{-1} r_n^{2^{n+1}} \gtrsim 2^{2n/p'} n^{-1} \gtrsim \frac{1}{(1-r_n)^{2/p'} \log \frac{2}{1-r_n}}, \quad n = 1, 2,
$$

This readily yields

$$
M_2(r, F_p')^2 \gtrsim \frac{1}{(1-r)^{2/p'} \log \frac{2}{1-r}}, \quad 0 < r < 1. \tag{17}
$$

Proof of part (3) of Theorem 6. Suppose that $2 < p < \infty$ and $0 < s \leq 1 - \frac{2}{p}$ and $g \in Hol(\mathbb{D})$ is not identically zero.

Suppose first that either I_g or M_g maps B^p into Q_s . We know that then $g \in H^{\infty}$ and then, by Fatou's theorem and the Riesz uniqueness theorem, we know that g has a finite non-tangential limit $g(e^{i\theta})$ for almost every $\theta \in [0, 2\pi]$ and that $g(e^{i\theta}) \neq 0$ for almost every θ . Then it follows that there exist $C > 0$, $r_0 \in (0, 1)$, and a measurable set $E \subset [0, 2\pi]$ whose Lebesgue measure $|E|$ is positive such that

$$
|g(re^{i\theta})| \ge C, \quad \theta \in E, \quad r_0 < r < 1. \tag{18}
$$

Since F_p is given by a power series with Hadamard gaps, Lemma 6.5 in [60, Vol. 1, p. 203] implies that

$$
\int_{E} |F'_p(re^{i\theta})|^2 d\theta \asymp M_2(r, F'_p)^2, \quad 0 < r < 1.
$$
\n(19)

Using the fact that $s \leq 1 - \frac{2}{p}$, (18), (19), and (17), we obtain

$$
\int_0^1 (1-r)^s M_2(r, F'_p g)^2 dr \ge \int_{r_0}^1 (1-r)^{1-\frac{2}{p}} M_2(r, F'_p g)^2 dr
$$

\n
$$
\gtrsim \int_{r_0}^1 (1-r)^{1-\frac{2}{p}} \int_E |F'_p(re^{i\theta})|^2 |g(re^{i\theta})|^2 d\theta dr \gtrsim \int_{r_0}^1 (1-r)^{1-\frac{2}{p}} \int_E |F'_p(re^{i\theta})|^2 d\theta dr
$$

\n
$$
\gtrsim \int_{r_0}^1 (1-r)^{1-\frac{2}{p}} M_2(r, F'_p)^2 dr \gtrsim \int_{r_0}^1 \frac{dr}{(1-r)\log\frac{2}{1-r}} = \infty.
$$
 (20)

If we assume that I_g maps B^p into Q_s then $I_g(F_p) \in Q_s$ and then, using [11, Proposition 3. 1], it follows that

$$
\int_0^1 (1-r)^s M_2(r, F'_p g)^2 dr < \infty.
$$

This is in contradiction with (20).

Assume now that M_g maps B^p into Q_s . Since 1 and F_p belong to B^p , we have that g and F_p g belong to Q_s and then, by [11, Proposition 3.1],

$$
\int_0^1 (1-r)^s M_2(r, g')^2 dr < \infty
$$
 (21)

and

$$
\int_0^1 (1-r)^s \, M_2(r, (F_p g)')^2 \, dr < \infty. \tag{22}
$$

Notice that $F_p \in H^{\infty}$ and then

$$
M_2(r, F_p g') \leq M_2(r, g'), \quad 0 < r < 1.
$$

This and (21) imply that

$$
\int_0^1 (1-r)^s M_2(r, F'_p g)^2 dr < \infty.
$$
 (23)

We have arrived to a contradiction because it is clear that (20) and (23) cannot be simultaneously true. \Box

In the other direction we have the following result.

Theorem 7 Suppose that $0 < s < \infty$ and $1 \le p < \infty$ and let $g \in Hol(\mathbb{D})$. Then the following conditions are equivalent

(i) M_g maps Q_s into B^p . (ii) $g \equiv 0$.

Proof. Suppose that $g \neq 0$. Choose an increasing sequence $\{r_n\}_{n=1}^{\infty} \subset (0,1)$ with $\lim\{r_n\} = 1$ and a sequence $\{\theta_n\}_{n=1}^{\infty} \subset [0, 2\pi]$ such that

$$
|g(r_n e^{i\theta_n})| = M_\infty(r_n, g), \quad n = 1, 2, \dots
$$

For each n set

$$
f_n(z) = \log \frac{1}{1 - e^{-i\theta_n}z}, \quad z \in \mathbb{D}.
$$

Notice that $M(r_1, g) > 0$ and that the sequence $\{M(r_n, g)\}\$ is increasing. Set

$$
f_n(z) = \log \frac{1}{1 - e^{-i\theta_n z}}, \quad z \in \mathbb{D}, \quad n = 1, 2,
$$

We have that $f_n \in Q_s$ for all n and

$$
||f_n||_{Q_s}\asymp 1.
$$

Assume that M_g maps Q_s into B^p . Then, by the closed graph theorem, M_g is bounded operator from Q_s into B^p . Hence the sequence $\{g f_n\}_{n=1}^{\infty}$ is a bounded sequence on B^p , that is,

$$
\|g\,f_n\|_{B^p}\lesssim 1.
$$

Then it follows that

$$
M(r_1, g) \log \frac{1}{1 - r_n} \le M(r_n, g) \log \frac{1}{1 - r_n} = |g(r_n e^{i\theta_n}) f_n(r_n e^{i\theta_n})|
$$

$$
\lesssim ||g f_n||_{B^p} \left(\log \frac{1}{1 - r_n} \right)^{1/p'} \lesssim \left(\log \frac{1}{1 - r_n} \right)^{1/p'}.
$$

This is a contradiction. \Box

3 Multipliers and integration operators between Q_s spaces

As we mentioned above the space of multipliers $M(\mathcal{B}) = M(Q_s)$ (s > 1) was characterized by Brown and Shields in [15]. Ortega and Fàbrega [40] characterized the space $M(BMOA) = M(Q_1)$. Pau and Peláez [41] and Xiao [54] characterized the spaces $M(Q_s)$ $(0 < s < 1)$ closing a conjecture formulated in [51]. Indeed, Theorem 1 of [41] and Theorem 1. 2 of [54] assert the following.

Theorem C Suppose that $0 < s \leq 1$ and let g be an analytic function in the unit disc D. Then:

- (i) T_g maps Q_s into itself if and only if $g \in Q_{s,\log,1}$.
- (ii) I_g maps Q_s into itself if and only if $g \in H^{\infty}$.
- (ii) M_g maps Q_s into itself if and only if $g \in Q_{s,\log,1} \cap H^\infty$.

We shall prove the following results.

Theorem 8 Suppose that $0 < s_1 \leq s_2 \leq 1$ and let $g \in Hol(\mathbb{D})$. Then:

- (i) T_g maps Q_{s_1} into Q_{s_2} if and only if $g \in Q_{s_2,\log,1}$.
- (ii) I_g maps Q_{s_1} into Q_{s_2} if and only if $g \in H^{\infty}$.
- (iii) M_g maps Q_{s_1} into Q_{s_2} if and only if $g \in Q_{s_2,\log,1} \cap H^{\infty}$.

Theorem 9 Suppose that $0 < s_1 < s_2 \leq 1$ and let $g \in Hol(\mathbb{D})$. Then the following conditions are equivalent:

(i) I_g maps Q_{s_2} into Q_{s_1} . (ii) M_g maps Q_{s_2} into Q_{s_1} . (iii) $q \equiv 0$.

Proof of Theorem 8. For $a \in \mathbb{D}$ we set

$$
h_a(z) = \log \frac{2}{1 - \overline{a}z}, \quad z \in \mathbb{D}.
$$

Then $h_a \in Q_{s_1}$ for all $a \in \mathbb{D}$ and

$$
||h_a||_{Q_{s_1}} \asymp 1. \tag{24}
$$

• If T_g maps Q_{s_1} into Q_{s_2} then T_g is a bounded operator from Q_{s_1} into Q_{s_2} . Using this and (24), it follows that for all $a \in \mathbb{D}$ the measure $(1-|z|^2)^{s_2}|g'(z)|^2|h_a(z)|^2 dA(z)$ is an s_2 -Carleson measure and that

$$
\int_{S(a)} (1-|z|^2)^{s_2} |g'(z)|^2 |h_a(z)|^2 dA(z) \lesssim (1-|a|^2)^{s_2}, \quad a \in \mathbb{D}.
$$
 (25)

Since

$$
|h_a(z)| \asymp \log \frac{2}{1-|a|^2}, \quad z \in S(a),
$$

(25) implies that

$$
\left(\log\frac{2}{1-|a|^2}\right)^2\int_{S(a)}(1-|z|^2)^{s_2}|g'(z)|^2\,dA(z)\lesssim (1-|a|^2)^{s_2}.
$$

This is the same as saying that the measure $(1 - |z|^2)^{s_2} |g'(z)|^2 dA(z)$ is a 2logarithmic s₂-Carleson measure or, equivalently, that $g \in Q_{s_2, \log 1}$.

If $g \in Q_{s_2, \log 1}$ then, by Theorem C, T_g maps Q_{s_2} into itself. Since $Q_{s_1} \subset Q_{s_2}$, it follows trivially that T_g maps Q_{s_1} into Q_{s_2} . Hence (i) is proved

• Proposition 1 shows that if I_g maps Q_{s_1} into Q_{s_2} then $g \in H^{\infty}$.

Conversely, suppose that $g \in H^{\infty}$. In order to prove that I_g maps Q_{s_1} into Q_{s_2} , we have to prove that for any $f \in Q_{s_1}$ the measure $(1-|z|^2)^{s_2}|g(z)|^2|f'(z)|^2 dA(z)$ is an s₂-Carleson measure. So, take $f \in Q_{s_1}$. Then $(1-|z|^2)^{s_1}|f'(z)|^2 dA(z)$ is an s1-Carleson measure. Then it follows that

$$
\int_{S(a)} (1-|z|^2)^{s_2} |g(z)|^2 |f'(z)|^2 dA(z)
$$

\n
$$
\leq ||g||_{H^{\infty}}^2 (1-|a|^2)^{s_2-s_1} \int_{S(a)} (1-|z|^2)^{s_1} |f'(z)|^2 dA(z)
$$

\n
$$
\lesssim (1-|a|^2)^{s_2}.
$$

This shows that $(1-|z|^2)^{s_2}|g(z)|^2|f'(z)|^2 dA(z)$ is an s₂-Carleson measure as desired, finishing the proof of (ii).

• If M_g maps Q_{s_1} into Q_{s_2} then, Proposition 1, $g \in H^{\infty}$. Then (i) implies that I_g maps Q_{s_1} into Q_{s_2} . Since $M_g(f) = I_g(f) + T_g(f) + f(0)g(0)$, it follows that T_g maps Q_{s_1} into Q_{s_2} . Then (i) yields $g \in Q_{s_2,\log,1}$. Then we have that $g \in Q_{s_2,\log,1} \cap H^{\infty}$. Conversely, if $g \in Q_{s_2,\log,1} \cap H^{\infty}$ then (i) and (ii) immediately give that both

 T_g and I_g map Q_{s_1} into Q_{s_2} and then so does M_g .

Some results from [11] will be used to prove Theorem 9. As we have already noticed if $0 < s \le 1$ and $f \in Q_s$ then $\int_0^1 (1 - r)^s M_2(r, f')^2 dr < \infty$. Using ideas from [27], Aulaskari, Girela and Wulan [11, Theorem 3. 1] proved that this result is sharp in a very strong sense.

Theorem D Suppose that $0 < s \leq 1$ and let φ be a positive increasing function defined in $(0, 1)$ such that

$$
\int_0^1 (1-r)^s \,\varphi(r)^2 \, dr < \infty.
$$

Then there exists a function $f \in Q_s$ given by a power series with Hadamard gaps such that $M_2(r, f') \ge \varphi(r)$ for all $r \in (0, 1)$.

Proof of Theorem 9. Suppose that $g \neq 0$ and that either I_g or M_g maps Q_{s_2} into Q_{s_1} . By Proposition 1, $g \in H^{\infty}$ and then it follows that there exist $C > 0$, $r_0 \in (0, 1)$, and a measurable set $E \subset [0, 2\pi]$ whose Lebesgue measure $|E|$ is positive such that

$$
|g(re^{i\theta})| \ge C, \quad \theta \in E, \quad r_0 < r < 1.
$$

• Suppose that I_g maps Q_{s_2} into Q_{s_1} . Then we use Theorem D to pick a function $F \in Q_{s_2}$ given by a power series with Hadamard gaps so that

$$
M_2(r, F') \ge \frac{1}{(1-r)^{(1+s_1)/2}}, \quad 0 < r < 1. \tag{26}
$$

Since $I_g(F) \in Q_{s_1},$

$$
\int_0^1 (1-r)^{s_1} M_2(r, F'g)^2 \, dr < \infty. \tag{27}
$$

However, using Lemma 6. 5 in [60, Vol. 1, p. 203] and (26), it follows that

$$
\int_0^1 (1-r)^{s_1} M_2(r, F'g)^2 \, dr \gtrsim \int_{r_0}^1 (1-r)^{s_1} \int_E |F'(re^{i\theta})|^2 |g(re^{i\theta})|^2 \, d\theta \, dr
$$

$$
\gtrsim \int_{r_0}^1 (1-r)^{s_1} \int_E |F'(re^{i\theta})|^2 \, d\theta \, dr
$$

$$
\gtrsim \int_{r_0}^1 (1-r)^{s_1} M_2(r, F')^2 \, dr
$$

$$
\gtrsim \int_{r_0}^1 (1-r)^{-1} \, dr
$$

$$
= \infty.
$$

This is in contradiction with (27).

• Suppose now that M_g maps Q_{s_2} into Q_{s_1} . Take $\varepsilon > 0$ with $s_2 - s_1 - \varepsilon > 0$ and use Theorem D to pick a function $H \in Q_{s_2}$ given by a power series with Hadamard gaps so that

$$
M_2(r, H') \ge \frac{1}{(1-r)^{(1+s_1+\varepsilon)/2}}, \quad 0 < r < 1. \tag{28}
$$

Since $gH \in \, Q_{s_1}$ we have that

$$
\int_0^1 (1-r)^{s_1} M_2(r, g'H + gH')^2 dr < \infty.
$$
 (29)

Using Lemma 6. 5 in [60, Vol. 1, p. 203] and (28), we obtain as above that

$$
\int_0^1 (1-r)^{s_1+\varepsilon} M_2(r, H'g)^2 dr \gtrsim \int_{r_0}^1 (1-r)^{s_1+\varepsilon} \int_E |H'(re^{i\theta})|^2 d\theta dr
$$

$$
\gtrsim \int_{r_0}^1 (1-r)^{s_1+\varepsilon} M_2(r, H')^2 dr
$$

$$
\gtrsim \int_{r_0}^1 \frac{dr}{1-r}
$$

$$
= \infty.
$$
 (30)

Notice that $g \in Q_{s_1}$. Using this and the fact that

$$
|H(z)| \lesssim \log \frac{2}{1-|z|}, \quad z \in \mathbb{D},
$$

it follows that

$$
\int_0^1 (1-r)^{s_1+\varepsilon} M_2(r, Hg')^2 dr \lesssim \int_0^1 (1-r)^{s_1+\varepsilon} \left(\log \frac{2}{1-r} \right)^2 M_2(r, g')^2 dr
$$

$$
\lesssim \int_0^1 (1-r)^{s_1+\frac{\varepsilon}{2}} M_2(r, g') dr < \infty.
$$
 (31)

We have arrived to a contradiction because (29) , (30) , and (31) cannot hold simultaneously. \Box

Remark 1 The implication (ii) \Rightarrow (iii) in Theorem 9 was obtained by Pau and Peláez [42, Corollary 4] using the fact that there exists a function $f \in Q_{s_2}, f \neq 0$, whose sequence of zeros is not a Q_{s_1} -zero set.

This idea gives also the following:

$$
M(\mathcal{B}, Q_s) = \{0\}, \quad 0 < s \le 1.
$$

Indeed, it is well known that there exists a function $f \in \mathcal{B}$, $f \not\equiv 0$, whose sequence of zeros does not satisfy the Blaschke condition [7,31]. If $q \neq 0$ were a multiplier from B into Q_s for some $s \leq 1$ then the sequence of zeros of fg would satisfy the Blaschke condition. But this is not true because all the zeros of f are zeros of gf .

4 Some further results

The inner-outer factorization of functions in the Hardy spaces plays an outstanding role in lots of questions. In many cases the outer factor O_f of f inherits properties of f. Working in this setting the following concepts arise as natural and quite interesting.

A subspace X of H^1 is said to have the f-property (also called the property of division by inner functions) if $h/I \in X$ whenever $h \in X$ and I is an inner function with $h/I \in H^1$.

Given $v \in L^{\infty}(\partial \mathbb{D})$, the Toeplitz operator T_v associated with the symbol v is defined by

$$
T_v f(z) = P(vf)(z) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{v(\xi) f(\xi)}{\xi - z} d\xi, \quad f \in H^1, \quad z \in \mathbb{D}.
$$

Here, P is the Szegö projection.

A subspace X of H^1 is said to have the K-property if $T_{\overline{\psi}}(X) \subset X$ for any $\psi \in H^{\infty}.$

These notions were introduced by Havin in [34]. It was also pointed out in [34] that the K-property implies the f-property: indeed, if $h \in H^1$, I is inner and $h/I \in H^1$ then $h/I = T_{\overline{I}}h$.

In addition to the Hardy spaces H^p $(1 < p < \infty)$ many other spaces such as the Dirichlet space [34,38], several spaces of Dirichlet type including all the Besov spaces B^p (1 < p < ∞) [20–22,39], the spaces *BMOA* and *VMOA* [35], and the Q_s spaces $(0 < s < 1)$ [23] have the K-property. The Hardy space H^1 , H^{∞} and $VMOA \cap H^{\infty}$ are examples of spaces which have the f-property bur fail to have the K-property [35].

The first example of a subspace of H^1 not possessing the f-property is due to Gurarii [33] who proved that the space of analytic functions in D whose sequence of Taylor coefficients is in ℓ^1 does not have the f-property. Anderson [6] proved that the space $\mathcal{B}_0 \cap H^\infty$ does not have the f-property. Later on it was proved in [29] that if $1 \leq p < \infty$ then $H^p \cap \mathcal{B}$ fails to have the f-property also.

Since as we have already mentioned the Besov spaces B^p $(1 < p < \infty)$ and the Q_s spaces $(0 < s \leq 1)$ have the K-property (and, also, the f-property), it seems natural to investigate whether the spaces of multipliers and the spaces $Q_{s,\log,q}$ that we have considered in our work have also these properties. We shall prove the following results.

Theorem 10 The spaces of multipliers $M(B^p, Q_s)$ $(0 < s \le 1, 1 \le p < \infty)$, $M(Q_{s_1}, Q_{s_2})$ $(0 < s_1, s_2 \leq 1)$, and $M(B^p, B^q)$ $(1 \leq p, q < \infty)$ have the f-property.

Theorem 11 For $\alpha > 0$ and $0 < s < 1$ the space $Q_{s, \log, \alpha}$ has the K-property.

Theorem 10 follows readily from the following result.

Lemma 1 Let X and Y be to Banach spaces of analytic functions which are continuously contained in H^1 . Suppose that X contains the constants functions and that Y has the f-property. Then the space of multipliers $M(X, Y)$ also has the f-property.

Proof. Since X contains the constants functions $M(X, Y) \subset Y \subset H¹$.

Suppose that $F \in M(X,Y)$, I is an inner function, and $F/I \in H^1$. Take $f \in X$. Then $fF \in Y \subset H^1$ and then $fF/I \in H^1$. Since Y has the f-property, it follows that $fF/I \in Y$. Thus, we have proved that $F/I \in M(X, Y)$. \Box

Theorem 11 will follows from a characterization of the spaces $Q_{s,\log,a}$ in terms of pseudoanalytic continuation. We refer to Dyn'kin's paper [24] for similar descriptions of classical smoothness spaces, as well as for other important applications of the pseudoanalytic extension method.

Let, \mathbb{D}_- denotes the region $\{z \in \mathbb{C} : |z| > 1\}$, and write

$$
z^* \stackrel{\text{def}}{=} 1/\overline{z}, \quad z \in \mathbb{C} \setminus \{0\}.
$$

We shall need the Cauchy-Riemann operator

$$
\overline{\partial} = \frac{\partial}{\partial \overline{z}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right), \quad z = x + iy.
$$

The following result is an extension of [23, Theorem 1].

Theorem 12 Suppose that $0 < s < 1$, $\alpha > 0$, and $f \in \bigcap_{0 \le q < \infty} H^q$. Then the following conditions are equivalent.

(i)
$$
f \in Q_{s,\log,\alpha}
$$
.
\n(ii) $\sup_{|a|<1} \left(\log \frac{2}{1-|a|} \right)^{2\alpha} \int_{\mathbb{D}} |f'(z)|^2 \left(\frac{1}{|\varphi_a(z)|^2} - 1 \right)^s dA(z)$

(iii) There exists a function $F \in C^1(\mathbb{D}_-)$ satisfying

$$
F(z) = O(1), \quad as \ z \to \infty,
$$

\n
$$
\lim_{r \to 1^+} F(re^{i\theta}) = f(e^{i\theta}), \quad a.e. \text{ and in } L^q([-\pi,\pi]) \text{ for all } q \in [1,\infty),
$$

\n
$$
\sup_{|a| < 1} \left(\log \frac{2}{1-|a|} \right)^{2\alpha} \int_{\mathbb{D}_-} |\overline{\partial} F(z)|^2 \left(|\varphi_a(z)|^2 - 1 \right)^s dA(z) < \infty.
$$

 $< \infty$.

Theorem 12 can be proved following the arguments used in the proof of [23, Theorem 1], we omit the details. Once Theorem 12 is established, noticing that if $\alpha > 0$ and $0 < s < 1$ then $Q_{s,\log \alpha} \subset Q_s \subset BMOA$, Theorem 11 can be proved following the steps in the proof of [23, Theorem 2]. Again, we omit the details.

Acknowledgements. We wish to thank the referees for reading carefully the paper and making a number of nice suggestions to improve it.

References

- 1. A. Aleman and J. A. Cima, An integral operator on H^p and Hardy's inequality, J. Anal. Math. 85 (2001), 157–176.
- 2. A. Aleman, P. L. Duren, M. J. Martín and D. Vukotić, *Multiplicative isometries and* isometric zero-divisors, Canad. J. Math. 62 (2010), no. 5, 961-974.
- 3. A. Aleman and A. Simbotin, *Estimates in Möbius invariant spaces of analytic functions*, Complex Var. Theory Appl. 49 (2004), no. 7-9, 487-510.
- 4. A. Aleman and A. G. Siskakis, An integral operator on H^p , Complex Variables Theory Appl. 28 (1995), no. 2, 149-158.
- 5. A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337–356.
- 6. J. M. Anderson, On division by inner factors, Comment. Math. Helv. 54 (1979), no. 2, 309–317.
- 7. J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.
- 8. J. Arazy, S. D. Fisher and J. Peetre, *Möbius invariant function spaces*, J. Reine Angew. Math. 363 (1985), 110–145.
- 9. N. Arcozzi, R. Rochberg and E. Sawyer, Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana 18 (2002), no. 2, 443–510.
- 10. R. Aulaskari and G. Csordas, Besov spaces and the $Q_{q,0}$ classes, Acta Sci. Math. (Szeged) 60 (1995), no. 1–2, 31-48.
- 11. R. Aulaskari, D. Girela and H. Wulan, Taylor coefficients and mean growth of the derivative of Q_p functions, J. Math. Anal. Appl. 258 (2001), no. 2, 415-428.
- 12. R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications (Harlow), Pitman Research Notes in Math, vol. 305, Longman Scientific and Technical, 1994, 136– 146.
- 13. R. Aulaskari, D. A. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), no. 2, 485-506.
- 14. R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC , Analysis 15 (1995), no. 2, 101-121.
- 15. L. Brown and A. L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan Math. J. 38 (1991), no. 1, 141–146.
- 16. J. J. Donaire, D. Girela and D. Vukotić, On univalent functions in some Möbius invariant spaces, J. Reine Angew. Math. 553 (2002), 43–72.
- 17. J. J. Donaire, D. Girela and D. Vukotić, On the growth and range of functions in Möbius invariant spaces, J. Anal. Math. 112 (2010), 237-260.
- 18. P. L. Duren, Theory of H^pspaces, Academic Press, New York-London, 1970. Reprint: Dover, Mineola-New York, 2000.
- 19. P. L. Duren A. P. Schuster, Bergman Spaces, Math. Surveys and Monographs, Vol. 100, American Mathematical Society, Providence, Rhode Island, 2004.
- 20. K. M. Dyakonov, Factorization of smooth analytic functions via Hilbert-Schmidt operators, (in Russian), Algebra i Analiz 8(1996), no. 4, 1–42. English translation in St. Petersburg Math. J. 8 (1997), no. 4, 543–569.
- 21. K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta. Math. 178 (1997), 143–167.
- 22. K.M. Dyakonov, Holomorphic functions and quasiconformal mappings with smooth modulii, Adv. in Math. 187 (2004), 146–172.
- 23. K. M. Dyakonov and D. Girela, On Q_p spaces and pseudoanalytic extension, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 2, 477-486.
- 24. E. M. Dyn'kin, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45–70.
- 25. P. Galanopoulos, D. Girela and M. J. Martín, *Besov spaces, multipliers and univalent* functions, Complex Anal. Oper. Theory **7** (2013), no. 4, 1081-1116.
- 26. P. Galanopoulos, D. Girela and J. A. Peláez, *Multipliers and integration operators on* Dirichlet spaces, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1855-1886.
- 27. D. Girela, Growth of the derivative of bounded analytic functions, Complex Variables Theory Appl. 20 (1992), no. 1–4, 221-227.
- 28. D. Girela, Analytic functions of bounded mean oscillation, Complex Function Spaces, Mekrijärvi 1999 Editor: R. Aulaskari. Univ. Joensuu Dept. Math. Rep. Ser. 4, Univ. Joensuu, Joensuu (2001) pp. 61–170.
- 29. D. Girela, C. González and J. A. Peláez, *Multiplication and division by inner functions* in the space of Bloch functions, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1309-1314.
- 30. D. Girela and N. Merchán, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal. 12 (2018), no. 2, 374-398.
- 31. D. Girela, M. Nowak and P. Waniurski, On the zeros of Bloch functions, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 117-128.
- 32. D. Girela and J. A. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal. **241** (2006), no. 1, 334 358.
- 33. V. P. Gurarii, On the factorization of absolutely convergent Taylor series and Fourier integrals, (in Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 15–32.
- 34. V. P. Havin, On the factorization of analytic functions smooth up to the boundary (Russian), Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971) 202-205.
- 35. H. Hedenmalm, On the f- and K-properties of certain function spaces, Contemporary Math. 91 (1989), 89–91.
- 36. H. Hedenmalm, B. Korenblum K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, Vol. 199, Springer, New York, Berlin, etc. 2000.
- 37. F. Holland and D. Walsh, *Growth estimates for functions in the Besov spaces* A_p , Proc. Roy. Irish Acad. Sect. A 88 (1988), 1–18.
- 38. B. I. Korenblum, A certain extremal property of outer functions, (in Russian), Mat. Zametki 10 (1971), 53–56. English translation in Math. Notes 10 (1971), 456–458.
- 39. B. I. Korenblum and V. M. Faĭvyševskiĭ, A certain class of compression operators that are connected with the divisibility of analytic functions, (in Russian), Ukrain. Mat. Z. 24 (1972), 692-695. English translation in Ukrainian Math. J. 24 (1973), 559–561.
- 40. J. M. Ortega and J. Fàbrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111-137.
- 41. J. Pau and J. A. Peláez, *Multipliers of Möbius invariant* Q_s *spaces*, Math. Z. 261 (2009), no. 3, 545-555.
- 42. J. Pau and J. A. Peláez, On the zeros of functions in Dirichlet-type spaces, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1981-2002.
- 43. Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschrnkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591-602.
- 44. L. E. Rubel and R. M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), no. 1, 45–49.
- 45. D. Stegenga, Multipliers of the Dirichlet space. Illinois J. Math. 24 (1980), no. 1, 113–139.
- 46. K. Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), no. 3, 405-420.
- 47. R. M. Timoney, Natural function spaces, J. London Math. Soc. (2) 41 (1990), no. 1, 78-88.
- 48. S. A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces (in russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45–77, 308. English translation in J. Math. Sci. (New York) 87, no. 5 (1997), 3806–3827.
- 49. Z. Wu, Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal. 169 (1999), no. 1, 148–163.
- 50. J. Xiao, Carleson measure, atomic decomposition and free interpolation from Bloch space, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 35–46.
- 51. J. Xiao, *The* Q_p *corona theorem*, Pacific J. Math. **194** (2000), no. 2, 491-509.
- 52. J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics 1767, Springer-Verlag, 2001.
- 53. J. Xiao, Geometric Q functions, Frontiers in Mathematics. Birkhäuser Verlag, 2006.
- 54. J. Xiao, The Qp Carleson measure problem, Adv. Math. 217 (2008), no. 5, 2075-2088.
- 55. R. Zhao, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 605–618.
- 56. K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), 318–336.
- 57. K. Zhu, A class of Möbius invariant function spaces, Illinois J. Math. 51 (2007), no. 3, 977-1002.
- 58. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. Reprint: Math. Surveys and Monographs, Vol. 138, American Mathematical Society, Providence, Rhode Island, 2007.
- 59. N. Zorboska, Multiplication and Toeplitz operators on the analytic Besov spaces. In: More Progress in Analysis: Proceedings of the 5th International. Isaac Congress. Catania, Italy, 25 30 July 2005. Editors: H. G. W. Begehr and F. Nicolosi. World Scientific (2009), pp. 387–396.
- 60. A. Zygmund, Trigonometric Series, Vol. I and Vol. II, Second edition, Camb. Univ. Press, Cambridge, 1959.