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A B S T R A C T   

The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function 
during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a 
consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory 
response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are 
closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this 
narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging 
influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alz-
heimer’s disease (AD), and Parkinson’s disease (PD); and which are the possible mechanisms that govern the 
relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the 
gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy 
cognition; therefore, current and future therapeutic interventions have been also reviewed.   

1. Introduction 

The number of people aged 60 and over worldwide is expected to 
double in the next 35 years, reaching nearly 2.1 billion people (U.N., 
2015). Aging is a progressive functional decline of the organism that 
leads to physiological and functional changes in the brain, including 
cognitive functioning impairment (Białecka-Dębek et al., 2021; Griñán- 
Ferré et al., 2021; Sen et al., 2016). Aging also disrupts gastrointestinal 
functions, including a weakened gut barrier, altered gut neurotrans-
mitters, and modified intestinal immunity (Boehme et al., 2023; Bosco 
and Noti, 2021). Furthermore, aging is the single most important risk 
factor for mortality in humans, because of an expected functional 
decline, an increased frailty, and a higher susceptibility to chronic dis-
ease (Blagosklonny, 2022). 

The composition of the gut microbiome can be altered by several 
modifiers throughout life, including lifestyle, age, socio-cultural envi-
ronment, and individual psychological factors (Nishijima et al., 2016; 
Salazar et al., 2023a). During aging, the abundance and diversity of the 
gut microbial composition change, depending on environmental, di-
etary, and disease exposure factors (Borrego-Ruiz and Borrego, 2024b; 
García-Peña et al., 2017; Rinninella et al., 2019). This loss of gut 

homeostasis is called dysbiosis, which provokes chronic inflammation 
and alterations in the production of microbial metabolites, such as short 
chain fatty acids (SCFAs), secondary bile acids (BAs) and mucin, which 
result essential for the regulation of host physiological and immune 
functions (Blacher et al., 2017; Rampelli et al., 2013). Gut microbiome 
homeostasis is fundamental to brain health (cognitive function and 
synaptic plasticity) (Salami, 2021), preventing neuroinflammation and 
protecting against neurodegenerative disorders in the elderly by main-
taining microglial cells in a healthy mature state (Erny et al., 2017; 
Rothhammer et al., 2016). Microglial cells play essential roles in the 
central nervous system (CNS), modulating neurogenesis, and main-
taining homeostasis and cognition in the brain (Graeber and Streit, 
2010). However, microglial hyperactivity increases neuronal damage, 
CNS neuroinflammation, and cognitive impairment in aging (von 
Bernhardi et al., 2015). 

As a result of the bacterial metabolism, the gut microbiome may 
modulate the brain function by: (i) the production of neurotransmitters 
and neutrophil regulators, such as γ-aminobutyric acid (GABA), 
norepinephrine, dopamine, serotonin, melatonin, histamine and 
acetylcholine, and through activated-catecholamines action in the gut 
lumen (Carabotti et al., 2015; Strandwitz, 2018); (ii) the synthesis of 
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bioactive metabolites, including SCFAs and BAs, which interact with 
enteroendocrine and enterochromaffin cells, as well as the mucosal 
immune system, or cross the intestinal barrier to enter the systemic 
circulation to reach and cross the blood-brain barrier (BBB) (Osadchiy 
et al., 2019; Morais et al., 2021; Silva et al., 2020); (iii) the modulation 
of tryptophan metabolites, serotonin, kynurenic acid, and quinolinic 
acid (Rothhammer et al., 2018); and (iv) the production of pro- 
inflammatory or anti-inflammatory cytokines, which may indirectly 
stimulate the hypothalamic-pituitary-adrenal (HPA) to produce 
corticotropin-releasing hormone, adrenocorticotropin hormone, and 
cortisol (Rusch et al., 2023), or directly affect CNS immune activity 
(Kennedy et al., 2017; Cryan et al., 2019; Morais et al., 2021; Varesi 
et al., 2022). 

Activation of the immune system in the gut and brain by the gut 
microbiome has been implicated in responses to neuroinflammation, 
brain injury, and alterations in neurogenesis and neuron plasticity 
(Salvo-Romero et al., 2020). In addition, the gut microbiome influences 
in the development and integrity of the BBB to maintain a homeostatic 
environment for normal brain function (Segarra et al., 2021). Several 
studies have shown that environmental factors, such as aging, stress, 
dietary changes and disease, can induce dysfunction of the gut mucosal 
barrier (König et al., 2016; Salazar et al., 2023b). 

In this narrative review, we examined the current knowledge on the 
relationship between the gut microbiome and the host brain aging, 
including possible microbial involvement in age-related neurodegener-
ative diseases such as mild cognitive impairment (MCI), dementia, 
Alzheimer’s disease (AD), and Parkinson’s disease (PD). We also 
reviewed the microbial modulators that improve cognitive function in 
the elderly, and the potential treatment strategies for intervention in the 
elderly. 

2. Methods 

The present work consists of a narrative review aimed at collecting 
and analyzing the existing literature in order to provide a complete and 
exhaustive overview of the central topic of the study (Agarwal et al., 
2023). Both authors independently conducted a conscientious literature 
search in the field corresponding to the topic under investigation. For 
this purpose, PubMed, Scopus and Web of Science were searched be-
tween September and October 2023 using different combinations of 
keywords related to the research topic, such as “human gut micro-
biome”, “gut microbiota”, “elderly”, “ageing”, “aging”, “psychiatric 
diseases”, “neurodegenerative ageing”, “treatment” or “brain aging”. 
The search strategy also included an examination of the reference list of 
previous reviews and research papers. Both authors assessed all eligible 
records separately, considering studies that investigated the conse-
quences of aging on the gut microbiome and its implication in neuro-
degenerative aging. Each article found was individually assessed for 
relevance by first screening the title and abstract. Duplicates were 
removed, and as well the studies that were unlikely to be included in the 
review due to their subject matter. The full texts of the remaining arti-
cles were carefully retrieved, and relevant data were extracted for 
further analysis. Studies were excluded from the review if they lacked 
significant information on the relationship between the human gut 
microbiome and aging. 

3. Results 

3.1. Healthy aging and gut microbiome 

Three predominant hallmarks of aging have been identified: pri-
mary, antagonistic, and integrative (Gems and de Magalhães, 2021; 
Lemoine, 2021). Primary hallmarks included factors detrimental to 
cellular well-being, such as genome instability, telomere shortening, 
epigenetic alterations, and loss of proteostasis (López-Otín et al., 2013; 
Van der Rijt et al., 2020), which contribute to senescence, neoplastic 

development, and other age-related diseases (Kane and Sinclair, 2019; 
Metaxakis et al., 2018; Niedernhofer et al., 2018; Zhu et al., 2019). 
Antagonistic features include dysregulation of metabolic pathways, 
cellular senescence, and mitochondrial dysfunction (López-Otín et al., 
2013, 2016; Podder et al., 2021). Several of these processes increase the 
production of reactive oxygen species (ROS) and protein glycosylation 
(Salazar et al., 2023a), leading to alterations in multiple cellular func-
tions, reduced connective tissue elasticity, and activation of inflamma-
tory pathways known to contribute to aging and associated diseases 
(Chatterjee et al., 2022; Kozakiewicz et al., 2019; Miwa et al., 2022). 
The integrative hallmarks alter the cellular homeostasis, including stem 
cell depletion and altered cellular signaling (Carmona and Michan, 
2016; López-Otín et al., 2013; Podder et al., 2021). However, diet, 
physical activity, socio-economic status, smoking or drug use can induce 
epigenetic changes through endocrine and immune pathways that may 
have an important impact on longevity (An et al., 2018; de Lucia et al., 
2020; Langhammer et al., 2018). More recently, other features have 
been proposed, including impaired macroautophagy, chronic inflam-
mation, and dysbiosis of the gut microbiome (Guerville et al., 2020; 
López-Otín et al., 2023; Sharma et al., 2020). 

Healthy aging individuals have a different composition and diversity 
of the gut microbiome compared to young adults (Claesson et al., 2011; 
Jeffery et al., 2016). Several clinical studies have shown that the 
Bacillota/Bacteroidota phyla ratio decreases with age, from 10.9 in 
people aged 25–45 years to 0.6 in people aged over 70 years (Mariat 
et al., 2009; Ratto et al., 2022; Vemuri et al., 2018). The changes in the 
gut microbiome that occur with aging are mainly characterized by a 
decrease in the microbial diversity and in the abundance of beneficial 
bacteria, and by an increase in the levels of pathobionts (Alsegiani and 
Shah, 2022). In addition, the reduced production of beneficial metab-
olites, such as SCFAs, may be related to the pathophysiological processes 
and cognitive decline associated with aging (Chen et al., 2019; Qian 
et al., 2022). Some studies in healthy aging individuals have reported a 
decrease in several bacterial groups compared to the gut microbiome of 
young adults, including members of the phylum Actinomycetota and the 
families Ruminococcaceae, Oscillospiraceae, Lachnospiraceae, and Bacter-
oidaceae. The major genera detected in these individuals are Bacteroides, 
Bifidobacterium, Clostridium, Coprococcus, Eubacterium, Faecalibacterium, 
Lactobacillus, Prevotella, and Roseburia. In contrast, opportunistic path-
ogenic microorganisms and other commensal bacteria associated with 
the releasing of pro-inflammatory cytokines are increased with age, 
including the members of the families Christensenellaceae, Barnesiella-
ceae, and Enterobacteriaceae, and the genera Akkermansia, Alistipes, 
Anaerotruncus, Bilophila, Butyricicoccus, Butyricimonas, Butyrivibrio, 
Coprobacillus, Desulfovibrio, Eggerthella, Fusobacterium, Helicobacter, 
Odoribacter, Parabacteroides, Paraprevotella, Peptoniphilus, Ruminococcus, 
Staphyloocccus, and Streptococcus (Arboleya et al., 2016; Badal et al., 
2020; Białecka-Dębek et al., 2021; Claesson et al., 2012; Ghosh et al., 
2020a, 2022; Jeffery et al., 2016; Kato et al., 2017; Maffei et al., 2017; 
Salazar et al., 2023a; Wilmanski et al., 2021). 

Although aging is associated with a progressive disruption of the 
physiological balance between the host and the gut microbiome 
(Boehme et al., 2023; Kundu et al., 2017), it is not known whether these 
alterations are due to physiological changes, age-related neuro-
inflammation (inflammageing), immunosenescence, impaired gut bar-
rier function, diet, medications, or chronic health conditions (Bosco and 
Noti, 2021; DeJong et al., 2020; Ferrucci and Fabbri, 2018; Ghosh et al., 
2022; Thevaranjan et al., 2017). Ghosh et al. (2022) have suggested that 
the gut microbiome may be a target modulator of aging and have pro-
posed three groups of microorganisms that are altered with age. Group 1 
includes the following genera that are lost with aging, and especially 
with unhealthy aging: Faecalibacterium, Roseburia, Coprococcus, Eubac-
terium, Bifidobacterium, and Prevotella. Group 2 consists of pathobionts 
that increase with age and unhealthy aging, and includes the following 
genera: Eggerthella, Bilophila, Desulfovibrio, Fusobacterium, Anaero-
truncus, Streptococcus, and Escherichia. Group 3 consists of genera that 
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are associated with healthy aging, but are lost during unhealthy aging, 
such as Akkermansia, Odoribacter, Butyricimonas, Butyrivibrio, Barnesiella, 
and Oscillospira. 

There are controversial results regarding the composition of the gut 
microbiome in different elderly populations, which can be attributed to 
dietary, cultural, or environmental differences, as well as to variations in 
the methodological analysis used (Biagi et al., 2017; Claesson et al., 
2012; Odamaki et al., 2016; Park et al., 2015; Salazar et al., 2017; 
Wilmanski et al., 2021). There are also differences in the composition of 
the gut microbiome in different geographic regions of the world, which 
have a wide variety of diets (Białecka-Dębek et al., 2021) or ethnicities 
(Ang et al., 2021; Gaulke and Sharpton, 2018). For instance, the Bac-
teroides enterotype is most commonly reported in Western countries 
(with high fat and protein intakes), whereas the Prevotella enterotype is 
common in countries with a high consumption of fiber in their diets. 
African populations are characterized by higher gut microbiome di-
versity (abundance of members of the phyla Actinomycetota, Bacter-
oidota, Bacillota, Pseudomonadota, and Spirochaetota). In the case of 
East Asian people, Bacillota, Bacteriodota, Pseudomonadota, and Acti-
nomycetota have been reported as the prevalent phyla in their gut 
microbiome with four enterotypes: Prevotella, Bacteroides, Escherichia, 
and another formed by Ruminococcus, Bifidobacterium, and Blautia (Lu 
et al., 2021a, 2021b; Therdtatha et al., 2022). The gut microbiomes of 
Europeans and Americans are enriched in the phyla Bacillota, Actino-
mycetota, Verrucomicrobiota, and Bacteroidota (Senghor et al., 2018). 

Age-related changes in microbiome composition and diversity are 
closely associated with health outcomes in the elderly, particularly with 
respect to vulnerability (O’Toole and Jeffery, 2015; Vaiserman et al., 
2017; Zapata and Quagliarello, 2015). The gut microbiome of vulner-
able elderly people is mainly composed of members of the phylum 
Bacteroidota, with the genera Bacteroides, Alistipes and Parabacteroides 
(family Bacteroidaceae) being detected at higher levels (Claesson et al., 
2011). In general, depending on the quality of life of the elderly, low 
individual microbial diversity, reduced species richness and increased 
interindividual variability are associated with aging and disease states 
(Alsegiani and Shah, 2022; Ticinesi et al., 2019). For example, elderly 
patients in nursing homes showed an overall reduction in fecal microbial 
diversity, which was associated with poorer individual health status and 
social interactions; while the gut microbiome of centenarians (100 years 
or older) showed higher microbial α-diversity, a greater number of 
glycolytic and proteolytic microbial taxa (Badal et al., 2020; Biagi et al., 
2016, 2017; Bischoff, 2016; Wang et al., 2015; Wu et al., 2019), and 
amino acid derivatives circulating in the bloodstream (Wilmanski et al., 
2021). Gut microbiome diversity is considered an important health in-
dicator (Kong et al., 2019), as reduced gut microbiome diversity is 
associated with several pathological conditions, including autoimmune 
diseases, microbial infections, obesity, and metabolic alterations (San-
toro et al., 2018). 

Table 1 shows the main bacterial genera detected in the gut micro-
biome of elderly and centenarians, although differences in this compo-
sition depend on the culture and region in which the study was 
performed (Kim et al., 2019; Kong et al., 2016; Odamaki et al., 2016; 
Tuikhar et al., 2019; Wilmanski et al., 2021). In centenarians, Bacter-
iodota and Bacillota members dominate the gut microbiome; however, 
specific changes occur within of these microbial phyla, with a decrease 
in Clostridium (C. sphenoides and C. colinum), Eubacterium (E. rectale, E. 
hallii, and E. ventriosum), Ruminococcus lactaris, Blautia obeum, Roseburia 
intestinalis, Lachnobacillus bovis, Papillibacter cinnamovorans and Faecali-
bacterium prausnitzii, and with an increase in Bacillus spp., Anaerotruncus 
colihominis, Clostridium (C. leptum and C. orbiscindens), Sporobacter ter-
miditis, Eggerthella lenta, Enterobacter aerogenes, Klebsiella pneumonia, 
Vibrio spp. and Eubacterium limosum (Biagi et al., 2010). Later, Biagi et al. 
(2016) reported that members of the family Christensenellaceae, and the 
genera Akkermansia and Bifidobacterium, were enriched in the gut 
microbiome of Italian centenarians, suggesting that these may be sig-
natures of longevity and of a healthy microbiome; in contrast, members 

of the families Ruminococcaceae, Lachnospiraceae and Bacteroidaceae 
were reduced. On the contrary, Kong et al. (2016) reported an increase 
in the abundance of Ruminococcaceae, Christensenellaceae, Clostridiaceae 
and the genus Akkermansia in the gut microbiome of Chinese cente-
narians. Odamaki et al. (2016) reported a decrease in the members of the 
family Lachnospiraceae and the genera Faecalibacterium, Bifidobacterium, 
Lachnospira and Blautia, and an increase in the members of the families 
Enterobacteriaceae, Christensencellaceae and Rikenellaceae, and the genera 
Ruminococcus, Parabacteroides, Oscillospira, Enterococcus, Akkermansia, 
Desulfovibrio, Odoribacter and Klebsiella in 85- and 98-year-old subjects. 
In another study in Korean individuals, Akkermansia, Collinsella, Clos-
tridium, Escherichia and Streptococcus, as well as the members of the 
family Christensenellaceae, were increased in the fecal microbiome of 
centenarians, while Faecalibacterium and Prevotella were decreased (Kim 
et al., 2019). Kong et al. (2019) found that the diversity of the gut 
microbiome of Chinese centenarians was greater than that of a young 
adult control group. The composition of the gut microbiome showed an 
increase in the abundance of Escherichia/Shigella and a decrease in the 
genus Faecalibacterium. 

Wu et al. (2019) reported that centenarians in Sardinia (Italy) had a 
higher diversity of microbiome species and microbial genes compared to 
younger and older adult individuals. The centenarian microbiome was 
characterized by a depletion of the genera Faecalibacterium, Eubacterium, 
Coprococcus, Dorea and Ruminococcus, and an enrichment of the archaea 
Methanobrevibacter and the bacterial genera Bifidobacterium, Pyr-
amidobacter, Desulfovibrio, Escherichia, and Synergistes. According to 
these authors, the microbiota in centenarians had a high capacity to 
produce SCFAs, but had a reduced expression of carbohydrate degra-
dation genes. SCFAs exert protective functions on the epithelial barrier, 
supporting the growth of these beneficial bacterial and archaeal species, 
reducing colonization by opportunistic bacterial pathogens, and regu-
lating the intestinal homeostasis and the immune response. The gut 
microbiome of Chinese groups aged 90–99 and 100+ years old showed 
more diversity and richness as compared to the 65–70 old age group 
(Wang et al., 2019). At the family level, Prevotellaceae, Lachnospiraceae 
and Porphyromonadaceae were the taxa with higher relative abundance 
in the longevity group as compared to the 65–70 old age group. Inter-
esting variation in the gut microbiome within the centenarian group was 
obtained; the 100+ years old age group had a higher relative abundance 
of Ruminococcaceae, Alistipes, and Barnesiella, but a lower relative 
abundance of Lachnospira and Prevotella; while, participants in the 
90–99 old age group had a higher relative abundance of Clostridium, 
Parabacteroides, and Streptococcus, but a lower abundance of Megamonas, 
Blautia, and Coprococcus as compared to the 65–70 old age group. 

Later, Kashtanova et al. (2020), who studied the gut microbiome of 
Russian centenarians, found that it contained more beneficial bacteria 
compared to that of the healthy older people, including the families 
Ruminococcaceae, Christensenellaceae, and Lactobacillaceae, and the 
beneficial genera Lactobacillus, Christensenella, and Roseburia. In 
contrast, the centenarians had a lower abundance of the gut microbiome 
in members of the families Veillonellaceae, Mogibacteriaceae, Alcaligena-
ceae, Peptococcaceae, and Peptostreptococcaceae, and of the genera Dorea, 
Sutterella, Dialister, and Ruminococcus. In a study conducted in Italy, 
Rampelli et al. (2020) found that compared to younger individuals, 
centenarians showed a decrease in the abundance of the genera Bac-
teroides, Eubacterium, Coprococcus, and Faecalibacterium, while showing 
an increase in Escherichia, Methanobrevibacter, Akkermansia, and Egger-
thella. Wu et al. (2022) reported that the abundance of Bacteroidota was 
significantly lower in the Chinese centenarian group than in other 
younger groups, while the abundance of Pseudomonadota, especially 
the family Enterobacteriaceae, showed a significant increase. In terms of 
genus dominance, Akkermansia, Methanobrevibacter, Klebsiella, 
Campylobacter, Parabacteroides, Barnesiella, Alistipes, Enterococcus, and 
Fusobacterium increased in centenarians, while Anaerostipes, Butyr-
icicoccus, Lachnospira, Megamonas, Bifidobacterium, Fusicatenibacter, 
Paraprevotella, and Faecalibacterium decreased. This change in the gut 
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Table 1 
Main bacterial genera found in the gut microbiome of healthy elderly and centenarians.  

Microbiome source Country Increased genera Decreased genera Reference 

Healthy aging Japan Bacteroides 
Eubacterium 
Megamonas 
Peptoniphilus 

Bifidobacterium Odamaki et al. (2016) 

China Anaerotruncus 
Parabacteroides 
Paraprevotella  

Wang et al. (2018b) 

Indonesia Enterobacteriaceae 
Escherichia 
Lactobacillus 

Clostridium 
Bifidobacterium 
Prevotella 
Bacteroides 
Streptococcus 

Rahayu et al. (2019) 

Thailand Escherichia 
Bacteroides 
Parabacteroides 

Bifidobacterium 
Dorea 

La-Ongkham et al. (2020) 

Russia Dialister 
Dorea 
Ruminococcus  

Kashtanova et al. (2020) 

China, Israel and The Netherlands Akkermansia 
Butyrivibrio 
Clostridium 
Coprococcus 
Lactobacillus 
Roseburia 
Subdoligranulum 
Victivallis 

Bifidobacterium Zhang et al. (2021a) 

Centenarians Italy Clostridium spp.a 

Anaerotruncus 
Sporobacter 
Bacillus 
Eggerthella 
Enterobacter 
Klebsiella 
Vibrio 
Eubacterium spp.b 

Clostridium spp.c 

Ruminococcus 
Roseburia 
Lachnobacillus 
Eubacterium spp.d 

Papillibacter 
Faecalibacterium 

Biagi et al. (2010) 

Italy Akkermansia 
Bifidobacterium 
Oscillospira 
Odoribacter 
Butyricimonas 
Eggerthella 
Anaerotruncus 
Bilophila 

Coprococcus 
Faecalibacterium 
Roseburia 

Biagi et al. (2016) 

China Akkermansia 
Escherichia/Shigella 

Faecalibacterium Kong et al. (2016, 2019) 

Japan Ruminococcus 
Parabacteroides 
Oscillospira 
Enterococcus 
Akkermansia 
Desulfovibrio 
Odoribacter 
Klebsiella 

Faecalibacterium 
Bifidobacterium 
Lachnospira 
Blautia 

Odamaki et al. (2016) 

R. Korea Akkermansia 
Collinsella 
Clostridium 
Escherichia 
Streptococcus 

Faecalibacterium 
Prevotella 

Kim et al. (2019) 

Italy Methanobrevibacter 
Bifidobacterium 
Pyramidobacter 
Desulfovibrio 
Escherichia 
Synergistes 

Faecalibacterium 
Eubacterium 
Coprococcus 
Dorea 
Ruminococcus 

Wu et al. (2019) 

China Alistipes 
Barnesiella 
Clostridium 
Parabacteroides 
Streptococcus 

Lachnospira 
Prevotella 
Megamonas 
Blautia 
Coprococcus 

Wang et al. (2019) 

India Eggerthella 
Alistipes 
Akkermansia 
Anaerotruncus 
Odoribacter 

Faecalibacterium 
Ruminococcus 

Tuikhar et al. (2019) 

(continued on next page) 
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microbiome was reflected in the plasmatic levels of cytokines in the 
centenarian group (higher levels of tumor necrosis factor-α [TNF-α], IL- 
6, and IL-8) due to the increase in members of Pseudomonadota and the 
genus Campylobacter. 

Tuikhar et al. (2019) comparatively studied the fecal samples of 125 
centenarians from Italy, Japan, and China to identify bacterial species, 
genes, and pathways that promote the production of secondary BAs, 
such as lithocholic acid (LCA) and its derivatives, and deoxycholic acid 
(DCA). The genes encoding these enzymes are found in members of the 
family Odoribacteraceae (Sato et al., 2021), and in Alistipes spp., Bac-
teroides cellulosilitycus, B. intestinalis, Parabacteroides merdae, 
P. goldsteinii, and Odoribacter laneus (Salazar et al., 2023a). Isoallo-LCA 
induces T regulatory cellular function and exerts an antibacterial ef-
fect (Sato et al., 2021), while that isoLCA and 3-oxo-LCA suppress Th17 
cell activity, protecting the host from immune hyper-responsiveness and 
contributing to healthy aging (Li et al., 2021). Metagenomic microbiome 
analysis of centenarians has shown enrichment of some genes associated 
with nutrient acquisition (Rampelli et al., 2020); however, consumption 
of a high-fiber diet seems to be the lifestyle factor most frequently 
associated with extreme longevity and health (Vasto et al., 2012). 

Currently, the question of whether differences in microbiome 
composition contribute to longevity, or whether they are the result of a 
good lifestyle, remains unanswered. However, Ren et al. (2021) 
compared the gut microbiota composition from long-lived Chinese 
families to find a specific bacterial community pattern and signature 
taxa in long-lived people. The abundance in members of Lachnospir-
aceae, Roseburia, and Blautia was significantly higher in participants 
from the long-lived village, but their abundances gradually decreased 
along with age. The predicted pathways related to metabolism of SCFAs, 
amino acids, and lipoic acids were significantly higher in the long-lived 
elderly compared to the control group. The trajectory of gut microbiota 
composition along with age in participants from long-lived families 
might reveal potential health-promoting metabolic characteristics, 
which could play an important role in healthy aging. Later, Pang et al. 
(2023) conducted a cross-sectional investigation of individuals between 
20 and 117 years in Guangxi (China) to characterize the gut microbiome 
signatures of aging. Compared to their old adult counterparts, cente-
narians displayed youth-associated features in the gut microbiome 
characterized by an over-representation of a Bacteroides-dominated 
enterotype and depletion of potential pathobionts. They found that 

health status stratification in older individuals did not alter the direc-
tional trends for these signature comparisons, but revealed more 
apparent associations in less healthy individuals. The findings revealed 
that centenarians have unique enterotypes relative to their old adult 
counterparts, which combine signatures in young and old adult in-
dividuals, and exhibit prominent features that show high similarity to 
young adults in terms of youth-associated microbial hallmarks. Impor-
tantly, longitudinal analysis of centenarians across a 1.5-year period 
indicates that during the aging of the centenarians these features 
continued to develop and they were either enhanced or conserved. In 
summary, both studies exclude the influence of lifestyle on the cente-
narian subjects, providing strong evidence for the conclusion that mi-
crobial composition contributes to longevity. 

3.2. Gut microbiome dysbiosis and geriatric syndrome 

Gut microbial dysbiosis in the elderly may lead to the onset of several 
age-related diseases, such as gastrointestinal diseases, type 2 diabetes, 
metabolic syndrome, atherosclerotic diseases, neurodegenerative dis-
eases, cancer, and cachexia (Salazar et al., 2019; Vaiserman et al., 2017). 
On the other hand, age-related changes in the composition of the gut 
microbiome may negatively affect musculoskeletal conditions by pro-
moting chronic systemic inflammation, insulin resistance, oxidative 
stress, and reduced nutrient bioavailability (Ticinesi et al., 2019). 

According to the European Working Group on Sarcopenia in Older 
People (EWGSOP) (Van Ancum et al., 2020), the definition of sarcopenia 
is based on the decrease in muscle mass and function, and its incidence 
increases significantly with age (Martone et al., 2020). This systemic 
musculoskeletal condition increases the risk of falls in the elderly, pro-
longs hospital stays, and increases costs, morbidity and mortality (Zhao 
et al., 2021). Skeletal muscle mitochondrial dysfunction appears to be 
one of the causes of sarcopenia, and the link between the gut micro-
biome and the skeletal muscle mitochondria is mediated through the 
production of insulin-like growth factor 1 and urolithin A (Ebner et al., 
2019; Franco-Obregón and Gilbert, 2017; Marzetti et al., 2013). In 
addition, gut microorganisms can utilize amino acids involved in muscle 
protein synthesis, altering their bioavailability to the host. Clinical 
studies have shown that the genus Sutterella, which is significantly 
increased in older adults, may play an essential role in muscle mass loss, 
probably due to decreased levels of vitamin B12 and folic acid (Liu et al., 

Table 1 (continued ) 

Microbiome source Country Increased genera Decreased genera Reference 

Parabacteroides 
Porphyromonas 
Butyricimonas 
Alicyclobacillus 

Russia Lactobacillus 
Christensenella 
Roseburia 

Dorea 
Sutterella 
Dialister 
Ruminococcus 

Kashtanova et al. (2020) 

Italy Escherichia 
Methanobrevibacter 
Akkermansia 
Eggerthella 

Bacteroides 
Eubacterium 
Coprococcus 
Faecalibacterium 

Rampelli et al. (2020) 

China Akkermansia 
Methanobrevibacter 
Klebsiella 
Parabacteroides 
Barnesiella 
Alistipes 
Campylobacter 
Enterococcus 
Fusobacterium 

Anaerostipes 
Butyricicoccus 
Lachnospira 
Megamonas 
Bifidobacterium 
Fusicatenibacter 
Paraprevotella 
Faecalibacterium 

Wu et al. (2022)  

a C. leptum and C. orbiscindens. 
b E. limosum. 
c C. colinum and C. sphenoides. 
d E. hallii, E. rectale and E. ventriosum. 
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2021a; Shen et al., 2018; Xu et al., 2022). Moreover, certain strains of 
Lactobacillus and Bifidobacterium have been shown to reverse age-related 
muscle loss synthesizing SCFA metabolites that inhibit the Atrogin1/ 
MAPK-FoxO3 system involved in skeletal muscle atrophy, and by 
inhibiting branched-chain amino acid pathways (de Marco Castro et al., 
2021). However, the “gut-muscle axis” hypothesis is not supported by 
sufficient human data to the present date (Alsegiani and Shah, 2022), 
although these gut microbial alterations are more common in elderly 
individuals with neurodegenerative diseases and cognitive-motor frailty 
(Giron et al., 2022). The observation that predictability is associated 
with both cognitive and motor losses has allowed the introduction of a 
syndrome, the motor-cognitive risk syndrome, which is a condition of 
increased risk of dementia and mobility disability (Verghese et al., 
2013). 

Sarcopenia can be considered as a precursor of frailty. Frailty is a 
multifactorial geriatric syndrome that represents an increased vulnera-
bility to adverse health outcomes (physical function deficits, decreased 
muscle strength, fatigue, and unintentional weight loss) and leads to a 
reduction in quality of life and independence, as well as an increased risk 
of hospitalization and mortality in older adults (Hoogendijk et al., 
2019). The most consistent feature of the gut microbiome in frailty is a 
decrease in microbial diversity (Jackson et al., 2016), caused by dietary 
changes, reduced physical activity, long-term care facilities residence, 
increased exposure to antibiotics and medication changes, increased 
intestinal permeability, and imbalance in immune function (Claesson 
et al., 2012; DeJong et al., 2020; Xu et al., 2021). The gut microbiome 
composition of frail older adults showed a significant reduction in the 
abundance of the families Lachnospiraceae, Barnesiellaceae, Gemellaceae, 
Erysipelotrichaceae and Christensenellaceae, and of the genera Acid-
aminococcus, Azospira, Coprococcus, Faecalibacterium, Fusicatenibacter, 
Gemella, Lachnoclostridium, Lactobacillus, Paraprevotella, Prevotella, 
Roseburia, Slackia, and Sutterella. On the contrary, the gut microbiome of 
frail older adults showed increased abundance in the Enterobacteriaceae, 
Eubacteriaceae, Bifidobacteriaceae, Atopobiaceae, Mogibacteriaceae, 
Micrococcaceae, Peptostreptococcaceae, Ruminococcaceae, Veillonellaceae, 
and Coriobacteriaceae families, and in the genera Acetanaerobacterium, 
Actinomyces, Anaerotruncus, Bifidobacterium, Catenibacterium, Clos-
tridium, Coprobacillus, Dialister, Eggerthella, Erwinia, Lachnoanaer-
obaculum, Megasphaera, Parabacteroides, Pyramidobacter, Rothia, 
Ruminococcus, and Veillonella compared to people with low frailty scores 
(Almeida et al., 2022; Haran and McCormick, 2021; Jackson et al., 2016; 
Jeffery et al., 2016; Kang et al., 2021; Lim et al., 2021; Maffei et al., 
2017; Margiotta et al., 2020; Picca et al., 2019; Ponziani et al., 2021; 
Rampelli et al., 2013; Strasser and Ticinesi, 2023; Ticinesi et al., 2020; 
Zhang et al., 2020). The relative abundance of the families Verrucomi-
crobiaceae, Veillonellaceae, Barnesiellaceae and Rikenellaceae, and of the 
genera Bacteroides, Alistipes, Dorea, Eubacterium, Oscillospira, and 
Akkermansia presented controversial results (Almeida et al., 2022). 

Ghosh et al. (2020a) reported that three types of taxonomic groups 
can be identified in studies related to frailty: Group 1 includes taxa 
(mainly SCFA-producing bacteria) that are lost during unhealthy aging, 
including Blautia, Coprococcus, Dorea, Eubacterium, Faecalibacterium, and 
Roseburia. Group 2 consists of pathobionts that increase with age, 
especially with unhealthy aging, such as the families Enterobacteriaceae 
and Atopobiaceae, and the genera Actinomyces, Anaerotruncus, Bacter-
oides, Bilophila, Campylobacter, Clostridium, Coprobacillus, Corynebacte-
rium, Desulfovibrio, Eggerthella, Enterococcus, Flavonifractor, 
Fusobacterium, Parvimonas, Porphyromonas, Ruminococcus, Staphylo-
coccus, Streptococcus, and Veillonella. Group 3 is a healthy age-associated 
gut microbiome that is lost during unhealthy aging and includes the 
family Christensenellaceae and the genera Akkermansia, Barnesiella, 
Butyricimonas, Butyrivibrio, Odoribacter, and Oscillospira. In addition, the 
presence of the Mogibacteriaceae family in the gut microbiome was 
associated with blood C-reactive protein (CRP) levels, which may be 
related to inflammageing (Margiotta et al., 2020). Members of the 
family Barnesiellaceae have also been associated with increased systemic 

levels of pro-inflammatory cytokines, such as TNF-α (Margiotta et al., 
2021), which induce muscle degradation via the ubiquitin-proteasome 
pathway, contributing to frailty and sarcopenia (Soysal et al., 2016). 
The Bifidobacteriaceae family regulates intestinal and immune system 
functions, ameliorating frailty and restoring intestinal homeostasis 
(Wallen et al., 2020). Interestingly, the relatively high abundance of the 
genus Eggerthella in frail elderly has been reported in several studies 
(Jackson et al., 2016; Maffei et al., 2017; Margiotta et al., 2020; Picca 
and Calvani, 2020). Species of this genus utilize threonine, a major 
component of intestinal mucin, deregulating intestinal epithelial junc-
tions and increasing cellular permeability to endotoxins implicated in 
some gastrointestinal diseases (Rao, 2008; Thota et al., 2011). 
Conversely, the lower abundance of the genera Alistipes, Prevotella, 
Fusicatenibacter, Lachnoclostridium, Roseburia, and Faecalibacterium in 
frail and sarcopenic individuals implies lower production of SCFAs 
(Almeida et al., 2022; Kang et al., 2021; Parker et al., 2020; Ticinesi 
et al., 2020), which act on muscle cells to improve mitochondrial ac-
tivity, fatty acid oxidation, protein synthesis, and energy availability 
(Jackson et al., 2016; Lin et al., 2017; Saint-Georges-Chaumet and 
Edeas, 2016; Vinolo et al., 2011). 

The gut microbiota modulates the process of inflammaging, which 
contributes to age-related disorders such as neuroinflammation and 
neurodegeneration (Alsegiani and Shah, 2022). The microbiota has been 
shown to trigger innate immunity and produces inflammatory responses 
that include intestinal inflammation and increased circulation of in-
flammatory cytokines. Gut bacteria can secrete large amounts of other 
by-products, for example double-stranded RNA, lipoproteins and lipo-
polysaccharides (LPS), which contribute to the signaling pathways 
involved in the production of pro-inflammatory cytokines IL-8 and IL-6 
(Biagi et al., 2010). Preclinical studies have shown that higher LPS levels 
correlate with the increased expression of TLR4, myeloid differentiation 
protein-88, and nuclear translocation of factor κB in both intestinal and 
brain tissues (Wu et al., 2021b). LPS also induce systemic inflammation, 
leading to increased permeability of the BBB and disruption of the in-
testinal epithelial barrier (Choi et al., 2012). Mucosal translocation of 
bacterial LPS and LPS-binding proteins into the circulation system may 
also promote the chronic low-grade systemic inflammation, which is 
particularly prevalent in the elderly, and may initiate CNS inflammation 
by activating the LPS/TLR4 pathway in brain glial cells (Stehle Jr et al., 
2012; Ghosh et al., 2015). 

3.3. Neurodegenerative diseases and gut microbiome dysbiosis in aging 

Aging is a major risk factor for several neurodegenerative diseases, 
including subjective cognitive decline (SCD), mild cognitive impairment 
(MCI), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple 
sclerosis (MS), and delirium (Alsegiani and Shah, 2022; Molinero et al., 
2023; Sheng et al., 2021; Strasser and Ticinesi, 2023). The gut micro-
biome has also been implicated in a number of physiological and 
pathological processes such as satiety, schizophrenia, depression, and 
stress (Borrego-Ruiz and Borrego, 2024a; Foster and McVey Neufeld, 
2013; Liu et al., 2020b; Varesi et al., 2022). In addition, the gut 
microbiome has been suggested to influence the brain aging process 
through the initiation and progression of cognitive and neurodegener-
ative processes. The term “mapranosis” has been proposed to describe 
microbiota-associated proteopathy, oxidative stress, and neuro-
inflammation (Friedland and Chapman, 2017). Older adults exhibit 
significant gut dysbiosis, which in many cases coincides with the 
development of MCI of the brain functions by initiation (Alsegiani and 
Shah, 2022; Białecka-Dębek et al., 2021; Fransen et al., 2017). Cognitive 
deficits between normal aging and dementia disorders are collectively 
referred to as MCI, often considered an early stage of AD but resulting 
from a variety of etiologies (Petersen, 2016). Although AD is the most 
common cause of dementia, there are other forms such as vascular de-
mentia, Pick’s disease, or dementia with Lewy bodies, to name a few 
(Crous-Bou et al., 2017). 
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3.3.1. Subjective cognitive decline (SCD) and mild cognitive impairment 
(MCI) 

SCD is a self-reported persistent decline in cognitive performance 
that may be associated with an increased risk of MCI (Jessen et al., 2020; 
van Harten et al., 2018). Sheng et al. (2021) found a decrease in the 
abundance of members of the family Ruminococcaceae and the genus 
Faecalibacterium in SCD patients; these changes in the gut microbiome 
were associated with cognitive performance. Duan et al. (2021), who 
studied patients with SCD and MCI, found that the relative abundance of 
members of the phylum Bacteroidota was higher in the SCD group, 
whereas members of the phylum Bacillota were more enriched in the 
MCI group compared to the SCD group. At the family level, SCD patients 
had lower abundance of Christensenellaceae, Ruminococcaceae, and Ery-
sipelotrichaceae compared to the control group, and lower abundance of 
Lachnospiraceae compared to the MCI group. At the genus level, Fusi-
catenibacter, Ruminiclostridium, and Butyricicoccus had lower abundance 
in the SCD group compared to the control group, and Coprobacter and 
Roseburia genera decreased compared to the MCI group. In contrast, only 
members of Faecalibacterium showed higher abundance in SCD and MCI 
groups compared to controls. 

MCI is one of the most common diseases of the elderly and can be 
considered as an intermediate stage between the normal cognitive 
decline of aging and dementia (Chen et al., 2021). Several studies have 
reported an association between this neurogenerative disease and gut 
microbiome dysbiosis. For instance, Manderino et al. (2017) found that 
subjects with cognitive impairment had an abundance of four bacterial 
phyla, Bacillota, Bacteroidota, Pseudomonadota and Verrucomicrobia, 
and reported a significant correlation between cognitive decline and the 
Verrucomicrobia abundance. In another group of MCI patients, Saji et al. 
(2019b) reported an increased abundance of Bacteroides and Prevotella in 
MCI patients, while the Bacillota/Bacteriodota ratio decreased in these 
patients. Similar results were found by Nagpal et al. (2019), with a 
slightly lower abundance of the phylum Bacteroidota in MCI patients 
compared to controls. The authors also found that members of Pseu-
domonadota were positively correlated with the amyloid-β-peptide (Aβ) 
42/Aβ-40 ratio, while fecal propionate and butyrate were negatively 
correlated with Aβ-42 in subjects with MCI. Saji et al. (2020) found that 
fecal ammonia and lactic acid were associated with dementia, inde-
pendently of the other risk factors for dementia and dysregulation of the 
gut microbiome. 

Interestingly, Khine et al. (2020) found that alterations in several 
cognitive functions (memory, semantic fluency, recognition, selective 
attention, or visual spatial skills, to name a few) in elderly MCI patients 
were consistent with changes in the abundance of Ruminococcus, Cop-
rococcus, Parabacteroides, Fusobacterium, and Phascolarctobacterium, as 
well as members of the Enterobacteriaceae and Ruminocococeae families, 
considering them as risk indicators for MCI. Later, Pan et al. (2021) 
reported different gut microbiome profiles between MCI patients and 
controls, with higher levels of several pathobionts in MCI. Specifically, 
the major gut microbiome genera correlated with MCI were Leptotrichia 
and Staphylococcus, while Bacteroides and Sphingobacterium were nega-
tively correlated. To determine the associations between diet quality, 
no-coding microRNA (miRNAs) and risk of MCI in middle-aged and 
elderly Chinese population, Zhang et al. (2021b) investigated the gut 
microbiota in MCI patients compared to healthy controls. The results 
obtained indicated that the α- and β-diversity of the gut microbiome 
decreased in MCI patients, and they also found lower abundance of 
members of the families Rikenellaceae and Planococcaceae, and the 
genera Faecalibacterium and Alistipes. In contrast, MCI patients had an 
increase in the abundance of the families Rhizobiaceae and Enterobac-
teriaceae, and the genus Megasphaera. 

Liu et al. (2021a) reported changes in the gut microbiome of patients 
associated with amnestic mild cognitive impairment (aMCI). Specif-
ically, aMCI subjects had increased abundance of members of the fam-
ilies Veillonellaceae and Bacteroidaceae, and the genus Bacteroides, while 
decreased abundance of members of the families Lachnospiraceae and 

Clostridiaceae, and the genera Blautia and Ruminococcus. A microbiome 
analysis by Aljumaah et al. (2022) identified Prevotella and Bacteroides 
species as taxa correlated with MCI, with Prevotella spp. being most 
abundant in MCI subjects compared to cognitively healthy subjects. 
Asaoka et al. (2022) observed an altered composition in MCI subjects, 
represented by a lower relative abundance of Bifidobacterium and 
members of the phylum Actinomycetota, and a higher relative abun-
dance of the genera Prevotella and Phascolarctobacterium, and members 
of the families Clostridiaceae and Ruminococcaceae. Li et al. (2023a) 
found that beta analysis showed that microbial enterotypes were not 
significantly associated with cognition between individuals with MCI 
and controls. In addition, they reported differential taxonomic charac-
teristics at the genus level with cognitive status, including positive 
correlations with Streptococcus, Hungatella, Holdemania, Fusicatenibacter, 
Eubacterium, Eggerthella, Clostridium, Citrobacter, Bifidobacterium, Bac-
teroides, and Anaerostipes. In contrast, negative correlations were found 
for the genera Prevotella and Dialister. Table 2 lists several studies con-
ducted in SCD and MCI patients that reported an altered gut 
microbiome. 

3.3.2. Alzheimer’s disease (AD) 
AD is an irreversible neurodegenerative disease characterized by 

progressive loss of cognition and memory that accounts for 60–80 % of 
all cases of dementia in the elderly (75 million people in 2030) and that 
could lead to the collapse of healthcare systems (Nichols et al., 2019; 
Wimo et al., 2017). The etiopathogenesis of AD is still not fully under-
stood and it has been described as a multifaceted disease in which aging, 
environmental and genetic factors are risk factors (Breijyeh and Kara-
man, 2020; Jagust, 2018). The main characteristic of this pathology is 
the extracellular accumulation of Aβ, which forms neuritic plaques in 
the neocortex, as well as by the intracellular aggregation of the hyper-
phosphorylated tau protein, a process that leads to the development of 
neurofibrillary tangles (Dujardin et al., 2020; Long and Holtzman, 2019; 
Perea et al., 2020). Furthermore, neuroinflammation, mitochondrial 
dysfunction, cerebral hypoperfusion, and impaired calcium balance are 
factors that have also been implicated in the pathogenesis of AD (Bos-
tanciklioğlu, 2019; Kowalski and Mulak, 2019; Long and Holtzman, 
2019). 

An association of AD with a state of dysbiosis of the gut microbiome 
has been well established by various authors. According to Bos-
tanciklioğlu (2019), there are three distinct links between the gut 
microbiome and the pathogenesis of AD: (i) CNS inflammation and ce-
rebrovascular degeneration induced by bacterial metabolites and amy-
loids; (ii) inhibition of the autophagy-mediated protein clearance 
process by an impaired gut microbiome; and (iii) alteration of the 
neurotransmitter levels in the brain through the vagal afferent via 
caused by the gut microbiome. Some studies have suggested that im-
balances in the human microbiome homeostasis may also contribute to 
tau and Aβ-deposition (Cenit et al., 2017; Sureda et al., 2020; Vogt et al., 
2017). Several gut microbiota species have been shown to produce 
amyloid fibers, including Escherichia coli, Salmonella enterica, S. typhi-
murium, and Bacillus subtilis (Friedland and Chapman, 2017; Hufnagel 
et al., 2013); however, microbial amyloids share only tertiary structural 
similarities with human CNS amyloids and act as prion-like agents 
through molecular mimicry, causing the amyloidogenic protein to adopt 
a pathogenic β-structure (Schwartz and Boles, 2013; Friedland, 2015; 
Kowalski and Mulak, 2019). In the elderly, these bacterial amyloid fi-
brils can cross the intestinal and BBB barriers, promote Aβ accumulation 
in the brain, and enhance the inflammatory response to cerebral amy-
loids (such as amyloid-β and α-synuclein) (Kowalski and Mulak, 2019; Li 
et al., 2019). 

Bacterial LPS may play a role in AD when they reach brain com-
partments by crossing the intestinal tract and BBB (Zhao et al., 2017). 
LPS act on leukocyte and microglial TLR4-CD14/TLR2 receptors and 
increase Aβ levels (via increased cytokine levels). In addition, Aβ1–42 is 
an agonist for TLR4 receptors, producing NFκB-mediated increments in 
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cytokines that increase Aβ levels, cause injury in the oligodendrocytes, 
and produce the myelin damage found in AD brain (Zhan et al., 2018). 
Furthermore, aged-related changes in the microbiota have been shown 
to lead the entry of glial cells in a reactive state and to induce an 
inflammation process in the brain (Alsegiani and Shah, 2022). Increased 
levels of secondary BAs have also been associated with Aβ production 
and accumulation through disruption of the cholesterol catabolic 

pathway (Jia et al., 2020). Interestingly, the by-products of gut micro-
biome dysbiosis may alter the expression of various genes and associated 
synaptic proteins that promote the accumulation of inflammatory pro-
teins in the brain, as well as the induction of neuroinflammation, 
astrocyte activation, neuronal apoptosis, and microglial inflammatory 
response (Alsegiani and Shah, 2022; Perea et al., 2020). Several studies 
have shown increased peroxidation and decreased levels and activity of 

Table 2 
Dysbiosis of the gut microbiome in neurodegenerative disorders compared to normal controls. 

Taxa AD D MCI PD SCD Reference
Phylum Ac�nomycetota
Bifidobacteriaceae
Bifidobacterium

OOO
OOO

OOO

Vogt et al. (2017)
Hung et al. (2022)
Saji et al. (2019a)

OOO
OOO
OOO

Li et al. (2019)
Ling et al. (2021)
Zhou et al. (2021)

OOO
OOO

OOO
OOO
OOO
OOO
OOO
OOO
OOO

Hill-Burns et al. (2017)
Wallen et al. (2020)
Cirstea et al. (2020)
Petrov et al. (2017)
Vascellari et al. (2020)
Gerhardt and Mohajeri (2018)
Heravi et al. (2023)
Li et al. (2023b)
Asaoka et al. (2022)

Bifidobacteriaceae

OOO

OOO
OOO

Lin et al. (2018)
Vascellari et al. (2020)
Ling et al. (2021)

Coriobacteriaceae
Adlercreutzia

OOO Vogt et al. (2017)

Coriobacteriaceae
Collinsella

OOO Haran et al. (2019)

Coriobacteriaceae
Slackia

OOO Vascellari et al. (2020)

Coriobacteriaceae OOO Ling et al. (2021)
Eggerthellaceae
Eggerthella

OOO Li et al. (2023b)

Eggerthellaceae
Gordonibacter

OOO Jeong et al. (2022)

Brevibacteriaceae
Brevibacterium

OOO Vascellari et al. (2020)

Corynebacteriaceae
Corynebacterium

OOO Wallen et al. (2020)

Corynebacteriaceae OOO
OOO

Ling et al. (2021)
Wallen et al. (2020)

Atopobiaceae OOO Xi et al. (2021)
Phylum Bacillota
Clostridiaceae
Clostridium

OOO Vogt et al. (2017)

OOO
OOO

Ling et al. (2021)
Wanapairan et al. (2022)

OOO
OOO

Xi et al. (2021)
Verhaar et al. (2022)

OOO

OOO
OOO
OOO

Hasegawa et al. (2015)
Bedarf et al. (2017)
Gerhardt and Mohajeri (2018)
Stadlbauer et al. (2020)

OOO
OOO
OOO

OOO Qian et al. (2018)
Vascellari et al. (2020)
Li et al. (2023b)
Wanapairan et al. (2022)

Clostridiaceae
Hungatella

OOO Li et al. (2023b)

Clostridiaceae OOO
OOO
OOO
OOO

OOO
OOO
OOO

Vogt et al. (2017)
Ling et al. (2021)
Liu et al. (2019b)
Hung et al. (2022)
Asaoka et al. (2022)
Liu et al. (2021b)
Liu et al. (2019b)

Ruminococcaceae
Ruminococcus

OOO
OOO
OOO
OOO
OOO

Li et al. (2019)
Liu et al. (2019b)
Ling et al. (2021)
Sheng et al. (2022)
Verhaar et al. (2022)

OOO
OOO

Zhuang et al. (2018)
Xi et al. (2021)

OOO Khine et al. (2020)
OOO Liu et al. (2021b)
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antioxidant molecules in AD patients (Białecka-Dębek et al., 2021; 
Dumitrescu et al., 2018). Therefore, the role of the gut microbiome in 
regulating the oxidative state of the CNS is also a factor to consider, as 
oxidative stress increases Aβ deposition (Huang et al., 2016). This gut 
microbial regulation occurs through the production of various metabo-
lites and enzymes (SCFAs, polyphenols, vitamins, superoxide dismutase, 

and catalase) (Sharon et al., 2014). 
Despite inter- and intra-individual variability and changes associated 

with gender, diet and geography, nearly 85 % of patients with AD have a 
different gut microbiome shape compared to healthy individuals of the 
same age (Morris et al., 2017; Xi et al., 2021). In short, subjects with AD 
present intestinal dysbiosis, which may play a critical role in modulating 

OOO
OOO
OOO

Li et al. (2017b)
Petrov et al. (2017)
Ren et al. (2020)

Ruminococcaceae
Ruminiclostridium

OOO
OOO

Guo et al (2021)
Duan et al. (2021)

Ruminococcaceae
Gemmiger

OOO Ling et al. (2021)

Ruminococcaceae
Monoglobus

OOO Verhaar et al. (2022)

Ruminococcaceae
Subdoligranulum

OOO
OOO

Zhuang et al. (2018)
Verhaar et al. (2022)

Ruminococcaceae

OOO
OOO
OOO
OOO

OOO
OOO

OOO
OOOOOO

OOO
OOO
OOO

Asaoka et al. (2022)
Khine et al. (2020)
Vogt et al. (2017)
Ling et al. (2021)
Liu et al. (2019b)
Zhuang et al. (2018)
Heravi et al. (2023)
Ren et al. (2020)
Gerhardt and Mohajeri (2018)
Heravi et al. (2023)
Sheng et al. (2021)
Duan et al. (2021)

Lachnospiraceae
Blau�a

OOO Vogt et al. (2017)

OOO
OOO

Jeong et al. (2022)
Liu et al. (2019b)

OOO Li et al. (2019)
OOO
OOO

Xi et al. (2021)
Zhou et al. (2021)

OOO Liu et al. (2021)
OOO Keshavarzian et al. (2015)
OOO
OOO
OOO
OOO
OOO
OOO

Li et al. (2017b)
Petrov et al. (2017)
Wallen et al. (2020)
Hill-Burns et al. (2017)
Lin et al. (2018)
Ren et al. (2020)

OOO
OOO
OOO

Vascellari et al. (2020)
Gerhardt and Mohajeri (2018)
Heravi et al. (2023)

Lachnospiraceae
Lachnospira

OOO
OOO
OOO

OOO
OOO

Guo et al. (2021)
Ling et al. (2021)
Sheng et al. (2022)
Guo et al. (2021)
Stadlbauer et al. (2020)

OOO
OOO

Wallen et al. (2020)
Vascellari et al. (2020)

Lachnospiraceae
Roseburia

OOO Haran et al. (2019)

OOO
OOO
OOO

Ling et al. (2021)
Verhaar et al. (2022)
Yildirim et al. (2022)

OOO
OOO

Verhaar et al. (2022)
Duan et al. (2021)

OOO
OOO
OOO
OOO
OOO
OOO
OOO

OOO

Keshavarzian et al. (2015)
Hirayama and Ohno (2021)
Wallen et al. (2020)
Hill-Burns et al. (2017)
Lin et al. (2018)
Vascellari et al. (2020)
Heravi et al. (2023)
Duan et al. (2021)

Lachnospiraceae
Dorea

OOO
OOO
OOO

Li et al. (2019)
Petrov et al. (2017)
Qian et al. (2018)

Lachnospiraceae
Coprococcus

OOO Ling et al. (2021)

OOO
OOO

Nagpal et al (2019)
Khine et al. (2020)

OOO Keshavarzian et al. (2015)
OOO
OOO
OOO
OOO

Petrov et al. (2017)
Vascellari et al. (2020)
Gerhardt and Mohajeri (2018)
Heravi et al. (2023)

Lachnospiraceae OOO Haran et al. (2019)
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the gut-brain axis, and could actively participate in the pathogenesis of 
AD (Wu et al., 2021c). Cattaneo et al. (2017) conducted a study to 
analyze the gut microbiome alterations in AD patients and found higher 
pro-inflammatory gut microbiota genera Escherichia/Shigella, and lower 
anti-inflammatory species Eubacterium rectale, which are associated with 

peripheral systemic inflammation. The authors reported a significant 
positive correlation between the pro-inflammatory cytokines IL-1β, 
NLRP3 and CXCL2 and Escherichia/Shigella abundance, and a negative 
correlation with E. rectale. Vogt et al. (2017) reported decreased mi-
crobial diversity and altered composition of the AD gut microbiome 

Lachnoclostridium OOO
OOO

Zhuang et al. (2018)
Haran et al. (2019)

OOO Verhaar et al. (2022)
Lachnospiraceae
Anaeros�pes

OOO
OOO

OOO

Verhaar et al. (2022)
Stadlbauer et al. (2020)
Li et al. (2023b)

Lachnospiraceae
Tyzzerella

OOO Xi et al. (2021)

Lachnospiraceae
Marvinbryan�a

OOO Verhaar et al. (2022)

Lachnospiraceae
Fusicatenibacter

OOO

OOO
OOO

OOO

OOO

Yildirim et al. (2022)
Wallen et al. (2020)
Li et al. (2023b)
Wanapairan et al. (2022)
Duan et al. (2021)

Lachnospiraceae
Agathobacter OOO

OOO

OOO Wallen et al. (2020)
Wanapairan et al. (2022)
Wanapairan et al. (2022)

Lachnospiraceae
Eisenbergiella

OOO Stadlbauer et al. (2020)

Lachnospiraceae
Butyrivibrio

OOO Vascellari et al. (2020)

Lachnospiraceae
Pseudobutyrivibrio

OOO Vascellari et al. (2020)

Lachnospiraceae

OOO
OOO
OOO
OOO

OOO

OOO
OOO

OOO
OOO
OOO
OOO
OOO
OOO
OOO

Hill-Burns et al. (2018)
Cirstea et al. (2020)
Lin et al. (2018)
Vascellari et al. (2020)
Gerhardt and Mohajeri (2018)
Hirayama and Ohno (2021)
Heravi et al. (2023)
Liu et al. (2021b)
Duan et al. (2021)
Liu et al. (2019b)
Wanapairan et al. (2022)
Zhuang et al. (2018)
Ling et al. (2021)
Verhaar et al. (2022)

OOO
OOO
OOO

OOO
OOO

Wanapairan et al. (2022)
Hung et al. (2022)
Heravi et al. (2023)
Stadlbauer et al. (2020)
Duan et al. (2021)

Eubacteriaceae
Eubacterium

OOO
OOO

OOO

Ca�aneo et al. (2017)
Verhaar et al. (2022)
Stadlbauer et al. (2020)

OOO Haran et al. (2019)

OOO

OOO
OOO

Bedarf et al. (2017)
Gerhardt and Mohajeri (2018)
Li et al. (2023b)

Turicibacteraceae
Turicibacter

OOO Vogt et al. (2017)

Turicibacteraceae OOO Vogt et al. (2017)
Veillonellaceae
Dialister

OOO
OOO

OOO

Vogt et al. (2017)
Ling et al. (2021)
McLeod et al. (2023)

OOO
OOO

Nagpal et al. (2019)
Li et al. (2023a)

Veillonellaceae
Veillonella

OOO
OOO

Lin et al. (2018)
Vascellari et al. (2020)

Veillonellaceae
Megasphaera OOO

OOO Lin et al. (2018)
Zhang et al. (2021a)

Veillonellaceae

OOO

OOO
OOO

Liu et al. (2019b)
Liu et al. (2021b)
Zhuang et al. (2018)

Acidaminococcaceae
Phascolarctobacterium

OOO
OOO

Vogt et al. (2017)
Hung et al. (2022)

OOO
OOO
OOO

OOO

Nagpal et al. (2019)
Khine et al. (2020)
Asaoka et al. (2022)
Qian et al. (2018)

Acidaminococcaceae OOO Heravi et al. (2023)
Lactobacillaceae
Lactobacillus

OOO
OOO

Hidalgo-Cantabrana et al. (2017)
Stadlbauer et al. (2020)

OOO
OOO

Li et al. (2019)
Zhou et al. (2021)
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group compared to controls, with decreased abundance of members of 
the phyla Bacillota and Actinomycetota, the families Ruminococcaceae, 
Turicibacteraceae, Peptostreptococcaceae, Clostridiaceae and Mogibacter-
iaceae, and the genera Bifidobacterium, Adlercreutzia, Dialister, Clos-
tridium, Turicibacter, and Bilophila. On the other hand, increased levels of 

members of the phylum Bacillota, and the families and genera Rike-
nellaceae, Bacteriodaceae, Gemellaceae, Alistipes, Gemella, Phascolarcto-
bacterium, Blautia, and Bacteroides were found in AD patients. Zhuang 
et al. (2018) found that individuals with AD have an alteration in the 
fecal microbiota composition characterized by a decrease in the 

OOO Yildirim et al. (2022)
OOO
OOO
OOO
OOO
OOO
OOO

Hasegawa et al. (2015)
Hopfner et al. (2017)
Petrov et al. (2017)
Hill-Burns et al. (2017)
Wallen et al. (2020)
Gerhardt and Mohajeri (2018)

Lactobacillaceae OOO
OOO
OOO

Zhuang et al. (2018)
Stadlbauer et al. (2020)
Hirayama and Ohno (2021)

Gemellaceae
Gemella

OOO Vogt et al. (2017)

Gemellaceae OOO Vogt et al. (2017)
Oscillospiraceae
Faecalibacterium

OOO
OOO
OOO
OOO

Ling et al. (2021)
Sheng et al. (2022)
Yildirium et al. (2022)
Wanapairan et al. (2022)

OOO
OOO

Duan et al. (2021)
Wanapairan et al. (2022)

OOO
OOO
OOO

OOO
OOO

Sheng et al. (2021)
Duan et al. (2021)
Stadlbauer et al. (2020)
Stadlbauer et al. (2020)
Zhang et al. (2021)

OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO

Keshavarzian et al. (2015)
Hill-Burns et al. (2017)
Li et al. (2017b)
Petrov et al. (2017)
Wallen et al. (2020)
Cirstea et al. (2020)
Hirayama and Ohno (2021)
Lin et al. (2018)
Gerhardt and Mohajeri (2018)

Oscillospiraceae
Butyricicoccus

OOO Ling et al. (2021)

OOO
OOO

OOO

Qian et al. (2018)
Wallen et al. (2020)
Duan et al. (2021)

Oscillospiraceae
Anaerobacterium

OOO
OOO

Zhou et al. (2021)
Zhou et al. (2021)

Oscillospiraceae
Papillibacter

OOO
OOO

Zhou et al. (2021)
Petrov et al. (2017)

Oscillospiraceae
Oscillospira

OOO
OOO
OOO

Petrov et al. (2017)
Gerhardt and Mohajeri (2018)
Wallen et al. (2020)

Oscillospiraceae
Anaerotruncus

OOO

OOO
OOO

OOO
OOO

Qian et al. (2018)
Ren et al. (2020)
Wallen et al. (2020)
Wallen et al. (2020)
Jeong et al. (2022)

Oscillospiraceae
Ruminiclostridium

OOO Heravi et al. (2023)

Staphylococcacea
Staphylococcus

OOO
OOO
OOO

Pan et al. (2021)
Hasegawa et al. (2015)
Vascellari et al. (2020)

Peptostreptococcacea
Romboutsia

OOO
OOO

Ling et al. (2021)
Wanapairan et al. (2022)

Peptostreptococcacea OOO Vogt et al. (2017)
Streptococcaceae
Streptococcus

OOO
OOO

Li et al. (2019)
Stadlbauer et al. (2020)

OOO Li et al. (2023b)
OOO Li et al. (2017b)

Streptococcaceae OOO Vascellari et al. (2020)
Enterococcaceae OOO Ling et al. (2021)
Enterococcus OOO

OOO
Li et al. (2017)
Hasegawa et al. (2015)

Enterococcaceae OOO Zhuang et al. (2018)
Mogibacteriaceae

OOO
OOO Nagpal et al. (2019)

Vogt et al. (2017)
Christensenellaceae
Christensenella (Catabacter)

OOO
OOO

Hirayama and Ohno (2021)
Gerhardt and Mohajeri (2018)

Christensenellaceae

OOO
OOO

OOO Duan et al. (2021)
Duan et al. (2021)
Verhaar et al. (2022)

Erysipelotrichaceae
Holdemania

OOO
OOO

Xi et al. (2021)
Qian et al. (2018)
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abundance of members of the phylum Actinomycetota and an increase 
in the phylum Bacteroidota, families Ruminococcaceae, Enterococcaceae 
and Lactobacillaceae, and genera Bacteroides, Subdoligranulum, and 
Ruminococcus. These authors also reported a decrease in the abundance 
of Lachnospiraceae, Bacteroidaceae, Veillonellaceae, and 

Lachnoclostridium. Later, Saji et al. (2019a) reported a dysregulation of 
the gut microbiome in a group of patients with dementia, as the Bacil-
lota/Bacteriodota ratio increased in these patients. The number of 
Bacteroides was lower in demented than in non-demented patients, while 
the abundance of Bifidobacterium and members of the order 

OOO
OOO Qian et al. (2018)

Li et al. (2023b)
Erysipelotrichaceae
Holdemanella

OOO Wanapairan et al. (2022)

Erysipelotrichaceae OOO
OOO

Ling et al. (2021)
Duan et al. (2021)

Erysipelatoclostridiaceae
Erysipelatoclostridium

OOO Xi et al. (2021)

Planococcaceae OOO Zhang et al. (2021a)
Selenomonadaceae
Megamonas

OOO Wanapairan et al. (2022)

Phylum Bacteroidota
Bacteroidaceae
Bacteroides

OOO
OOO

Saji et al (2019b)
Liu et al. (2021b)

OOO
OOO
OOO

Li et al. (2019)
Guo et al. (2021)
Yildirium et al. (2022)

OOO

OOO

OOO
OOO
OOO

OOO
OOO

Hidalgo-Cantabrana et al. (2017)
Hidalgo-Cantabrana et al. (2017)
Saji et al. (2019a)
Heeney et al. (2018)
Stadlbauer et al. (2020)
Li et al. (2023b)
Aljumaah et al. (2022)

OOO
OOO
OOO
OOO
OOO

Vogt et al. (2017)
Zhuang et al. (2018)
Haran et al. (2019)
Wanapairan et al. (2022)
Heravi et al. (2023)

OOO Pan et al. (2021)
OOO
OOO

Liu et al. (2021b)
McLeod et al. (2023)

OOO
OOO

Hasegawa et al. (2015)
Vascellari et al. (2020)

Bacteroidaceae
OOO
OOO

OOO

OOO

Liu et al. (2021b)
Vogt et al. (2017)
Zhuang et al. (2018)
Vascellari et al. (2020)

Rikenellaceae
Alis�pes

OOO
OOO
OOO

Vogt et al. (2017)
Haran et al. (2019)
Verhaar et al. (2022)

OOO

OOO

OOO
OOO

Li et al. (2019)
Bedarf et al. (2017)
Ren et al. (2020)
Zhang et al. (2021a)

Rikenellaceae
OOO
OOO

OOO

OOO

Zhang et al. (2021a)
Vogt et al. (2017)
Hung et al. (2022)
Ren et al. (2020)

Odoribacteraceae
Odoribacter OOO

OOO

OOO Haran et al. (2019)
Haran et al. (2019)
Verhaar et al. (2022)

OOO
OOO
OOO

Zhou et al. (2021)
Ren et al. (2020)
Vascellari et al. (2020)

Odoribacteraceae
Butyricimonas

Ren et al. (2020)

Tannerellaceae
Parabacteroides

OOO Li et al. (2019)

OOO
OOO

OOO

McLeod et al. (2023)
Khine et al. (2020)
Hill-Burns et al. (2017)

Prevotellaceae
Prevotella

OOO
OOO
OOO

Guo et al. (2021)
Xi et al. (2021)
Yildirium et al. (2022)

OOO Li et al. (2019)

OOO
OOO
OOO
OOO
OOO

OOO
OOO
OOO
OOO
OOO

Scheperjans et al. (2015)
Bedarf et al. (2017)
Hasegawa et al. (2015)
Gerhardt and Mohajeri (2018)
Wallen et al. (2020)
Petrov et al. (2017)
Li et al. (2023b)
Saji et al. (2019b)
Guo et al. (2021)
Aljumaah et al. (2022)
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OOO Asaoka et al. (2022)
Prevotellaceae
Paraprevotella

OOO Li et al. (2019)

Prevotellaceae
Alloprevotella

OOO Li et al. (2019)

Prevotellaceae OOO
OOO

Gerhardt and Mohajeri (2018)
Heravi et al. (2023)

Barnesiellaceae
Barnesiella OOO

OOO Haran et al. (2019)
Haran et al. (2019)

OOO
OOO

Hopfner et al. (2017)
Ren et al. (2020)

Chi�nophagaceae
Taibaiella

OOO
OOO

Zhou et al. (2021)
Zhou et al. (2021)

Porphyromonadaceae
Porphyromonas

OOO Wallen et al. (2020)

Sphingobacteriaceae
Sphingobacterium

OOO Pan et al. (2021)

Sphingobacteriaceae OOO Vascellari et al. (2020)
Phylum Pseudomonadota
Enterobacteriaceae
Escherichia/Shigella

OOO
OOO
OOO
OOO

Ca�aneo et al. (2017)
Li et al. (2019)
Hou et al. (2021)
Yildirium et al. (2022)

OOO Nagpal et al. (2019)
OOO
OOO
OOO
OOO

Scheperjans et al. (2015)
Hopfner et al. (2017)
Li et al. (2017)
Vascellari et al. (2020)

OOO Qian et al. (2018)
Enterobacteriaceae
Proteus

OOO Li et al. (2017)

Enterobacteriaceae
Citrobacter

OOO Li et al. (2023a)

Enterobacteriaceae
Enterobacter

OOO Vascellari et al. (2020)

Enterobacteriaceae
Serra�a

OOO Vascellari et al. (2020)

Enterobacteriaceae OOO Zhang et al. (2021a)

OOO
OOO Khine et al. (2020)

Liu et al. (2019b)
Su�erellaceae
Su�erella

OOO Li et al. (2019)

Sphingomonadaceae
Sphingomonas

OOO Zhou et al. (2021)

OOO Qian et al. (2018)
Pseudomonadaceae OOO Xi et al. (2021)
Burkholderiaceae
Ralstonia

OOO Keshavarzian et al. (2015)

Comamonadaceae
Aquabacterium

OOO Qian et al. (2018)

Rhizobiaceae OOO Zhang et al. (2021a)
Phylum Verrucomicrobiota
Akkermansiaceae
Akkermansia

OOO
OOO
OOO

Li et al. (2019)
Ling et al. (2021)
Yildirium et al. (2022)

OOO McLeod et al. (2023)
OOO
OOO
OOO
OOO
OOO
OOO
OOO
OOO

Bedarf et al. (2017)
Hill-Burns et al. (2018)
Cirstea et al. (2020)
Hirayama and Ohno (2021)
Lin et al. (2018)
Vascellari et al. (2020)
Gerhardt and Mohajeri (2018)
Heravi et al. (2023)

Akkermansiaceae OOO Hirayama and Ohno (2021)
Verrucomicrobiaceae
Prosthecobacter

OOO Vascellari et al. (2020)

Verrucomicrobiaceae OOO Ling et al. (2021)
OOO
OOO
OOOOOO

Hopfner et al. (2017)
Vascellari et al. (2020)
Gerhardt and Mohajeri (2018)
Heravi et al. (2023)

Phylum Fusobacteriota
Fusobacteriaceae
Fusobacterium

OOO Khine et al. (2020)

Leptotrichiaceae OOO Pan et al. (2021)
Leptotrichia
Phylum Synergistota
Synergistaceae OOO Xi et al. (2021)
Phylum Thermodesulfobacteriodota
Desulfovibrionaceae
Bilophila

OOO
OOO

Vogt et al. (2017)
Sheng et al. (2022)

OOO Verhaar et al. (2022)
Phylum Euryarchaeota
Methanobacteriaeae
Methanobrevibacter

OOO McLeod et al. (2023)

AD: Alzheimer’s Disease; D: Demen�a; MCI: Mild Cogni�ve Impairment; PD: Parkinson’s Disease; SCD: Subjec�ve Cogni�ve Decline

Increase: OO   Decrease: OOO
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Lactobacillales was slightly higher. 
In Austrian patients with different stages of dementia, Stadlbauer 

et al. (2020) found that members of the genera Clostridium, Anaerostipes, 
and Bacteroides were the most frequently associated with dementia, 
while members of the family Lachnospiraceae and the genera Lachnospira 
and Eubacterium were associated with health. Moreover, several genera 
were associated with the severity of cognitive impairment, the genera 
Faecalibacterium with mild dementia, Lactobacillus with moderate de-
mentia, and severe dementia was associated with Clostridium, Eisenber-
giella and Streptococcus, and members of the family Lactobacillaceae. Ling 
et al. (2021) reported a remarkable reduction in the bacterial diversity 
and changes in the composition of the fecal microbiota of Chinese AD 
patients. The abundance of the butyrate-producing genera Faecali-
bacterium, Roseburia, Gemmiger, Coprococcus, and Butyricicoccus 
decreased significantly, while the abundance of the lactate-producing 
genus Bifidobacterium and propionate-producing genus Akkermansia 
increased. In addition, other genera such as Clostridium, Dialister, and 
Romboutsia were found to be decreased in AD patients. 

Later, Jeong et al. (2022) identified differentially enriched gut mi-
croorganisms and their metabolic pathways in AD patients with de-
mentia compared to MCI subjects. They found significantly increased 
abundance of Bacillota, but decreased abundance of Bacteroidota at the 
phylum level in AD compared to controls. In AD patients, cognitive 
function scores were negatively associated with abundance of the genera 
Blautia, Anaerotruncus, and Gordonibacter. Hung et al. (2022), in a sys-
tematic review, reported that patients with AD showed significantly 
reduced gut microbiome diversity compared to controls. Based on 11 
studies reviewed, the authors concluded that differences in the micro-
bial spectrum of AD were found depending on the geographical area, 
and the most abundant microorganisms belonged to members of the 
phylum Pseudomonadota, and the genera Bifidobacterium and Phasco-
larctobacterium. In contrast, lower abundance was reported for members 
of the Bacillota phylum, and the Clostridiaceae, Lachnospiraceae, and 
Rikenellaceae families. More recently, Heravi et al. (2023) reported that 
several studies performed in AD patients showed an altered gut micro-
biome characterized by the abundance of members of the phyla Acid-
obacteriota, Actinomycetota, and Bacteriodota, as well as the family 
Ruminococcaceae and the genus Bacteroides. 

However, some studies have shown conflicting results with no 
changes in the gut microbiota of AD patients compared to that of con-
trols. For example, Cirstea et al. (2022) reported that the gut microbiota 
of AD patients was not different from controls, although it showed lower 
diversity. In addition, other studies have reported that members of the 
phylum Bacteroidota were present at higher levels in normal controls 
with Aβ-positive plasma (Sheng et al., 2022) and in AD patients (Haran 
et al., 2019; Vogt et al., 2017; Zhuang et al., 2018). Hung et al. (2022) 
and Jemimah et al. (2023) reported that the abundance of Alistipes and 
Bacteroides in AD patients was differentially affected by geographic 
conditions, depending on the diet and lifestyle. 

Several clinical studies have focused on the possible relationship 
between specific gut microbial populations and clinical biomarkers of 
AD and pathology progression. For instance, Cattaneo et al. (2017) 
found a possible positive relationship between Escherichia/Shigella levels 
and peripheral inflammation and brain amyloidosis biomarkers. Vogt 
et al. (2017) obtained correlations between the abundance of certain 
genera and CSF biomarkers of AD, including Aβ 42/Aβ 40, phosphory-
lated tau (p-tau), p-tau/Aβ ratio, and chitinase-3-like protein 1. They 
found a positive correlation between Blautia and Bacteroides levels and 
p-tau and p-tau/Aβ42 ratios. Sheng et al. (2022) found a negative cor-
relation between plasma Aβ42 and Aβ42/Aβ40 biomarkers and the 
levels of the Desulfovibrionaceae family, and the genera Bilophila and 

Faecalibacterium, suggesting that higher levels of these microbial pop-
ulations may be associated with lower Aβ brain deposition. Postmortem 
brain tissue from patients with AD showed that LPS and E. coli colo-
calized with amyloid plaques. Thus, the amyloid pathogenesis of AD 
would be triggered during MCI by a shift in the gut microbiota (Li et al., 
2019). 

Various studies have compared the differences in gut microbial 
profiles between MCI and AD to address whether there is a relationship 
between these profiles and disease progression. In a clinical study con-
ducted in the United States, Haran et al. (2019) concluded that the 
composition of the gut microbiome differed depending on the type of 
dementia. In patients with AD, the genera Bacteroides, Alistipes, Odor-
ibacter, and Barnesiella increased, and the genus Lachnoclostridium 
decreased. However, in other types of dementia, the authors found 
increased abundance of Odoribacter and Barnesiella, and decreased 
abundance of Lachnoclostridium, Eubacterium, Roseburia, and Collinsella. 
Furthermore, Liu et al. (2019) reported that the fecal microbial diversity 
was decreased in AD patients compared to MCI and control groups. In 
addition, the microbial composition was different among the three 
groups. The families Clostridiaceae and Lachnospiraceae were signifi-
cantly decreased in AD and MCI groups compared to control, while 
Ruminococcaceae, Blautia, and Ruminococcus were decreased in the AD 
compared to MCI. Members of the family Enterobacteriaceae showed a 
progressive increase from control to AD patients, while this increase was 
found in MCI vs. control for the family Veillonellaceae. Li et al. (2019) 
found that patients with AD and MCI had decreased microbial diversity, 
although no difference in microbial communities was found between AD 
and MCI patients. The authors identified differences between AD and 
healthy controls in 11 genera from feces and blood, with increases in the 
genera Dorea, Lactobacillus, Streptococcus, Bifidobacterium, Blautia, and 
Escherichia, and decreases in the genera Alistipes, Bacteroides, Para-
bacteroides, Sutterella, and Paraprevotella. 

Other studies have been conducted to determine the relationship 
between the differences in gut microbiome profiles and the severity of 
the disease (Guo et al., 2021; Yıldırım et al., 2022), the presence of 
neuropsychiatric symptoms (Zhou et al., 2021), or the higher odds of 
positive amyloid and p-tau status (Verhaar et al., 2022). Interestingly, 
Guo et al. (2021), comparing the fecal samples from AD and MCI pa-
tients and healthy controls, found no difference in the microbial α-di-
versity among the three groups, although patients with AD or MCI had 
increased β-diversity. Patients with AD had decreased Bacteroides, 
Lachnospira and Ruminiclostridium, and increased Prevotella compared to 
healthy controls. Similar changes of these genera were found in MCI 
patients compared to AD patients. However, Lachnospira was the only 
genus whose abundance was statistically significantly lower in patients 
with MCI than in healthy controls, and the negative correlation of Pre-
votella with cognitive function remained in patients with MCI. Yıldırım 
et al. (2022) concluded that patients with AD or MCI have an intestinal 
dysbiosis consisting of a decrease in protective bacteria, such as Bac-
teroides, and of an increase in pro-inflammatory bacterial genera, such as 
Prevotella. Members of the genera Roseburia, Lactobacillus, Fusicateni-
bacter, and Faecalibacterium were underrepresented, while the genera 
Escherichia/Shigella and Akkermansia were overrepresented in AD sam-
ples. Verhaar et al. (2022) compared patients with AD, MCI, and SCD to 
find differences in their gut microbiomes; only two genera, Sub-
doligranulum and Phascolarctobacterium, had different abundances be-
tween groups, but no differences in α- and β-diversity were found. The 
authors reported that the highest ranked predictors of amyloid and p-tau 
status belonged to the Lachnospiraceae family, including Roseburia, 
Ruminococcus, Lachnoclostridium, Monoglobus, and Marvinbryantia. In 
contrast, higher abundance of Odoribacter and Alistipes correlated with 

Additional references cited in Table 2 (Bedarf et al., 2017; Cirstea et al., 2020; Hasegawa et al., 2015; Heeney et al., 2018; 
Hidalgo-Cantabrana et al., 2017; Hill-Burns et al., 2017; Hopfner et al., 2017; Li et al., 2017b; Lin et al., 2018; Liu et al., 2021b; 
McLeod et al., 2023; Petrov et al., 2017). 
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more normal levels of AD biomarkers (higher amyloid and lower p-tau 
CSF levels). In addition, the highest predictors of the amyloid in all 
subjects included Eubacterium, Subdoligranulum, and Anaerostipes; 
whereas, the predictors of p-tau included members of Lachnospiraceae, 
Lachnoclostridium, and Blautia. Wanapaisan et al. (2022) found that 
there were no significant differences in α- and β-diversity among MCI, 
AD and control groups in Thai subjects. Regarding the difference in the 
bacterial abundance between MCI and AD patients, the members of 
Lachnospiraceae and of the genus Clostridium were lower compared to the 
control group. Besides, AD patients showed a higher abundance of 
Escherichia/Shigella, Bacteroides, Holdemanella, Romboutsia, and Mega-
monas, while MCI patients showed an increase in the abundance of 
Fusicatenibacter, Agathobacter, and Faecalibacterium. The authors sug-
gested that the decrease in Clostridium, Agathobacter, and Faecalibacte-
rium in AD patients may be positively correlated with the brain volume 
of the hippocampus and amygdala, which is the first sign of cognitive 
decline in the elderly (Zanchi et al., 2017). Table 2 lists several studies 
conducted in AD patients that reported an altered gut microbiome. 

3.3.3. Parkinson’s disease (PD) 
PD is the most common movement disorder characterized by 

postural instability, gait disturbance, muscle rigidity, bradykinesia, and 
resting tremor (Hirayama and Ohno, 2021). The hallmark of PD is the 
aggregation of the presynaptic neuronal protein α-synuclein, which 
spreads progressively from the ENS to the CNS via the vagus nerve. 
There is epidemiologic evidence that PD initially begins in the gut and 
not in the brain, strongly suggesting a role for the vagus nerve in the 
pathogenesis of PD (Liu et al., 2017; Svensson et al., 2015). In the CNS, 
α-synuclein aggregates that form Lewy bodies are associated with the 
presence of dopaminergic neuron loss in the substantia nigra (Lücking 
and Brice, 2000; Molinero et al., 2023). Irwin et al. (2013) suggested 
that PD shares similar pathological changes with AD, such as neurofi-
brillary tangles, Aβ plaques, and tau propagation, which may accelerate 
the process of cognitive decline in PD. Several disease genes and risk 
factors have been proposed as modulators of immune function in PD, 
such as the viral, bacterial, or pesticides exposure. Tansey et al. (2022) 
hypothesized that gene-environment interactions, combined with an 
aging immune system, enable the development and progression of PD. 

Although several studies have suggested that dysbiosis of the gut 
microbiome plays an important role in the pathogenesis of more than 80 
% of PD patients (Keshavarzian et al., 2015; Molinero et al., 2023; Qian 
et al., 2018; Scheperjans et al., 2015), the alteration of the fecal 
microbiota in PD with cognitive impairment has been poorly studied. 
Gerhardt and Mohajeri (2018) reviewed several studies on neurode-
generative diseases, including PD, and concluded that studies reported 
an increased abundance of members of the families Verrumicrobiaceae 
and Ruminococcaceae, and of the genera Lactobacillus, Bifidobacterium, 
Akkermansia, Christensenella, and Oscillospira in PD patients. In contrast, 
these authors reported a decreased abundance in the families Pre-
votellaceae and Lachnospiraceae, and in the genera Faecalibacterium, 
Coprococcus, Blautia, Prevotella, Clostridium, and Eubacterium. 

Ren et al. (2020) compared the gut microbiota of Chinese PD patients 
with mild cognitive impairment (PD-MCI), PD patients with normal 
cognition (PD-NC), and healthy controls. Fecal microbial diversity was 
increased in patients with PD-MCI and PD-NC compared to controls, and 
the PD-MCI group had a higher abundance of members of the families 
Rikenellaceae and Ruminococcaceae, and members of the genera Alistipes, 
Anaerotruncus, Barnesiella, Butyricimonas, and Odoribacter. Moreover, the 
abundance of the genera Blautia and Ruminococcus decreased in the PD- 
MCI group compared to the PD-NC group. Gut microbiota and metab-
olome changes in Italian PD patients were investigated by Vascellari 
et al. (2020). The most significant changes within the PD group were a 
reduction in bacterial taxa, particularly in the families Lachnospiraceae, 
Bacteroidaceae, Brevibacteriaceae, and Sphingobacteriaceae, and in the 
genera Butyrivibrio, Pseudobutyrivibrio, Coprococcus, Blautia, Roseburia, 
Brevibacterium, Bacteroides, Lachnospira, Dolichospermum, and 

Odoribacter, some of which are producers of SCFAs. In contrast, PD pa-
tients had increased abundance of members of the families Verrumicro-
biaceae, Bifidobacteriaceae, Streptococcaceae, and Desulfohalobiaceae, and 
of the genera Akkermansia, Escherichia, Bifidobacterium, Streptococcus, 
Clostridium, Serratia, Veillonella, Prosthecobacter, Enterobacter, and 
Slackia. 

Interestingly, Wallen et al. (2020) identified three clusters of mi-
croorganisms associated with PD. Cluster 1 consisted of opportunistic 
pathogens, all of which were increased in PD; cluster 2 included SCFA- 
producing bacteria, all of which were decreased in PD; and cluster 3 
consisted of carbohydrate-metabolizing probiotics, all of which were 
increased in PD. At the genus level, they found that Porphyromonas, 
Prevotella, Corynebacterium, Bifidobacterium, and Lactobacillus had higher 
abundance in PD than in controls, while the genera with lower abun-
dance were Faecalibacterium, Agathobacter, Blautia, Roseburia, Fusicate-
nibacter, Lachnospira, Butyricicoccus, and Oscillospira. Hirayama and 
Ohno (2021), in a meta-analysis of PD patients from 5 countries, sur-
prisingly reported that the Lactobacillaceae and Akkermansiaceae fam-
ilies were dominant in the gut microbiome of PD patients, with 
Akkermansia and Christensenella (formerly Catabacter) being the pre-
dominant genera. In contrast, members of the genera Roseburia and 
Faecalibacterium, and the family Lachnospiraceae, decreased in PD pa-
tients. The decrease in SCFA-producing bacteria and the increase in 
mucin-degrading bacteria observed in PD suggest that the dysbiosis 
should increase intestinal permeability, subsequently facilitating expo-
sure of the intestinal neural plexus to toxins such as LPS, which should 
lead to abnormal aggregation of α-synuclein fibrils. Heravi et al. (2023) 
reported in a systematic review that the phyla Bacteroidota, Bacillota 
and Pseudomonadota were the most abundant in the gut microbiome in 
PD studies. The microbial dysbiosis in PD patients was characterized by 
a high abundance of members of the families Verrucomicrobiaceae, 
Lachnospiraceae and Ruminococcaceae, and species of the genera Akker-
mansia and Bifidobacterium. Table 2 includes several studies conducted 
in PD patients that reported an altered gut microbiome. 

3.3.4. Other neurodegenerative diseases 
Multiple sclerosis (MS) is an autoinmune demyelinating neurode-

generative disease in which aging may play an important role within 
disease progression due to dysregulation of the adaptive and innate 
immune systems (Cekanaviciute et al., 2018; Dobson and Giovannoni, 
2019). The majority of MS patients develop a relapsing-remitting form 
of the disease (RRMS), while a smaller proportion of them present a 
primary progressive form of the disease (PPMS) (Lassmann, 2019). 
During the course of the disease, many RRMS patients advance to a 
secondary progressive MS course (SPMS), and aging is one of the 
greatest risk factors for developing SPMS, adding its associated greater 
disability and loss of quality of life (Lassmann, 2019). Therefore, it is 
important to know whether host-microbiome interactions are involved 
in this aging transition. Chen et al. (2016) reported that MS patients had 
a distinct microbial profile compared to healthy controls, characterized 
by increased abundance of the genera Pseudomonas, Mycoplana, Hae-
mophilus, Blautia, and Dorea in MS patients, whereas the control group 
showed increased abundance of the genera Parabacteroides, Adler-
creutzia, and Prevotella. However, Jangi et al. (2016) found that micro-
biome changes in MS included increases in the archaea 
Methanobrevibacter and the bacterial genus Akkermansia, and decreases 
in the genus Butyricimonas. In addition, treated patients showed in-
creases in the genera Prevotella and Sutterella, and decreases in the genus 
Sarcina. Patients diagnosed with SPMS showed microbial ß-diversity 
with increased abundance of Akkermansia spp., Clostridium bolteae and 
Ruthenibacterium lactatiformans, and decreased abundance of Blautia 
wexlerae, Dorea formicigenerans, and members of the family Erysipelo-
trichaceae (Cox et al., 2021). On the contrary, Mirza et al. (2020) con-
ducted a systematic review and concluded that the diversity of the gut 
microbiota did not differ between MS cases and controls in the majority 
of studies analyzed, and only two studies reported lower relative 
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abundance of Prevotella spp., Faecalibacterium prausnitzii, Bacteroides 
coprophilus and B. fragilis, and higher abundance of Methanobrevibacter 
spp. and Akkermansia muciniphila in MS patients compared to controls. 
Therefore, it could be speculated that some microbial species may be 
protective against MS progression, although further research is needed 
to verify this hypothesis; in addition, there is no evidence to support the 
relationship between the age-related changes in the gut microbiome and 
the MS disease progression. 

Post-stroke cognitive impairment (PSCI) is a serious condition that 
leads to disability after an acute ischemic stroke, which in turn can 
induce to a state of dementia (Rost et al., 2022). In fact, stroke is 
increasingly recognized as an important cause of cognitive problems and 
has been implicated in the development of both AD and vascular de-
mentia in the elderly (Lo Coco et al., 2016). However, the association of 
PSCI with the gut microbiome has been poorer studied. Singh et al. 
(2016) found that reduced species diversity and bacterial overgrowth of 

Bacteriodota members were identified as hallmarks of post-stroke dys-
biosis, which was associated with intestinal barrier dysfunction and 
reduced intestinal motility. Later, Liu et al. (2020b) reported that PSCI 
patients were characterized by significantly decreased α-diversity, 
disturbed microbial composition, and corresponding metabolites 
compared to non-PSCI patients. Increased genera were Fusobacterium, 
Bacteroides, Clostridum, Gemella, and Flavinofractor, and decreased 
abundance of SCFA-producing genera such as Oscillibacter, Rumino-
coccus, Gemmiger, Barnesiella, and Coprococcus. Furthermore, patients 
with post-stroke comorbid cognitive impairment and depression 
(PSCCID) had increased abundance of members of the phylum Pseudo-
monadota, particularly members of the family Enterobacteriaceae, and 
decreased abundance of several SCFA-producing bacteria compared to 
controls (Ling et al., 2020). Zheng et al. (2022) found a high prevalence 
of gastrointestinal dysfunction and intestinal inflammation with 
increased gut permeability in cryptogenic stroke (CS) patients compared 

Table 3 
Treatments used in human elderly.  

Intervention Components Outcomes Reference 

Antimicrobials Rifaximin Improves working memory and inhibitory control in CI 
patients. 

Ahluwalia et al. 
(2014) 

Rifaximin Reduces serum neurofilament-light levels. Does not 
improve cognition in AD patients. 

Suhocki et al. 
(2022) 

Probiotics Lactobacillus casei, L. acidophilus, L. fermentum, and Bifidobacterium bifidum Improves insulin sensitivity and cognitive scores, and 
reduces CRP levels. 

Akbari et al. (2016) 

Several species and strains of Lactobacillus and Bifidobacterium No beneficial effects on cognition in AD patients. Agahi et al. (2018) 
L. casei, L. acidophilus, L. lactis, L. paracasei, L. plantarum, L. salivarius, B. bifidum, 
and B. lactis 

No beneficial effects on cognition in AD patients. Leblhuber et al. 
(2018) 

L. helveticus Improves attention and delayed memory in healthy 
aged adults. 

Ohsawa et al. 
(2018) 

B. longum subsp. longum, B. longum subsp. infantis, and B. breve Improves mental status, body weight and bowel 
movement in healthy elderly subjects. 

Inoue et al. (2018) 

L. acidophilus, B. bifidum, and B. longum + selenium Improves cognitive function and reduces inflammation 
and oxidative stress in AD patients. 

Tamtaji et al. 
(2019) 

B. breve Improves cognitive function in severe MCI subjects. Kobayashi et al. 
(2019) 

L. plantarum Improves attention cognitive scores in MCI subjects. Hwang et al. 
(2019) 

L. rhamnosus Improves cognitive composite score in MCI 
individuals. 

Sanborn et al. 
(2020) 

B. breve Improves memory function in subjects with MCI. Xiao et al. (2020) 
B. bifidum and B. longum Improves cognitive and mental health, and alters 

microbial gut microbiome composition in healthy 
adults. 

Kim et al. (2021) 

Faecalibacterium prausnitzii Improves cognitive scores in MCI subjects. Ueda et al. (2021) 
L. plantarum Improves motor skills and quality of life in PD patients. Lu et al. (2021a, 

2021b) 
L. rhamnosus Improves cognitive score in MCI adults. Aljumaah et al. 

(2022) 
L. plantarum, L. rhamnosus, L. casei, L. johnsonii, L. paracasei, L. fermentum, L. 
salivarius, L. acidophilus, L. reuteri, B. lactis, B. animalis, B. infantis, and Lactococcus 
lactis 

Improves cognitive function and sleep quality. Fei et al. (2023) 

B. longum Improves cognitive function. Shi et al. (2023) 
Prebiotics Galactooligosaccharides mixture Improves immune function. Vulevic et al. 

(2015) 
Fructooligosaccharides and inulin Improves exhaustion and handgrip strength. No effect 

on cognitive behavior or sleep quality. 
Buigues et al. 
(2016) 

Fructooligosaccharides and inulin Reduces frailty indexes. Theou et al. (2019) 
Synbiotics Fructooligosaccharides + B. lactis, L. rhamnosus, L. acidophilus, and L. paracasei Improves cognition in healthy elderly. Louzada and 

Ribeiro (2020) 
Kefir + fermented milk Improves cognitive deficits in AD patients. Ton et al. (2020) 
Fructooligosaccharides, inulin and vegetable magnesium stearate + L. plantarum, 
L. acidophilus and L. reuteri 

Anti-inflammatory effects (reduction in CRP and TFN- 
α levels). 

Cicero et al. (2021) 

Postbiotics Propionic acid Increases immunoregulatory T cells and reduces brain 
atrophy. 

Duscha et al. 
(2020) 

Propionic acid Increases odds of cognitive decline. Neuffer et al. 
(2022) 

Heat-inactivated Lactiplantibacillus plantarum Protective effects on memory function in older adults. Sakurai et al. 
(2022) 

Bacteriophages Improves executive function and memory. Mayneris-Perxachs 
et al. (2022) 

Alzheimer’s disease (AD); Cognitive impairment (CI); Mild Cognitive Impairment (MCI); Parkinson’s disease (PD); C reactive protein (CRP); Tumor factor necrosis 
(TFN). 
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to normal controls. The α-diversity index was significantly higher in CS 
patients. At the family level, a significantly higher abundance of 
Enterobacteriaceae, Streptococcaceae and Lactobacillaceae, and a lower 
abundance of Veillonellaceae, were observed in the CS group. At the 
genus level, there was an increased abundance of Escherichia/Shigella, 
Streptococcus, Lactobacillus, and Klebsiella in the CS group, and a decrease 
in Faecalibacterium, Dialister, and Roseburia. 

Delirium is the most common acute neuropsychiatric complication in 
hospitalized older adults (Inouye et al., 2014) and is characterized by 
inattention, disorganized thinking, and altered level of consciousness 
(Marcantonio, 2017). Curiously, delirium and gut dysbiosis share 
several characteristics, such as high prevalence in older adults and as-
sociation with multifactorial conditions, and they are influenced by 
inflammation, neuroendocrine dysregulation, and oxidative stress 
(DeJong et al., 2020). Studies in intensive care unit patients have shown 
that the gut microbiome can be altered during acute illness (Ojima et al., 
2016), with lower abundance and diversity of microorganisms (Garcez 
et al., 2023). In addition, higher inflammatory biomarkers are associ-
ated with delirium and gut dysbiosis (DeJong et al., 2020; McNeil et al., 
2019), as certain gut bacteria can produce pro-inflammatory cytokines, 
while other taxa (e.g., Lactobacillus acidophilus and Bifidobacterium breve) 
exert anti-inflammatory effects (Thevaranjan et al., 2017). Garcez et al. 
(2023), investigating the association between gut microbiota and 
delirium occurrence in acutely ill older adults, found that a higher 
abundance and richness of microorganisms (α-diversity) was associated 
with a lower risk of delirium, while bacterial taxa (such as Enterobac-
teriaceae) associated with pro-inflammatory pathways, and increased IL- 
6 and IL-10, were related with delirium (Garcez et al., 2023; Menezes- 
Garcia et al., 2020). The enrichment of Enterococcus was associated with 
higher levels of these cytokines, while the archaea Methanobrevibacter 
was associated with lower levels of IL-10. Although IL-10 is thought to 
be anti-inflammatory, there is evidence for a dual role of this cytokine, 

with a modulatory effect beginning early in the acute phase response, 
which explains the elevation of both IL-6 and IL-10 in the delirium group 
(Saraiva and O’Garra, 2010; Saraiva et al., 2020). Other pathophysio-
logical mechanisms may contribute to this relationship; for example, 
some bacterial strains can modulate the production of neurotransmitters 
involved in the onset of delirium (Fond et al., 2015). Strains from the 
genus Serratia have the capability of producing dopamine, while Bac-
teroides and Parabacteroides have been associated with GABA modula-
tion (Strandwitz et al., 2019). Thus, the relationship between delirium 
and gut microbiota is bidirectional: on the one hand, precipitating fac-
tors (e.g., infection or metabolic dysfunction) and those related to the 
pathophysiology of the delirium (e.g., inflammatory biomarkers or 
neuroendocrine dysregulation) are potential microbiota modifiers. On 
the other hand, gut bacteria may modulate the onset of delirium by 
producing cytokines and neurotransmitters. 

3.4. Bacterial metabolomes and neurodegenerative diseases 

Gut bacteria could influence the CNS by secreting specific metabo-
lites that are transported by the adrenal gland or the vagus nerve and 
cross the BBB, affecting brain cell behavior directly or indirectly by 
promoting epigenetic changes in chromatin (de Vos et al., 2022; Liu 
et al., 2020b; Narengaowa et al., 2021; Varesi et al., 2022). In addition, 
various functional changes induced by microbial metabolites have been 
reported to be associated with cognitive impairment states (Connell 
et al., 2022; Duan et al., 2021; Liu et al., 2019; Vogt et al., 2017). Ling 
et al. (2021) described an increase in functions related to fatty acid and 
lipoic acid metabolism and folate biosynthesis in AD-associated micro-
biota, and a decrease in pathways related to bacterial fatty acid 
biosynthesis. Moreover, it has been reported that gut bacteria from 
elderly people without dementia present an increase in butyrate- 
encoding genes involved in butyrate biosynthetic pathways, while 

Fig. 1. Relationship between different microbial metabolites and several aged-associated manifestations (according to Ghosh et al., 2020a, 2022; Margiotta et al., 
2021; Soysal et al., 2016). Blue lines: positive regulation. Red lines: negative regulation. SCFAs: short-chain fatty acids. GABA: gamma-aminobutyric acid. HDAC: 
histone deacetylase. LPS: lipopolysaccharide. TMA: trimethylamine. TMAO: trimethylamine N-oxide. 
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these genes were absent in AD patients (Haran et al., 2019). Wu et al. 
(2021a) reported several gut metabolomic profiles that distinguished 
AD and MCI patients from healthy subjects, and found that differences in 
tryptophan metabolites, SCFAs, and LCA profiles correlated with the 
microbiome dysbiosis and with the degree of cognitive impairment. 
Differences in other fecal metabolites, such as organic acids, lipids, 
benzenoids and piperidine, have been suggested to differentiate AD 
patients from normal controls (Xi et al., 2021). 

SCFAs play important roles in gut microbiome health, such as an 
energy source for the colonic epithelial cells, as elements that maintain 
tight junctions to regulate intestinal permeability, as preventive agents 
in relation to the endotoxin translocation, and they as well have a po-
tential anti-inflammatory effect (Louis and Flint, 2017; Makki et al., 
2018; Peng et al., 2009; Vinolo et al., 2011). As mentioned above, SCFAs 
and BAs cross the intestinal barrier to reach the systemic circulation, and 
can also cross the BBB to modulate key functions in host health (Mon-
teiro-Cardoso et al., 2021; Mulak, 2021; Silva et al., 2020). Systemic 
inflammatory responses caused by compounds secreted by bacteria or 
bacterial structures (LPS) can expand the BBB, by activating the TLR4/ 
IRF-3 signaling pathway in endothelial cells in blood vessels, disrupting 
the intestinal epithelial barrier (Choi et al., 2012), and promoting CNS 
inflammation by activating the LPS/TLR4 pathway in brain glial cells 
(Stehle Jr et al., 2012; Ghosh et al., 2015). 

Some of these metabolites are altered in several neurodegenerative 
diseases: acetate, valerate, and higher serum levels of LPS, have been 
associated with amyloid deposition in the brain, as well as with pro- 
inflammatory cytokines in AD patients (Marizzoni et al., 2020); while 
butyrate, which affects serotonin release and gut hormone release in the 
enteric nervous system (ENS), can stimulate the vagus nerve and trigger 
endocrine signaling that affects brain function (Stilling et al., 2016). In 
addition, AD and cognitive decline have been associated with increased 
levels of secondary BAs such as DCA, and with decreased serum con-
centrations of primary BAs such as cholic acid (CA) (Mahmou-
dianDehkordi et al., 2019; Varma et al., 2021). Furthermore, Baloni 
et al. (2020) reported altered synthesis and metabolism of primary and 
secondary BAs in postmortem brain samples from AD patients, with 
higher levels of primary BAs such as taurocholic acid (TCA), and sec-
ondary BAs such as DCA, LCA, taurodeoxycholic acid (TDCA), and 
glycodeoxycholic acid (GDCA), suggesting that these BAs may be asso-
ciated with cognitive function. 

Gut microbiome dysbiosis also alters tryptophan metabolism, 
resulting in a shift in the balance of the kynurenine pathway (KP), which 
appears to play a critical role in AD pathology by leading to neuro-
inflammation (Garcez et al., 2019). Gut bacteria can modulate the 
circulating concentration of tryptophan, which is mainly metabolized by 
the KP to produce the neuroprotective kynurenic acid (KYN), the anti-
oxidant 3-hydroxyanthranilic acid (3-HAA), and neurotoxic metabolites 
such as 3-hydroxykynurenine (3− HK) and quinolinic acid (QUIN) 
(Garcez et al., 2019; Schwarz et al., 2013). The association between KP 
and AD includes: (i) decreased tryptophan and 3-HAA concentrations in 
AD plasma; (ii) increased KYN/tryptophan ratio and 3-HK in serum of 
AD patients; and (iii) accumulated QUIN in the hippocampus of AD 
patients (Giil et al., 2017; Guillemin et al., 2003). 

Trimethylamine N-oxide (TMAO) has been found at elevated levels 
in patients with CSF, MCI, PSCI and AD, and can therefore be considered 
a biomarker of neuronal degeneration (Vogt et al., 2018; Zhu et al., 
2020). TMAO, together with LPS, promotes increased permeability of 
the intestinal barrier and loss of its integrity because of the release of 
inflammatory cytokines and the unbalanced inflammatory response (Liu 
et al., 2020a). This enteric inflammation may facilitate the translocation 
of pathogenic gut bacteria, their dissemination into the CNS, and the 
passage of pro-inflammatory bacterial neurotoxins, resulting in detri-
mental effects on neuronal homeostatic function, neuroinflammation, 
and ultimately the neurodegeneration associated with AD (Emery et al., 
2017; Liu et al., 2020a; Rutsch et al., 2020). A novel choroid plexus 
vascular barrier (PVB) has been described in response to gut 

inflammation induced by bacterial LPS, suggesting that PVB may be 
related to mental disorders (Carloni et al., 2021). Additionally, extra-
intestinal microbial pathologies have been associated with gut micro-
biota dysbiosis causing leakage of the gut vascular barrier (GVB), 
leading to systemic dissemination of microorganisms or microbial- 
derived molecules to other distant organs (Brescia and Rescigno, 2021). 

Higher levels of other gut microbiome metabolites, such as ammonia, 
formic acid, lactic acid, phenol, and p-cresol, have also been suggested 
to be associated with the presence of dementia disease, independently of 
other risk factors for the disease or of the dysregulation of the gut 
microbiome (Saji et al., 2020). 

3.5. Gut microbiome and age-dependent epigenetics changes 

In addition to the nuclear chromosome genome, humans possess the 
mitochondrial and the genome of at least thousands of microorganisms 
present in various human microbiomes. Epigenetic modifications occur 
in the human nuclear chromosomes, although methylation can also 
occur in mitochondrial and microbial DNA (Cheung et al., 2018; Kho 
and Lal, 2018). Mitochondrial DNA methylation may regulate some 
functions and may be altered in some cortical neurons with aging, and in 
some neurodegenerative diseases (Dzitoyeva et al., 2012; Iacobazzi 
et al., 2013; Sharma et al., 2019). 

A number of prominent features, including genetic and epigenetic 
changes, have emerged during aging. The major age-associated epige-
netic changes are derived from DNA methylation, histone modification, 
chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA 
modification (Wang et al., 2022). DNA hypomethylation is associated 
with aging, but hypermethylation also occurs at selective cytosine- 
phosphate-guanine (CpG) islands to form 5-methylcytosine (5-mC) 
(Sailani et al., 2019; Wang et al., 2022), and the levels of CpG methyl-
ation are reliable age estimators, called epigenetic clocks, for predicting 
chronological age (Horvath and Raj, 2018). The second-generation 
clocks are denominated PhenoAge and GrimAge; the first introduced 
morbidity and mortality into the model predicting 10- and 20-year old 
mortality (Levine et al., 2018), and the second is a more predictive 
element for identifying clinical phenotypes (McCrory et al., 2021). 
Notably, a recent study constructed a single-cell age clock (scAge) that 
indicates epigenetic age using single-cell methylation data (Trapp et al., 
2021). 

DNA methylation is mediated by DNA methyltransferases (DNMT1, 
DNMT3A, and DNMT3B) and their expressions are age-dependent; the 
expression of DNMT1 decreases with age, resulting in a reduced DNA 
methylation levels, whereas the expressions of DNMT3A and DNMT3B 
increase with age and they contribute to de novo methylation of CpG 
islands in mammalian cells (Yagi et al., 2020). However, DNA methyl-
ation at the promoter of a gene can lead to its silencing. In contrast, the 
methyl group on DNA is removed by ten-eleven translocation (TET) 
enzymes (Verma et al., 2018). In clinical research, mutations in TET2 or 
DNMT3A increase the expression of pro-inflammatory cytokines and 
chronic inflammation in elderly patients, which is associated with 
conventional cardiovascular disease (Bick et al., 2020). 

Post-translational modifications of histones can activate or silence 
gene expression. The most common modifications found during aging 
include methylation and acetylation, although phosphorylation, ubiq-
uitination, and ADP ribosylation have also been reported (Wang et al., 
2022). In vivo and in vitro studies have reported changes in the levels of 
H3K9me3 (tri-methylation at the 9th lysine residue of the histone H3 
protein subunit), H4K20me3 (tri-methylation at the 20th lysine residue 
of the histone H4 protein subunit), H3K27me3 (tri-methylation at the 
27th lysine residue of the histone H3 protein subunit) (Sidler et al., 
2017), and H3K9ac (acetylation at the 9th lysine residue of the histone 
H3 protein subunit) during aging that show a direct association with 
longevity (Wang et al., 2022). H3K4me3 (tri-methylation at the 4th 
lysine residue of the histone H4 protein subunit) plays an important role 
in determining aging and lifespan by regulating the expression of aging- 
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related genes, H3K27me3 is associated with gene silencing and com-
pacted heterochromatin, and H3K36me3 (tri-methylation at the 36th 
lysine residue of the histone H3 protein subunit) and H3K9me3 are 
associated with a shorter lifespan (Sidler et al., 2017). In addition, RNA 
modifications and ncRNA regulation have been proposed to be involved 
in the regulation of aging (Li et al., 2017a). 

Bacteria can also influence the epigenetic marks associated with host 
DNA methylation. Indeed, Helicobacter pylori infection promotes DNA 
methylation in the gastric mucosa, and Escherichia coli (uropathogenic 
UPEC strains) can induce DNA methylation in eukaryotic cells 
(Muhammad et al., 2019; Russell et al., 2023). Besides, the interaction of 
bacterial metabolites with human cells can also alter DNA methylation 
and induce some neurological disorders (Alam et al., 2017; Bulgart et al., 
2020; Miro-Blanch and Yanes, 2019). With respect to brain cells, some of 
the aforementioned age-related changes in DNA methylation have been 
associated with the risk of various neurological diseases such as AD 
(Condliffe et al., 2014). A preclinical study, using a mouse model of AD, 
reported the existence of some punctual changes in DNA methylation 
(differentially methylated regions or DMRs) associated with specific 
brain regions (Kundu et al., 2021). Similarly, they reported that 21 gut 
bacteria significantly predicted some of these DMRs, as well as some 
behavioral outcomes in mice. The most relevant DMRs were apolipo-
protein E, which is associated with the Muribaculaceae family, and 
apolipoprotein C2, which is associated with the Lachnospiraceae family. 
In addition, other DMRs were linked with other AD-associated genes, 
such as ceramide kinase-like (CerkI) and glucagon-like peptide-2 re-
ceptor (GLp2r), which have relevant roles in neurite function and spatial 
cognition, all of which are impaired with aging. These DMRs were 
positively associated with Lachnoclostridium and negatively associated 
with Muribaculaceae, respectively. Interestingly, the results revealed 
correlations between the presence of the gut microbial family Lachno-
spiraceae and epigenetic changes associated with the hippocampal 
epigenetic landscape. Xie et al. (2022) found that decreased abundance 
of bacterial butyrate producers, such as Roseburia, Romboutsia, and 
Prevotella, was associated with epigenetic changes in leukocytes and 
neurons from PD patients and with the severity of their depressive 
symptoms. In short, gut microbiota regulates brain cell activities by 
modulating DNA methylation and histone modifications, but research 
on the molecular and signaling pathways underlying this interaction 
remains limited. 

3.6. Microbial therapeutic approaches to improve cognitive functions in 
elderly 

The gut microbiome primarily influences neurological function 
through the gut-brain axis, by secreting metabolites, limiting pathogens, 
and maturating the immune system. It provides a route of communica-
tion between the SNC and the internal organs, through the nervous 
system and the production of neuromodulators (Quigley, 2017; Rolhion 
and Chassaing, 2016). In neurodegenerative diseases, the pathway be-
tween gut microbiome dysbiosis and neurodegeneration includes im-
mune activation through a defective gut barrier, induction of a systemic 
inflammatory response, BBB damage, and neuroinflammation (Konturek 
et al., 2015). 

Although spontaneous reversal of MCI is common, it has never been 
reported in patients with AD (Fessel, 2023); therefore, there is not a 
definitive cure for AD, and most of the current drugs approved for 
clinical use in AD are symptomatic treatments that do not improve the 
pathological changes of that condition (Li et al., 2023b). However, 
several preclinical studies have reported success in improving cognition 
using microbial interventions such as fecal microbiota transplantation 
(FMT) in the early stages of the disease (Kim et al., 2020; Sun et al., 
2019). Several clinical interventions that alter the gut microbiome, such 
as FMT, probiotics, prebiotics, and antibiotics, as well as lifestyle in-
terventions such as diet and exercise, have been tested to improve the 
mental health or to reduce the incidence or severity of symptoms of 

cognitive impairment (Boehme et al., 2023; Hwang et al., 2019; Sorbara 
and Pamer, 2022) (Table 3). 

3.6.1. FMT and antimicrobial treatments 
One potential treatment method to restore the composition and 

function of the dysbiosis of the gut microbiome is the introduction of 
fecal matter from healthy young subjects into the gastrointestinal tract 
of elderly people, known as FMT (Alsegiani and Shah, 2022). In addi-
tion, the FMT method has been used in clinical trials to treat a variety of 
pathologies, including functional gastrointestinal disorders, chronic 
constipation, inflammatory bowel disease, and autoimmune diseases 
(Choi and Cho, 2016). 

Results from clinical trials are limited by small sample sizes, 
although some have shown that FMT can alleviate symptoms in patients 
with PD (Kuai et al., 2021; Xue et al., 2020). Furthermore, individual 
case studies have reported that FMT improved cognitive performance in 
AD subjects who received FMT to treat Clostridium difficile infection 
(Hazan, 2020; Park et al., 2021, 2022). This evidence suggests that FMT 
may be a potential treatment to remodel the microbiome-gut-brain axis 
in patients suffering from age-related neurological diseases. However, 
the use of FMT is limited due to unknown long-term efficacy and to 
reported side effects, such as the possibility of transferring bacterial 
endotoxins and/or infectious agents to the recipient, which could 
exacerbate the gastrointestinal symptomatology (Alsegiani and Shah, 
2022; De Leon et al., 2013; Schwartz et al., 2013). Therefore, the 
isolation of a defined set of fecal bacteria and their subsequent trans-
plantation into the recipient would be a safer alternative in the FMT 
method (Buffie et al., 2015). 

It has been proposed that antimicrobials with capability to eradicate 
harmful gut microorganisms may also improve brain health, as some 
orally administered antimicrobials can escape from the gut and act 
directly on other organs, including the brain, independently of the 
microbiota-gut-brain axis. Clinical evidence is largely lacking, but in a 
pilot study with 10 AD patients it was found that the treatment with 
rifaximin during 3 months significantly reduced serum neurofilament- 
light levels, although no improvement in cognition was obtained 
(Suhocki et al., 2022). Previously, another study that administered 
rifaximin to patients with cirrhosis and cognitive impairment found that 
antimicrobial treatment improved working memory and inhibitory 
control, and enhanced fronto-parietal and subcortical activation and 
connectivity (Ahluwalia et al., 2014) (Table 3). Nevertheless, antimi-
crobials are not the best treatment approach for several reasons, 
including their potential to induce harmful neurotoxic side effects and to 
deplete symbiotic gut bacteria that may play a beneficial role for the 
brain during aging. In addition, antimicrobial use has been associated 
with the onset of delirium in the elderly (Moore and O’Keeffe, 1999), 
and with a decline in cognitive scores (Mehta et al., 2022). The devel-
opment of novel antimicrobial strategies, such as the phage therapy, 
which can specifically eliminate specific pathogenic bacteria, could be 
valuable in the treatment where specific pathogenic gut microbes are 
identified. 

3.6.2. Probiotics 
Probiotics are defined as live microorganisms that provide health 

benefits to the host (Hill et al., 2014). Several studies have recognized 
that probiotic modulation of the host microbiome improves cognitive 
function in aging adults (Eastwood et al., 2021). A large number of 
randomized and placebo-controlled human trials have shown that pro-
biotics improve cognitive and gastrointestinal symptoms in patients 
with AD, MCI, and PD, possibly by reducing inflammatory response, by 
regulating the balance of the gut microbiota (Liu et al., 2022), and by 
improving lipid metabolism (Xiang et al., 2022). 

Supplementation with probiotic milk containing Lactobacillus aci-
dophilus, L. casei, L. fermentum, and Bifidobacterium bifidum showed 
improved insulin sensitivity, lower levels of the inflammatory marker 
CRP, and increased cognitive scores after 12 weeks of supplementation 
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(Akbari et al., 2016). In contrast, in another Iranian study using a multi- 
species mixture containing several strains of the genera Lactobacillus and 
Bifidobacterium for 12 weeks it was not found a beneficial effect on 
cognition in patients with severe AD (Agahi et al., 2018). The authors 
suggested that the stage of the disease and the degree of cognitive 
impairment may be critical for the efficacy and beneficial outcome of 
probiotic treatment. Furthermore, another study in a Caucasian popu-
lation found no benefit on a cognitive score in AD with a multi-species 
probiotic consisting of L. acidophilus, L. casei, L. lactis, L. paracasei, L. 
plantarum, L. salivarius, B. bifidum, and B. lactis (Leblhuber et al., 2018). 
The authors reported that probiotic supplementation in AD patients 
increased the abundance of F. prausnitzii and affected the tryptophan 
metabolism. In addition, supplementation with L. helveticus-fermented 
milk drink for 8 weeks in healthy middle-aged adults improved both 
attention and delayed memory (Ohsawa et al., 2018). Inoue et al. (2018) 
showed that supplementation with a probiotic cocktail (B. longum subsp. 
longum, B. longum subsp. infantis, and B. breve) and moderate resistance 
training may improve the mental status, body weight, and bowel 
movement frequency in healthy elderly subjects. 

In a study conducted by Tamtaji et al. (2019), a probiotic mixture 
(L. acidophilus, B. bifidum, and B. longum) was combined with selenium 
to improve AD symptoms. The 12-week intervention improved cognitive 
function, corrected metabolic dysfunction, and reduced inflammation 
and oxidative stress. The authors associated this improvement with a 
significant increase in total antioxidant capacity, and with a decrease in 
CRP sensitivity in AD patients. Kobayashi et al. (2019) investigated the 
effects of a strain of B. breve on the cognitive function in Japanese older 
adults, and found that this probiotic induced beneficial effects only in 
the subpopulation with more severe MCI. In a Korean study, Hwang 
et al. (2019) supplemented fermented soybean with L. plantarum and 
reported a significantly improvement in attention cognitive scores in 
MCI subjects. Similar results were obtained by Sanborn et al. (2020) in a 
Caucasian population, as the use of L. rhamnosus showed efficacy in 
improving a composite cognitive score in elderly subjects with MCI. Den 
et al. (2020), in a meta-analysis of randomized controlled trials in adults 
with AD or MCI, reported a significant improvement in cognition with a 
decrease in the levels of malondialdehyde and of CRP between the 
probiotic and control groups. Xiao et al. (2020) demonstrated that a 
strain of B. breve was effective in improving memory function in subjects 
with MCI, showing improvements in various cognitive domains such as 
immediate, delayed, and visuospatial memory. 

Moreover, Kim et al. (2021) found that probiotics (B. bifidum and 
B. longum), administered for 12 weeks, improved cognitive and mental 
health and altered gut microbiota composition in healthy community- 
dwelling older adults. The authors also reported that probiotic supple-
mentation significantly reduced the abundance of inflammatory 
microbiota, including Eubacterium, Allisonella, and Prevotellaceae, in 
healthy older adults. Lv et al. (2021) showed that probiotic supple-
mentation improved cognitive function in human and animal studies, 
and the effects were greater in cognitively impaired subjects than in 
healthy subjects. In addition, the authors showed that the duration of 
less than 12 weeks and the use of a single probiotic strain were more 
effective in human studies. In a Japanese cohort, Ueda et al. (2021) 
found that F. prausnitzii correlated with cognitive scores and decline in 
the MCI group compared to the healthy group. Interestingly, the 
cognitive improvement was also achieved by using inactivated 
F. prausnitzii, suggesting that the postbiotic may also have beneficial 
effects or may act as immunomodulator. Lu et al. (2021a, 2021b) 
showed that the supplementation with L. plantarum for 12 weeks, along 
with antiparkinsonian medication, improved motor performance and 
quality of life in PD patients. The authors suggested that the probiotic 
could serve as an adjuvant agent in the treatment of PD. Asaoka et al. 
(2022) investigated the probiotic effect of a B. breve strain in improving 
cognition and preventing brain atrophy in elderly patients with MCI. 
Probiotic consumption for 24 weeks suppressed the progression of brain 
atrophy, suggesting that B. breve helps to prevent cognitive impairment 

in MCI subjects. Aljumaah et al. (2022) found that L. rhamnosus pro-
biotic supplementation improved cognitive scores in adults with MCI 
compared to neurologically healthy individuals. They also reported a 
decrease in the abundance of the genera Prevotella and Dehalobacterium 
in response to probiotic supplementation in the MCI group. Fei et al. 
(2023) investigated the effects of probiotic supplementation on several 
neural behaviors in older adults with MCI. The probiotic consisted of a 
cocktail of several strains of L. plantarum, L. rhamnosus, L. johnsonii, L. 
paracasei, L. salivarius, L. acidophilus, L. casei, L. reuteri, L. fermentum, B. 
lactis, B. animalis, B. infantis, and Lactococcus lactis. After 12 weeks of 
intervention, cognitive function and sleep quality were improved in the 
probiotic group compared to the control group, and the underlying 
mechanisms were associated with changes in the gut microbiota. Shi 
et al. (2023) investigated the effect of B. longum on cognitive function in 
healthy older adults without cognitive impairment. The probiotic 
significantly improved the cognitive function, particularly in the areas of 
immediate memory, visuospatial/constructional capacity, attention, 
and delayed memory. In addition, the bacterial intervention increased 
the abundance of the beneficial bacteria Lachnospira, Bifidobacterium, 
Dorea, and Cellulosilyticum, while decreased the presence of bacteria 
associated with cognition impairment, such as Collinsella, Para-
bacteroides, Tyzzerella, Bilophila, Epulopiscium, Porphyromonas, and 
Granulicatella (Table 3). 

Various mechanisms may explain the effects of probiotic supple-
mentation. For example, probiotic supplementation may regulate the 
relative abundance of the gut microbiome, which plays an important 
role in maintaining the intestinal barrier. The probiotics may influence 
the gut microbiome in the production of certain beneficial metabolites 
and neurotransmitters, such as SCFAs, norepinephrine, 5-hydroxytryp-
tophan, dopamine, noradrenaline, serotonin, GABA, synaptophysin, 
acetylcholine, and histamine. These beneficial substances, as mentioned 
above, regulate neuroinflammation and influence the neural behavioral 
activities of the host (Borodovitsyna et al., 2017; Park et al., 2019; 
Strandwitz, 2018; Yang, 2019). In addition, probiotic supplementation 
significantly increased serum levels of brain-derived neurotrophic factor 
(BDNF) in elderly MCI patients. BDNF plays a key role in neuronal 
nutrition and protection, in learning, and in memory formation (Fei 
et al., 2023; Kim et al., 2021). Probiotics have also been used to enhance 
immune function as measured by improved vaccination responses, 
reduction of infections, and cardiovascular disease (DeJong et al., 2020; 
Lei et al., 2017; Wang et al., 2018a). 

3.6.3. Prebiotics 
Prebiotics are non-digestible and fermented food components that 

selectively promote the growth and activity of beneficial commensal 
microbiota (Franco-Robles and López, 2015), as high-fiber diets such as 
yogurt, fruits, vegetables and grains, and confer health benefit to the 
host (Gibson et al., 2017). Prebiotic dietary compounds, such as poly-
phenols, are potent neuroprotectors of brain physiology. These protec-
tive effects against neurodegenerative diseases could be attributed to a 
direct effect on the host response, but also mediated by the conversion of 
the gut microbiome into bioavailable microbial phenolic metabolites, 
which, in addition to modulating the growth and activity of SCFA- 
producing bacteria, also exhibit more protective effects against neuro-
inflammation than intact polyphenols (Esteban-Fernández et al., 2017; 
González de Llano et al., 2023). 

The role of these dietary compounds in improving brain health in 
aging is limited. However, Vulevic et al. (2015) analyzed the effect of a 
galactooligosaccharide mixture on gut microbiota and on immune 
function in subjects aged 65–80 years, and found a significant increase 
in Bacteroides and Bifidobacteria, and an improvement in immune 
function (higher IL-10 and IL-8, natural killer cell activity and CRP, and 
lower IL-1β). There are some evidences showing that a prebiotic mixture 
containing inulin and fructooligosaccharides may improve frailty, a risk 
factor for cognitive decline (Kang and Zivkovic, 2021; Long-Smith et al., 
2020). In this sense, Buigues et al. (2016) showed that prebiotic 
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administration (13 weeks) significantly improved two frailty criteria, 
such as fatigue and handgrip strength, compared to maltodextrin (used 
as placebo), although no significant effects on cognitive behavior or 
sleep disturbance were observed. Theou et al. (2019) reported that the 
prebiotic supplementation for 13 weeks can reduce frailty indices in 
nursing home residents, particularly in those with higher levels of frailty 
(Table 3). 

3.6.4. Synbiotics 
The International Scientific Association for Probiotics and Prebiotics 

(ISAPP) updated the definition of a synbiotic to “a mixture comprising 
live microorganisms and substrate(s) selectively utilized by host mi-
croorganisms that provides a health benefit to the host” (Swanson et al., 
2020). Louzada and Ribeiro (2020) used a synbiotic consisting of the 
combination of the prebiotic fructooligosaccharide with several pro-
biotic bacterial strains (L. acidophilus, L. paracasei, L. rhamnosus, and 
B. lactis) to study its effect on the symptoms of brain disorders and 
inflammation in the elderly. The authors concluded that there were 
improvement effects on cognition in healthy elderly people. In another 
studies, synbiotics were shown to increase the bioavailability of micro-
bial antioxidant metabolites, to enhance the activity of antioxidant 
systems, and to improve cognitive function in patients with AD (Arora 
et al., 2020; Ton et al., 2020). In contrast, Krüger et al. (2021), who 
reviewed only three studies involving 161 individuals with AD, 
concluded that current evidence for the use of probiotics and synbiotics 
in individuals with dementia is insufficient to support their clinical 
application. Cicero et al. (2021) applied a randomized treatment with a 
symbiotic that consisted of L. plantarum, L. acidophilus and L. reuteri, 
with prebiotics (inulin, fructooligosaccharides and vegetable magne-
sium stearate), to elderly patients with metabolic syndrome. After 60 
days of treatment, an anti-inflammatory effect was observed with a 
reduction in high-sensitivity CRP and TNF-α levels, indicating a decrease 
in the prevalence of metabolic syndrome, cardiovascular risks, and in-
sulin resistance in elderly patients. However, Qu et al. (2019) found no 
statistically significant results regarding inflammatory markers and 
monocyte chemoattractant protein-1, concluding that the available 
randomized controlled trials do not suggest a significant benefit of 
microbiota-directed therapy in reducing the inflammatory responses in 
the elderly (Table 3). 

3.6.5. Postbiotics 
Postbiotics include bioactive compounds produced during a micro-

bial process, such as SCFAs, bacterial components, or even inactivated 
microbial cells (Long-Smith et al., 2020; Malagón-Rojas et al., 2020). 
Although the exact mechanism of their action is not yet fully under-
stood, their immunomodulatory effects are unquestionable (Akatsu, 
2021; Hernández-Granados and Franco-Robles, 2020). 

Some preclinical studies have used postbiotics (heat-killed bacteria 
or SCFAs) as immunoregulators and to improve the neurodegenerative 
conditions, such as immune system response, modulation of neuro-
inflammation, and cognitive decline (Govindarajan et al., 2011; Jorjão 
et al., 2015; Matt et al., 2018), but these findings have not been suffi-
ciently obtained in humans. Duscha et al. (2020) reported that 2 weeks 
of propionic acid supplementation resulted in a sustained increase in 
immunoregulatory T (Treg) cells, while prolonging treatment to 3 years 
reduced the relapse rate associated with brain atrophy. In contrast, in a 
cohort study conducted in France among community-dwelling in-
dividuals older than 65 years old, it was found that elevated serum 
propionic acid was associated with increased odds of cognitive decline 
(Neuffer et al., 2022). The authors suggested a metabolic dysregulation 
as a possible pathway in the relationship between propionic acid and 
cognitive health. Sakurai et al. (2022) used a heat-inactivated strain of 
Lactiplantibacillus plantarum to test its protective effects on the memory 
function in older adults. Significant improvements in composite memory 
and visual memory scores were observed in the elderly group. Inter-
estingly, one study suggests that bacteriophages of the order 

Caudovirales may improve executive function and memory in both 
preclinical and human studies (Mayneris-Perxachs et al., 2022). 
Although this strategy is very attractive, more studies are needed to 
know the impact of bacteriophages on cognitive health in the elderly 
(Table 3). 

3.6.6. Diets 
Diet is a very important factor in shaping the structure of the gut 

microbiome, influencing its composition and diversity, facilitating the 
secretion of neurotransmitters and vitamins, and reversing gut dysbiosis 
linked to increased intestinal permeability and systemic inflammation 
(Rothschild et al., 2018; Rutsch et al., 2020; Skolnick and Greig, 2019). 
Moreover, some of the identified mechanisms for gut-brain communi-
cation, including microbial metabolite production, and immune, 
neuronal and metabolic pathways, may be susceptible to dietary mod-
ulation (Berding et al., 2021). 

Different dietary habits significantly affect the composition of the gut 
microbiome, which is also a critical factor in maintaining health and in 
delaying aging (Sandhu et al., 2017). Evidence suggests that the Medi-
terranean diet, which is mainly composed of cereals, nuts, vegetables 
and fruits, may be beneficial for the humans (Borrego-Ruiz and Borrego, 
2024b; van de Rest et al., 2015) by reducing the incidence of cardio-
vascular and metabolic diseases, cognitive disorders, and cancers (Wu 
and Sun, 2017). In particular, the polyphenols present in this diet, which 
have antioxidant and anti-inflammatory properties, have been proposed 
as a useful strategy for the prevention of age-related diseases (Yang 
et al., 2015), based on their capability to reduce oxidative stress and 
inflammatory processes, to maintain the mitochondrial integrity, and to 
improve the synaptic plasticity (Caracci et al., 2020; Griñán-Ferré et al., 
2021; Petersen and Smith, 2016). 

Several lines of evidence have shown that the Mediterranean diet 
induces changes in the gut microbiome that improve health in the 
elderly, reducing stroke, and frailty and inflammatory markers, and 
improving global cognition and episodic memory (Ghosh et al., 2020b; 
Loughrey et al., 2017; Marseglia et al., 2018; Psaltopoulou et al., 2013; 
Tsivgoulis et al., 2015). The diet-modulated microbiome alters metab-
olite profiles with increased production of SCFAs and decreased pro-
duction of secondary BAs, p-cresol, ethanol, and carbon dioxide (De 
Filippis et al., 2016; Ghosh et al., 2020b). However, only few studies 
have examined the relationship between diet, gut microbiome and 
cognitive function in older adults. For example, studies of adherence to 
the Mediterranean diet have shown a low progression of MCI and AD 
(Berti et al., 2018; Ettinger, 2022; Moreno-Arribas et al., 2020; Singh 
et al., 2014). Furthermore, in a study using a modified Mediterranean- 
ketogenic diet, Nagpal et al. (2019) found that specific diet could 
modulate the gut microbiome and metabolites associated with improved 
AD biomarkers. 

More recently, Meng et al. (2023) conducted a dietary intervention 
in adults of 50 years old and older to investigate the preventing aging 
effects of a polyphenol-probiotic-enhanced diet (P-diet). P-diet pro-
voked a decrease in levels of interleukins IL-6 and IL-10, and in C- 
reactive protein. In addition, a significant increase in the abundance of 
Lactobacillus and Bifidobacterium, and in butyrate and acetate levels, was 
reported. At the same time, inflammatory aging potential showed a 
negative association with Akkermansia abundance. Thus, these authors 
concluded that P-diet may alleviate chronic low-grade inflammation, 
preventing the progression of inflammatory aging. 

On the other hand, vegetarianism is a dietary pattern based on the 
consumption of foods of plant origin, which is environmentally sus-
tainable and has important ethical implications. Vegetarian diets reduce 
β bacterial diversity of the gut microbiome, but increase α bacterial di-
versity, constituting a dietary habit that contributes to a greater di-
versity in the intestinal microbiome of vegetarians compared to that of 
omnivores (Borrego-Ruiz and Borrego, 2024b). Likewise, it has been 
reported that the adoption of a vegetarian diet is related to numerous 
health indicators, such as anti-inflammatory and antioxidant outcomes, 
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as well as a lower risk of cardiovascular diseases, type 2 diabetes, certain 
types of cancer, and obesity (Craig et al., 2021). Additionally, vegetarian 
diets have been associated with a higher longevity (Norman and Klaus, 
2020), which shows the great potential of these dietary patterns to 
promote health at a general level in older adults. 

Conversely, the Western diet, that is high in saturated fat and sugar, 
may induce cognitive dysfunction in aging (Więckowska-Gacek et al., 
2021). Intermittent fasting and caloric restriction may modulate 
cognitive function in humans in two ways: (i) through metabolic path-
ways, including ketone bodies synthesis and degradation, butanoate 
metabolism, pyruvate metabolism, and glycolysis and gluconeogenesis 
pathways; and (ii) through increased synaptic plasticity and stimulation 
of neurofacilitating pathways (improved insulin sensitivity and reduced 
inflammatory activity) in the brain (Ooi et al., 2020; Witte et al., 2009). 
However, in the absence of long-term human studies, it is not possible to 
conclude whether prolonged dietary changes can induce permanent 
alterations in the gut microbiome (Leeming et al., 2019). In summary, 
dietary adherence has been associated with better cognitive function in 
older adults, but the integration of the microbiome into clinical nutrition 
perspectives on brain health has been poorly studied (Ribeiro et al., 
2022). 

4. Discussion and conclusions 

Aging is a gradual and irreversible pathophysiological process 
associated with a decline in cellular functions and with a significant 
increase in the risk of several disorders, including neurodegenerative, 
cardiovascular, metabolic, musculoskeletal, and immune diseases. 
There are two theories on the origin and development of aging: the 
programmed or adaptive theory, which states that a “genetic clock” 
determines the onset of aging in an organism; and the damage or error 
theory, which explains age-related events as consequences of the lack of 
natural selection with advancing age (Bektas et al., 2018; Jin, 2010). 
However, the intrinsic and environmental factors and their mutual 
interaction as determinants of aging have been proposed as key mech-
anisms in the elderly (Ogrodnik et al., 2019; Wright et al., 2019). 
Moreover, there is increasing evidence demonstrating that changes in 
the epigenome during aging lead to transcriptional alterations and 
genomic instability, which are major contributors to the development of 
age-related diseases, such as cancer and neurodegenerative diseases 
(Sen et al., 2016; Guillaumet-Adkins et al., 2017). Therefore, in our 
opinion, the current research on the regulation of aging must focus on 
understanding the role of various endogenous and exogenous stressors, 
such as genomic instability, epigenetic alterations, autophagy, mito-
chondrial dysfunction, neuroinflammation, cellular senescence, and 
altered intercellular communication. Fig. 1 shows the relationship be-
tween different microbial metabolites and several age-associated 
manifestations. 

There is a general consensus supporting the hypothesis that the 
development of human neurodegenerative diseases is strongly linked to 
the quality of the prenatal lifestyle (Borrego-Ruiz and Borrego, 2024b; 
Gabbianelli and Damiani, 2018). Recent studies have shown that the gut 
microbiome is a critical contributor to the host brain aging, including in 
neurodegenerative diseases, establishing four microbiome-based aging 
clocks: biodiversity clock, taxonomic clock, functional clock and meta-
metabolomic clock (Ratiner et al., 2022). However, an important 
question is how to define a healthy gut microbiome and whether there is 
indeed a universal microbiome that is indicative of health during aging 
(Hill, 2020; Shanahan et al., 2021). The development of technological 
advances, including next-generation meta-omics analysis and high- 
throughput sequencing (16S ribosomal RNA microbial profiling, DNA 
microarrays, metatranscriptomics, metabolomics, and shotgun meta-
genomics), will allow us to understand the gut environment of cogni-
tively impaired and neurodegenerative patients using functional 
approaches, and will reveal whether the imbalance of gut microbial 
communities is involved in the beginning of the pre-onset state of 

neurodegenerative processes (Satam et al., 2023). 
We believe that well-designed, longitudinal, randomized controlled 

clinical trials will be needed to better understand the potential role of 
microbial therapeutics in improving brain health in aging. In addition, 
the elucitation of the factors that drive individual responses and out-
comes is critical for the development of personalized microbiome- 
targeted interventions to improve physiology and brain function in 
aging. Current clinical trials of dietary interventions and supplementa-
tion with probiotics, prebiotics, and synbiotics have shown that they can 
improve cognitive function. Although the effects of probiotic supple-
mentation seem to be greater in cognitively impaired individuals than in 
healthy individuals, more studies are needed to draw firm conclusions. 
Many unknowns remain to be clarified and several parameters need to 
be controlled from both the probiotic and the host side when planning 
interventions in elderly patients. (i) Current probiotic approaches are 
based on bacterial strains that are generally not indigenous to the human 
gut (Zmora et al., 2018), therefore they do not permanently colonize the 
gut and exert their beneficial effects through non-specific mechanisms. 
(ii) The health-promoting effect of a probiotic depends on the strain, 
dose, and duration of the probiotic treatment (Białecka-Dębek et al., 
2021). At present, there is a lack of studies comparing different in-
terventions (e.g., different genus or species and different doses), and it is 
also unclear whether and for how long the effect persists after the 
intervention has finished. (iii) Future studies should also consider the 
baseline of microbiota composition and dietary intake of the intervened 
older adults. It seems that personalized nutritional strategies will be of 
particular importance in the future, as evidenced by the growing interest 
in this area. (iv) Finally, the side effects of probiotic intervention should 
be considered together with the observed benefits. 

Other potential strategies have been proposed, for example: the 
reintroducing of microbial metabolites derived from indole or its de-
rivatives that are lost during the aging process could be as effective as 
and safer than the introduction of live bacteria (Sonowal et al., 2017). 
Boehme et al. (2023) have suggested that elimination of age-related 
potentially pathogenic microorganisms, through targeted antibiotic 
use or CRISPR knockout of individual genes or pathogens, may be 
another potential intervention strategy. However, these strategies are 
currently limited by a lack of scientific empirical results. 

Future researches will be needed to reduce the incidence and 
development of age-related diseases and to promote a healthy aging by 
treatments for age-related diseases, for example: depletion of senescent 
cells, stem cell therapy, antioxidant and anti-inflammatory treatments, 
hormone replacement therapy, and by novel interventions that promote 
a healthy aging. More efforts would be necessary in the coming years to 
improve prevention, early detection, and rationally designed treatment 
strategies for age-related physiological and neurodegenerative disor-
ders. Thus, the aging population may benefit of the protocols aimed to 
mitigate the escalating age-related conditions on public health and so-
cietal well-being. Moreover, interdisciplinary collaborations among 
scientists, clinicians, policymakers, and stakeholders will be paramount 
in advancing our understanding of the underlying mechanisms and risk 
factors associated with these disorders. Besides, concerted initiatives in 
research and dissemination will be essential for the development of 
innovative diagnostic tools and therapeutic interventions customized to 
individual needs. Embracing emerging technologies holds promise for 
revolutionizing healthcare delivery and optimizing patient outcomes. 
Furthermore, a concerted focus on promoting healthy aging and lifestyle 
interventions, with special emphasis on social development and psy-
chological well-being, can complement medical interventions, poten-
tially delaying the onset or progression of age-related diseases. 
Ultimately, by prioritizing these efforts, we can aspire to a future in 
which aging is associated with enhanced wellness and longevity, ush-
ering in a new era of age-related healthspan extension and improved 
quality of life for individuals across the lifespan. 
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Activity of microbial-derived phenolic acids and their conjugates against LPS- 
induced damage in neuroblastoma cells and macrophages. Metabolites 13, 108. 
https://doi.org/10.3390/metabo13010108. 

Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F., Fischer, A., 2011. 
Sodium butyrate improves memory function in an Alzheimer’s disease mouse model 
when administered at an advanced stage of disease progression. J. Alzheimers Dis. 
26, 187–197. https://doi.org/10.3233/JAD-2011-110080. 

Graeber, M.B., Streit, W.J., 2010. Microglia: biology and pathology. Acta Neuropathol. 
119, 89–105. https://doi.org/10.1007/s00401-009-0622-0. 
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López-Otín, C., Galluzzi, L., Freije, J.M.P., Madeo, F., Kroemer, G., 2016. Metabolic 
control of longevity. Cell 166, 802–821. https://doi.org/10.1016/j. 
cell.2016.07.031. 
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