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Summary 

Gait analysis is increasingly used on research methodology to assess dynamics 

aspects of functional recovery after peripheral nerve injury in the rat model, which 

ultimately is the goal of treatment and rehabilitation. In this thesis we studied nerve 

regeneration using techniques of molecular and cellular biology. Functional recovery 

was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), 

the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and hindlimb 

kinematics. Nerve fiber regeneration was assessed by quantitative stereological 

analysis and electron microscopy. From our results, hybrid chitosan membranes after 

sciatic nerve crush, either alone or enriched with N1E-115 neural cells, may 

represent an effective approach for the improvement of the clinical outcome in 

patients receiving peripheral nerve surgery. Collagen membrane, with or without 

neural cell enrichment, did not lead to any significant improvement in most of 

functional and stereological predictors of nerve regeneration that we have assessed, 

with the exception of EPT. Extending the kinematic analysis during walking to the hip 

joint improved sensitivity of this functional test. For motor rehabilitation, either active 

or passive exercises positively affect sciatic nerve regeneration after a crush injury, 

possibly mediated by a direct mechanical effect onto the regenerating nerve. 

 

Keywords: functional assessment, rat, joint kinematics, neurorehabilitation, 

peripheral nerve, biomaterials. 
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Resumo 

A crescente utilização da análise da marcha após lesão do nervo periférico no 

modelo do rato relaciona-se com a necessidade de avaliar aspectos dinâmicos da 

recuperação funcional. Na presente tese estudámos a regeneração do nervo com 

utilização de técnicas moleculares e celulares. A recuperação funcional foi avaliada 

com uso de Índice de funcionalidade do ciático, índice estático do ciático, reflexo 

extensor postural, latência do reflexo flexor e cinemática do membro posterior. A 

regeneração da fibra nervosa foi avaliada com técnicas estereológicas e microscopia 

electrónica. Dos nossos resultados concluímos que as membranas híbridas de 

quitosano após lesão de esmagamento do nervo ciático, com ou sem 

enriquecimento de células neurais N1E-115, podem representar uma abordagem 

efetiva para a melhoria dos resultados clínicos dos pacientes sujeitos a cirurgia do 

nervo periférico. As membranas de colageneo, com ou sem enriquecimento de 

células neurais, não repercutiram nenhuma melhoria significativa nos parâmetros 

preditores funcionais e estereologicos de regeneração do nervo. Verificámos que a 

inclusão da articulação da coxo-femoral na analise cinemática de marcha aumentou 

a sensibilidade deste teste funcional. Para a reabilitação motora, quer o exercício 

ativo quer passivo influenciou a regeneração do nervo após esmagamento, 

possivelmente devido a um efeito mecânico na regeneração do nervo periférico. 

 

Palavras-chave: avaliação funcional, rato, cinemática, neuroreabilitação, nervo 

periférico, biomateriais  
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1 Introduction and main objectives 

This thesis was focused on the study of functional recovery after biological therapeutic 

strategies for repair of peripheral nerve axonotmesis and neurotmesis injuries with 

experimental model of the rat. The available background regarding peripheral nerve 

repair suggests that: 1) Biomaterials are important for peripheral nerve repair after 

injury with promising functional results; 2) Functional recovery is the golden standard to 

ascertained efficacy of interventions and results transposition from in vivo experiments; 

3) the description of functional movement of the ankle i.e. ankle kinematics during 

stance phase is an accurate method for functional assessment. So, the aims of this 

thesis were: 1) to evaluate functional recovery after a moderate i.e axonotemesis and 

severe i.e neurotemesis sciatic nerve injury and verify if various types of biomaterials, 

would affect functional recovery and the morphology of nerve fibers, with emphases on 

evaluation of kinematic analysis of the rat ankle; 2) to improve kinematic model for 

assessment of functional recovery after sciatic nerve crush injury; 3) to verify if 

therapeutic exercise would induce changes on kinematics of gait and nerve 

morphology. 

After peripheral nerve injury, its inner capability of repair is a remarkable reality. 

Previously, our research group reported in vitro results that highlighted the relevance of 

Ca2+ (1; 2) and results leads to a significant research to know which biological element 

might contribute to synergistically optimize effects of microsurgical techniques and 

improve morphological and functional recovery (3-5). Neurotrophic factors have been 

the target of intensive research - their role in nerve regeneration and the way they 

influence neural development, survival, outgrowth, and branching (6). Among 

neurotrophic factors, neurotrophins have been heavily investigated in nerve 

regeneration studies. They include the nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) (7). 

Neurotrophic factors promote a variety of neural responses, including survival and 

outgrowth of the motor and sensory nerve fibers, and spinal cord regeneration (8). 

However, in vivo responses to neurotrophic factors can vary due to the method of their 

delivering. Therefore, the development and use of controlled delivery devices are 

required for the study of complex systems. 

A multidisciplinary team, including Veterinaries, Engineers, Medical doctors like 

neurologists and surgeons, through Experimental Surgery has a crucial role in the 

development of biomaterials associated to these cellular systems, and in testing the 

surgical techniques that involve their application, always considering animal welfare 
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and the most appropriate animal model. Rodents, particularly the rat and the mouse, 

have become the most frequently utilized animal models for the study of peripheral 

nerve regeneration because of the widespread availability of these animals as well as 

the distribution of their nerve trunks which is similar to humans (9). Although other 

nerve trunks, especially in the rat forelimb, are getting more and more used for 

experimental research (10; 11), the rat sciatic nerve is still the far more employed 

experimental model as it provides a nerve trunk with adequate length and space at the 

mid-thigh for surgical manipulation and/or introduction of grafts or guides (9). Although 

sciatic nerve injuries themselves are rare in humans, this experimental model provides 

a very realistic testing bench for lesions involving plurifascicular mixed nerves with 

axons of different size and type competing to reach and reinnervate distal targets (9). 

Common types of experimentally induced injuries include focal crush or freeze injury 

that causes axonal interruption but preserves the connective sheaths (axonotmesis), 

complete transection disrupting the whole nerve trunk (neurotmesis) and resection of a 

nerve segment inducing a gap of certain length. Several biomaterials developed by our 

research group (including PLGA with a novel proportion 90:10 of the two polymers, 

poly(L-lactide):poly(glycolide), hybrid chitosan and collagen) or available already in the 

market like Neurolac® (made of poly-ε-caprolactone) have been tested associated to 

cellular systems to promote nerve regeneration after axonotmesis and neurotmesis 

injuries in the sciatic nerve experimental model. The cellular systems that have been 

studied in this context include an immortalized neural cell line N1E-115.  

One primary cause of poor recovery after long-term denervation is a profound 

reduction in the number of axons that successfully regenerate through the deteriorating 

intramuscular nerve sheaths. Muscle force capacity is further compromised by the 

incomplete recovery of muscle fibres from denervation atrophy. Progressive muscle 

atrophy and changes in muscle fibres composition are consequences of peripheral 

nervous system injury that interrupts communication between skeletal muscle and 

neurons. After peripheral nerve injury, alterations of gait pattern are the most relevant 

observation (5; 12). Functional recovery stills the main limitation to achieve results 

translation, and the understanding of such limitation is greatly dependent also on 

research methods and on therapeutic strategies. Choosing the correct functional assay 

in the rat model for peripheral nerve injury (13) and spinal cord injury (14) is a question 

of intensive research interest as an experimental model. After peripheral nerve injury 

there are neural and mechanical disturbances and the amount of sensory endings that 

exist is one of the major limitations to study the functional meaning of recovery and 

thus, the biomechanical model has been increasingly used. For most recently 

published studies, functional tests consider analysis of voluntary movement and reflex 
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activity. Gait function represents the integration of motor and sensory function and 

several gait parameters were considered with significant relationship for functional 

evaluation of experimental rat model, only during the last decade it has been studied 

with biomechanics research methods. Previously, we have highlighted the importance 

of both functional and morphological methods in this model (5) already reported by 

Varejão et al. (15), which make possible to have different levels of complexity to study 

the peripheral nerve repair process. In experimental laboratory animal model it is a 

great advance to measure observable functional gains, until now impossible to obtain 

since they were considered subjective behavioral measurements.  

Locomotion, from a mechanical point of view, is characterized by a repetitious 

sequence of limb motion to move the body forward while maintaining the stance 

balance. There are three basic approaches to analyze gait (16): 1) subdividing the 

cycle according to the variations in reciprocal floor contact by the two feet; 2) using the 

time and distance qualities of the stride; 3) identifying the functional significance of the 

events within the gait cycle and designate these intervals as the functional phases of 

gait. According to the variations in reciprocal floor contact by the two feet, as the body 

moves forward, one limb serves as mobile source of support while the other limb 

advances itself to a new support site. Stance phase designates the entire period during 

which the foot is on the ground and begins with initial contact (IC). Swing phase is the 

phase of the normal gait cycle during which the foot is off the ground. The swing phase 

follows the stance phase and is divided into the initial swing, the midswing, and the 

terminal swing stages.  

Analysis of the free walking pattern of the rat is the method mostly used for 

assessment of motor function through motion analysis. Although locomotor activity in 

an open field is a stable behavioural test and may be used as an index of the 

behavioural-physiological coping style of an individual rat (Basso, Beatie and 

Bresnahan (BBB) Locomotor Rating Scale) (17), the information obtained is qualitative, 

range from 0 to 21 and distinguish between locomotor features such as flaccid 

paralysis, isolated hind-limb joint movements, weight-supported plantar stepping, 

coordination, and details of locomotion (eg, toe clearance, paw position) (18). 

Specifically for peripheral nerve injury, it was developed a method to measure a 

combination of motor and sensory recovery: Sciatic Functional Index (SFI) (19). They 

calculated an index of the functional condition of rat sciatic nerve (SFI) that consists on 

expressing as a percentage the difference between the measurements of injured hind 

paw parameters and the intact contralateral hind paw parameters obtained from 

footprints. The main objective of these methods was to extrapolate the nerve function 
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recovery considering its action on innervated muscles. After sciatic nerve injury, 

footprints reveal differences between the normal and experimental print length with the 

last one being the largest.  Although SFI is a quantitative method, it is dependent on 

the pressure exerted by the foot on the floor, and it is restricted to a point in time, which 

limits the information obtained. Automutilation, inversion or eversion deformations often 

limit the functional assessment with the use of SFI (20), despite this limitation it is a 

widely used parameter because of its reliability (21). Bervar (2000) described an 

alternative video analysis of static footprint video analysis (SSI) to assess functional 

loss following injury to the rat sciatic nerve, during animal standing or periodic rest on a 

flat transparent surface used motion analysis with the utilization of video analysis. SSI 

static sciatic index was developed based on the premise that the recovery of muscle 

tone after nerve injury is a constituent part of integral nerve and muscle functional 

recovery and forces acting on the body i.e. body weight and postural muscle tone 

during standing influenced footprint parameters (22). The main difference between SFI 

and SSI was that the distance between the tip of the third toe and the posterior margin 

of the sole discoloured area (PLF), defined as the print length parameter, was not 

considered. The authors considered this parameter the most difficult part of the video 

analysis and it was subject to observer’s misinterpretation and unwilling measuring 

errors with excessive variability and poor correlation between static video method and 

dynamic ink track method. They found better reproducibility, high accuracy, more 

precise quantification of the degree of functional loss and there are few non-

measurable footprints with SSI.  

Walking pattern is the result of several signs that contributes to the performance of 

movement (23). Understanding adaptive changes in motor activity associated with 

functional recovery following muscle denervation can be achieved with biomechanical 

research methods. In biomechanics, movement is studied in order to understand the 

underlying mechanisms involved in the movement or in the acquisition and regulation 

of skill. Biomechanics involves mechanical measurements used in conjunction with 

biological interpretations (24). Mechanicaly, motion production also depends on the 

geometry of bones and muscles, which reflects the moment pattern of motion.  

The development of scientific methods of monitoring locomotion is based on 

computational and mathematical principles. Biomechanics is based on Newton´s 

equation of motion. There are some assumptions about Biomechanics to simplify the 

complex musculoskeletal system and eliminate the necessity of quantifying the 

changes in mass distribution caused by tissue deformation and movement of bodily 

fluids: body segments behave as rigid bodies during movements, and in addition, 

segmental mass distribution is similar among members of a particular population (23).  
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Over the last years, the number of parameters used for ankle joint motion analysis has 

been increasing, most likely reflecting advances in computer-based video and motion 

analysis. In a first use of ankle joint kinematics in peripheral nerve research, Santos et 

al. (25) proposed a 2D geometrical model of the joint using two intersecting lines 

joining the knee and ankle and the fifth metatarsal head to the ankle. They 

demonstrated an increase in joint angle during the swing phase after a crush injury of 

the peroneal nerve. After this early study, Lin et al. (26) examined the angular changes 

of the ankle joint during the rat walk after sciatic nerve transection and autografting 

using a single parameter: the joint angle at mid-stance. Changes in this angle were 

reported as being sensitive to assess functional impairment after sciatic nerve injury 

after several months of the sciatic transection, when compared to non-injured controls. 

More recently, Varejão et al. (27) contributed significantly to improve ankle joint 

kinematic analysis in the rat sciatic nerve model by proposing a more thorough 

analysis of ankle motion during the stance phase that takes into account well-defined 

time events. These authors measured the angle of the ankle joint at initial (toe) contact 

(IC), opposite toe-off (around 20% of the duration of stance phase), heel raise (around 

40% of the duration of stance phase), and at toe-off (TO) (27; 28). Using these 

measurements, the authors could demonstrate the presence of functional deficit 

beyond 8 weeks after sciatic nerve crush, in clear contrast to SFI measures. By this 

time of recovery after sciatic crush, SFI measures usually show complete recovery (5; 

15). 

More recently, the use of digital 2D video analysis of ankle motion in rat peripheral 

nerve models also includes the swing phase of walking (29). Also using 2D video 

analysis and dedicated software for motion analysis, our group reported recently 

measures of both angle and angular velocity of the ankle joint during the stance phase 

(5). Angular velocity data were calculated in an attempt to raise the precision of ankle 

motion analysis and to increase its power in detecting subtle differences in functional 

recovery when testing alternative treatments after sciatic crush (27; 28). We reasoned 

that functional deficits during walking in rat nerve models may be masked by the high 

redundancy and adaptability of the motor apparatus in response to sensorimotor 

alterations (5; 15). From a biomechanical perspective, joint rotational velocity has a 

more direct relationship with the forces actuating onto the hindlimb segments and 

therefore velocity measures may be better indicators of dysfunction caused by nerve 

injury. Moreover, ankle position data is sometimes difficult to interpret, for example in 

those cases where ankle joint angle remains unaffected in the weeks immediately after 
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sciatic nerve crush (27; 28). This shows that measures of ankle joint angle taken at 

snapshots during walking may lack sensitivity to assess functional impairment. 

Increasing the number of measures may not improve the precision of functional 

evaluation. In fact, including more kinematic variables in walking analysis may 

otherwise raise uncertainty in interpreting data. For example, Varejão et al. (15) report 

that ankle angles at TO were similar before and after 4 weeks of sciatic crush, whereas 

ankle angles were clearly affected post-injury at other time points during the stance 

phase. Similar inconsistency in kinematic measurements of ankle joint motion in rats 

after sciatic crush injury has been also reported by us (30). This latter study was 

designed in order to prolong the observation up to 12 weeks. A full functional recovery 

was predicted by SFI/SSI, Extensor Postural Trust (EPT) and Withdrawal Reflex 

Latency (WRL) but not by all ankle kinematics parameters. Moreover, only two 

morphological parameters (myelin thickness/axon diameter ratio and fiber/axon 

diameter ratio) returned to normal values. Although these results may reflect 

phenomena related to nerve regeneration and end-organ reinnervation, such as motor 

axons misdirection (34), they also suggest that kinematic parameters display distinct 

ability to demonstrate functional alterations after peripheral nerve injury.  

 

Damage to any portion of the reflex arc, including the sciatic nerve can result in loss or 

slowing of the reflex response. Reflex activity refers to the neural activity in which a 

particular stimulus, by exciting an afferent nerve, produces a stereotyped, immediate 

response of muscle. Considering motor control, it is related with sensory feedback 

control. Marshal Hall was the first neurologist who has introduced the term reflex into 

biology in the 19th century. He thought of the muscle as reflecting a stimulus as a wall 

reflects a ball thrown against it. Reflex was defined as the automatic response of a 

muscle or several muscles to a stimulus that excites an afferent nerve. The anatomical 

pathway used in a reflex is called the reflex arc and it consists of an afferent nerve, one 

or more interneurons within the central nervous system and an efferent nerve. Reflexes 

are considered unlearned, rapid, predictable motor responses to a stimulus, and occur 

over a highly specific neural pathway called reflex arc. Thalhammer and collaborators, 

(36), originally proposed the Extensor Postural Trust (EPT) as a part of the evaluation 

of motor function in the rat after sciatic nerve injury. It is classified as a postural reflex 

reaction. For this test, the entire body of the rat, excepting the hindlimbs, was wrapped 

and supporting the animal by the thorax and lowering the affected hindlimb towards the 

platform of a digital balance, elicits the EPT. As the animal is lowered to the platform, it 

extends the hindlimb, anticipating the contact made by the distal metatarsus and digits. 

The force applied to the platform balance was recorded. Sensory function is usually 
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assessed with the nociceptive withdrawal reflex (WRL), also called the flexion reflex. 

The flexor, or withdrawal, reflex is initiated by a painful stimulus and causes automatic 

withdrawal of the endangered body part from the stimulus. It was adapted from the 

hotplate test as described by Masters and collaborators in 1993 (35) and involves a 

protective response to withdraw the site from the stimulus when cutaneous receptors 

(Group III and IV afferents) sense a noxious stimulus. It is a polysynaptic reflex that is 

induced by noxious stimulation of the limb and its latency, amplitude, and duration 

depends on stimulus intensity (28). Although WRL reflex was originally termed flexion-

withdrawal reflex (37), it has since been shown to involve other muscles besides 

flexors (38). The WRL can be variable because it depends on which afferents are 

activated by the stimulus and is transmitted over polysynaptic pathways, which means 

that the input signal can be modified along its path.  

Quantification of the number of myelinated fibers in peripheral nerve is one of the main 

indicators of success of peripheral nerve repair. Number, density and diameter of the 

nervous fibers are the main variables considered. However, sampling scheme is crucial 

to avoid systematic errors of estimation (39) due to, for instance, anisotropy of the 

nervous fibres along the nerve and consequent tendency of grouping fibers related with 

their diameter (40). The golden standard is the designed-based sampling also 

recognized as systematic random sampling scheme. Previously, we have reported that 

12 weeks after injury, regenerated nerves have higher mean density and total number 

of myelinated axons as lower mean fiber diameter and myelin thickness. Fiber density 

and number in crushed nerves is still significantly higher than normal nerves while size 

is still significantly lower (5). It has been hypothesized that one explanation could be 

the occurrence of a sprouting of more than one growth cone from each severed axon 

leading to the presence of an abundance of small regenerating axons that cross the 

lesion site and grow to innervate the end organs (46). The primary function of 

peripheral nerves is communication. Thus, electrical and/or chemical messages are 

passed from neuron to neuron or from neuron to target organ. Curiously, early work on 

impulse conduction along peripheral fibers by Erlanger and Gasser (for which they 

shared the Nobel Prize in 1942) demonstrated remarkable relationships between the 

conduction velocity of the axons and the type of information that was conveyed. In 

what concerns nerve morphology, peripheral nerves demonstrate a wide variety of 

axonal types, from myelinated axons of 20 microns in diameter, to very fine 

nonmyelinated axons as small as 0.2 microns in diameter. Significant correlation and 

internal consistency between electrophysiological and morphological parameters (i.e. 

conduction velocity and fiber diameter) make available information and guidelines for 
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parameter selection based upon the specific question being investigated (36). The 

largest motor fibers (13-20 um, conducting at velocities of 80 -120 m/s) innervate the 

extrafusal fibers of the skeletal muscles, and smaller motor fibers (5-8 um, conducting 

at 4-24 m/s) innervate intrafusal muscle fibers. The largest sensory fibers (13-20 µm) 

innervate muscle spindles and Golgi tendon organs (both conveying unconscious 

proprioceptive information), the next largest (6-12 µm) convey information from 

mechanoreceptors in the skin, and the smallest myelinated fibers 1 – 5 µm) convey 

information from free nerve endings in the skin, as well as pain, and cold receptors. 

Non myelinated peripheral C fibers (0.2 – 1.5 µm) carry information about pain and 

warmth. 

 

In our fist study (chapter 3) functional recovery was assessed after different therapeutic 

strategies to improve sciatic nerve repair after axonotemesis injury. The experimental 

model based on the induction of a crush injury (axonotmesis) in the rat sciatic nerve 

provides a very realistic testing bench for lesions involving plurifascicular mixed nerves 

with axons of different size and type competing to reach and re-innervate distal targets 

(35). This type of injury is thus appropriate to investigate the cellular and molecular 

mechanisms of peripheral nerve regeneration, to assess the role of different factors in 

the regeneration process (36) and to perform preliminary in vivo testing of biomaterials 

that will be useful in tube-guide fabrication for more serious injuries of the peripheral 

nerve, such as neurotmesis. Reflex activity, gait function, motion analysis during gait 

and nerve morphology were assessed with EPT and WRL, SFI, ankle kinematics and 

nerve histomorphometry respectively. Motion pattern of ankle joint was studied 

performing 2-D biomechanical analysis (sagital plan) during stance phase of gait. It 

was carried out applying a two-segment model of the ankle joint. It was characterized 

with four time events: Initial Contact, Opposite Toe-Off, Hell Rise, and Toe-Off as 

described above. We brought together two of the more promising recent trends in 

nerve regeneration research: 1) local enwrapping of the lesion site of axonotmesis by 

means of hybrid chitosan membranes; 2) application of a cell delivery system to 

improve local secretion of neurotrophic factors. First, type I, II and III chitosan 

membranes were screened by an in vitro assay, in terms of physical, mechanical and 

cytocompatibility properties. Then, membranes were evaluated in vivo to assess their 

biocompatibility and their effects on nerve fiber regeneration and nerve recovery in a 

standardized rat sciatic nerve crush injury model (37). Among the various substances 

proposed for the fashioning of nerve conduits, chitosan attracted particular attention 

because of its biocompatibility, biodegradability, low toxicity, low cost, enhancement of 

wound-healing and antibacterial effects (38). In addition, the potential application of 
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chitosan in nerve regeneration has been demonstrated both in vitro and in vivo (39). 

Chitosan is a partially deacetylated polymer of acetyl glucosamine obtained after the 

alkaline deacetylation of chitin (40).  

 

In our second study (chapter 4) different therapeutic strategies were developed to 

improve sciatic nerve repair after a different, more severe lesion i.e. neurotmesis with 

and without gap. The aim of this study was to verify if rat sciatic nerve regeneration 

after end-to-end reconstruction can be improved by seeding in vitro differentiated N1E-

115 neural cells on a type III equine collagen membrane and enwrap the membrane 

around the lesion site. Reflex activity, gait function, motion analysis during gait and 

nerve morphology were assessed with EPT and WRL, SSI, ankle kinematics and nerve 

morphometry respectively. 2-D biomechanical analysis (sagital plan) was carried out 

applying a two-segment model of the ankle joint. As in the previous study, we only 

considered the stance phase.  

In chapter 5, it is described a third group of experiments, that established different 

levels of functional dysfunction by evaluating sciatic-crushed rats: 1) in the denervation 

phase (one week after injury), 2) in the reinnervated phase: 12 weeks after injury, and 

3) sham-operated controls. We considered the entire gait cycle i.e. stance and swing 

phases, which were characterized with four time events: Initial Contact, Midstance, 

Toe-Off and Midswing. Peak values of joint angle and angular velocity were studied in 

both phases: stance and swing. Additionally, all hindlimb joints were studied: ankle, 

knee and hip, allowing the study of 2-D motion analysis (sagital plan) and interjoint 

coordination. Gait was also characterized in terms of spatiotemporal parameters (gait 

velocity, step length, swing and stance phase duration), which allowed having insights 

about its mechanical characteristics. An important statistical question was raised with 

this study: Increasing the number of ankle motion measures is also not statistically 

desirable, particularly if these carries redundancy and lowers sensitivity. Studies in 

animal models of peripheral nerve injury are usually constrained by low number of 

subjects according to international welfare laws. When kinematic measures are applied 

to determine changes at behavioural level, less than 10 animals per group are 

commonly used (41-45). Therefore the decision of which kinematic variables should be 

used to assess functional recovery in peripheral nerve research should be based on an 

evaluation of their sensitivity to detect functional changes of different levels of severity. 

A proper selection of kinematic variables would give researchers a tool to monitor 

functional recovery after nerve injury and to detect long term functional changes 

caused by incomplete recovery or adaptive changes in motor patterns. We performed a 
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discriminant analysis of the kinematic parameters to verify if 2D joint motion analysis is 

highly sensitive and specific to identify functional deficits caused by acute sciatic crush 

in the rat. The sensitivity and specificity of a given set or battery of tests may be 

evaluated using discriminant analysis. This statistical technique builds a predictive 

model to detect membership based on a set of independent variables. This technique 

may be applied to evaluate the sensitivity and specificity of a set of testing variables 

since it measures the ability of these tests in classifying elements in a specific group. 

While assessing sensitivity, discriminant analysis also determines the relative 

importance of the independent variables in classifying observations and to discard 

variables with little importance in-group segregation. These applications of discriminant 

analysis will help to select which of the potentially large number of variables related to 

segmental motions during walking will be most important in assessing functional 

recovery after a peripheral nerve injury in the rat. Therefore, this study evaluates the 

sensitivity and specificity of ankle joint motion kinematic measures in detecting motion 

abnormalities as a result of sciatic nerve crush by employing discriminant analysis. 

Different levels of functional dysfunction in this study were established by evaluating 

sciatic-crushed rats: 1) in the denervation phase (one week after injury), 2) in the 

reinnervated phase: 12 weeks after injury, and 3) sham-operated controls. 

 

Our fourth study (chapter 6) aimed to verify if active and passive exercise would elicit 

changes in functional recovery after sciatic nerve crush detected by hindlimb 

kinematics and nerve morphology. Progressive muscle atrophy and changes in muscle 

fibres composition are consequences of peripheral nervous system injury that 

interrupts communication between skeletal muscle and neurons. Many strategies have 

been used to maintain the muscle activity during the time of reinnervation (46). 

Exercise is an important activity in the management of neuromuscular disease. It might 

improve return of sensorymotor function. Exercise performed after peripheral nerve 

injury acts on muscle properties (histochemical muscle fiber alteration, contractile 

properties, enzyme activities, and muscle weight) and nerve properties (axonal 

regrowth and myelinization of axons). Most investigations have frequently used the 

motorized treadmill in in vivo studies since it offers a controlled and convenient strategy 

for testing and training. Twelve weeks after crush injury without exercise protocol, 

functional recovery is not full and nerve morphology remains significant different in 

control and injured animals as well as ankle joint motion during walk (47). Although 

many studies have studied the effects of exercise in functional recovery, biomechanical 

evaluation was not considered. Previous studies (48) suggested that functional 

reinnervation of hindlimb muscles begins 2 or 3 weeks post sciatic nerve crush in rats 
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and that overwork of muscle before this period can be harmful (41-45), but the reason 

for the negative effect of exercise is still unknown. Therefore, in our study we 

performed four groups of animals: two groups of animals started an exercise training 

protocol 2 weeks after injury (week 2). Groups (1) sciatic-crushed rats that performed 

treadmill walking; (2) sciatic-crushed rats that performed passive muscle stretch (3) 

sham-operated controls and (4) sciatic-crushed controls. The exercise groups ended 

the program at week-12 post injury. Each rat received 2 weeks of training before 

surgery. All rats were subjected to walk/run with no incline at a treadmill speed of 10 

m/min continuously, 30 min/day, for 5 days/week during 10 consecutive weeks. 

Training was performed on a specially constructed treadmill for rodents developed in 

our laboratory with a 10-lane motor-driven conveyer belt with adjustable speed and 

inclination. Biomechanical analysis of rat walk was performed every 2 weeks on a 

purpose-developed walkway integrating two miniature force plates and a motion 

capture system with four high-speed Oqus cameras (Qualysis Systems). 
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1 Animals  

During this chapter we will describe the methods used for the following chapters. 

Experiments were performed in rats (Wistar or Sprague-Dawley) weighing 250-300g 

(Charles River Laboratories, Barcelona, Spain). Animals were housed for 2 weeks 

before entering the experiment and experimental groups were defined with six or eight 

animals each depending on the study. Two animals were housed per cage (Makrolon 

type 4, Tecniplast, VA, Italy), in a temperature and humidity controlled room with 12-

12h light / dark cycles, and were allowed normal cage activities under standard 

laboratory conditions. The animals were fed with standard chow and water ad libitum. 

Adequate measures were taken to minimize pain and discomfort taking into account 

human endpoints for animal suffering and distress. Moreover, after surgical intervention 

cage environment was enriched for all animals with the goal of minimize stress.    

All procedures were performed with the approval of the Veterinary Authorities of 

Portugal in accordance with the European Communities Council Directive of November 

1986 (86/609/EEC). 

 

Handling  

The handling was performed to familiarize animals with the experimenter, with the 

environment in which the studies would be performed, and with the manipulations 

involved in the neurologic evaluation. This familiarization minimizes the stress-

response during the experimental period. The experimental animals were observed for 

exploratory activity, and the latency of grooming was everyday monitored.  
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2 Microsurgical procedures  

Our experimental work, concerning the in vivo testing of neurotmesis and axonotmesis 

injury and regeneration, was based on the use of Sasco Sprague-Dawley rat sciatic 

nerve. Usually, the surgeries are performed under an M-650 operating microscope 

(Leica Microsystems, Wetzlar, Germany). Under deep anaesthesia (ketamine 9 mg/100 

g; xylazine 1.25 mg/100 g, atropine 0.025 mg/100 body weight, intramuscular), the right 

sciatic nerve is exposed through a skin incision extending from the greater trochanter 

to the distal mid-half followed by a muscle splitting incision. After nerve mobilisation, a 

transection injury is performed (neurotmesis) using straight microsurgical scissors. The 

nerve must be injured at a level as low as possible, in general, immediately above the 

terminal nerve ramification. For neurotmesis without gap, the nerve is reconstructed 

with an end-to-end suture, with two epineural sutures using de 7/0 monofilament nylon. 

For axonotmesis we used a standardized clamping procedure that was described in 

details in previous works (1-4). After nerve mobilisation, a non-serrated clamp (Institute 

of Industrial Electronic and Material Sciences, University of Technology, Vienna, 

Austria) exerting a constant force of 54 N, was used for a period of 30 seconds to 

create a 3-mm-long crush injury, 10 mm above the bifurcation into tibial and common 

peroneal nerves (4; 5). The starting diameter of the sciatic nerve was about 1 mm, 

flattening during the crush to 2 mm, giving a final pressure of p9 MPa. The nerves 

were kept moist with 37ºC sterile saline solution throughout the surgical intervention. 

Finally the skin and subcutaneous tissues are closed with a simple-interrupted suture 

of a non-absorbable filament (Synthofil®, Ethicon). An antibiotic (enrofloxacin, Alsir® 

2.5 %, 5 mg / kg b.w., subcutaneously) is always administered to prevent any 

infections. To prevent autotomy a deterrent substance must be applied to rats’ right 

foot (6; 7). All procedures must be performed with the approval of the Veterinary 

Authorities of Portugal in accordance with the European Communities Council Directive 

of November 1986 (86/609/EEC). 
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3 Methods for Functional Assessment of 

Reinnervation  

Biomechanical model - Kinematic analysis 

The first step to perform a biomechanical analysis of body motion is the definition of a 

mechanical rigid body model that is an idealized form of simplification the structural 

differences of bones and represents a system. The definition of the numbers of body 

segments is dependent on the movement that we want to analyze. To study ankle joint 

movement during locomotion, we defined two rigid bodies: foot and shank.  

Considering the computational setting used, to be possible to detect an object/body 

moving, it must recognize the body that moves within a recognized and well-defined 

area. Therefore, we have to define the 1) segments of the body we want to evaluate; 2) 

the reference system;  

Motion analysis software provides time-dependent quantitative data, which can be 

obtained from stick figures or from volumetric models representing the animal body.  

 Digital video images record  

Animals walked on a Perspex track with length, width and height of respectively 120, 

12, and 15 cm (Figure 1). In order to ensure locomotion in a straight direction, the width 

of the apparatus was adjusted to the size of the rats during the experiments, and a 

darkened cage was connected at the end of the corridor to attract the animals. The 

rats’ gait was video recorded at a rate of 100 Hz images per second (JVC GR-

DVL9800, New Jersey, USA). The camera was positioned at the track half-length 

where gait velocity was steady, and 1 m distant from the track obtaining a visualization 

field of 14 cm wide. Reference system was defined with four points to perform the area: 

0.03m x0.015m.  

Only walking trials with stance phases lasting between 150 and 400 ms were 

considered for analysis, since this corresponds to the normal walking velocity of the rat 

(20–60 cm/s) (8; 9).  

 

 Digital video images analysis - Two-dimensional joint kinematic analysis 

The video images were stored in a computer hard disk for latter analysis using an 

appropriate software APAS® (Ariel Performance Analysis System, Ariel Dynamics, San 

Diego, USA). Image data were trimmed using APAS-Trimmer: five frames before Initial 

contact of the fingers on the floor and five after Toe Off. Data were digitized manually 



Chapter 2 – Methodological considerations 23 

 

 

Sandra Cristina Fernandes Amado  

 

(APAS-Digitize and -Transform) to perform image representation and filtered with low 

pass digital filter at 6 Hz (APAS filter) to determine coordinates for skin landmarks; and 

to obtain kinematic parameters of angular displacement and velocity of joint using DLT 

(Direct linear transformation) by Abdel-Aziz and Karara (1971). 2-D biomechanical 

analysis (sagital plan) was carried out applying a two-segment model of the ankle joint, 

adopted from the model firstly developed by Varejão and co-workers (9). Skin 

landmarks were tattooed at 3 points: the proximal edge of the tibia, the lateral 

malleolus and, the fifth metatarsal head (Figure 2). The definition of the segments foot 

and shank was performed manually with digitalization of these points after selecting the 

total frames that fulfilled the stance phase (Figure 3). The rats’ ankle angle was 

determined using the scalar product between a vector representing the foot and a 

vector representing the lower leg. Four complete walking cycles were analysed per rat. 

With this model, positive and negative values of position of the ankle joint indicate 

dorsiflexion and plantarflexion, respectively. For each stance phase the following time 

points were identified (Figure 4): initial contact (IC), opposite toe-off (OT), heel-rise 

(HR) and toe-off (TO) (10; 11), and were time normalized for 100% of the stance 

phase. The normalized temporal parameters were averaged over all recorded trials. 

Angular ankle’s velocity was also determined (negative values correspond to 

dorsiflexion). 

 

 

 

 
Figure 1- Track where animals walked, (Perspex 120cm length, 12cm width, and 15cm height) 
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Figure 2 - Skin landmarks were tattooed at 3 points: the proximal edge of the tibia, the lateral 

malleolus and, the fifth metatarsal head 

 

 

 
Figure 3 - Video image of the stance phase of rats locomotion 

 

 

 

 

 

 Motion capture - Optoelectronic system  

With technical advances in computer science and the continuous development of 

mathematical models, biomechanical modeling has improved. Optoelectronic system of 

infrared cameras (Oqus-300, Qualisys, Sweden) operating at a frame rate of 200Hz 

tracks the motion of small reflective markers placed on the hindlimb using two infra-red 

video cameras and has been used to quantify locomotor motion. To obtain three-

dimensional co-ordinate data for a marker, two cameras must record the marker 

IC OT HR TO
Figure 4 - Time points during stance phase: initial contact (IC), opposite toe-off (OT), heel-rise (HR)

and toe-off (TO) 
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position in space. Image-processing software identified the marker locations in each 

two-dimensional infra-red camera image to compute its three-dimensional location 

relative to a calibration plate that was positioned in the data collection corridor. Two 

additional cameras can be used to ensure that data from at least two cameras is 

always recorded. Prior to recording movements, the cameras must be calibrated by 

way of an object with an array of markers whose positions in space are certified to a 

known accuracy. Motion capture (MOCAP) allows the assessment of the instantaneous 

positions of markers located on the surface of the skin and, thus, a kinematics analysis 

of movement. Passive marker based systems use markers coated with a retroreflective 

material to reflect light back that is generated near the cameras lens. The camera’s 

threshold can be adjusted so only the bright reflective markers will be sampled. We 

used an optoelectronic system of six infrared cameras (Oqus-300, Qualisys, Sweden) 

operating at a frame rate of 200Hz was used to record the motion of right hindlimb 

during the gait cycle. A new corridor was conceptualized and constructed with force 

platform system with four load cells (two for vertical force component and two for 

anterior-posterior force component) (Figure 5). Animals walked on a Perspex track with 

length, width and height of respectively 120, 12 and 15cm. Two darkened cages were 

connected at the extremities of the corridor to facilitate walking.  

 

 
Figure 5 - Set-up of cameras and corridor for motion capture using optoelectronic system 

 

After shaving, seven reflective markers with 2mm diameter were attached to the right 

hindlimb at bony prominences (Figure 6): 1) tip of fourth finger, 2) head of fifth 

metatarsal, 3) lateral malleolus, 4) lateral knee joint, 5) trochanter major, 6) anterior 

superior iliac spine, and 7) ischial tuberosity. The same operator placed all markers 

and the rat was maintained static in a similar position to the walking position with the 

aim of minimizing the error introduced by the mobility of skin in relation to the bony 

references. All rats previously performed two or three conditioning trials to be 

familiarized with the corridor. Initial trials are often rejected because rats stop or rise on 
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their hindlimbs to explore the track. Sometimes another rat was placed inside the cage 

to encourage the trial rat to walk along the track toward it. Cameras were positioned to 

minimize light reflection artifacts and to allow recording 4-5 consecutive walking cycles, 

defined as the time between two consecutive initial ground contacts (IC) of the right 

fourth finger. The motion capture space was calibrated regularly using a fixed set of 

markers and a wand of known length (20 cm) moved across the recorded field. 

Calibration was accepted when the standard deviation of wand’s length measure was 

below 0.4 mm.  

 
Figure 6 - Reflective markers with 2mm diameter were attached to the right hindlimb at bony 

prominences: (1) tip of fourth finger, (2) head of fifth metatarsal, (3) lateral malleolus, (4) lateral 

knee joint, (5) trochanter major, (6) anterior superior iliac spine, and (7) ischial tuberosity and three 

non-colinear markers. 

 

 Motion analysis - Two-dimensional joint kinematic analysis 

In chapters 5 and 6, the kinematic analysis was performed with Visual3D software.  

An absolute reference system (ARS), direction of lab co-ordinate, was defined: a right-

handed orthogonal triad <X, Y, Z> fixed in the track ground. Each of the axes is defined 

as: +X axis pointing rightward, +Y axis pointing anteriorly and +Z axis pointing upward. 

Additionally, a segmental reference system (SRS) is defined. This system uses 

Cartesian coordinates fixed to the rigid body and also has clear anatomical meanings 

such as proximal-distal, lateral-medial and anterior-posterior.  

A gait cycle was defined as the time interval between two consecutive IC of the right 

fifth metatarsal. The definition of a static position as a reference frame to define the 

position of the segments was conventionally at TO event (Figure 7). Time events (IC 

and TO) were detected manually during a first trial by analysing coordinate data from 

head of fifth metatarsal marker. IC was defined when the data values became constant, 

and TO when data values increased, with visual inspection of the movement. The axis 

considered for analysis was that of the direction of locomotion. After the definition of 

the event on the first cycle, it was applied a target pattern recognition for others trials of 

the same group. 
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Six walking cycles were analyzed for each animal. Temporal parameters were 

normalized to the total duration of the gait cycle. A spline interpolation (performing a 

least-squares fit of a 3rd order polynomial to 10 points) and a 2nd order Butterworth 

lowpass filter (cut-off frequency of 6Hz, determined by analysis of the difference 

residuals between filtered and non-filtered data (12) were applied to the original marker 

coordinates data. Joint angle and joint angular velocity were calculated by dot product 

and first derivative of joint angle, respectively, between adjacent segments: shank and 

foot for ankle joint; shank and thigh for the knee joint; thigh and pelvis for the hip joint. 

 
Figure 7 - Reference frame to define the position of the segments, conventionally at TO event. 

 

 

Sciatic Functional Index (SFI) and Static Sciatic Index (SSI) 

For SFI, animals were tested in a confined walkway measuring 42-cm-long and 8.2-cm-

wide, with a dark shelter at the end. A white paper was placed on the floor of the rat 

walking corridor. The hindpaws of the rats were pressed down onto a finger paint-

soaked sponge, and they were then allowed to walk down the corridor leaving its hind 

footprints on the paper (Figure 8). Often, several walks were required to obtain clear 

print marks of both feet. Prior to any surgical procedure, all rats were trained to walk in 

the corridor, and a baseline walking track was recorded. Subsequently, walking tracks 

were recorded every week until the week-8 postoperatively and then on weeks 10 and 

12 or on weeks 16 and 20 for axonotmesis and neurotemesis injury, respectively.  
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Several measurements were taken from the footprints (Figure 9): (I) distance from the 

heel to the third toe, the print length (PL); (II) distance from the first to the fifth toe, the 

toe spread (TS); and (III) distance from the second to the fourth toe, the intermediary 

toe spread (ITS). For both dynamic (SFI) and static assessment (SSI), all 

measurements were taken from the experimental (E) and normal (N) sides. Prints for 

measurements were chosen at the time of walking based on clarity and completeness 

at a point when the rat was walking briskly. The mean distances of three 

measurements were used to calculate the following factors (dynamic and static): 

Toe spread factor (TSF) = (ETS – NTS)/NTS 

Intermediate toe spread factor (ITSF) = (EITS – NITS)/NITS 

Print length factor (PLF) = (EPL – NPL)/NPL 

Where the capital letters E and N indicate injured (experimental) and non-injured side 

(normal), respectively. 

SFI was calculated as described by (14) according to the Equation 1: 

SFI = -38.3 (EPL – NPL)/NPL + 109.5(ETS-NTS)/NTS + 13.3(EIT-NIT)/NIT – 8.8 = (-

38.3 x PLF) + (109.5 x TSF) + (13.3 x ITSF) – 8.8  

Equation 1 - SFI 

 

Static footprints were obtained at least during four occasional rest periods. For the 

sciatic static index (SSI) only the parameters TS and ITS, were measured (15) 

(Equation 2). 

SSI = [(108.44 x TSF) + (31.85 x ITSF)] - 5.49  

Equation 2 – SSI 

 

 

 

Figure 8 - Paint-soaked sponge and corridor where rats leave its hind footprints on the paper

(13). 
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Figure 9 - Measurements from the footprints: (PL) distance from the heel to the third toe, the print 

length; (TS) distance from the first to the fifth toe, the toe spread; and (ITS) distance from the 

second to the fourth toe, the intermediary toe spread (13). 

 

For both SFI and SSI, an index score of 0 is considered normal and an index of -100 

indicates total impairment. When no footprints were measurable, the index score of -

100 was given (11). Reproducible walking tracks could be measured from all rats. In 

each walking track three footprints were analysed by a single observer, and the 

average of the measurements was used in SFI calculations. 

 

 

 

Extensor Postural Thrust (EPT) - Motor reflex function 

The Extensor Postural Trust was originally proposed by Thalhammer and collaborators, 

(17) as a part of the neurological recovery evaluation in the rat after sciatic nerve injury. 

For EPT test, the entire body of the rat, except the hindlimbs, was wrapped in a 

surgical towel and supported by the thorax (Figure 10). The affected hindlimb was then 

lowered towards the platform of a digital balance (model PLS 510-3, Kern & Sohn 

GmbH, Kern, Germany) to elicit the EPT. As the animal was lowered over the platform, 

it extended the hindlimb, anticipating the contact made by the distal metatarsus and 

digits. The force in grams applied to the digital platform balance was recorded (digital 

scale range 0-500 g). The reduction in this force, representing reduced extensor 

muscle tone, was considered a deficit of motor function. The same procedure was 

applied to the contra-lateral, unaffected limb. The affected and normal limbs were 

tested 3 times, with an interval of 2 minutes between consecutive tests, and the three 

values were averaged to obtain a final result. The normal (unaffected limb) EPT 

(NEPT) and experimental EPT (EEPT) values were incorporated into an equation 

Equation (11) to derive the percentage of functional deficit, as described in the 

literature by (16):  

% Motor deficit = [(NEPT – EEPT)/NEPT] x 100 

Equation (11) - EPT 

Normal(N)          Experimental(E) 
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Figure 10 - Extensor Postural Thrust (13) 

 

Withdrawal Reflex Latency - Nociception 

The rat was wrapped in a surgical towel above its waist and then positioned to stand 

with the affected hindpaw on a hotplate at 56ºC (Figure 12) (model 35-D; IITC Life 

Science Instruments, Woodland Hill, CA). WRL is defined as the time elapsed from the 

onset of hotplate contact to withdrawal of the hindpaw (Figure 11) and measured with a 

stopwatch. Normal rats withdraw their paws from the hotplate within 4 seconds or less 

(18). The affected limbs were tested three times, with an interval of 2 minutes between 

consecutive tests to prevent sensitization, and the three latency times were averaged 

to obtain a final result (19; 20). The cut off time for heat stimulation was set at 12 

seconds to avoid skin damage to the foot (3; 21).  

 

 
Figure 11 – WRL test (13). 
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Figure 12 - Hotplate for WRL test (13) 
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4 Morphological Evaluation 

Design-based quantitative morphology and electron microscopy 

After the follow-up time, rats were anaesthetised and a 10-mm-long segment of the 

sciatic nerve that included the injured portion was collected, fixed, and prepared for 

morphological analysis and histomorphometry of myelinated nerve fibers. A 10-mm 

segment of uninjured sciatic nerve was also withdrawn from the control animals. 

Immediately after collecting the nerve, rats were euthanized through an intracardiac 

injection of 5% sodium pentobarbital (Eutasil®). Sciatic nerve samples were immersed 

immediately in a fixation solution, containing 2.5% purified glutaraldehyde and 0.5% 

saccarose in 0.1M Sorensen phosphate buffer for 6-8 hours. Specimens were then 

washed in a solution containing 1.5% saccarose in 0.1M Sorensen phosphate buffer, 

post-fixed in 2% osmium tetroxide, dehydrated and embedded in Glauerts' embedding 

mixture of resins consisting in equal parts of Araldite M and the Araldite Härter, HY 964 

(Merck, Darmstad, Germany), to which was added 1-2% of the accelerator 964, DY 

064 (Merck, Darmstad, Germany). The plasticizer dibutyl phthalate was added in a 

quantity of 0.5% (19; 20). Series of 2-µm thick semi-thin transverse sections were cut 

using a Leica Ultracut UCT ultramicrotome (Leica Microsystems, Wetzlar, Germany) 

and stained by Toluidine blue for 2-3 minutes for high resolution light microscopy 

examination. In each nerve, histomorphometry was conducted using a DM4000B 

microscope equipped with a DFC320 digital camera and an IM50 image manager 

system (Leica Microsystems, Wetzlar, Germany). This system reproduced microscopic 

images (obtained through a 100x oil-immersion objective) on the computer monitor at a 

magnification adjusted by a digital zoom. The final magnification was 6600x enabling 

accurate identification and morphometry analysis of myelinated nerve fibers. One semi-

thin section from each nerve was randomly selected and used for the morpho-

quantitative analysis. The total cross-sectional area of the nerve was measured and 

sampling fields were then randomly selected using a protocol previously described (3; 

21). Briefly, cross-sectional area of the nerve is divided into various equal geometric 

fields (usually >15) and then each of these are divided into smaller fields. The first 

sampling field is randomly selected and then the selection of the next fields was 

defined through a systematic “jump” process. Possible "edge effects" (i.e. counting a 

fibre more than once, especially for larger fibres that appear in more than one sampling 

field) were compensated by employing a two-dimensional dissector procedure, which is 

based on sampling the "tops" of fibers (22). Briefly, considering a two-dimensional 

observational field where direction (North/South) is defined and the North top of each 
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fiber is marked. The top of each fiber represents the point of the shape of the fibre that 

first intersects the observational field, and since it appears only once, therefore it will be 

counted only once.  

Mean fiber density was calculated by dividing the total number of nerve fibers within the 

sampling field by its area (N/mm2). Total fibers number (N) was then estimated by 

multiplying the mean fiber density by the total cross-sectional area of the whole nerve 

cross section assuming a uniform distribution of nerve fibers across the entire section. 

Fiber and axon area were measured and the circle-fitting diameter of fiber (D) and axon 

(d) were calculated. These data were used to calculate myelin thickness [(D-d)/2], 

myelin thickness/axon diameter ratio [(D-d)/2d], and fiber/axon diameter ratio (D/d). 

The precision of the histomorphometry methods was evaluated by calculating the 

coefficient of error (CE). Regarding quantitative estimates of fiber number, the CE(n) 

was obtained as follows (23; 24): 

'

1
)(

Q
nCE


  

Equation 4 - quantitative estimates of fiber number 

Where Q' is the number of counted fibers in all dissectors. 

For size estimates, the coefficient of error was estimated as follows (22): 

Mean

SEM
zCE )(  

Equation 5 - coefficient of error 

Where SEM = standard error of the mean. 

The sampling scheme was designed in order to keep the CE below 0.10, which 

assures enough accuracy for neuromorphological studies (23; 24). 

Transmission electron microscopy  

The immunohistochemical technique is based on the use of antibodies that bind 

specifically to certain cell antigen and thus became visible by fluorescence microscopy 

or confocal laser. For this it is necessary to use certain fluorophores or fluorescent 

probes to detect the antigen-antibody complexes. This technique allowed detection of 

the axon regeneration and possible migration of Schwann cells within the guide tubes 

or in biomaterials during the regeneration of peripheral nerve (26). By 

immunhistochemistry, the antibodies used are anti-NF-200kd (antiprotein 200kd 

neurofilament) and anti-GFAP (anti-glial protein). The first antibody will allow for tracing 

of regenerating axons and the second, the possible migration of Schwann cells within 

the guide tubes (27). Nowadays there are a number of antigens available, antigen-

antibody affinity, antibody types and methods of assessment and detection. However, it 
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is necessary that the method is assessed for each particular situation. For optical 

microscopy, is usually used staining hematoxylin-eosin (28).  

For transmission electron microscopy, ultra-thin sections were cut by means of the 

same ultramicrotome and stained with saturated aqueous solution of uranyl acetate 

and lead citrate. Ultra-thin sections were analyzed using a JEM-1010 transmission 

electron microscope (JEOL, Tokyo, Japan) equipped with a Mega-View-III digital 

camera and a Soft-Imaging-System (SIS, Münster, Germany) for the computerized 

acquisition of the images. 

 

Scanning electron microscope analysis 

The surface morphology of the chitosan membranes was observed under a scanning 

electron microscope (SEM; JEOL JSM 6301F) equipped with x-ray energy dispersive 

spectroscopy (EDX) microanalysis capability (Voyager XRMA System, Noran 

Instruments). 

 

 

Cell culture, intracellular calcium concentration ([Ca2+]i) measurements and cell 

adherence assays 

N1E-115 cell line is a clone of cells derived from mouse neuroblastoma C-1300 [58] 

and retains numerous biochemical, physiological, and morphological properties of 

differentiated neuronal cells in culture [59]. N1E-115 neuronal cells were cultured in 

poly-l-lisine coated Petri dishes (around 2 x 106 cells) on 2 x 2 cm chitosan fragments 

(chitosan type I, type II and type III) at 37ºC, 5% CO2 in a humidified atmosphere 

(Nuaire). Maintenance medium was 89.8% Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with glutamine (GlutaMAX; Gibco), 10% fetal bovine serum 

(FBS, Sigma), and 0.1% penicillin/streptomycin (100000 U/ml penicillin, 10 mg/ml 

streptomycin; Sigma) and with 0.1% β-amphoterrycin (250 μg/ml, Sigma). The culture 

medium was changed every 48 hours and the cells were observed daily in an inverted 

microscope. Before surgery, once N1E-115 cell culture reached approximately 80% 

confluence, cells were supplied with differentiation medium containing DMSO. The 

differentiation medium was composed by 95.8% Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with glutamine (GlutaMAX; Gibco), 2.5% FBS, 0.1% 

penicillin/streptomycin (100000 U/ml penicillin, 10 mg/ml streptomycin; Sigma), 0.1% β-

amphoterrycin (250 μg/ml, Sigma), and 1.5% DMSO (Sigma). Cell culture viability was 

assessed by measuring intracellular free calcium concentration ([Ca2+]i). The [Ca2+]i 
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was measured in Fura-2-AM-loaded cells, through dual wavelength spectrofluorometry 

as previously described (22; 26). [Ca2+]i was determined in N1E-115 cell culture before 

differentiation and 24, 48 and 72 hours after the onset of DMSO-induced differentiation, 

in order to determine the best period of neural differentiation, before the [Ca2+]I rise and 

the initiation of the apoptosis process. 
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1 Introduction 

Peripheral nerve injuries are a frequent pathology in today’s society (1). Despite recent 

progress in peripheral nerve trauma management, recovery of functional parameters is 

usually far from normal, even for the most skilled surgeons, and thus much attention is 

being paid to nerve regeneration research (2; 3). 

The experimental model based on the induction of a crush injury (axonotmesis) in the 

rat sciatic nerve provides a very realistic testing bench for lesions involving 

plurifascicular mixed nerves with axons of different size and type competing to reach 

and re-innervate distal targets (4; 5). After a lesion of axonotmesis, the distal nerve 

fragment undergoes a process named Wallerian degeneration, which leads to the 

degradation of axons and myelin sheaths and creates a favourable environment for 

nerve regeneration (6-9). Both macrophages and Schwann cells are locally recruited to 

eliminate axonal and myelin fragments. While distal stump degenerates, the proximal 

stump initiates the regeneration process - the axonal ends elongate in order to reach 

the distal stump and Schwann cells differentiate and multiply, being responsible for the 

ensheathing and myelination of the newly sprouted axons (6; 7; 9-12). This type of 

injury is thus appropriate to investigate the cellular and molecular mechanisms of 

peripheral nerve regeneration, to assess the role of different factors in the regeneration 

process (13) and to perform preliminary in vivo testing of biomaterials that will be useful 

in tube-guide fabrication for more serious injuries of the peripheral nerve, such as 

neurotmesis. 

Autologous nerve grafting is the gold standard to reconstruct a large defect in a 

peripheral nerve, but with some important disadvantages, such as availability of the 

donor site and complications related to its sacrifice, inadequate recovery of function 

and aberrant regeneration (14-21). Nowadays, the use of entubulation has attempted 

to overcome these problems. A cylinder-shaped tube is placed between the nerve 

ends, not only allowing orientation of growing nerve fibres, but also enabling the 

incorporation of substances, either molecules or cells, that enhance nerve regeneration 

(16; 21; 22). Among the various materials than can be used in the composition of the 

tube guides, biodegradable substances offer two important advantages: one surgical 

step is saved, as they avoid the need to be removed as required for autologus tissue 

transplantation and it is possible to modulate the time of degradation according to the 

axonal regeneration time diminishing inflammation on the lesion site. Thus, a major 

challenge in tissue engineering is to create adequate scaffolds that are capable of 

replace the autografts techniques. As far as peripheral nerve regeneration is 
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concerned, a wide range of substances have been developed to meet this purpose (16; 

21; 25; 26). 

There are many properties required for desirable nerve guided conduit. They include 

permeability that prevents fibrous scar tissue invasion but allow nutrient and oxygen 

supply, revascularization to improve nutrient and oxygen supply, mechanical strengths 

to maintain a stable support structure for the nerve regeneration, immunological 

inertness with surrounding tissues, biodegradability to prevent chronic inflammatory 

response and pain by nerve compression, easy regulation of conduit diameter and wall 

thickness, and surgical amenability (26). The degradation rate of these biomaterials 

should be related to the axonal regeneration time. Among the various substances 

proposed for the fashioning of nerve conduits, chitosan has recently attracted particular 

attention because of its biocompatibility, biodegradability, low toxicity, low cost, 

enhancement of wound-healing and antibacterial effects(27). In addition, the potential 

usefulness of chitosan in nerve regeneration have been demonstrated both in vitro and 

in vivo (28-34). Chitosan is a partially deacetylated polymer of acetyl glucosamine 

obtained after the alkaline deacetylation of chitin (35). Chitosan matrices have been 

shown to have low mechanical strength under physiological conditions and to be 

unable to maintain a predefined shape for transplantation, which has limited their use 

as nerve guidance conduits in clinical applications. The improvement of their 

mechanical properties can be achieved by modifying chitosan with a silane agent. γ-

glycidoxypropyltrimethoxysilane (GPTMS) is one of the silane-coupling agents, which 

has epoxy and methoxysilane groups. The epoxy group reacts with the amino groups 

of chitosan molecules, while the methoxysilane groups are hydrolyzed and form silanol 

groups, and the silanol groups are subjected to the construction of a siloxane network 

due to the condensation. Thus, the mechanical strength of chitosan can be improved 

by the crosslinking between chitosan and GPTMS and siloxane network. Chitosan and 

chitosan-based materials have been proven to promote adhesion, survival, and neurite 

outgrowth of neural cells (36; 37). 

Together with scaffolds, neurotrophic factors have also been the target of intensive 

research - their role in nerve regeneration and the way they influence neural 

development, survival, outgrowth, and branching (20). Among neurotrophic factors, 

neurotrophins have been heavily investigated in nerve regeneration studies. They 

include the nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)(38). Neurotrophic factors 

promote a variety of neural responses, including survival and outgrowth of the motor 

and sensory nerve fibers, and spinal cord regeneration (22; 39). However, in vivo 
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responses to neurotrophic factors can vary due to the method of their delivering. 

Therefore, the development and use of controlled delivery devices are required for the 

study of complex systems. N1E-115 cell line that undergoes neuronal differentiation in 

response to either dimethylsulfoxide (DMSO), adenosine 3’5’-cyclic monophosphate 

(cAMP) or serum withdrawal is an important cellular system to locally produce and 

deliver neurotrophic factors (40; 41).  

Based on this premises, the aim of the study was to bring together two of the more 

promising recent trends in nerve regeneration research: 1) local enwrapping of the 

lesion site of axonotmesis by means of hybrid chitosan membranes; 2) application of a 

cell delivery system to improve local secretion of neurotrophic factors.  

First, types I, II and III chitosan membranes were screened by an in vitro assay. Then, 

membranes were evaluated in vivo to assess their biocompatibility and their effects on 

nerve fiber regeneration and nerve recovery in a standardized rat sciatic nerve crush 

injury model (42; 43). 
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2 Materials and methods 

2.1 Preparation of chitosan membranes 

Chitosan (high molecular weight, Aldrich®, USA) was dissolved in 0.25M acetic acid 

aqueous solution to a concentration of 2% (w/v). To obtain type II and type III 

membranes, GPTMS (Aldrich®, USA) was also added to the chitosan solution and 

stirred at room temperature for 1h. The solutions for type I and II chitosan membranes 

were then poured into polypropylene containers with cover, and aged at 60°C for 2 

days. The drying process for type III chitosan membrane was significantly different: the 

solutions were frozen for 24h at -20°C and then transferred to the freeze-dryer, where 

they were left 12h to complete dryness. The chitosan membranes (type I, II and III) 

were soaked in 0.25N sodium hydroxide aqueous solution to neutralize remaining 

acetic acid, washed well with distilled water, and dried again at 60°C for 2 days (type I 

and II) or freeze dried (type III). All membranes were sterilized with ethylene oxide gas, 

considered by some authors the most suitable method of sterilization for chitosan 

membranes (44). Prior to their use in vivo, membranes were kept during 1 week at 

room temperature in order to clear any ethylene oxide gas remnants. 

 

Scanning electron microscope analysis 

The surface morphology of the chitosan membranes was observed under a scanning 

electron microscope (SEM; JEOL JSM 6301F) equipped with x-ray energy dispersive 

spectroscopy (EDX) microanalysis capability (Voyager XRMA System, Noran 

Instruments). 

 

Cell culture, intracellular calcium concentration ([Ca2+]i) measurements and cell 

adherence assays 

N1E-115 is a clone of cells derived from mouse neuroblastoma C-1300 (45) and 

retains numerous biochemical, physiological, and morphological properties of 

differentiated neuronal cells in culture (46). N1E-115 neuronal cells were cultured in 

poly-l-lisine coated Petri dishes (around 2 x 106 cells) on 2 x 2 cm chitosan fragments 

(chitosan type I, type II and type III) at 37ºC, 5% CO2 in a humidified atmosphere 

(Nuaire). Maintenance medium was 89.8% Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with glutamine (GlutaMAX; Gibco), 10% fetal bovine serum 

(FBS, Sigma), 0.1% penicillin/streptomycin (100000 U/ml penicillin, 10 mg/ml 
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streptomycin; Sigma) and with 0.1% β-amphoterrycin (250 μg/ml, Sigma). The culture 

medium was changed every 48 hours and the cells were observed daily in an inverted 

microscope. Before surgery, once N1E-115 cell culture reached approximately 80% 

confluence, cells were supplied with differentiation medium containing DMSO. The 

differentiation medium was composed by 95.8% Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with glutamine (GlutaMAX; Gibco), 2.5% FBS, 0.1% 

penicillin/streptomycin (100000 U/ml penicillin, 10 mg/ml streptomycin; Sigma), 0.1% β-

amphoterrycin (250 μg/ml, Sigma), and 1.5% DMSO (Sigma). Cell culture viability was 

assessed by measuring intracellular free calcium concentration ([Ca2+]i). The [Ca2+]i 

was measured in Fura-2-AM-loaded cells, through dual wavelength spectrofluorometry 

as previously described (24). [Ca2+]i was determined in N1E-115 cell culture before 

differentiation and 48 hours after the onset of DMSO-induced differentiation. 

 

In vivo assays 

All procedures were performed with the approval of the Veterinary Authorities of 

Portugal in accordance with the European Communities Council Directive of November 

1986 (86/609/EEC). 

 

 

 

 
Figure 13 - The picture shows the dorsal incisions made on the dorsal

area of the four Wistar rats, to test the biocompatibility of the chitosan

membranes: 1 (left cranial incision), type I chitosan membrane; 2 (mid-

right incision), type II chitosan membrane; 3 (left caudal incision), type III

chitosan membrane 
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Biocompatibility assay 

Prior to their use on crushed sciatic nerves, the three types of chitosan membranes 

were tested in vivo to assess their biocompatibility: 4 adult female Wistar rats were 

used. On each one, under general anaesthesia, 3 longitudinal dorsal incisions, 3 cm-

long, were made and 2 x 2 cm fragments were implanted (Figure 13). Animals were 

sacrificed on weeks one, two, four and eight. The membrane remnants were collected 

together with skin and subcutaneous tissues and were fixed in a 10% formaldehyde 

solution for later histological analysis. Throughout the 8-week follow-up time, all 

animals remained healthy, and none developed local or systemic signs of infection 

and/or inflammation. 

 

Nerve regeneration assay 

In vivo nerve regeneration assay was carried out in types II and III chitosan 

membranes only because of the higher elasticity which proved to facilitate surgery. A 

total of 36 adult female Wistar rats (Charles River Laboratories, Barcelona, Spain) 

weighing approximately 250g at the start of the experiment were used. The animals 

were divided by six experimental groups of six animals each. Animals were housed two 

animals per cage (Makrolon type 4, Tecniplast, VA, Italy), in a temperature and 

humidity controlled room with 12-12h light / dark cycles, and were allowed normal cage 

activities under standard laboratory conditions. The animals were fed with standard 

chow and water ad libitum. Adequate measures were taken to minimize pain and 

discomfort taking into account human endpoints for animal suffering and distress. 

Animals were housed for 2 weeks before entering the experiment. All procedures were 

performed with the approval from the Veterinary Authorities of Portugal, and in 

accordance with the European Communities Council Directive of 24 November 1986 

(86/609/EEC). The experimental groups were set according to treatment after nerve 

sciatic crush injury. Therefore, in one group the animals recovered from the sciatic 

crush injury without any other intervention (Crush). In other two groups, the crushed 

sciatic nerve was encircled by a type II chitosan membrane either alone (ChitosanII) or 

covered with a monolayer of N1E-115 cells, differentiated in vitro (ChitosanIICell). In 

the remaining two groups, type III chitosan was used alone (ChitosanIII) or covered by 

N1E-115 cells (ChitosanIIICell). Finally, an additional group of unoperated animals was 

used as control for nerve histological analysis. The standardized crush injury was 

carried out with the animals placed prone under sterile conditions and the skin from the 
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clipped lateral right thigh scrubbed in a routine fashion with antiseptic solution. Under 

deep anaesthesia [ketamine (Imalgene 1000®) 9 mg/100 g; xylazine (Rompun®), 1.25 

mg/100 g, atropine 0.025 mg/100 g body weight, IP], the right sciatic nerve was 

exposed unilaterally through a skin incision extending from the greater trochanter to the 

mid-thigh followed by a muscle splitting incision. After nerve mobilisation, a non-

serrated clamp (Institute of Industrial Electronic and Material Sciences, University of 

Technology, Vienna, Austria) exerting a constant force of 54 N, was used for a period 

of 30 seconds to create a 3-mm-long crush injury, 10 mm above the bifurcation into 

tibial and common peroneal nerves (16; 20). The starting diameter of the sciatic nerve 

was about 1 mm, flattening during the crush to 2 mm, giving a final pressure of p9 

MPa. The nerves were kept moist with 37ºC sterile saline solution throughout the 

surgical intervention. Muscle and skin were then closed with 4/0 resorbable sutures. 

The surgical procedure was performed with the aid of an M-650 operating microscope 

(Leica Microsystems, Wetzlar, Germany). To prevent autotomy, a deterrent substance 

was applied to rats’ right foot (21; 25). The animals were intensively examined for signs 

of autotomy and contracture and none presented severe wounds (absence of a part of 

the foot or severe infection) or contractures during the study. 

 

2.2 Functional Assessment of Reinnervation 

Motor performance and nociceptive function 

All animals were tested preoperatively (week 0), and every week until week 8 and then 

every two weeks until the end of the 12-week follow-up time. Animals were gently 

handled, and tested in a quiet environment to minimize stress levels. Motor 

performance and nociceptive function were evaluated by measuring extensor postural 

thrust (EPT) and withdrawal reflex latency (WRL), respectively. For EPT test, the entire 

body of the rat, except the hindlimbs, was wrapped in a surgical towel and supported 

by the thorax. The affected hindlimb was then lowered towards the platform of a digital 

balance (model PLS 510-3, Kern & Sohn GmbH, Kern, Germany) to elicit the EPT. As 

the animal was lowered over the platform, it extended the hindlimb, anticipating the 

contact made by the distal metatarsus and digits. The force in grams applied to the 

digital platform balance was recorded (digital scale range 0-500 g). The same 

procedure was applied to the contra-lateral, unaffected limb. The affected and normal 

limbs were tested 3 times, with an interval of 2 minutes between consecutive tests, and 

the three values were averaged to obtain a final result. The normal (unaffected limb) 

EPT (NEPT) and experimental EPT (EEPT) values were incorporated into an equation 
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Equation 3) to derive the percentage of functional deficit, as described in the literature 

(27):  

% Motor deficit = [(NEPT – EEPT)/NEPT] x 100  

Equation 3 – EPT formula 

The nociceptive withdrawal reflex (WRL) was adapted from the hotplate test as 

described by Masters et al. (47). The rat was wrapped in a surgical towel above its 

waist and then positioned to stand with the affected hindpaw on a hotplate at 56ºC 

(model 35-D; IITC Life Science Instruments, Woodland Hill, CA). WRL is defined as the 

time elapsed from the onset of hotplate contact to withdrawal of the hindpaw and 

measured with a stopwatch. Normal rats withdraw their paws from the hotplate within 4 

seconds or less (28). The affected limbs were tested three times, with an interval of 2 

minutes between consecutive tests to prevent sensitization, and the three latency times 

were averaged to obtain a final result (22). The cut off time for heat stimulation was set 

at 12 seconds to avoid skin damage to the foot (28). 

Sciatic Functional Index (SFI) and Static Sciatic Index (SSI) 

For SFI, animals were tested in a confined walkway measuring 42-cm-long and 8.2-cm-

wide, with a dark shelter at the end. A white paper was placed on the floor of the rat 

walking corridor. The hindpaws of the rats were pressed down onto a finger paint-

soaked sponge, and they were then allowed to walk down the corridor leaving its hind 

footprints on the paper. Often, several walks were required to obtain clear print marks 

of both feet. Prior to any surgical procedure, all rats were trained to walk in the corridor, 

and a baseline walking track was recorded. Subsequently, walking tracks were 

recorded every week until the week-8 postoperatively and then on weeks 10 and 12. 

Several measurements were taken from the footprints: (I) distance from the heel to the 

third toe, the print length (PL); (II) distance from the first to the fifth toe, the toe spread 

(TS); and (III) distance from the second to the fourth toe, the intermediary toe spread 

(ITS). For both dynamic (SFI) and static assessment (SSI), all measurements were 

taken from the experimental (E) and normal (N) sides. Prints for measurements were 

chosen at the time of walking based on clarity and completeness at a point when the 

rat was walking briskly. The mean distances of three measurements were used to 

calculate the following factors (dynamic and static): 

Toe spread factor (TSF) = (ETS – NTS)/NTS 

Intermediate toe spread factor (ITSF) = (EITS – NITS)/NITS 

Print length factor (PLF) = (EPL – NPL)/NPL 
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Where the capital letters E and N indicate injured (experimental) and non-injured side 

(normal), respectively. 

 

SFI was calculated as described by Bain et al. (30) according to the following equation 

Equation 4): 

SFI = -38.3 (EPL – NPL)/NPL + 109.5(ETS-NTS)/NTS + 13.3(EIT-NIT)/NIT – 8.8 = (-

38.3 x PLF) + (109.5 x TSF) + (13.3 x ITSF) – 8.8  

Equation 4- SFI formula 

 

Static footprints were obtained at least during four occasional rest periods. For the 

sciatic static index (SSI) only the parameters TS and ITS, were measured (31): 

SSI = [(108.44 x TSF) + (31.85 x ITSF)] - 5.49  

Equation 5 –SSI formula 

 

For both SFI and SSI, an index score of 0 is considered normal and an index of -100 

indicates total impairment. When no footprints were measurable, the index score of -

100 was given (32). Reproducible walking tracks could be measured from all rats. In 

each walking track three footprints were analysed by a single observer, and the 

average of the measurements was used in SFI calculations. 

 

Kinematic analysis  

Ankle kinematics and stance duration analysis were carried out prior to nerve injury 

and on weeks one, four, eight and twelve of recovery. Animals walked on a perspex 

track with length, width and height of respectively 120, 12, and 15 cm. In order to 

ensure locomotion in a straight direction, the width of the apparatus was adjusted to the 

size of the rats during the experiments, and a darkened cage was connected at the end 

of the corridor to attract the animals. The rats’ gait was video recorded at a rate of 100 

Hz images per second (JVC GR-DVL9800, New Jersey, USA). The camera was 

positioned at the track half length where gait velocity was steady, and 1 m distant from 

the track obtaining a visualization field of 14 cm wide. Only walking trials with stance 

phases lasting between 150 and 400 ms were considered for analysis, since this 

corresponds to the normal walking velocity of the rat (20–60 cm/s) (33; 34; 48). The 

video images were stored in a computer hard disk for latter analysis using an 

appropriate software APAS® (Ariel Performance Analysis System, Ariel Dynamics, San 

Diego, USA). 2-D biomechanical analysis (sagittal plan) was carried out applying a two-

segment model of the ankle joint, adopted from the model firstly developed by Varejão 
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et al. (48). Skin landmarks were tattooed at 3 points: the proximal edge of the tibia, the 

lateral malleolus and, the fifth metatarsal head. The rats’ ankle angle was determined 

using the scalar product between a vector representing the foot and a vector 

representing the lower leg. Four complete walking cycles were analysed per rat. With 

this model, positive and negative values of position of the ankle joint indicate 

dorsiflexion and plantarflexion, respectively. For each stance phase the following time 

points were identified: initial contact (IC), opposite toe-off (OT), heel-rise (HR) and toe-

off (TO) (34; 48), and were time normalized for 100% of the stance phase. The 

normalized temporal parameters were averaged over all recorded trials. Angular 

ankle’s velocity was also determined (negative values correspond to dorsiflexion). 

 

2.3 Design-based quantitative morphology and electron 

microscopy 

After the 12-week follow-up time, rats were anaesthetised and a 10-mm-long segment 

of the sciatic nerve that included the injured portion was collected, fixed, and prepared 

for morphological analysis and histomorphometry of myelinated nerve fibers. A 10-mm 

segment of uninjured sciatic nerve was also withdrawn from the 6 control animals. 

Immediately after collecting the nerve, rats were euthanized through an intracardiac 

injection of 5% sodium pentobarbital (Eutasil®). Sciatic nerve samples were immersed 

immediately in a fixation solution, containing 2.5% purified glutaraldehyde and 0.5% 

saccarose in 0.1M Sorensen phosphate buffer for 6-8 hours. Specimens were then 

washed in a solution containing 1.5% saccarose in 0.1M Sorensen phosphate buffer, 

post-fixed in 2% osmium tetroxide, dehydrated and embedded in Glauerts' embedding 

mixture of resins consisting in equal parts of Araldite M and the Araldite Härter, HY 964 

(Merck, Darmstad, Germany), to which was added 1-2% of the accelerator 964, DY 

064 (Merck, Darmstad, Germany). The plasticizer dibutyl phthalate was added in a 

quantity of 0.5% [75]. Series of 2-µm thick semi-thin transverse sections were cut using 

a Leica Ultracut UCT ultramicrotome (Leica Microsystems, Wetzlar, Germany) and 

stained by Toluidine blue for 2-3 minutes for high resolution light microscopy 

examination. In each nerve, histomorphometry was conducted using a DM4000B 

microscope equipped with a DFC320 digital camera and an IM50 image manager 

system (Leica Microsystems, Wetzlar, Germany). This system reproduced microscopic 

images (obtained through a 100x oil-immersion objective) on the computer monitor at a 

magnification adjusted by a digital zoom. The final magnification was 6600x enabling 
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accurate identification and morphometry analysis of myelinated nerve fibers. One semi-

thin section from each nerve was randomly selected and used for the morpho-

quantitative analysis. The total cross-sectional area of the nerve was measured and 

sampling fields were then randomly selected using a protocol previously described 

(37). Possible "edge effects" were compensated by employing a two-dimensional 

dissector procedure which is based on sampling the "tops" of fibers (37). Mean fiber 

density was calculated by dividing the total number of nerve fibers within the sampling 

field by its area (N/mm2). Total fibers number (N) was then estimated by multiplying the 

mean fiber density by the total cross-sectional area of the whole nerve cross section 

assuming a uniform distribution of nerve fibers across the entire section. Fiber and 

axon area were measured and the circle-fitting diameter of fiber (D) and axon (d) were 

calculated. These data were used to calculate myelin thickness [(D-d)/2], myelin 

thickness/axon diameter ratio [(D-d)/2d], and fiber/axon diameter ratio (D/d). The 

precision of the histomorphometry methods was evaluated by calculating the coefficient 

of error (CE). Regarding quantitative estimates of fiber number, the CE(n) was 

obtained as follows in Equation 6 (37): 

'

1
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Q
nCE




 
Equation 6 - quantitative estimates of fiber number 

 

Where Q' is the number of counted fibers in all dissectors. 

For size estimates, the coefficient of error was estimated as follows in Equation 7 (36): 

Mean

SEM
zCE )(

 
Equation 7 - coefficient of error 

 

Where SEM = standard error of the mean. 

 

The sampling scheme was designed in order to keep the CE below 0.10, which 

assures enough accuracy for neuromorphological studies (49). 

For transmission electron microscopy, ultra-thin sections were cut by means of the 

same ultramicrotome and stained with saturated aqueous solution of uranyl acetate 

and lead citrate. Ultra-thin sections were analyzed using a JEM-1010 transmission 

electron microscope (JEOL, Tokyo, Japan) equipped with a Mega-View-III digital 

camera and a Soft-Imaging-System (SIS, Münster, Germany) for the computerized 

acquisition of the images. 
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3 Statistics  

Two-way mixed factorial ANOVA was used to test for the effect of time (within subjects 

effect) and group (between subjects effect). Sphericity was evaluated by the Mauchly’s 

test and when this assumption was not satisfied, the degrees of freedom were 

corrected by using the more conservative Greenhouse-Geiser’s epsilon. Differences 

between pre-surgery results and those obtained throughout the 12-week recovery 

period were systematically assessed by applying planned contrasts (General Linear 

Model, simple contrasts). The effect of the chitosan membrane alone or associated to 

N1E-115 differentiated cells was then evaluated through two way mixed factorial 

ANOVA. For histomorphometry, statistical comparisons of quantitative data were 

subjected to one-way ANOVA test. MANOVA analysis was employed to assess 

differences in functional recovery between the experimental groups. Statistical 

significance was established as p<0.05. All statistical procedures were performed by 

using the statistical package SPSS (version 14.0, SPSS, Inc) except histomorphometry 

data that was analysed using the software “Statistica per discipline bio-mediche” 

(McGraw-Hill, Milan, Italy). All data in this study is presented as mean  standard error 

of the mean (SEM). 
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4 Results 

4.1 In vitro results and SEM analysis of chitosan membranes 

Results obtained from epifluorescence technique are referred to measurements from 

non-differentiated N1E-115 cells and after 48h of differentiation in the presence of 1.5% 

DMSO. The mean value of [Ca2+]i in non-differentiated N1E-115 cells (N = number of 

cells submitted to [Ca2+]i measurement) was 39.9 ± 3.4 nM (N = 15), 35.9 ± 3.2 nM (N = 

15) and 40.2 ± 2.9 nM (N = 15), for cultures over chitosan membranes, type I,II and III, 

respectively. Values of [Ca2+]i for N1E-115 cells after 48h of differentiation in the 

presence of 1.5% DMSO were 42.9 ± 5.1 nM (N = 15), 44.3 ± 4.8 nM (N = 15) and 41.6 

± 4.3 nM (N = 15), for cultures over chitosan membranes, type I,II and III, respectively. 

All these values are not statistically different for p<0.05, and correspond to [Ca2+]i from 

cells that did not begin the apoptosis process besides the evident neural differentiation. 

According to this fact, it is reasonable to conclude that chitosan membranes, previously 

presented as type I, II and III, were a viable substrate for N1E-115 neuronal cell line 

adhesion, multiplication and differentiation. 

Figure 14 shows the SEM microstructure of type II Figure 14A) and type III (Figure 

14B) chitosan membranes, respectively. The drying techniques employed to prepare 

the membranes were freeze-drying (type III) and the conventional thermal drying (type I 

and type II), which led to extremely dissimilar microstructural and mechanical 

properties. In this study, the chitosan membranes type III have about 110 µm pores 

and about 90% of porosity. 

 

 

Figure 14 - Scanning electron microscopy microstructure of chitosan membranes. (A) Type II chitosan

membrane. (B) Type III chitosan membrane, showing a more porous microstructure, when compared to Type

II chitosan membrane 
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4.2 In vivo biocompatibility results 

Despite the same composition, type II and type III membranes presented a distinct 

behavior: the latter elicited an exuberant cellular infiltrate composed in a large extent by 

multinucleated giant cells and some mast cells, whereas type II chitosan elicited a mild 

fibrous capsule and a discrete inflammatory reaction. Type III chitosan membranes 

underwent a completely different aging process, the so called freeze drying. This 

lyophilisation procedure resulted in highly porous membranes: after freezing and 

lyophilisation, the spaces formerly occupied by the solvent were left emptied so these 

porous membranes presented a superior surface/volume ratio, when compared to the 

type I and type II chitosan membranes. As surface/volume ratio increases, there is a 

higher contact surface with the host’s immune system, which could explain the 

resulting exuberant cellular component. In fact, this study demonstrated that the three 

chitosan membranes tested in vitro and in vivo were biocompatible and therefore an 

important scaffold for the reconstruction of peripheral nerve, after axonotmesis or 

neurotmesis injury, associated or not to neurotrophic factors cellular producing 

systems. Types II and III chitosan membranes showed higher elasticity in comparison 

to type I chitosan membrane, a feature which would facilitate the surgical manipulation. 

Therefore, we decided to carry out in vivo testing with chitosan types II and III only. 

4.3 Functional Assessment of Reinnervation 

Immediately after the acute compression injury, the crushed areas of all sciatic nerves 

were flattened but nerve continuity was preserved. Complete flaccid paralysis of the 

operative foot was observed following crush injury. All rats survived, with no wound 

infection or automutilation. 

 

Withdrawal reflex latency (WRL) 

The results obtained, performing Withdrawal Reflex Latency (WRL) test to evaluate the 

nociceptive function are shown in Figure 15. Two way ANOVA shows that the WRL 

were significantly affected after the sciatic nerve crush [F(10,250)=82,884; p<0,000]. 

Contrast analysis indicates that the WRL values were affected up to week 8. Beyond 

this time point, WRL values, the experimental groups pooled together, were similar to 

those preoperatively. A significant effect of group was found for WRL data 

[F(4,25)=12,018; p<0,000], and post hoc analysis showed that differences were 

significant between ChitosanII group from one side and ChitosanIICell, ChitosanIII and 
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ChitosanIIICell groups on the other side (p<0,05). These results are suggestive of a 

slower rate of recovery in WRL with the use of type II chitosan. 

 
Figure 15 - WRL results 

 

Motor Deficit (EPT) 

The EPT values obtained during the healing period of 12 weeks are represented in 

Figure 16. EPT values were significantly affected by the crush injury [F(10,250)=1497,366; 

p<0,000] and contrast analysis shows that at week 12, EPT had still not recovered to 

baseline values. There were significant differences in EPT values between the 

experimental groups [F(4,25)=12,018; p<0,000] and post hoc analysis shows that the 

EPT values from the Crush group were significantly different from those of the 

ChitosanIICell and ChitosanIIICell (p<0,05), suggesting a negative effect of the N1E 

115-differentiated cells on motor recovery after sciatic crush injury. 

 
Figure 16 - EPT results 
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Sciatic functional index (SFI) and Static Sciatic Index (SSI) 

SFI and SSI results are depicted in Figure 17 and Figure 18, respectively. Two way 

ANOVA shows that SFI values changed significantly after the crush injury 

[F(10,250)=488,931; p<0,000]. Contrast analysis shows that SFI values were different 

from baseline until week 7 of recovery. A significant effect of group was observed for 

SFI values [F(4,25)=144,125; p=0,01] with post hoc analysis indicating that values from 

ChitosanIICell group were different from those of the ChitosanII and ChitosanIII groups.  

Two way ANOVA analysis on SSI data was similar to that of the just reported SFI 

results. However, post hoc analysis shows that SSI results from the ChitosanIIICell 

group were different from those of the Crush, ChitosanII and ChitosanIICell groups. 

 
Figure 17 - SFI results 
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Figure 18 - SSI results 

 

Ankle joint Kinematics  

Video recordings of the rats’ gait were undertaken at week 0 (pre-operatively) and at 

post-surgery at weeks 0, 2, 4, 8 and 12, so the amount of time points for statistical 

analysis was reduced to only five (see Methods). Figure 19 and Figure 20 represent 

the values of ankle joint angle and the values of ankle joint velocity at IC, OT, HR and 

TO, respectively, obtained by kinematic analysis during the healing period of 12 weeks. 
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Figure 19 - Curves representing ankle joint angle in the sagittal plane during the stance phase of 

walking. Note the absence of plantarflexion at push off in all sciatic crushed groups at week 2

post-injury. The normal ankle motion pattern is progressively regained during the 12-weeks 

recovery period. The mean of each group is plotted: (solid line) Control Group; () Axonotmesis 

Group (Crush); (dashed line) Axonotmesis involved with chitosan II membrane (ChitosanII); () 

Axonotmesis involved with chitosan III membrane (ChitosanIII); (x) Axonotemesis involved with 

chitosan type II membrane covered with the cellular system (ChitosanIICell); () Axonotemesis 

involved with chitosan type III membrane covered with the cellular system (ChitosanIIICell). 
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Initial Contact (IC)  

The ankle joint angle at IC changed significantly after the sciatic crush [F(4, 100)=28,705; 

p<0,000]. Such changes were transient and by week 4 ankle joint angle at IC was 

indistinguishable from baseline, as indicated by contrast analysis. Two way ANOVA 

revealed group differences [F(4,25)=10,671; p<0,000] and post hoc analysis shows that 

ChitosanII group was different from all the other four groups. 

 

Opposite toe off (OT)  

Ankle joint angle at OT was significantly affected after the crush injury [F(4,100)=13,464; 

p<0,000] but by week 4 of recovery joint position at this point of stance had recovered 

to normal values. Two way ANOVA revealed a significant group effect [F(4,25)=4,150; 

p=0,01] and post hoc analysis showed that ankle joint angles at OT in the ChitosanII 

group throughout the study were significantly different from Crush and ChitosanIII 

groups (Figure 19). 

Ankle joint velocity at OT was significantly affected after the crush injury [F(4,100)=8,582; 

p<0,000] and returned to preoperative values at week 4 (p<0,05). There were 

significant differences between the groups for ankle joint velocity at OT [F(4,25)=3,164; 

p<0,031] with post hoc analysis showing significant differences between ChitosanII and 

ChitosanIICell groups (p<0,05) (Figure 20). 

 

Heel Raise (HR)  

Ankle joint angle at HR was significantly altered after the sciatic nerve injury 

[F(4,100)=34,151; p<0,000] until week 12 (p<0,05). A significant effect of group was found 

for this variable [F(4,25)=3,456; p<0,022]. Post hoc tests found significant differences in 

ankle joint angle at HR between ChitosanII and the Crush and ChitosanIIICell groups 

(Figure 19). 

Instantaneous ankle’s joint velocity at HR was significantly affected after axonotmesis 

[F(4,100)=42,384; p<0,000] with contrast analysis showing that differences in ankle’s joint 

velocity were significantly different from normal values until week 4 of recovery. A 

significant effect of group was registered [F(4,25)=3,766; p<0,016], and post hoc tests 

showed significant differences between ChitosanII and ChistosanIICell groups (Figure 

20). 
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Figure 20 - Curves represent ankle joint angular velocity in the sagittal plane during the stance 

phase of walking. Note the loss of the normal ankle joint angular velocity biphasic response in all

sciatic crushed groups at week 2 post-injury. The normal ankle velocity pattern is progressively

regained during the 12-weeks recovery period. The mean of each group is plotted: (solid line)

Control Group; ()Axonotmesis Group (Crush); (dashed line) Axonotmesis involved with chitosan

II membrane (ChitosanII); () Axonotmesis involved with chitosan III membrane (ChitosanIII); (x) 

Axonotemesis involved with chitosan type II membrane covered with the cellular system

(ChitosanIICell); ()Axonotemesis involved with chitosan type III membrane covered with the

cellular system (ChitosanIIICell). 
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Toe off (TO) 

Ankle joint angle at TO was significantly altered after the sciatic nerve injury 

[F(4,100)=181,588; p<0,000]. Contrast analysis showed that at week 12 ankle’s joint 

angle mean value at TO was similar to that registered before the sciatic nerve injury. A 

significant effect of group was found for this variable [F(4,25)=3,409; p<0,023]. Post hoc 

tests found significant differences in ankle’s joint angle at TO between ChitosanII and 

ChitosanIIICell groups (Figure 19). Ankle’s joint velocity at TO was significantly affected 

after the crush injury [F(4,100)=103,331; p<0,000] with contrast analysis showing that 

ankle’s joint velocity did not recovered completely within the 12-weeks follow up time. A 

significant effect of group was registered [F(4,25)=9,689; p<0,000], and post hoc tests 

showed significant differences between ChitosanIICell, from one hand and Crush, 

ChitosanIII and ChistosanIIICell groups, on the other hand (Figure 20). 

MANOVA analysis was employed to further compare the results of the walk kinematic 

analysis of the experimental groups, using values of week 12 only. A significant effect 

of the experimental group was observed (Pillai’s Trace 3,709; p<0,000). Multivariate 

contrast analysis (K matrix) showed that ChitosanIII was the group differing from Crush 

group in a less number of variables. This indicates that at the end of the recovery 

period animals in ChitosanIII group presented a degree of functional recovery similar to 

that registered in the Crush group.  

4.4 Morphological and histomorphometrical analysis 

Figure 21 shows the histological appearance of control normal sciatic nerve cross 

sections (Figure 21A) in comparison to cross sections of the regenerated nerve fibers 

with and without cell delivery (Figure 21B-F). As expected, regenerated nerve fibers in 

all five experimental groups were organized in microfascicles and were smaller than 

control nerve fibers. In the two experimental groups in which cell delivery was carried 

out (Figure 21B,D,F), the presence of unusual cell profiles, interpretable as the 

transplanted cells, were detectable at the periphery of the nerves. This was seldom 

observed in inner parts of the nerve (Figure 21F) suggesting that only few transplanted 

cells colonized the inner nerve interstice. 

Electron microscopy confirms that a good regeneration pattern of both unmyelinated 

and myelinated nerve fibers occurred in all experimental groups, irrespectively of the 

enrichment with neural stem cells (Figure 23A,B and Figure 24A,B). The border zone of 

the nerve still shows the presence of some chitosan debris integrated with the collagen 

fibers of the epineurium (Figure 23C,D). Moreover, in the two experimental groups in 

which cell delivery was carried out (Figure 24), it was possible to find some of 
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transplanted cells localized in the border zone of the regenerated nerve (Figure 

24C,D).  

Results of the design-based morphoquantitative analysis of regenerated myelinated 

nerve fibers permitted to quantitatively compare the different experimental groups. As 

expected, fiber density was significantly (p<0.05) higher in all experimental groups in 

comparison to control sciatic nerves, while mean axon and fiber diameter and myelin 

thickness were significantly (p<0.05) lower. 
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As regards the number of regenerated myelinated nerve fibers, this parameter was 

found to be significantly higher (p<0.05) in comparison to controls in four out of the five 

experimental groups only; in fact, ChitosanIII group showed a number of fibers not 

significantly (p<0.05) different in comparison to normal control nerves. 

 

Figure 21 - High resolution photomicrographs of nerve fibers from control and regenerated rat sciatic

nerves. (A) Control group; (B) Crush group; (C) ChitosanII group; (D) ChitosanIICell group; (E) ChitosanIII

group. (F) ChitosanIIICell group. Original magnification: 1000x 
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The peculiarity of the experimental group characterized by type III chitosan membrane 

enwrapment, was also confirmed by statistical analysis of inter-group variability among 

experimental groups which demonstrated that ChitosanIII group has a significantly 

(p<0.05) higher mean fiber and axon diameter and myelin thickness in comparison with 

all other experimental crush groups. 

 Figure 22 - High resolution photomicrographs comparing ChitosanIII (A, C, E) and

ChitosanIIICell (B, D, F) groups. The presence of transplanted cells is clearly identifiable at

the periphery of the nerve (D) and, seldom, also in the inner nerve areas (F). Original

magnification: A, B: = 200x; C-F=1000x 
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 Figure 23 - Electron microscopy regenerated nerve fibers in ChitosanIII experimental group.

In panels A and B, the ultrastructural appearance of unmyelinated (A) and myelinated (B)

nerve fibers can be appreciated. In panels C and D, the presence of chitosan debris mingled

with epineurial connective tissue can be still detected. Original magnification: A = 40,000x; B

= 30,000x; C = 50,000x; D = 150,000x. 

A B

C D
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Figure 24 - Electron microscopy regenerated nerve fibers in ChitosanIIICell experimental group. In panels A

and B, the ultrastructural appearance of unmyelinated (A) and myelinated (B) nerve fibers can be

appreciated. In panels C and D, the presence of elongated transplanted cells mingled with chitosan debris

and epineurial connective tissue can be still detected. Original magnification: A = 40,000x; B = 25,000x; C =

10,000x; D = 15,000x. 
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5 Discussion 

To find out effective strategies for promoting peripheral nerve regeneration is a 

challenging issue in Regenerative Medicine (1-3; 19; 38; 50-52). The study of new 

materials for promoting nerve regeneration is usually carried out in axonotmesis nerve 

lesion models (20). Although nerve fibers always regenerate after experimental 

axonotmesis, there are considerable differences in the extent and rate of recovery 

between studies which probably reflect the different techniques used to induce the 

injury (20; 21; 38). To cope with this limitation, in this study we used a standardized 

clamping procedure that was described in details in previous works (20; 21; 49; 53), for 

investigating the effects of enwrapping the axonotmesis site with type II and type III 

chitosan membranes. In two experimental groups, chitosan membranes were covered 

with in vitro differentiated N1E-115 cells before implanting them in vivo. In neuronal 

cells the regulation of the intracellular free calcium concentration [Ca2+]i plays an 

important role in physiological processes such as growth and differentiation, controlling 

important cell functions like the release of neurotransmitters and the membrane’s 

excitability. The mechanisms that control [Ca2+]i are of crucial importance for normal 

homeostasis, and its deregulation has been associated to cellular changes and even 

cell death, when [Ca2+]i reaches values above 105 nM (42). The measurements of 

[Ca2+]i of the N1E-115 cells in vitro differentiated by the addition of DMSO indicated 

that these cells did not begin the apoptosis process although the evident neural 

differentiation supporting the hypothesis that chitosan membranes type I, II and III, 

were a viable substrate for N1E-115 neuronal cell line adhesion, multiplication and 

differentiation. The in vivo biocompatibility studies also corroborated that the three 

types of chitosan membranes were biocompatible and therefore an important scaffold 

for the reconstruction of peripheral nerve, after axonotmesis or neurotmesis injury, 

associated or not to cellular systems producing neurotrophic factors. The higher 

elasticity observed in type II and III chitosan membranes, when compared to type I, that 

facilitates surgery, induced us to carry out the in vivo testing on the rat sciatic nerve 

regeneration, with these GPTMS hybrid membranes only, abandoning type I 

membranes. As a matter of fact, the GPTMS hybrid membranes provide a suitable 

scaffolding environment for neural tissue engineering, making this material a potential 

candidate for scaffolds in neural tissue engineering. 

The in vivo study on crushed rat sciatic nerve experimental model showed that 

morphological predictors of nerve regeneration (number of fibers, axon and fiber size 

and myelin thickness) were significantly improved in ChitosanIII group in comparison to 
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all other experimental crush groups, thus suggesting that type III chitosan is a suitable 

biomaterial to be used in reconstructive peripheral nerve surgery. Functional 

assessment partially supported the morphometric results since results of the WRL, 

EPT, SFI and SSI tests suggest that chitosan type II and the N1E-115 cells have a 

reduced degree of functional recovery which is in line with results of histomorphometric 

analysis. 

Results of both morphological and functional predictors of nerve regeneration also 

showed that enrichment of chitosan membranes with N1E-115 neural cells did not have 

any positive effect on nerve regeneration in comparison to crush controls and, in case 

of type III chitosan membrane, the presence of transplanted cells seemed to prevent 

the positive effect of the membrane wrapping alone on nerve regeneration. These 

results are in agreement with previous investigation that showed that N1E-115 cell 

population does not have significant effect in promoting axon regeneration and, when 

N1E-115 cells were cultured inside a PLGA scaffold used to bridge a nerve defect, they 

can even exert negative effects on nerve fiber regeneration (21; 53). Thus N1E-115 

cells did not prove to be a potential candidate therapeutic agent for treatment of nerve 

injury and their utilization is just limited to research purposes, mainly as a basic 

scientific step in the investigation of the potentiality for nerve regeneration promotion of 

cell transplantation delivery systems that permit that transplanted cells are able to 

secrete neurotrophic factors in the site of injury without being directly in contact with 

regenerating axons. 

Chitosan type II and chitosan type III were developed as a hybrid of chitosan by the 

addition of GPTMS. Wettability of material surfaces is one of the key factors for protein 

adsorption, cell attachment and migration (39). The addition of GPTMS improves the 

wettability of chitosan surfaces (41), and therefore chitosan type II and chitosan type III 

are expected to be more hydrophilic than the original chitosan (41). Chitosan type III 

was developed to be more porous, with a larger surface to volume ratio but preserving 

mechanical strength and the ability to adapt to different shapes. Significant differences 

in water uptake between commonly used chitosan and our hybrid chitosan type III were 

previously reported due to the difference in the ability of the matrix to hold water (13). 

In fact, hybrid chitosan-based membranes may retain about two times as much 

biological liquid fluid as chitosan (13). A synergetic effect of a more favourable porous 

microstructure and physicochemical properties (more wettable and higher water uptake 

level) of chitosan type III compared to chitosan type II, and the presence of silica ions 

may be responsible for the good results obtained in this study for the former in the 

nerve regeneration process. 
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The observation that significant improvement of axonal regeneration was obtained in 

crushed sciatic nerves surrounded by chitosan type III membranes alone suggests that 

this material may not just work as a simple mechanical scaffold but instead may work 

as an inducer of nerve regeneration. The regenerative property of chitosan type III 

might be explained by the action on Schwann cell proliferation and axon elongation and 

myelination (9; 13). Yet, the expression of established myelin genes such as PMP22, 

PO and MBP (40) may be influenced by the presence of silica ions which exert an 

effect on several glycoprotein expression (13; 43). 
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6 Conclusions 

Enwrapment of the site of a nerve crush lesion with a chitosan type III membrane 

significantly improves nerve regeneration in the rat, whereas enrichment of chitosan 

membranes with N1E-115 neural cells does have positive effects. Whereas translation 

of animal studies to patients should always be dealt with caution, the results obtained 

in this experimental study open interesting perspectives for the clinical employment of 

hybrid chitosan membranes in peripheral nerve reconstruction. 
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5 Introduction 

Nerve regeneration is a complex biological phenomenon. In the peripheral nervous 

system, nerves can spontaneously regenerate without any treatment if nerve continuity 

is maintained (axonotmesis) whereas more severe type of injuries must be surgically 

treated by direct end-to-end surgical reconnection of the damaged nerve ends (1-3). 

Unfortunately, the functional outcomes of nerve repair are in many cases unsatisfactory 

(4-10) thus calling for research in order to reveal more effective strategies for improving 

nerve regeneration. However, recent advances in neuroscience, cell culture, genetic 

techniques, and biomaterials provide optimism for new treatments for nerve injuries (1; 

9-20).  

The use of materials of natural origin has several advantages in tissue engineering. 

Natural materials are more likely to be biocompatible than artificial materials. Also, they 

are less toxic and provide a good support to cell adhesion and migration due to the 

presence of a variety of surface molecules. Drawbacks of natural materials include 

potential difficulties in their isolation and controlled scale-up (6-10). In addition to the 

use of intact natural tissues, a great deal of research has focused on the use of purified 

natural extracellular matrix (ECM) molecules, which can be modified to serve as 

appropriate scaffolding (16). ECM molecules, such as laminin, fibronectin and collagen 

have also been shown to play a significant role in axonal development and 

regeneration (8; 21; 22). For example, silicone tubes filled with laminin, fibronectin, and 

collagen led to a better regeneration over a 10 mm rat sciatic nerve gap compared to 

empty silicone controls (14). Collagen filaments have also been used to guide 

regenerating axons across 20–30 mm defects in rats (23-26). Further studies have 

shown that oriented fibers of collagen within gels, aligned using magnetic fields, 

provide an improved template for neurite extension compared to randomly oriented 

collagen fibers (22; 27). Finally, rates of regeneration comparable to those using a 

nerve autograft have been achieved using collagen tubes containing a porous 

collagen-glycosaminoglycan matrix (28-30). Nerve regeneration requires a complex 

interplay between cells, ECM, and growth factors. The local presence of growth factors 

plays an important role in controlling survival, migration, proliferation, and differentiation 

of the various cell types involved in nerve regeneration (8-10; 31). Therefore, therapies 

with relevant growth factors received increasing attention in recent years although 

growth factor therapy is a difficult task because of the high biological activity (in pico- to 

nanomolar range), pleiotrophic effects (acting on a variety of targets), and short 
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biological half-life (few minutes to hours) (32). Thus, growth factors should be 

administered locally to achieve an adequate therapeutic effect with little adverse 

reactions and the short biological half-life of growth factors demands for a delivery 

system that slowly releases locally the molecules over a prolonged period of time. 

Employment of biodegradable membranes enriched with a cellular system producing 

neurotrophic factors has been suggested to be a rational approach for improving nerve 

regeneration after neurotmesis (16).  

The aim of this study was thus to verify if rat sciatic nerve regeneration after end-to-end 

reconstruction can be improved by seeding in vitro differentiated N1E-115 neural cells 

on a type III equine collagen membrane and enwrap the membrane around the lesion 

site. The N1E-115 cell line has been established from a mouse neuroblastoma (33) 

and have already been used with conflicting results as a cellular system to locally 

produce and deliver neurotrophic factors (6-10). In vitro, the N1E-115 cells undergo 

neuronal differentiation in response to dimethylsulfoxide (DMSO), adenosine 3’, 5’- 

cyclic monophosphate (cAMP), or serum withdrawal (4-10). Upon induction of 

differentiation, proliferation of N1E-115 cells ceases, extensive neurite outgrowth is 

observed and the membranes become highly excitable (4-10). The interval period of 48 

hours of differentiation was previously determined by measurement of the intracellular 

calcium concentration (Ca2+i). At this time point, the N1E-115 cells present already 

the morphological characteristics of neuronal cells but cell death due to increased 

Ca2+i is not yet occurring as described elsewhere (4-10).  
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6 Methods 

6.1 Cell culture 

The N1E-115 cells, clones of cells derived from the mouse neuroblastoma C-130035 

retain numerous biochemical, physiological, and morphological properties of neuronal 

cells in culture (4-10). N1E-115 neuronal cells were cultured in Petri dishes (around 2 x 

106 cells) over collagen type III membranes (Gentafleece®, Resorba Wundversorgung 

GmbH + Co. KG, Baxter AG) at 37ºC, 5% CO2 in a humidified atmosphere with 90% 

Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) supplemented with 10% fetal 

bovine serum (FBS, Gibco), 100 U/ml penicillin, and 100 µg/ml streptomycin (Gibco). 

The culture medium was changed every 48 hours and the Petri dishes were observed 

daily. The cells were passed or were supplied with differentiating medium containing 

1.5% of DMSO once they reached approximately 80% confluence, mostly 48 hours 

after plating (and before the rats’ surgery). The differentiating medium was composed 

of 96% DMEM supplemented with 2.5 % of FBS, 100 U/ml penicillin, 100 µg/ml 

streptomycin and 1.5% of DMSO (6-10). 

 

6.2 Surgical procedure 

Adult male Sasco Sprague Dawley rats (Charles River Laboratories, Barcelona, Spain) 

weighing 300-350 g, were randomly divided in 3 groups of 6 or 7 animals each. All 

animals were housed in a temperature and humidity controlled room with 12-12 hours 

light / dark cycles, two animals per cage (Makrolon type 4, Tecniplast, VA, Italy), and 

were allowed normal cage activities under standard laboratory conditions. The animals 

were fed with standard chow and water ad libitum. Adequate measures were taken to 

minimize pain and discomfort taking in account human endpoints for animal suffering 

and distress. Animals were housed for two weeks before entering the experiment. For 

surgery, rats were placed prone under sterile conditions and the skin from the clipped 

lateral right thigh scrubbed in a routine fashion with antiseptic solution. The surgeries 

were performed under an M-650 operating microscope (Leica Microsystems, Wetzlar, 

Germany). Under deep anaesthesia (ketamine 90 mg/Kg; xylazine 12.5 mg/Kg, 

atropine 0.25 mg/Kg i.m.), the right sciatic nerve was exposed through a skin incision 

extending from the greater trochanter to the mid-thigh distally followed by a muscle 

splitting incision. After nerve mobilisation, a transection injury was performed 

(neurotmesis) immediately above the terminal nerve ramification using straight 
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microsurgical scissors. Rats were then randomly assigned to three experimental 

groups. In one group (End-to-End), immediate cooptation with 7/0 monofilament nylon 

epineurial sutures of the 2 transected nerve endings was performed, in a second group 

(End-to-EndMemb) nerve transection was reconstructed by end-to-end suture, like in 

the first group, and then enveloped by a membrane of equine collagen type III. In a 

third group (End-to-EndMembCell) animals received the same treatment as the 

previous group but with equine collagen type III membranes covered with neural cells 

differentiated in vitro. Sciatic nerves from the contralateral site were left intact in all 

groups and served as controls. To prevent autotomy, a deterrent substance was 

applied to rats’ right foot (34; 35). The animals were intensively examined for signs of 

autotomy and contracture during the postoperative and none presented severe 

wounds, infections or contractures. All procedures were performed with the approval of 

the Veterinary Authorities of Portugal in accordance with the European Communities 

Council Directive of November 1986 (86/609/EEC). 

 

6.3 Functional assessment  

Evaluation of motor performance (EPT) and nociceptive function (WRL) 

Motor performance and nociceptive function were evaluated by measuring extensor 

postural thrust (EPT) and withdrawal reflex latency (WRL), respectively. The animals 

were tested pre-operatively (week-0), at weeks 1, 2, and every two weeks thereafter 

until week-20. The animals were gently handled, and tested in a quiet environment to 

minimize stress levels. The EPT was originally proposed by Thalhammer and 

collaborators, in 1995 (36) as a part of the neurological recovery evaluation in the rat 

after sciatic nerve injury. For this test, the entire body of the rat, excepting the hind-

limbs, was wrapped in a surgical towel. Supporting the animal by the thorax and 

lowering the affected hind-limb towards the platform of a digital balance, elicits the 

EPT. As the animal is lowered to the platform, it extends the hind-limb, anticipating the 

contact made by the distal metatarsus and digits. The force in grams (g) applied to the 

digital platform balance (model TM 560; Gibertini, Milan, Italy) was recorded. The same 

procedure was applied to the contralateral, unaffected limb. Each EPT test was 

repeated 3 times and the average result was considered. The normal (unaffected limb) 

EPT (NEPT) and experimental EPT (EEPT) values were incorporated into an equation 

(Equation 8) to derive the functional deficit (varying between 0 and 1), as described by 

Koka and Hadlock, in 2001 (37). 
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Motor Deficit = (NEPT – EEPT) / NEPT  

Equation 8 EPT formula 

To assess the nociceptive withdrawal reflex (WRL), the hotplate test was modified as 

described by Masters and collaborators (38). The rat was wrapped in a surgical towel 

above its waist and then positioned to stand with the affected hind paw on a hot plate 

at 56ºC (model 35-D, IITC Life Science Instruments, Woodland Hill, CA). WRL is 

defined as the time elapsed from the onset of hotplate contact to withdrawal of the hind 

paw and measured with a stopwatch. Normal rats withdraw their paws from the 

hotplate within 4.3 s or less (39). The affected limbs were tested 3 times, with an 

interval of 2 min between consecutive tests to prevent sensitization, and the three 

latencies were averaged to obtain a final result (40; 41). If there was no paw withdrawal 

after 12 s, the heat stimulus was removed to prevent tissue damage, and the animal 

was assigned the maximal WRL of 12 s (42). 

 

Kinematic Analysis 

Ankle kinematics during the stance phase of the rat walk was recorded prior nerve 

injury (week-0), at week-2 and every 4 weeks during the 20-week follow-up time. 

Animals walked on a Perspex track with length, width and height of respectively 120, 

12, and 15 cm. In order to ensure locomotion in a straight direction, the width of the 

apparatus was adjusted to the size of the rats during the experiments, and a darkened 

cage was placed at the end of the corridor to attract the animals. The rats gait was 

video recorded at a rate of 100 images per second (JVC GR-DVL9800, New Jersey, 

USA). The camera was positioned perpendicular to the mid-point of the corridor length 

at a 1-m distance thus obtaining a visualization field of 14-cm wide. Only walking trials 

with stance phases lasting between 150 and 400 ms were considered for analysis, 

since this corresponds to the normal walking velocity of the rat (20–60 cm/s) (42-44). 

The video images were stored in a computer hard disk for latter analysis using an 

appropriate software APAS® (Ariel Performance Analysis System, Ariel Dynamics, San 

Diego, USA). 2-D biomechanical analysis (sagittal plan) was carried out applying a two-

segment model of the ankle joint, adopted from the model firstly developed by Varejão 

and collaborators (8; 42-44). Skin landmarks were tattooed at points in the proximal 

edge of the tibia, in the lateral malleolus and, in the fifth metatarsal head. The rats’ 

ankle angle was determined using the scalar product between a vector representing 

the foot and a vector representing the lower leg. With this model, positive and negative 

values of position of the ankle joint indicate dorsiflexion and plantarflexion, respectively. 

For each stance phase the following time points were identified: initial contact (IC), 
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opposite toe-off (OT), heel-rise (HR) and toe-off (TO) (8; 42-44), and were time 

normalized for 100% of the stance phase. The normalized temporal parameters were 

averaged over all recorded trials. Angular velocity of the ankle joint was also 

determined where negative values correspond to dorsiflexion. Four steps were 

analysed for each animal (8). 

 

Histological and Stereological analysis 

A 10-mm-long segment of the sciatic nerve distal to the site of lesion was removed, 

fixed, and prepared for quantitative morphometry of myelinated nerve fibers. A 10-mm 

segment of uninjured sciatic nerve was also withdrawn from control animals (N=6). The 

harvested nerve segments were immersed immediately in a fixation solution containing 

2.5% purified glutaraldehyde and 0.5% saccarose in 0.1M Sorensen phosphate buffer 

for 6-8 hours. Specimens were processed for resin embedding as described in details 

elsewhere (45; 46). Series of 2-µm thick semi-thin transverse sections were cut using a 

Leica Ultracut UCT ultramicrotome (Leica Microsystems, Wetzlar, Germany) and 

stained by Toluidine blue for stereological analysis of regenerated nerve fibers. The 

slides were observed with a DM4000B microscope equipped with a DFC320 digital 

camera and an IM50 image manager system (Leica Microsystems, Wetzlar, Germany). 

One semi-thin section from each nerve was randomly selected and used for the 

morpho-quantitative analysis. The total cross-sectional area of the nerve was 

measured and sampling fields were then randomly selected using a protocol previously 

described (46-48). Bias arising from the "edge effect" was coped with the employment 

of a two-dimensional disector procedure which is based on sampling the "tops" of fibers 

(49; 50). Mean fiber density in each disector was then calculated by dividing the 

number of nerve fibers counted by the disector’s area (N/mm2). Finally, total fiber 

number (N) in the nerve was estimated by multiplying the mean fiber density by the 

total cross-sectional area of the whole nerve. Two-dimensional disector probes were 

also used for the unbiased selection of a representative sample of myelinated nerve 

fibers for estimating circle-fitting diameter and myelin thickness. Precision and 

accuracy of the estimates were evaluated by calculating the coefficient of variation 

(CV=SD/mean) and coefficient of error (CE=SEM/mean) (46-48).  
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7 Statistical analysis  

Two-way mixed factorial ANOVA was used to test for the effect of time in the End-to-

End group (within subjects effect; 12 time points) and experimental groups (between 

subjects effect, 3 groups). The sphericity assumption was evaluated by the Mauchly’s 

test and when this test could not be computed or when sphericity assumption was 

violated, adjustment of the degrees of freedom was done with the Greenhouse-

Geiser’s epsilon. When time main effect was significant (within subjects factor), simple 

planned contrasts (General Linear Model, simple contrasts) were used to compare 

pooled data across the three experimental groups along the recovery with data at 

week-0. When a significant main effect of treatment existed (between subjects factor), 

pairwise comparisions were carried out using the Tukey’s HSD test.  At week-0, 

kinematic data was recorded only from the End-to-End group so the main effect of time 

was evaluated only in this group. Evaluation of the main effect of treatment on ankle 

motion variables used only data after nerve injury. In this case, and when appropriate, 

pairwise comparisons were made using the Tukey’s HSD test. Statistical comparisons 

of stereological morpho-quantitative data on nerve fibers were accomplished with one-

way ANOVA test. Statistical significance was established as p<0.05. All statistical 

procedures were performed by using the statistical package SPSS (version 14.0, 

SPSS, Inc) except stereological data that were analysed using the software “Statistica 

per discipline bio-mediche” (McGraw-Hill, Milan, Italy). All data in this study is 

presented as mean ± standard error of the mean (SEM). 
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8 Results 

8.1 Motor deficit and Nociception function 

Motor deficit (EPT) 

 

Before sciatic injury, EPT was similar in both hindlimbs in all experimental groups 

(Figure 25). In the first week after sciatic nerve transection, near total EPT loss was 

observed in the operated hindlimb, leading to a motor deficit ranging between 83 to 

90%. The EPT response steadily improved during recovery but at week-20 the EPT 

values of the injured side were still significantly lower compared to values at week-0 

(p<0.05). A significant main effect for treatment was found [F(2,17) = 14.202; p=0.000], 

with pairwise comparisons showing significantly better recovery of the EPT response in 

the End-to-EndMembCell group when compared to the other two experimental groups 

(p<0.05). At week-20, motor deficit decreased to 27% in the End-to-EndMembCell and 

to 34% and 42% in the End-to-End and End-to-EndMemb groups, respectively (Figure 

25). 
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Figure 25 - Weekly values of the percentage of motor deficit obtained by the Extensor

Postural Thrust (EPT) test. * Significantly different from week-0 all groups pooled together (p

< 0.05). # Group End-to-EndMembCell significantly different from the other groups (p < 0.05).

Results are presented as mean and standard error of the mean (SEM). 
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Nociception function (WRL) 

In the week after sciatic transection, all the animals presented a severe loss of sensory 

and nociception function acutely after sciatic nerve transection and the WRL test has to 

be interrupted at the 12 s-cutoff time (Figure 26). During the following weeks there was 

recovery in paw nociception which was more clearly seen between weeks 6 and 8 

post-surgery. At week-6, half of the animals still had no withdrawal response to the 

noxious thermal stimulus in the operated side, which is in contrast with week-8, when 

all animals presented a consistent, although delayed, response. Despite such 

improvement in WRL response, contrast analysis showed persistence of sensory deficit 

in all groups by the end of the 20-weeks recovery time (p<0.05). No differences 

between the groups was observed in the level of WRL impairment after the sciatic 

nerve transection [F(2,17) = 1.563; p=0.238]. 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

0 1 2 4 6 8 10 12 14 16 18 20

End-to-End End-to_EndMemb End-to_EndMembCell

*         *         *          *

Figure 26 - Weekly values of the withdrawal reflex latency test. At week-1 all animals failed in responding to

the noxious thermal stimulus within the 12 sec cut-off time. No differences between the percentages of

motor deficit obtained by the Extensor Postural Thrust (EPT) test. * Significantly different from week-0 all

groups pooled together (p < 0.05). Results are presented as mean and standard error of the mean (SEM). 
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Kinematics Analysis 

Figure 27 and Figure 28 display the mean plots, respectively for ankle joint angle and 

ankle joint velocity during the stance phase of the rat walk. Comparisons to the normal 

ankle motion can only be draw for the End-to-End group for reasons explained in the 

Methods section. In the weeks following sciatic nerve transection, ankle joint motion 

became severely abnormal, particularly throughout the second half of stance 

corresponding to the push-off sub-phase. In clear contrast to the normal pattern of 

ankle movement, at week-2 post-injury animals were unable to extend this joint and 

dorsiflexion continued increasing during the entire stance, which is explained by the 

paralysis of plantarflexor muscles. The pattern of the ankle joint motion seemed to 

have improved only slightly during recovery. Contrast analysis was performed for each 

of the kinematic parameters (Table 1 and Table 2) with somewhat different results. For 

OT velocity and HR angle no differences existed before and after sciatic nerve 

transection, whereas for OT angle differences from pre-injury values were significant 

only at weeks 2 and 16 of recovery (p<0.05). The angle at IC showed a unique pattern 

of changes, being unaffected at week-2 post-injury and altered from normal in the 

following weeks of recovery. Probably the most consistent results are those of HR 

velocity, TO angle and TO velocity. These parameters were affected immediately after 

the nerve injury and remained abnormal along the entire 20-weeks recovery period 

(p<0.05). The effect of the different tissue engineering strategies was assessed 

comparing the kinematic data of the experimental groups only during the recovery 

period (see Methods). Statistical analysis demonstrated that the collagen membrane 

and the cells had no or little effect on ankle motion pattern recovery. Generally, no 

differences in the kinematic parameters were found between the groups. Exceptions 

were IC velocity in the End-to-EndMembCell group, which was different from the other 

two groups (p<0.05), and OT angle in the End-to-EndMemb group that was also 

different from the other two groups (p<0.05). 

 

 

 

 

 

 

 

 



88 Functional Assessment after Peripheral Nerve Injury - kinematic model of the hindlimb of the rat 

 

 

FMH – Technical University of Lisbon 

 

 

 

 

Figure 27- Kinematics plots in the sagittal plane for the angular position (°) of the ankle as it moves

through the stance phase, during the healing period of 20 weeks. The mean of each group is plotted 
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Figure 28 - Kinematics plots in the sagittal plane for the angular velocity (°/s) of the ankle as it moves

through the stance phase, during the healing period of 20 weeks. The mean of each group is plotted. 
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Table 1- Ankle kinematics and stance duration analysis were carried out prior to nerve injury (week-

0), at week-2, and every 4 weeks during the 20-week follow-up period. 

Values of the ankle angular position (°) at initial contact (IC); opposite toe-off (OT); heel-rise (HR); 

toe-off (TO) of the stance phase. Results are presented as mean and standard error of the mean 

(SEM). N corresponds to the number of rats within the experimental group. 
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Table 2- Ankle kinematics and stance duration analysis were carried out prior to nerve injury (wek-

0), at week-2, and every 4 weeks during the 20-week follow-up period. 

Values of the ankle angular velocity (°/sec) at initial contact (IC); opposite toe-off (OT); heel-rise 

(HR); toe-off (TO) of the stance phase. Results are presented as mean and standard error of the 

mean (SEM). N corresponds to the number of rats within the experimental group. 
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8.2 Histological and Stereological Analysis  

Table 3- Stereological quantitative assessment density, total

number, diameter and myelin thickness of regenerated sciatic

nerve fibers at week-20 after neurotmesis. Values are presented as

mean ± SEM. 
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Figure 29 shows representative light micrographs of the regenerated sciatic nerves of 

the three groups (Figure 29A-C) and control sciatic normal nerves (Figure 29D). As 

expected, regeneration of axons was organized in many smaller fascicles in 

comparison to controls. The results of the stereological analysis of myelinated nerve 

fibers are reported in Table 3. Statistical analysis by ANOVA test revealed no 

significant (p>0.05) difference regarding any of the morphological parameters 

investigated in the regenerated axons from the three experimental groups. On the other 

hand, comparison between regenerated and control nerves showed, as expected, the 

presence of a significantly (p<0.05) higher density and total number of myelinated 

axons in experimental groups accompanied by a significantly (p<0.05) lower fiber 

diameter. 

Figure 29 - Representative high resolution photomicrographs of nerve fibers form regenerated (A-C)

and normal (D) rat sciatic nerves. A: End-to-End. B:End-to-EndMemb. C:End-to-EndMembCell.

Magnification = × 1,500. 
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9 DISCUSSION 

Transected peripheral nerves can regenerate provided that a connection is available 

between the proximal and distal severed stumps and, when no substance loss 

occurred; surgical treatment consists in direct end-to-end suturing of the nerve ends (2; 

3). However, in spite of the progress of microsurgical nerve repair, the outcome of 

nerve reconstruction is still far from being optimal (51). Since during regeneration 

axons require neurotrophic support, they could benefit from the presence of a growth 

factors delivery cell system capable of responding to stimuli of the local environment 

during axonal regeneration.  

In the present study, we aimed at investigating the effects of enwrapping the site of 

end-to-end rat sciatic nerve repair with equine type III collagen nerve membranes 

either alone or enriched with N1E-115 pre-differentiated into neural cells in the 

presence of 1.5% of DMSO. The rationale for the utilization of the N1E-115 cells was to 

take advantages of the properties of these cells as a neural-like cellular source of 

neurotrophic factors (6-10).  

Results showed that enwrapment with a collagen membrane, with or without neural cell 

enrichment, did not lead to any significant improvement in most of functional and 

stereological predictors of nerve regeneration that we have assessed. The only 

exception was represented by motor deficit recovery which was significantly improved 

after lesion site enwrapment with membrane enriched with neural cells pre-

differentiated from N1E-115 cell line.  

Natural tissues possess several advantages when compared to synthetic materials, 

when use to reconstruct peripheral nerves after injury. Natural materials are more likely 

to be biocompatible than artificial materials, are less toxic, and provide a support 

structure to promote cell adhesion and migration. Drawbacks, on the other hand, 

include potential difficulties with isolation and controlled scale-up. In addition to intact 

acellular tissues, a great deal of research has focused on the use of purified natural 

ECM proteins and glycosaminoglycans, which can be modified to serve as appropriate 

scaffolding. ECM molecules, such as laminin, collagen, and fibronectin, have been 

shown to play a significant role in axonal development and repair in the body (24; 52). 

There are a number of examples in which the ECM proteins laminin, fibronectin, and 

collagen have been used for nerve repair applications (21; 23-25; 52-56). For example, 

silicone tubes filled with laminin, fibronectin, and collagen show improved regeneration 

over a 10 mm rat sciatic nerve gap compared to empty silicone controls (14). Collagen 
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filaments have also been used to guide regenerating axons across 20–30 mm defects 

in rats (25; 26; 57). Further studies have shown that oriented fibers of collagen within 

gels, aligned using magnetic fields, provide an improved template for neurite extension 

compared to randomly oriented collagen fibers (22; 27). Rates of regeneration after 

neurotmesis comparable to those using a nerve autograft have been achieved using 

collagen tubes containing a porous collagen-glycosaminoglycan matrix (29; 30). 

Results of this study contribute to the lively debate about the employment of cell 

transplantation for improving post-traumatic nerve regeneration (58; 59). Actually, a 

great enthusiasm among researchers and especially the public opinion has risen over 

the last years about cell-based therapies in Regenerative Medicine (60-62) and there 

seems to be widespread conviction that this type of therapy is not only effective but 

also very safe in comparison to other pharmacological or surgical therapeutic 

approaches. By contrast, recent studies showed that cell-based therapy might be 

ineffective for improving nerve regeneration [66-69], and results of the present study 

are in line with these observations. Recently, it has even been shown that N1E-115 cell 

transplantation can also have negative results by hindering the nerve regeneration 

process after tubulisation repair (17). Of course, the choice of the cell type to be used 

for transplantation is very important for the therapeutic success and use of another cell 

type could have led to better results, especially when the cellular system of choice is 

derived from autologous or heterologous stem cells1 (17-20; 58; 63). Moreover, the 

construction of more appropriate tube-guides with integrated growth factor delivery 

systems and/or cellular components could improve the effectiveness of nerve tissue 

engineering. In fact, single-molded tube guides may not give sufficient control over both 

the mechanical properties and the delivery of bioactive agents. More complex devices 

will be needed, such as multilayered tube guides where growth factors are entrapped in 

polymer layers with varying physicochemical properties or tissue engineered tube 

guides containing viable stem cells (17-20; 58; 63). The combination of two or more 

growth factors will likely exert a synergistic effect on nerve regeneration, especially 

when the growth factors belong to different families and act via different mechanisms. 

Combinations of growth factors can be expected to enhance further nerve 

regeneration, particularly when each of them is delivered at individually tailored kinetics 

(16-20; 58; 63). The determination and control of suitable delivery kinetics for each of 

several growth factors will constitute a major hurdle both technically and biologically 

with the biological hurdle lying in the compliance with the naturally occurring cross talk 

between growth factors and cells. A solution to this problem may be the use of 
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autologous stem cells because they can synthesize several growth factors and 

differentiate into Schwann cells which are critical for very long gaps (16-20; 58; 63). 

Previous work already published by other research groups, point out a very interesting 

source of stem cells for nerve regeneration of peripheral nerve and spinal cord. They 

developed hair follicle pluripotent stem cells (hfPS) and have shown that these cells 

can differentiate to neurons, glial cells in vitro, and other cell types, and can promote 

nerve and spinal cord regeneration in vivo. These cells are located above the hair 

follicle bulge (hfPS cell area) and are nestin and CD34 positive, and keratin 15 

negative (64-67). The mouse hfPS cells were implanted into the gap region of the 

severed sciatic and tibial nerve of mice. These cells, after 6-8 weeks, 

transdifferentiated largely into Schwann cells. Also, blood vessels formed a network 

around the joined sciatic and tibial nerve. Function of the rejoined sciatic and tibial 

nerve was confirmed by contraction of the gastrocnemius muscle upon electrical 

stimulation and by walking track analysis (64-66). hfPS cells can promote axonal 

growth and functional recovery after peripheral nerve injury, offering an important 

opportunity for future clinical application. These hfPS cells, in contrast to Embrionic 

stem cells, N1E-115 cells after in vitro differentiation and induced pluripotent stem 

cells, do not require any genetic manipulation, are readily accessible from any patient, 

and lack the ethical issues, do not form tumors. 
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1 Introduction 

Injury of peripheral nerves is generally followed by abnormal nerve regeneration, 

axonal misrouting, and incorrect reinnervation of the target organs (1; 2). Intense 

investigation exists trying to develop new nerve treatments and neurorehabilitation 

strategies, including alternative surgical techniques (3; 4), the use of biomaterial and 

cellular systems (5-7), nerve electrical stimulation (8) and different modalities of 

exercise  (9; 10).  

The evaluation of the effectiveness of peripheral nerve treating strategies, however, 

requires accurate assessment of functional recovery, since the latter is the major goal 

of peripheral nerve treatment and the most important outcome when translating 

experimental treatment approaches to humans. Notwithstanding, functional 

assessment in animal models of peripheral nerve injury is a challenging task. The rat 

sciatic nerve is a widely used model of peripheral nerve injury. In this case, computer-

assisted biomechanical analysis of joint motion during walking using video recordings 

and focusing on ankle joint motion as been shown to be a valid and reliable method to 

evaluate functional recovery and the reestablishment of proper reinnervation (11-13). 

When compared to other functional tests, in particular the standard sciatic functional 

index test, analysis of ankle motion pattern during walking in sciatic-injured rats 

demonstrates higher sensitivity to motion deficits and shows better relationship with the 

degree of nerve regeneration (13). Also, recent studies demonstrate that measures of 

two-dimensional (2D) ankle joint motion during rat walking present good day-to-day 

and inter-observer reliabilities and are capable of identifying animals carrying injuries to 

the sciatic, tibial or common peroneal nerves (14).  

Joint kinematics during a given movement, such as walking, is usually represented by 

a trajectory in an angle versus time space. Specific kinematic parameters are then 

extracted from such trajectories considering particular events that can be 

unambiguously defined (12; 14; 15). This can result in a varied number of variables that 

may be used to measure changes in the normal pattern of joint motion. In the case of 

experimental injury to the sciatic nerve of the rat, authors have focused on the ankle 

joint kinematics during walking, based on the fact this nerve innervates the muscles 

crossing this joint (11; 12; 14-16). Some studies limited their walking analyses only to 

the stance phase, based on the argument that muscles are particularly active during 

the stance phase in order to support the load of body weight and to generate the power 

needed to accelerate the body forwardly (5; 11; 12; 17). However, more recent studies 

have choose to analyze ankle motion during both the stance and swing phases of 
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walking (14; 18), thus raising the ability to unveil motion deficits of the ankle joint after 

sciatic nerve injury since this nerve supplies both dorsiflexor and plantarflexor muscles. 

Also, 2D video analysis of ankle joint motion in the two walking phases is important to 

distinguish between injuries to the sciatic, tibial or common peroneal nerves (18).  

In previous studies we also conducted video recordings of the rat walk in the sagittal 

plane pre and post sciatic crush injury, measured ankle joint angles at given time points 

during the stance phase and calculated the angular velocities at these instants of time 

(5; 11). The angular velocity of the ankle joint motion was used as an attempt to 

improve the accuracy of ankle kinematic analysis to detect walking dysfunction. In fact, 

there are cases where results of ankle joint angles are difficult to interpret, raising 

concerns about their validity as a functional assessment. For example in our previous 

study (11), we reported in sciatic nerve-crushed rats unchanged ankle angle at the 

instant of opposite toe off in the early paralytic stage (two weeks post-injury) and 

altered ankle angle at this time point thereafter and until the end of the twelve weeks 

follow-up time. Inconsistent results were found also for other ankle kinematics 

parameters in this study (11), as well as in other studies (14; 19). These suggest that 

not all ankle kinematic parameters are sensitive to severe functional deficit caused by 

complete sciatic nerve denervation and therefore are not a valid functional test. 

Importantly, the use of inaccurate kinematic parameters blurs the results and may 

become an obstacle to draw sound conclusions. 

Sciatic nerve crush is also likely to affect the kinematics of hindlimb joints other than 

the ankle joint. Motion changes at the hip and knee joints might accompany ankle joint 

dysfunction during walking either to compensate for the abnormal movement of the 

ankle joint or else due to higher-level reorganization of the whole hindlimb action in 

response to long-lasting motor and proprioceptive deficits of the muscles supplied by 

the sciatic nerve (20). Therefore, it is possible that screening hip and knee motion will 

enhance the sensitivity and specificity of kinematic analysis of walking in the rat sciatic 

nerve model. To our knowledge a walking analysis that includes a description of the 

hip, knee and ankle joint kinematics after sciatic nerve injury has never been 

performed.   

The sensitivity (i.e. the true positive rate) and specificity (i.e. the true negative rate) are 

two key properties of diagnostic and screening tests. These test properties can be 

evaluated using linear discriminant analysis particularly if we are talking of multivariate 

tests that combine several parameters (21). Discriminant analysis simply addresses 

classification or discrimination in which objects or patterns are classified into one of 

several distinct populations using a predictive model developed on a set of 
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independent variables (22). The number of subjects that are correctly classified by the 

discriminant model provides a measure of the sensitivity of the set of testing variables 

used in its building. Conversely, the number of subjects misclassified is a measure of 

the specificity of the test variables.  Additionally, discriminant analysis gives information 

about the relative importance of each of the independent variables in their classification 

role, yielding a sound basis for discarding variables with little contribution in separating 

the groups. Therefore, discriminant analysis may be used to identify which are the best 

walking joint kinematic parameters to assess functional recovery after sciatic nerve 

injury in the rat.  

In this study we conduct a detailed 2D biomechanical analysis of the hip, knee and 

ankle joints in the rat and employed linear discriminant analysis to assess the 

sensitivity and specificity of a large set of spatiotemporal and joint kinematic variables 

as a test of movement dysfunction after sciatic nerve injury. Sciatic nerve-crushed rats 

in the denervated (one week post injury) and in the reinnervated (twelve weeks post 

injury) phases were used as they may serve as a model of animals with severe and 

minor walking deficits, respectively. Sham-operated controls were used as the normal 

walking group. 



Chapter 5 - The sensitivity of two-dimensional hindlimb joints kinematics analysis in assessing function in rats after 

sciatic nerve crush 109 

 

 

FMH – Technical University of Lisbon 

2 Methods and Materials 

Twenty four male Sprague-Dawley rats (Harlan Laboratories, Udine, Italy) were 

randomly assigned to one of three groups. A crush injury to the right sciatic nerve was 

induced in animals in two of the groups, while animals of the third group underwent a 

sham surgery (Sham). Walking tests were performed one week after sciatic nerve 

injury, corresponding to a period of complete denervation and paralysis of sciatic-

innervated muscles (DEN group) (23), and twelve weeks after either sciatic nerve crush 

(REINN group) or sham surgery (Sham group). After twelve weeks from a sciatic nerve 

crush, muscle reinnervation has occurred and functional recovery based on the 

standard sciatic functional index is complete (11; 24; 25). As a result of the longer 

follow up time, mean (±SD) weight was higher in the REINN (454.1±15.8 g) and Sham 

(435.5±17.6) groups, compared to the DEN group (351±5.1 g). All procedures were 

performed with the approval of the Veterinary Authorities of Portugal in accordance 

with the European Communities Council Directive of November 1986 (86/609/EEC). 

The sciatic crush injury procedure was described in detail elsewhere (11). Briefly, 

under deep anaesthesia (ketamine 9 mg/100 g; xylazine 1.25 mg/100 g, i.p.), the right 

sciatic nerve was exposed by skin incision and by splitting the fascia and muscles 

overlying the nerve. The right sciatic nerve was crushed in the gluteal region, well 

before its trifurcation point, by applying pressure for 30 s using a non-serrated clamp 

(25; 26). The muscle, fascia, and skin were closed with 4/0 resorbable sutures. To 

prevent autotomy, a deterrent substance was applied to the rats’ right hindleg and foot 

[(27; 28). The animals were intensively examined for signs of autotomy and contracture 

and none of the animals presented severe wounds (absence of a part of the foot or 

severe infection) or contractures during the study. In sham-operated animals, skin and 

muscle incisions were performed and the sciatic nerve exposed and mobilized, but no 

injury was induced to this nerve. All animals were left to recover in their cages with no 

other measures taken that could enhance nerve regeneration and/or functional 

recovery.  

2.1 Kinematic analysis  

An optoelectronic system of six infrared cameras (Oqus-300, Qualisys, Sweden) 

operating at a frame rate of 200Hz was used to record the motion of the right hindlimb. 

After shaving, seven reflective markers with 2mm diameter were attached to the skin of 

the right hindlimb at the following bony prominences: (1) tip of fourth finger, (2) head of 
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fifth metatarsal, (3) lateral malleolus, (4) lateral knee joint, (5) trochanter major, (6) 

anterior superior iliac spine, and (7) ischial tuberosity. All markers were placed by the 

same person. Animals walked on a Perspex track with length, width and height of 

respectively 120, 12 and 15cm with two darkened cages placed at both ends of the 

corridor to attract the animals and facilitate walking. Before data collection, all animals 

performed two or three conditioning trials to be familiarized with the corridor. Cameras 

were positioned to minimize light reflection artifacts and to allow recording 4 to 5 

consecutive walking cycles, defined as the time between two consecutive initial ground 

contacts (IC) of the right fourth finger. The motion capture space was calibrated 

regularly using a fixed set of markers and a wand of known length (20 cm) moved 

across the recorded field. Calibration was accepted when the standard deviation of the 

wand’s length measures was below 0.4 mm. Planar motion in the sagittal plane of the 

hip, knee and ankle joint was calculated with Visual 3D software (C-Motion, Inc, 

Germantown, USA) by a computational procedure implementing the dot product 

between the skeletal segments articulated by these joints. Joint velocity was also 

calculated using the first derivative of joint angle motion. The trajectory of the reflective 

markers was smoothed using a Butterworth low-pass filter with a 6 Hz cut-off. Data 

were obtained by averaging six walking cycles. Each walking cycle was time 

normalized by interpolation using the longest trial. Our angles convention was:  1) 

decreasing hip angle value – hip flexion; 2) decreasing knee angle value – knee 

flexion; 3) positive ankle angle value – dorsiflexion. Positive angular velocity indicates 

increasing angle values. This also applies to the ankle joint: positive angular velocity 

signifies increasing dorsiflexion. Joint angle and angular velocity values were 

measured at the instants of initial ground contact (IC), defined as the time point where 

horizontal velocity of the toe reflective marker becomes zero, midstance (MSt), the 

point of fifty per cent duration of the stance phase, toe-off (TO), defined as the instant 

the horizontal velocity of the toe’s reflective marker increases from zero, and midswing 

(MSw), defined as the point of fifty per cent duration of the swing phase. Additional 

kinematics parameters recorded included peak angles and angular velocities during 

both phases of the walking cycle.  

Spatiotemporal parameters, including walking velocity, walking cycle duration, stride 

length, stance duration, and swing duration, were directly given by Visual 3D software 

based on horizontal displacement of the reflective markers.  

Interjoint coordination shape patterns were studied by using cyclograms or else 

designated angle-angle plots. The angle-angle plots included those of hip-knee, knee-

ankle and hip-ankle. Cyclograms perimeters were measured using the euclidean 

distance between each two consecutive points.  
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3 Statistical analysis and modelling 

Univariate ANOVA was used to test for differences between the groups. Further 

pairwise comparisons were performed using the Tukey’s HSD test.   

Linear disciriminant analysis was used to predict walking function and to classify 

animals after sciatic nerve crush and controls. Four models were tested utilizing 

spatiotemporal data and joint kinematics data of the hip, knee and ankle joints, 

separately. For each subset all parameters were employed, meaning using both joint 

angle and angular velocity in the cases of joint kinematics. Peak angles and angular 

velocities were excluded from this analysis. The stepwise method was selected to input 

the criterion variables with the Wilk’s Lambda choose as the method for inclusion or 

rejection of the predictive variables. The leave-one-method was implemented for 

further model cross-validation. This method is particularly useful when using small 

samples and when a training sub-sample is not available for unbiased model 

development. This method operates by having each subject classified by a discriminant 

model constructed on the basis of data pertaining to the remaining subjects. Data are 

presented as mean and standard deviation (SD). Statistical analysis was performed 

using SPSS software package (version 17, SPSS Inc). Statistical significance was 

accepted at p<0.05. 
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4 Results  

4.1 Spatiotemporal parameters 

Spatiotemporal data are presented in Table 4. The DEN group had a lower walking 

velocity and a shorter stride length compared to the Sham group (p=0.005 and 

p=0.007, for walking velocity and stride length, respectively) but not to the REINN 

group (p=0.058 and p=0.145, for walking velocity and stride length, respectively). The 

walking cycle time was longer in the DEN group, again only compared to the Sham 

group (p=0.046, Sham group; p=0.131, REINN group). The DEN group also showed a 

significantly longer swing duration, compared to both REINN (p=0.000) and Sham 

(p=0.000) groups. No differences in spatiotemporal measures were observed between 

the REINN and the Sham groups. 

 

 

 

Table 4 - Mean values for spatiotemporal data for each experimental group; eight animals per 

group 

Groups Walking velocity  

(ms-1) 

Cycle duration  

(s) 

Stride length (m) Stance time (s) Swing time (s) 

DEN 0.161±0.029b 0.852±0.057b 0.133±0.003b 0.238±0.030 0.175±0.009a 

REINN 0.210±0.016 0.730±0.035 0.148±0.006 0.258±0.010 0.123±0.002 

Sham 0.231±0.014 0.697±0.030 0.160±0.005 0.248±0.015 0.125±0.002 

aSignificantly different from REINN and Sham; p<0.05;  

bSignificantly different from Sham only; p<0.05  
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4.2 Joint kinematics 

Plots of mean ankle, hip and knee joint angle and angular velocity are shown in Figure 

30 with the parameter measures reported in Table 5, Table 6 and Table 7 

 

 

 

 

 

 

 

 

 

The ankle was the most affected joint after sciatic nerve injury. During the stance 

phase, the most evident ankle motion change is the higher overall dorsiflexion angle in 

  

 

Figure 30 - Mean trajectories for hip (upper graphs), knee (middle graphs) and ankle (lower

graphs) joint angle (left hand graphs) and angular velocity (right hand graphs) during the rat’s

walking cycle. Full lines correspond to the stance phase and dashed lines correspond to the

swing phase of the walking cycle. In the hip joint angle, increased extension during the stance

phase is visible in the DEN group (single line) as well as the increased flexion in the REINN

group (triple line).  Also evident, the deep altered ankle kinematics in both stance and swing

phases in the DEN group and similar trajectories of ankle angle and angular velocity between

the REINN and Sham groups. All groups n=8. 



114 Functional Assessment after Peripheral Nerve Injury - kinematic model of the hindlimb of the rat 

 

 

Sandra Cristina Fernandes Amado 

the DEN group. In this group, ankle motion is also severely affected across the swing 

phase, and the characteristic movement of fast dorsiflexion followed by plantarflexion 

that can be seen in REINN and Sham groups is absent in the DEN group. Accordingly, 

changes in ankle angular velocity in the DEN group occur mostly during the swing 

phase and not during the stance phase. In both REINN and Sham groups, ankle’s 

maximal dorsiflexion and plantarflexion angular velocities are recorded during the 

swing phase, that obviously correspond to a large range of movement of the ankle 

performed in a short time interval. In the DEN group, these two peak angular velocities 

are no longer observed and in replace of a large amplitude movement, the ankle 

performs a slow and small amplitude plantarflexion movement along the entire swing 

phase. This ankle motion pattern is consistent with total paralysis of the hindleg 

muscles and loss of contractile force of both the dorsiflexor and plantarflexor muscles 

caused by complete injury of the motoneuron axons in the sciatic nerve.  

Reflecting the deep ankle kinematics changes in the DEN group, ANOVA reveals 

significant differences between the groups for all ankle kinematics parameters, 

excepting ankle’s angular velocity at MSw (p=0.192, Table 5). Pairwise tests showed 

significant differences in ankle angles and angular velocities between the DEN group 

and both REINN and Sham groups, excepting for ankle angle at MSw, where the 

differences were significant only between DEN and Sham groups (11.4±11.3º and 

28.1±13.9º, for DEN and Sham groups, respectively, p<0.05). Peak dorsiflexion angle 

during the stance phase was increased in the DEN group comparing with the other two 

groups (47.42±7.82º, 3.60±14.19º, 4.53±15.19º, DEN, REINN, Sham groups, 

respectively; both pairwise comparisons, p=0.000). No clear peak plantarflexion angle 

could be identified in animals of the DEN group, either in the stance or in the swing 

phase. Ankle peak angles and angular velocities during the swing phase in REINN and 

Sham groups were similar (Table 5).  

Hip joint motion was also affected by sciatic nerve crush (Figure 30 and Table 6). Hip 

joint excursion during walking was considerably increased in the DEN group. This 

increased range of motion was due to a larger hip extension during the stance phase 

while hip flexion during the swing phase remained relatively unaffected (Figure 30). 

Accordingly, hip angular velocity was also higher in the DEN group, than in the REINN 

and Sham groups (Figure 30). In the DEN group, hip angle at IC, TO, and MSt were 

significantly different compared to the Sham group (p<0.05). Hip joint angle and 

angular velocity at MSt were different between the REINN and Sham groups (p=0.046 

and p=0.034 for hip angle and velocity, respectively). Hip’s peak extension angle 

occurred at around TO and therefore it was not computed. In the swing phase, a 

distinct hip flexion peak angle could be noticed only in the DEN group. However, its 
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value was similar to maximum hip flexion angle in the other groups for the same 

walking phase (Figure 30). Hip peak flexion and extension velocities were increased in 

DEN group compared to both REINN and Sham groups.  

The changes in knee joint motion with denervation (DEN group) were less pronounced 

than those registered in ankle and hip joints (Figure 30). The most evident knee angle 

change in the denervated group is increased knee angle extension, particularly during 

the stance phase (Table 7). The increased knee extension in the DEN group is likely a 

compensation for the augmented ankle dorsiflexion and a strategy to maintain the 

whole limb length. Knee angle changes were also noticed in the REINN group. This 

group showed increased knee flexion at TO (50.29±15.09º), compared to both Sham 

(72.50±11.26º, p=0.037) and DEN (79.40±13.55º, p=0.001) groups. Also, peak knee 

flexion angle during the swing phase was increased in REINN group, compared to the 

DEN group (p=0.047). This reflected a global increase in knee flexion throughout the 

entire walking cycle in the REINN group compared to knee motion in sham-control 

animals (Figure 30). No differences in knee angle at IC and MSw were found between 

the groups. Knee angular velocity in the DEN group was different from either the Sham 

or REINN groups at MSt, TO, and MSw. No differences in knee angular velocity were 

found between REINN and Sham groups. Knee peak flexion velocity during the swing 

phase was similar in all groups. 

 



 

 

 

Table 5 - Mean values for ankle joint angle and angular velocity for each experimental group; eight animals per group 

  Ankle joint  
 

Groups IC MSt 

Peak value 

extension 

(plantarflexion) 

Peak value flexion 

(dorsiflexion) 
TO 

Peak value 

extension 

(plantarflexion) 

Peak value 

flexion 

(dorsiflexion) 

MSw 

A
ng

le
 (

º)
 

DEN -0.6± 

12.9a 

46.2± 

8.4a 

-0.81± 

13.26 

47.42± 

7.82a 

17.1± 

9.4a 

-5.31± 

12.65b 

17.50± 

9.57 

11.4± 

11.3b 

REINN -20.1± 

12.5 

4.2± 

14.1 

-22.45± 

13.08 

3.60± 

14.19 

-14.6± 

13.6 

-20.86± 

12.69 

22.63± 

14.89 

23.1± 

15.1 

Sham -16.4± 

9.6 

4.7± 

15.1 

-18.55± 

11.15 

4.53± 

15.19 

-17.0± 

11.0 

-17.34± 

9.97 

28.66± 

14.49 

29.1± 

13.9 

V
el

oc
ity

 (
º/

s)
 

DEN 321.8± 

145.8a 

200.3± 

91.6a 

573.93± 

64.71 

-447.97± 

100.00 

-361.4± 

237.8a 

42.13± 

122.98 

-407.78± 

156.76 

-228.0± 

256.1 

REINN -313.4± 

100.7 

1.4± 

56.2 

386.26± 

43.01 

-297.82± 

49.87 

431.4± 

113.6 

846.71± 

100.51 

-912.5± 

140.87 

-402.3± 

91.2 

Sham -280.9± 

127.4 

-52.2± 

81.8 

359.45± 

87.23 

-359.57± 

68.31 

486.8± 

104.1 

1025.51± 

198.15 

-967.05± 

189.79 

-383.1± 

220.6 
a Significantly different from REINN and Sham; p < 0.05;  b Significantly different from Sham only; p < 0.05  

 

 

 

 

 

 

 



 

 

Table 6 - Mean values for hip joint angle and angular velocity for each experimental group; eight animals per group 

  Hip joint 

Groups IC MSt 
Peak value 

extension 

Peak value 

flexion 
TO 

Peak value 

extension 

Peak value 

flexion 
MSw 

A
ng

le
 (

º)
 

DEN 
90.51 

14.84b 

112.50 

8.70b 

116.58 

11.07 

91.25 

14.46a 

109.42 

13.51b 

104.45 

14.30b 

74.77 

15.54 

75.38 

15.71 

REINN 
65.44 

10.20 

74.76 

13.11b 

77.27 

14.38 

65.30 

10.04 

71.06 

14.41 

74.90 

15.53 

63.30 

10.84 

63.94 

11.47 

Sham 
76.42 

10.15 

89.01 

11.16 

98.50 

14.40 

76.44 

10.19 

93.40 

14.80 

97.42 

15.48 

74.38 

9.79 

77.26 

10.80 

V
el

oc
ity

 (
º/

s)
 

DEN 
294.67 

85.80a 

125.43 

83.40 

116.70 

86.56 

-372.18 

168.03 

-347.56 

116.73a 

302.19 

82.24a 

-471.49 

155.71a 

-138.63 

86.07 

REINN 
62.52 

32.64 

73.92 

48.24b 

109.15 

34.03 

-70.02 

68.37 

-155.40 

49.02 

71.27 

26.05 

-164.38 

64.76 

-30.01 

78.72 

Sham 
71.42 

29.92 

157.03 

44.71 

163.95 

32.73 

-89.67 

82.09 

-236.47 

55.28 

86.56 

18.40 

-299.45 

62.17 

-144.23 

107.46 

aSignificantly different from REINN and Sham; p < 0.05;  bSignificantly different from Sham only; p < 0.05  

 

 

 

 

 

 

 

 



 

 

Table 7 - Mean values for knee joint angle and angular velocity for each experimental group; eight animals per group 

Knee joint 

Groups IC MSt 
Peak value 

extension 

Peak value 

flexion 
TO 

Peak value 

extension 

Peak value 

flexion 
MSw 

A
ng

le
 (

º)
 

DEN 121.08 

14.46 

105.33 

16.04a 

123.34 

14.88 

77.33 

7.83 

79.40 

13.55 

120.07 

14.91 

62.24 

14.10b 

72.13 

17.87 

REINN 105.54 

14.30 

69.66 

13.70 

105.92 

14.71 

56.29 

15.09c 

50.70 

13.34c 

105.73 

14.11 

46.62 

11.92 

64.75 

12.20 

Sham 119.69 

11.78 

80.06 

7.41 

120.11 

11.90 

72.50 

11.26 

68.25 

12.65 

119.78 

11.86 

59.86 

10.39 

76.72 

10.27 

V
el

oc
ity

 (
º/

s)
 

DEN 26.49 

69.29 

-161.26 

84.53a 

-40.14 

64.96 

-270.98 

44.66 

-621.61 

137.42a 

959.80 

189.25 

-452.17 

144.97 

872.07 

230.25a 

REINN 9.01 

82.35 

-255.12 

28.54 

-125.40 

77.40 

-390.89 

56.54 

-265.91 

65.89 

1101.70 

105.38 

-237.73 

66.86 

1073.30 

101.82 

Sham -58.44 

54.69 

-213.98 

69.05 

17.96 

112.34 

-447.77 

84.79 

-363.16 

87.63 

1173.84 

139.00 

-339.01 

110.13 

1100.27 

173.29 

a Significantly different from REINN and Sham; p < 0.05;  b Significantly different from REINN only; p < 0.05  c significantly different from DEN and 

Sham; p < 0.05
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4.3 CYCLOGRAMS 

The cyclograms in Figure 31 display the interjoint coordination for hip-knee, hip-ankle 

and knee-ankle during the rat walking cycle. Our cyclograms of Sham group are 

comparable to thoe observed in non-injured rats during level walking (29).  

In line with hip motion changes, hip-knee plot in the DEN group displays wider 

perimeter when compared to the REINN group (p=0.000). This increased perimeter 

results from enlarged hip joint range of motion during walking in DEN group that is 

approximately twice this joint’s range of motion in the other groups. Aside the higher 

perimeter, the hip-knee plot also reveals interjoint coordination changes in the DEN 

group. The stance-to-swing transition in sham controls (Sham group) is characterized 

by reversal of hip motion from extension to flexion with the knee keeping its flexion 

position during the early part of the swing phase. In contrast, hip flexion in the DEN 

group initiates with the rat’s foot still in ground contact and fulfils approximately half of 

its flexion range of motion before the foot leaves the ground (swing initiation). Similarly, 

hip extension in the DEN group starts well in the swing phase, with the foot still off-

ground and the knee at its maximal extension angle. Hip-knee plot perimeter is similar 

in REINN and Sham groups as well as the shape of the angle-angle contour. However, 

in the REINN group the hip-knee loop is markedly shifted to the left, reflecting the fact 

that the hip joint is operating at a more flexed position. 
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The cyclogram for the hip-ankle displays a horizontal eight-shaped pattern, present 

also in the DEN group. In the REINN and Sham groups, the ankle joint at IC joint 

reaches maximal plantarflexion and the hip has initiated extension. The DEN group, 

however, shows altered changes in hip-ankle pattern at this time point, with the ankle 

 

Figure 31 Ankle-knee, knee-hip and ankle-hip loops during the walking cycle for DEN (single line),

REINN (triple line) and Sham (double line) groups. Full lines correspond to the stance phase and

dashed lines to the swing phase. The start of the walking was taken as the initial paw ground

contact and is marked by a full circle. The end of the swing phase is signed with an arrowhead. 
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moving already to dorsiflexion and with the hip having completed a significant amount 

of its extension range of motion. Again, the major distinction between REINN and 

Sham groups is higher hip flexion in the REINN group that is accompanied by slightly 

increased ankle plantarflexion. During the stance phase, the range of ankle dorsiflexion 

in the DEN group is increased when compared to both REINN and Sham groups, as 

described when presenting individual joint kinematics. The hip-ankle loop pertaining to 

the DEN group demonstrates that ankle plantarflexion during the stance phase is 

associated with hip flexion. This suggests that flexion of the hip joint is a strategy that 

enables foot clearance at the end of stance in sciatic-denervated animals, and 

compensates the lack of contractile force by plantarflexor muscles.  

In the REINN and Sham groups, TO coincide with maximal ankle plantarflexion 

whereas the knee is maximally flexed at this walking event (see knee-ankle plot, Fig. 

2). In these groups, ankle performs a fast dorsiflexion movement during the first half of 

the swing phase while the knee maintains static its flexion angle. Ankle plantarflexion 

and knee extension occur during the second half of the swing phase, reaching maximal 

extension just before IC. In the DEN group, the major change in knee-ankle 

coordination occurs during the swing phase and is characterized by active knee flexion 

early during the swing phase, most likely to help raise the paralysed foot off the ground.   

The perimeters of ankle-knee cyclograms were similar in all groups. Knee-hip 

cyclogram perimeter shows differences between DEN and REINN groups. Hip-ankle 

cyclogram perimeter is significantly different in DEN group compared to the REINN and 

SHAM groups (p= 0.001 and p=0.000 respectively).  

 

4.4 Discriminant analysis 

Four different discriminant models were built: one model based on spatiotemporal data 

and three other models based on the kinematic data of hip, knee and ankle joints. Peak 

angle and angular velocity values were not considered for model development. All 

models correctly classified DEN group animals, excepting the model constructed on the 

basis of spatiotemporal data that assigned one of animal of the DEN group into the 

REINN group. Models based on kinematics of the hip, knee and ankle joints showed 

full sensitivity to identify the animals of the DEN group. Also, none of the animals of 

REINN and Sham groups was wrongly classified into the DEN group by any of the 

models. Therefore, the kinematics of the hip, knee or ankle all provide maximal 

specificity for detecting walking changes in the early phase after sciatic crush injury.  
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However, the several discriminant models revealed significantly less ability to identify 

animals of the REINN and Sham groups. In REINN group, the rate of correct 

assignments, i.e. sensitivity, lowered to 50% when using spatiotemporal data. 

Surprisingly, the best models to distinguish between animals of the REINN and Sham 

groups were those based on hip and knee kinematics. Assuming sensitivity as the 

ability to identify animals of the REINN group, both hip and knee kinematics models 

reach a sensitivity of 87.5% (7 out of 8 animals correctly classified), remaining 

unchanged with cross-validation. However, the hip kinematics-based model displayed 

better specificity, misclassifying just two animals of the Sham group before cross-

validation, and three after cross-validation. In contrast, the discriminant model based 

upon the ankle joint kinematics performed poorly, correctly classifying just five animals 

(62.5%) of the REINN group. The least sensitive model in finding the sciatic-

reinnervated animals was that employing spatiotemparal data. The hip kinematic 

parameters selected by the stepwise method of linear disciminant model building were 

hip angle at TO and MSw and hip angular velocity at IC and MSw.     
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5 Discussion  

The assessment of joint kinematics during walking can be useful to evaluate functional 

recovery after hindlimb peripheral nerve injury in the rat only if its sensitivity and 

specificity are acceptable. Here, we tested a large set of spatiotemporal and joint 

kinematics parameters describing rats’ walking function, taking for the first time into 

account data from the hip, knee and ankle joints. We showed that the large majority of 

spatiotemporal and joint parameters are affected early post sciatic nerve crush injury. 

Moreover, we demonstrated the ability of joint kinematics to highlight minor walking 

changes after long term recovery from sciatic crush injury. However, the kinematics 

changes during walking twelve weeks after sciatic nerve crush were noticed in the hip 

and knee joints, while ankle joint kinematics had recovered its normal pattern. In line 

with joint kinematics data, discriminant analysis clearly demonstrated that walking 

measures, either pertaining spatiotemporal features or hindlimb joint kinematics 

measures, accurately recognize sciatic-denervated animals and distinguishes them 

from sciatic-reinnervated animals and sham controls. Only the models employing hip 

and knee kinematics demonstrated good accuracy when distinguishing animals that 

had recovered from sciatic crush from sham controls. 

 

5.1 Spatiotemporal and joint kinematics in sciatic-denervated 

and reinnervated animals 

Different factors affect the accuracy and variability of hindlimb joint kinematics during 

the rat walking, including two- versus three-dimensional analysis (30), the use of 

anatomical- versus reference-based system (29), skin slippage and the difficulty in 

tracking bony references (31), over ground versus treadmill walking (32), 

familiarization, walking velocity and the size and weight of animals (14). However, 

despite the various sources of variation ankle joint kinematics during walking in the rat 

displays good day-to-day and inter-observer reliabilities when assessed by 2D video 

recordings (14). In our study, we adopted a very careful experimental design in order to 

avoid many of the above mentioned sources of potential bias and to reach accurate 

measures of hindlimb joint kinematics during walking in rats with different degrees of 

deficits and in control animals. In this sense, we used a motion capture system with 

high frame rate and notable tracking precision, thus avoiding data aliasing and spatial 
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imprecision. Great care was also taken in placing the reflective markers, and this task 

was always carried out by the same person that followed a strict procedure. In addition, 

the number of animals in each group was relatively large, the age and weight of sham-

operated and REINN animals were similar, and all animals were familiarized with 

walking in the corridor prior to data collection. Therefore, our data can be viewed as a 

reference for sagittal hip, knee and ankle kinematics in rats after sciatic nerve crush.  

In the first week post sciatic nerve crush, and in the rat, the regenerating axons are 

elongating in direction of the target organs but the end plates of the target muscles 

remain denervated (23), which produces paralysis of denervated muscles of the 

hindleg and foot and severe walking deficits. However, the animals are still capable of 

locomotion by adopting an abnormal walking pattern that affects either the 

spatiotemporal features of gait, the joint kinematics, and that is recognizable by simple 

observation. In the DEN group, we observed slower walking speed and shortened 

stride length. Also in this group, the stride duration was increased mainly caused by a 

longer swing phase, while the stance phase duration seemed not to be affected. In 

contrast, the gait spatiotemporal characteristics in the REINN group were similar to 

those of the Sham group, indicating total recover of these gait parameters in twelve 

weeks post sciatic crush, which is in line with previous reports (33). In fact, the 

recovery of the spatial and temporal features of gait to pre-injury levels takes around 

four weeks in cases of sciatic nerve crush in the rat (33). The mean walking speed in 

our study varied from around 16 cm/s, in the DEN group, to 23 cm/s in sham controls, 

with intermediate velocity of 21 cm/s in the REINN group. Walking velocity in rats 

varies in a wide range and velocities between 20 to 50 cm/s are considered low (34). 

This signifies that our reported velocities are at the lower limit of normal rat walking 

velocity, even in our sham-controls. However, we were very careful selecting the 

walking cycles for analysis and only those from uninterrupted sequences of three to 

five walking steps were chosen, discarding steps with arrests or accompanied by 

evident exploratory behaviours like sniffing.  

Ankle joint showed the largest motion changes during walking early post sciatic injury, 

comparing to the hip and knee joints. This is corroborated by several previous studies 

using comparable sciatic injuries (5; 14; 25). Most of these studies have focused on the 

stance phase of walking and they generally report increased ankle dorsiflexion in the 

weeks immediately after the nerve injury (5; 7; 11; 12; 16; 17). Varejao et al. (19), using 

computerized high-speed (225 images per second) video system, show increased 

ankle dorsiflexion (90º angle between leg and foot corresponds to neutral ankle 

position) during the entire stance phase when animals are assessed one week after 
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sciatic nerve axonotmesis. Moreover, the degree of ankle dorsiflexion rises from the 

point of initial contact to near the end of the stance phase. Although we employed a 

photogrammetric system, our results are in total agreement with this latter study 

(Figure 30). However, ankle motion changes in the DEN group during the swing phase 

were also substantial. This is not a unique observation and decreased ankle 

dorsiflexion angle at midswing, defined as the instant where the swinging leg crosses 

the contralateral hindlimb, has already been reported after sciatic nerve crush (14; 18). 

Our data confirms such decreased dorsiflexion at MSw plus decreased plantarflexion 

angle in the late swing phase, which is compatible with lack of contractile ability by the 

dorsiflexor and plantarflexor muscles supplied by the peroneal and tibial branches of 

the sciatic nerve, respectively. Moreover, looking at both ankle angle and angular 

velocity trajectories (Figure 30) it emerges that it is in the swing phase that ankle 

motion pattern in the DEN group most deviates from the REINN group and the Sham 

group. However, since we are not comparing the whole trajectories but simply testing 

differences in certain kinematic parameters drawn from these trajectories at specific 

time points, we found similar ankle angular velocity at MSw between all groups. This 

apparently paradoxical finding is enlightening and shows how is critical the choice of 

the individual kinematics parameters and exemplifies the chance of finding unaffected 

parameters in animals presenting severe walking deficits (11).   

Our data shows complete recovery of the normal ankle kinematics during walking in 

twelve weeks after the sciatic crush. This agrees with prior studies with comparable 

sciatic nerve injury, showing total recovery of ankle motion during walking in 2 to 6 

weeks, depending on the particular angle parameter (5; 11; 14; 18). Notwithstanding 

the fast recovery in ankle joint kinematics, we and other authors have reported subtle 

and persisting ankle joint motion changes, emerging later in the recovery period (11; 

12; 14). However, the exact meaning of these ankle motion changes is unclear. They 

might indicate abnormal reinnervation of target organs and axon misrouting, causing 

diskynesis that manifests only in later stages of recovery (18; 35); but the hypothesis 

that in the sciatic crush model they simply reflect the effect of the various sources of 

variation affecting the precision of these measures is also a strong possibility, 

particularly taking into account their inconsistency in repeated measures taken at 

regular intervals (11; 18).  

A major contribution of this study is the reported changes in hip and knee kinematics 

during walking affecting sciatic-injured rats. This improves our knowledge about the 

extent of the walking deficits caused by sciatic injury but is particularly relevant since 

altered patterns of hip and knee motion were encountered not just in the DEN group 
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but also in the REINN group. In the DEN group, hip and knee motion changes were 

expected as a mean to overcome the dysfunction at the ankle and foot and for allowing 

locomotion. Higher level tasks required for walking include foot clearance from the 

ground and the ability to protract and retract the whole limb during the swing and 

stance phases, respectively (36). The ankle joint actively contributes to these tasks 

either by joint rotation, particularly important in the swing phase, or by providing joint 

stability through contraction of the muscles actuating this joint, which is required for 

load bearing control during the stance phase. We observed increased hip and knee 

extension angle in the DEN group during the stance phase. This change in normal hip 

and knee action are most likely a strategy that compensates the inability of the ankle to 

perform active plantarflexion. The higher hip range of motion in the DEN group is likely 

a mean to replace the ankle joint in its functions of both push off and paw forward 

displacement during the stance and swing phases, respectively. The hindlimb 

protraction seems to be assisted also by trunk flexion, which is indicated by a visible 

rounded posture of the rat’s torso. However, the contribution of the trunk to locomotion 

and to the displacement of the affected hindlimb was not objectively measured.  In turn, 

increased knee extension during the stance phase maintains limb length in the 

absence of ankle plantarflexion (Table 6).  

Our data suggests that the hip plays a very important role in keeping limb function 

during locomotion. In each phase of the walking cycle, the hip undergoes a steady 

flexion or extension motion. This steady motion is lost in denervated animals. In the 

DEN group, hip flexion starts before toe off in the stance phase, whereas hip extension 

begins with the paw still off ground during the swing phase. This changed pattern of hip 

motion probably emerges as a solution to move the paralytic hindleg using mechanical 

energy transfer from the hip up to the foot. In the REINN group, the range of motion of 

the hip joint during walking is similar to sham controls but the joint operates in 

increased flexion, as demonstrated by the leftward shift of the loop in both the knee-hip 

and ankle-hip plots of the REINN group (Figure 31). This change in hip motion was 

unsuspected and could not be detected by simple observation. The reasons explaining 

such altered hip motion in the REINN group cannot be resolved by our study. However, 

one simple hypothesis would consider the increased hip flexion as an after effect of the 

coordination pattern developed at early stages of severe deficit. As we saw, 

denervated animals rely on trunk and hip flexion to propel the affected limb and this 

facilitation of flexion may not be resolved even after recovery of the normal ankle joint 

motion. Other possibility looks at the hip motion changes as an adaptive strategy 

implemented at whole limb level to adjust for deficits at the ankle that cannot be 
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disclosed by biomechanical analysis of this individual joint. In the cat, triceps surae and 

gastrocnemius self-reinnervation are at the origin of motion deficits that surpasses the 

ankle joint motion and affect the kinematics of the other limb joints (36). Apparently, 

there are mechanisms that adjust individual joint kinematics in a step-by-step basis to 

keep a relatively invariant whole limb orientation and length across the walking cycle 

(36). Though, it is possible that hip motion changes during walking in our reinnervated 

rats reflect the action of mechanisms that maintain a stable locomotor function in the 

presence of long-lasting or permanent deficits in force generation ability or 

proprioceptive feedback of the reinnervated muscles (1; 20). Probably more stringent 

walking tasks, such as up-hill or downhill walking, are needed to unveil the ankle joint 

motion deficits in the long term after sciatic nerve crush in the rat (20).  

5.2 Discriminant analysis 

Several tests based in walking analysis have played an extremely useful role in 

assessing functional recovery in peripheral nerve research. To assess the efficacy of 

novel peripheral nerve treatments we require functional test that are very accurate 

since alternative nerve treatments will most likely be characterized by moderate or 

small effect size (5; 37). The development of valid and accurate tests for unbiased 

assessment of functional recovery in the rat is a challenging task considering the 

difficulty in standardising the testing conditions and the constraint imposed by reduced 

number of subjects in the experimental groups. Ankle joint kinematics during walking is 

envisaged as a reliable and accurate test to assess function recovery but we should 

underline that its testing properties have been evaluated using gross functional deficits 

and contrasting groups of animals with deficits with large differences in magnitude (15; 

16; 24). Here, we directly addressed this limitation by comparing sham controls with 

animals that had recovered from sciatic crush injury for twelve weeks, a recovery time 

that is enough to re-establish the normal values in many functional tests (38; 39).  

Corroborating the data from several of the measured parameters, our discriminant 

analysis confirmed the sensitivity of ankle kinematics during walking to highlight 

functional deficits in sciatic-denervated animals. This level of sensitivity, however, is 

shared by the discriminant models developed on the basis of hip and knee kinematics 

as well as on spatiotemporal measures of the rat walking. This means that test 

sensitivity is not a critical point when testing animals with deficits of great magnitude 

caused by peripheral nerve injury, and researchers are comfortable choosing from a 

rather large set of tests to evaluate functional deficits (7; 19; 25; 32; 33; 39; 40). The 

critical issue is, therefore, how can we measures small differences in functional 
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recovery that might indicate enhanced nerve regeneration, better re-establishment of 

end organ reinnervation or changes at the integrative neural circuits at spinal or 

supraspinal levels using behavioural tests. To date, we were unable to find evidence in 

the literature that current tests employed to assess functional recovery after sciatic 

nerve injury demonstrate such potential, particularly considering commonly employed 

static tests (33). In an attempt to help solving this drawback, we explored the potential 

of discriminant analysis. This statistical method is a powerful and popular classifier 

technique and has been previously applied to extract predicting features from complex 

movement patterns (41). Surprisingly, the discriminant models that employed hip and 

knee joints parameters showed a very good sensitivity in distinguishing between 

animals of the REINN and Sham groups. In fact, both hip- and knee-based discriminant 

models identified correctly seven out of eight animals belonging to the REINN group. 

This is a good sensitivity level and largely surpassed the sensitivity of the models 

based on spatiotemporal or ankle joint parameters. Of note, the level of agreement 

reached by the hip- and knee-based discriminant models was robust and did not 

diminished with cross-validation. 

Many of the variables selected by the discriminant analysis stepwise procedure regard 

joints’ angular velocity. In the case of hip-based discriminant model, the predictor 

variables selected included hip angular velocities at IC and MSw plus hip angles at TO 

and MSw. Unlike joint angles, angular velocity is affected by gait speed and this might 

be a limitation in using angular velocity data when animals walk freely along the 

corridor. Although we could not find significant differences in group means for 

spatiotemporal data between the REINN and DEN groups, we found significant 

correlations between walking velocity and some of the angular velocity parameters 

when considering only data from these two groups (data not shown). It is possible then 

that differences between groups in angular velocity data reflect our particular 

experimental setup and self-paced locomotion. However, our discriminant model using 

spatiotemporal data consistently showed poorer performance when compared with 

models using joint kinematics data. Further studies may want to look whether our 

results are reproduced in more constrained walking conditions, such as using a 

motorized treadmill. 
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6 Conclusions  

Hip, knee and ankle joint kinematics during walking are all deeply affected following 

sciatic nerve crush in the rat. After twelve weeks, animals recover the normal pattern of 

ankle joint motion but kinematics changes affecting the hip and knee joints subsist. The 

discriminant models using kinematics data of the ankle, knee and hip joints reveal 

maximal sensitivity and specificity to identify the denervated rats against reinnervated 

and control counterparts. However, poor classification performance characterized most 

of the discriminant models when addressing reinnervated and control animals. From all 

tested spatiotemporal and joint kinematics variables, those describing hip joint motion 

revealed higher ability to highlight minor walking deficits in the reinnervated animals. 

We conclude that hip and knee kinematics analysis improves the sensitivity of rat 

walking test and its potential to single out subtle functional changes in the long term 

after sciatic injury, which may be essential to prove the advantage of new treatment 

approaches.  
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1. Abstract 

For the first time the effects of exercise after peripheral nerve injury was assessed with 

quantitative method of kinematic analysis. There is growing evidence that both active 

and passive exercise improve peripheral nerve regeneration and functional recovery. 

With the aim of contributing to this mounting evidence, we investigated the effect of 

treadmill walking exercise and the effect of passive mobilization of the entire hindlimb 

in the sciatic morphology and functional recovery after a sciatic crush injury in the rat. 

The injured animals were separated in a treadmill exercise group (EXa), passive 

mobilization group (EXp) and a group without any further treatment intervention 

(Crush). A sham-operated control group was also included (Sham). Active exercise 

consisted on 30 minutes daily of treadmill walking at a speed of 10 m/min, while 

passive mobilization consisted on 3 minutes repetitive triple flexion and triple extension 

(i.e. simultaneous flexion or extension of the hip, knee and ankle joints) with slight 

stretching at the two movement extremes. The two types of exercise slightly improved 

nerve morphology at 12-weeks survival time, reducing the total number of regenerated 

myelinated fibers to values similar to intact nerves. This effect of exercise on nerve 

regeneration seems to operate through different mechanisms dependent on whether 

the exercise is active or passive, since nerve fibers density was significantly increased 

in the Exp group, in contrast to the sciatic-injured groups. Functional recovery was 

assessed using gait variable and hindlimb joint kinematics during level self-paced 

walking. At the end of the 12-weeks survival time spatiotemporal gait variables were 

similar in all groups. Similarly, ankle kinematics recovered the normal motion pattern in 

all groups. In contrast, hip and knee kinematics in the Crush group were still abnormal 

at the end of the survival time, while these joints in both exercise groups displayed a 

pattern of motion during walking that was indistinct from that of the sham control 

animals. It is concluded that either active or passive exercise positively affect sciatic 

nerve regeneration after a crush injury. We suggest that the positive role of passive 

exercise results from a general stimulus induced by the movement and possibly 

mediated by a direct mechanical effect onto the regenerating nerve. 
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2 Introduction 

Peripheral nerve injuries cause motor, sensory and autonomic dysfunction in the 

denervated territory. After injury and repair, the injured axons grow from the proximal 

nerve stump in direction to the target organs. However, and irrespective of the good 

ability of peripheral nerves to regenerate, the degree of reinnervation and of functional 

recovery after peripheral nerve injury is typically disappointing (1).  Dysfunction after 

peripheral nerve injury and repair is manifold. In the rat sciatic nerve crush model, 

several studies show increased number of nerve fibers as well as decreased nerve 

fibers’ diameter and decreased myelin thickness in regenerated nerves (2-4). The 

increase in the number of nerve fibers distally to the injured site results from multiple 

branching of the severed axons (5-7). The many collaterals branching from single 

proximal axon often disperse and lead to inappropriate reinnervation, including 

reinnervation of multiple muscle groups possibly with antagonistic function (8). A 

second wave of axonal sprouting occurs when regenerating axons reach the target 

muscle. In this case, axon terminal splits in several small sprouts that course through 

bridges formed by extensive Schwann cells processes. In this way, multiple fine axonal 

branches spread to re-innervate multiple end-plates. The poly-neuronal innervation 

caused by increased density of sibling collaterals reaching the denervated muscle 

groups and by terminal axon sprouting, disturbs force generation control and 

contributes to poor functional recovery (8). Sciatic nerve injury also affects sensitive 

function. Deafferentiation causes adaptive changes at the dorsal root ganglion and the 

dorsal horn of the spinal cord, disrupting the normal processing of afferent inflow and 

spinal reflexes integration (9). At a higher level, remapping of central controlling neural 

circuitry may occur in order to cope with muscle paralysis and to maintain motor 

function. All these changes contribute to dyskinesia, dysreflexia and hyperalgesia that 

typically develop after peripheral nerve transaction and that severely compromise 

functional recovery. 

The poor functional outcome after peripheral nerve repair and its clinical relevance 

have raised the interest in the development of rehabilitation strategies to enhance 

nerve regeneration and improve functional recovery. Physical exercise is one of such 

rehabilitation strategies and has been the focus of intense research recently. Many 

different types of exercise have been tested, including active (3; 10-14) and passive 

exercise (15; 16). Treadmill walking is a common procedure to stimulate the 

denervated territories and the regenerating axons in rodents. This type of exercise 
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uses a natural pattern of locomotion and its intensity can be easily adjusted, turning 

treadmill walking a very useful exercise model. Studies in mice show that active 

treadmill walking at both mild and high intensity increases the rate of axonal elongation 

after nerve transection (12) as well as it leads to a higher intensity in axonal collateral 

branching but without accompanying increase in incorrect reinnervation (17). The latter 

effect contrasts to that of electrical nerve stimulation delivered at the time of nerve 

repair that has been shown to increase collateral axonal branching at the lesion site but 

also causing excessive axonal misrouting (18). Positive effect of treadmill walking is 

also reported for adult rats (16). In these animals, daily treadmill walking produced an 

increase in the number of myelinated nerve fibers in transected and end-to-end 

repaired sciatic nerves and enhanced muscle reinnervation, demonstrated  by 

increased M-wave amplitude in the gastrocnemius, soleus and plantaris muscles of the 

affected hindlimb (16). In this study, active walking exercise also resulted in improved 

spinal reflex activity and in a decrease in H-reflex facilitation that is manifested after 

peripheral nerve injury and non-exercised animals (9; 16).  

The positive effect of exercise stimulus on nerve regeneration and in the extent and 

precision of target organs reinnervation seems to apply also to passive exercise. 

Increased mechanical stimulation of the vibrissal muscles and whisker muscle pad of 

rats restored the normal vibrissae function after transection and direct coaptation of the 

facial nerve (15). Here, manual stimulation had no effect on the degree of axonal 

collateral branching, which occurs in a large extent after facial nerve injury in rats, but 

instead reduced the amount of motor end-plate polyinnervation (15). This positive 

effect of manual mobilization of the denervated facial nerve territory seems to rely on 

intact sensory function conveyed by uninjured trigeminal nerve sensory endings (19). In 

the rat sciatic nerve model, passive exercise has also been shown to positively affect 

nerve regeneration and muscle reinnervation, demonstrating that the beneficial effect 

of passive mobilization after peripheral nerve injury also applies to lesions of mixed 

nerve trunks and is not strictly dependent on normal sensory input (16). 

By causing muscle paralysis, denervation is associated with reduced movement of the 

affected limbs and mechanical unloading of muscles and other soft tissues. The lack of 

normal movement pattern of the joints and surrounding tissues leads to the 

development of tissue contractures and joint ankylosis in severe cases. These 

conditions may be prevented by passive exercise, joint mobilization and gentle muscle 

stretching. By helping maintain the normal muscle structure and joint mobility, this type 

of exercise may contribute to functional recovery.  

In this study we tested for the effect of brief manual mobilization of the hindlimb joints 

and muscles on nerve regeneration and functional recovery after sciatic nerve crush in 
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the rat, and compared to the effect of active treadmill walking and to non-treated 

conditions. Our manual mobilization technique involved moving the hip, knee and ankle 

joints through their full range of motion thus applying a slight stretching to the muscles 

crossing these joints as well as to the other soft tissues. 
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3 Methods 

A total of 32 adult Sprague-Dawley male rats were randomly separated in the following 

groups: (1) sciatic crush plus treadmill-walking (EXa), (2) sciatic crush plus passive 

exercise (EXp), (3) sciatic crush (Crush) and (4) sham-operated control (Sham). Our 

procedure to cause sciatic nerve crush has been detailed elsewhere. Briefly, we 

utilized a non-serrated clamp (Institute of Industrial Electronic and Material Sciences, 

University of Technology, Vienna, Austria), that exerts a constant force of 54 N onto the 

nerve. The pressure was applied for duration of 30 seconds, generating a 3mm-long 

crush of the sciatic nerve and complete axonotmesis. The right sciatic nerve was 

crushed 1 cm above the bifurcation into tibial and common fibular nerves. This 

procedure was demonstrated to cause complete axonotmesis of the sciatic nerve (4; 

20-22).  

Animals in the EXa group exercised for 30 min on a 10-lane motorized treadmill at a 

constant speed of 10 m/min with zero incline. The exercise was performed 5 days a 

week starting at week 2 post-injury and maintained until week 12 post sciatic nerve 

crush (Figure 32). At least two weeks before sciatic crush injury, animals in the EXa 

were acclimated to treadmill walking during five to ten minutes daily for one week. 

Twelve days after the surgery, rats were again tested to ascertain their ability to walk 

on the treadmill. All animals initiated the walking training protocol at day fourteen after 

sciatic nerve crush.  

 

 
Figure 32 - image of rats on the treadmill after sciatic nerve injury. 

 

 

Passive exercise consisted on manual mobilization of the entire right hindlimb. The 

passive mobilization of the hindlimb included movement of the hip, knee and ankle 

joints in concert, and alternating flexion and extension of the joints. During extension, a 

slight stretching was applied at the end of the movement amplitude. The passive 



Chapter 6 – The effect of active and passive exercise on nerve regeneration and functional recovery after sciatic 

crush injury  141 

 

 

Sandra Cristina Fernandes Amado 

exercise sessions took approximately three minutes and were undertaken with animals 

fully awake with the head and upper torso covered with a scarf to help keep the 

animals relaxed. The animals tolerated the passive exercise sessions without signs of 

pain or discomfort. The exercise was performed 5 days a week and along the same 

recovery period as the EXa group. 

Animals of the Crush and Sham groups remained in their cages during the 12-weeks 

recovery period with no other intervention. All animals were socially housed within a 

single room. Dry food and water were provided ad libitum. All procedures were 

performed with the approval of the Veterinary Authorities of Portugal in accordance 

with the European Communities Council Directive of November 1986 (86/609/EEC).  

3.1 Kinematic analysis  

Gait analysis was performed before training protocol (one week post-injury) and at 

weeks 4, 8 and 12 post-injury. This analysis used an optoelectronic system of six 

infrared cameras (Oqus-300, Qualisys, Sweden) operating at a frame rate of 200Hz to 

record the motion of the right hindlimb during the rat level gait. After skin shaving, 

seven reflective markers with 2 mm diameter were attached to the right hindlimb at 

bony prominences: (1) tip of fourth finger, (2) head of fifth metatarsal, (3) lateral 

malleolus, (4) lateral knee joint, (5) trochanter major, (6) anterior superior iliac spine, 

and (7) ischial tuberosity. The retroreflective markers were in all instances placed by 

the same operator using the marked skin as a guide. Animals walked on a Perspex 

track with length, width and height of respectively 120, 12 and 15 cm. Two darkened 

cages were placed at the extremities of the corridor as a mean to facilitate the animals 

to cross the walking corridor. All rats previously performed two or three conditioning 

trials to be familiarized with the corridor. Cameras were positioned to minimize light 

reflection artifacts and to allow recording 4-5 consecutive walking cycles, defined as 

the time between two consecutive initial ground contacts (IC) of the right fourth finger. 

The motion capture space was calibrated regularly using a fixed set of markers and a 

wand of known length (20 cm) moved across the recorded field. Calibration was 

accepted when the standard deviation of wand’s length measure was below 0.4 mm. 

Planar motion in the sagittal plane of the hip, knee and ankle joint was calculated with 

Visual 3D software (C-Motion, Inc, Germantown, USA) by a computational procedure 

implementing the dot product between the skeletal segments articulated by these 

joints. Joint velocity was also calculated using the first derivative of joint angle motion. 

The trajectory of the reflective markers was smoothed using a Butterworth low-pass 

filter with a 6 Hz cut-off. Data for each animal at each recording session consisted on 
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an average of six walking cycles. Each walking cycle was time normalized by 

interpolation using spline fitting. Our angles convention was:  1) decreasing hip angle 

value – hip flexion; 2) decreasing knee angle value – knee flexion; 3) positive ankle 

angle value – dorsiflexion. Positive angular velocity indicates increasing angle values 

(i.e. hip and knee extension). This also applies to the ankle joint where a positive 

angular velocity means increase dorsiflexion angle. Joint angle and angular velocity 

values were measured at the instants of initial ground contact (IC), defined as the time 

point where horizontal velocity of the toe reflective marker becomes zero, midstance 

(MSt), the point of fifty per cent duration of the stance phase, toe-off (TO), defined as 

the instant the horizontal velocity of the toe’s reflective marker increases from zero, and 

midswing (MSw), defined as the point of fifty per cent duration of the swing phase. 

Additional kinematics parameters recorded included peak angles and angular velocities 

during both phases of the walking cycle.  

Spatiotemporal parameters, including walking velocity, walking cycle duration, stride 

length, stance duration, and swing duration, were directly obtain from kinematic model 

developed under Visual 3D software based on horizontal displacement of the reflective 

markers.  

3.2 Design-based quantitative nerve morphology  

At the end of the 12-weeks follow-up time, rats were anaesthetised and a 10-mm-long 

segment of the sciatic nerve that included the injured portion was collected, fixed, and 

prepared for morphological analysis and histomorphometry of myelinated nerve fibers. 

A 10-mm segment of uninjured sciatic nerve was also withdrawn from the 8 control 

animals. Immediately after collecting the nerve, rats were euthanized through an 

intracardiac injection of 5% sodium pentobarbital (Eutasil®). Sciatic nerve samples were 

immersed immediately in a fixation solution, containing 2.5% purified glutaraldehyde 

and 0.5% saccarose in 0.1M Sorensen phosphate buffer for 6-8 hours. Specimens 

were then washed in 0.1M Sorensen phosphate buffer (1.5% saccarose), post-fixed in 

1% osmium tetroxide, dehydrated and embedded in Glauerts’ embedding mixture of 

resins (23). Series of semi-thin transverse sections (2-µm thick) were then cut starting 

from the distal nerve stump and stained by Toluidine blue for high resolution light 

microscopy examination and design-based stereology (24). Systematic random 

sampling and 2-D disector were adopted (25-27). The following predictors of nerve 

regeneration were assessed: mean fiber density (D), total fibers number (N); circle-

fitting diameter of fiber (D) and axon (d), and the g-ratio (d/D). The sampling scheme 

was designed in order to keep the coefficient of error (CE) below 0.10, a level which 

assures enough accuracy for neuromorphological studies (28). 
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4 Statistical analysis 

Differences between groups for each of the variables were tested by univariate ANOVA 

and the post hoc Tukey’s HSD test. Significance was accepted at p<0.05. Data are 

presented as mean and standard deviation (SD). Statistical analysis was performed 

using SPSS software package (version 17, SPSS Inc). 
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5 Results 

During surgery, the sciatic nerve crushed resulted in visible crush of nerve but without 

interrupting its continuity. Muscle paralysis of the operated foot was observed following 

crush injury. All rats survived, with no wound infection or automutilation. 

1.1 Gait spatiotemporal data 

All animals could walk with steady pace in the corridor during the testing sessions 

carried out in the recovery period. As a consequence of sciatic nerve injury and sham 

surgery, most gait spatiotemporal features changed along the recovery time. During the 

12-weeks recovery, stride length increased [F(3,84) = 17.239, p = 0.000] either in sciatic-

injured groups and Sham group [non-significant main effect of group; F(2,28) = 2.688, p = 

0.066], while gait cycle time diminished [F(3,84) =19.794,p=0.000] again in all groups. 

The shortened gait cycle duration was associated with decreased swing phase duration 

[F(3,84) = 27.133 , p = 0.000], while that of the stance phase showed no changes in any 

of the groups at any joint in time. A trend for the rise of gait speed rise with time of 

recovery was noticed (p=0.054). At week 1 post-injury, gait speed ranged from 

0.161±0.038 m.s-1 in EXp group to 0.116±0.028 m.s-1 in Crush group. By week twelve, 

mean gait speed varied from 0.239±0.052 m.s-1 in EXa group to 0.210±0.047 m.s-1 in 

Crush group (Table 8).  

 

 

 

Table 8 - Walking velocity and cycle time data if the right hindlimb in sciatic-crushed animals and 

sham-operated controls; n=8 in each group 

 

Group 

Gait velocity 

(m/s) 

stride lenght 

(m) 

cycle 

duration (s) 

stance duration 

(s) 

swing 

duration (s) 

W01 W12 W01 W12 W01 W12 W01 W12 W01 W12 

EXa  

0.15 

0.04 

0.24 

0.05 

0.14 

0.01 

0.17 

0.01 

0.92 

0.16 

0.73 

0.17 

0.23 

0.05 

0.20 

0.03 

0.20 

0.05 

0.13 

0.01 

EXp 

0.16 

0.03 

0.23 

0.09 

0.13 

0.01 

0.16 

0.02 

0.85 

0.16 

0.76 

0.20 

0.24 

0.09 

0.25 

0.06 

0.17 

0.03 

0.13 

0.01 

Crush  

0.12 

0.03 

0.21 

0.05 

0.13 

0.01 

0.15 

0.02 

1.11 

0.27 

0.73 

0.10 

0.28 

0.04 

0.26 

0.03 

0.19 

0.03 

0.12 

0.01 

Sham  

0.15 

0.03 

0.23 

0.04 

0.14 

0.01 

0.16 

0.01 

0.96 

0.13 

0.70 

0.09 

0.28 

0.08 

0.25 

0.04 

0.17 

0.01 

0.13 

0.01 
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1.2 Hindlimb joint kimematics 

Ankle kinematics 

Sciatic nerve crush causes paralysis of the hindleg and foot muscles. Therefore, we 

start by presenting ankle joint kinematics data followed by that of the hip and knee 

joints. 

Ankle kinematics was most affected at week 1 post sciatic nerve injury (Figure 33). 

Exaggerated dorsiflexion during the whole stance phase characterizes movement 

about this joint in sciatic-injured animals, with differences to sham-operated controls 

being most evident at midstance and toe-off time points. Clear changes in ankle 

angular velocity were also induced by sciatic injury. Ankle angular velocity at week 1 

post injury shifted from negative to positive values in sciatic-injured animals either at 

initial paw contact and midstance, contrasting to the negative values of sham controls.  

Conversely, at toe-off time point (Table 10), ankle angular velocity was negative in 

sciatic nerve-injured animals and positive in Sham group. Ankle kinematics at midswing 

(Table 12) was less affected by sciatic nerve crush. At week 1, sciatic crushed animals 

demonstrated a decreased ability to perform ankle dorsiflexion at midswing, compared 

to animals in the Sham group, but ankle angular velocity was similar in all groups. A 

good recovery of the normal pattern of ankle kinematics during walking occurred during 

the 12 weeks of follow up, and no consistent differences in the extent of this recovery 

were observed due to treatment modality (Figure 34).  
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Figure 33 - Mean trajectories for hip (upper graphs), knee (middle graphs) and ankle (lower graphs) 

joint angle (left hand graphs) and angular velocity (right hand graphs) during the rat’s walking 

cycle. Full lines correspond to the stance phase and dashed lines correspond to the swing phase 

of the walking cycle: crush group (red line); EXa (black line); EXp (blue line); Sham Group (green 

line). All groups n=8 
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Figure 34 - Mean trajectories for hip (upper graphs), knee (middle graphs) and ankle (lower graphs) 

joint angle (left hand graphs) and angular velocity (right hand graphs) during the rat’s walking 

cycle. Full lines correspond to the stance phase and dashed lines correspond to the swing phase 

of the walking cycle: crush group (red line); EXa (black line); EXp (blue line); Sham Group (green 

line). All groups n=8. 
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Hip kinematics 

Hip kinematics during walking was also affected as a consequence of sciatic nerve 

crush. Significant differences between groups in hip kinematics were acutely observed 

after sciatic denervation being these differences were still noticeable at the end of the 

12-weeks recovery. In the week immediately after surgery, changes in normal hip joint 

motion during walking were noticed only in angular velocity values. At this point in time, 

sciatic injured animals walk with increased hip angular velocity either at initial toe 

contact (i.e. swing-to-stance transition) and toe off (i.e. stance-to-swing transition), 

compared to Sham group animals. Despite such changes in hip angular velocity, no 

significant alterations in hip position at the relevant phases of gait were recorded in 

sciatic denervated animals.  Sciatic nerve reinnervation led to the recovery of the 

normal hip motion pattern during walking in exercised animals (i.e. EXa and EXp 

groups) but differences between Crush and Sham groups emerged. In fact, all 

kinematic parameters obtained from the stance phase were significantly different in 

Crush group, compared to Sham control at the 12-weeks time point. The changes were 

characterized by more acute hip angles at the entire stance phase and significantly 

lower hip angular velocity in Crush group.   

 

Knee kinematics 

Sciatic denervation was also accompanied by compensatory changes in knee joint 

kinematics as a mean to enable successful walking. Early after sciatic nerve crush, 

changes in knee kinematics occurred mainly during the stance phase. At the instant of 

paw touch down, knee angle shows similar values in all groups but its angular velocity 

was distinctly higher in sciatic-injured animals. At midstance (Table 11), and at week 1 

post injury, sciatic denervated animals display a more extended knee, when compared 

to the sham operated animals. This can be reasonably interpreted as a compensatory 

response to the more plantigrade pattern of walking resulting from paralysis of the 

muscle crossing the ankle joint thus avoiding excessive shortening of the overall limb 

length. At this particular instant of the step cycle, knee joint velocity was not affected by 

the sciatic nerve injury. Conversely, at the stance-to-swing transition knee angular 

velocity in the sciatic-injured animals is greatly augmented compared to Sham group, 

meaning fast knee flexion motion in the former animals. A recovery of the normal knee 

pattern of motion during walking occurred in the weeks after sciatic nerve crush. This 

recovery was, however, enhanced by both walking exercise and manual mobilization. 

At week 12 post injury, and when compared to Sham group, animals in Crush group 

walked with exaggerated knee flexion at the instants of initial toe ground contact and 

toe off. 
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Table 9 - Values of hindlimb joints joint angle and angular velocity at initial contact (IC) 

Joint Group 
Angle (º) Velocity (º/s) 

week01 week12 week01 week12 

Ankle 

EXa -6.64.4 -13.32.9 446.2123.4 -67.2114.6 

EXp -0.64.6 -22.73.5 321.8145.8 -243.0165.0 

Crush 1.04.2 -20.14.4 365.4122.8 -313.4100.7 

Sham -11.74.8 -16.43.4 57.2100.8 -280.9127.4 

Knee 

 

 

EXa 117.1 18.42 116.17.3 -59.899.5 -153.491.5 

EXp 121.114.5 118.29.6 26.569.3 -46.9134.3 

Crush 115.015.6 105.514.3 23.767.2 9.082.3 

Sham 104.915.8 119.711.8 -214.3106.4 -58.454.7 

Hip 

EXa 89.111.3 78.311.4 201.938.4 75.636.5 

EXp 90.514.8 72.67.0 294.785.8 70.330.4 

Crush 83.214.6 65.410.2 218.394.7 62.532.6 

Sham 83.69.4 76.410.1 109.552.5 71.429.9 

 

 

 

Table 10 - Values of hindlimb joints angle and angular velocity at toe-off (TO) 

Joint Group 
Angle (º) Velocity (º/s) 

week01 week12 week01 week12 

Ankle 

EXa 12.0914.32 -19.259.92 -367.97254.35 320.36109.10 

EXp 17.099.43 -15.009.44 -361.44237.79 363.65146.06 

Crush 23.6311.57 -14.5913.62 -447.27212.76 431.40113.60 

Sham -17.899.48# -17.0311.00 74.36187.84 486.84104.15 

Knee 

EXa 72.3012.80 66.2910.31 -563.86183.40 -281.7283.49 

EXp 79.4013.55 63.8212.44 -621.61137.42 -325.0269.60 

Crush 65.5015.47 50.7013.34 -557.37108.77 -265.9165.89 

Sham 67.0416.21 68.2512.65 -205.83102.05 -363.1687.63 

Hip 

EXa 103.328.86 93.0219.35 -336.71167.08 -173.1889.81 

EXp 109.4213.51 85.079.72 -347.56116.73 -208.1267.99 

Crush 93.8219.59 71.0614.41 -367.31138.26 -155.4049.02 

Sham 97.4216.27 93.4014.80 -155.1076.60 -236.4755.28 
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Table 11 - Values of hindlimb joints angle and angular velocity at midstance (MSt) 

Joint 

Group 

MSt angle (º) MSt velocity (º/s) 

week01 week12 week01 week12 

Ankle EXa 42.1010.54 11.6512.28 175.98119.89+ -134.3584.06 

EXp 46.228.43 6.9912.28 200.3291.63- 23.1685.33 

Crush 48.0412.96 4.2414.12 163.38118.21- 1.4356.25 

Sham 13.6113.19 4.7315.17 -58.6361.23 -52.1981.85 

Knee EXa 94.0515.01 75.156.85 -137.3676.77 -224.3660.35 

EXp 105.3316.04 80.4214.86 -161.2684.53 -247.4135.48 

Crush 91.0910.28 69.6613.70 -142.4981.28 -255.1228.54 

Sham 68.3115.44 80.067.41 -121.7943.65 -213.9869.05 

Hip EXa 106.2110.76 89.8016.38 109.0773.71 137.1894.40 

EXp 112.508.70 84.307.20 125.4383.40 124.8944.64 

Crush 99.0117.72 74.7613.11 115.2167.04 73.9248.24 

Sham 93.3811.15 89.0111.16 95.1970.18 157.0344.71 

 

Table 12 - Values of hindlimb joints angle and angular velocity at midswing (MSw) 

Joint 

Groups 

MSw Angle (º) MSw velocity (º/s) 

week01 week12 week01 week12 

Ankle EXa 4.5410.39 27.3812.18 -274.44310.80 -276.94129.49 

EXp 11.4011.32 22.066.99 -227.98256.05 -422.19133.67 

Crush 16.0911.00 23.0915.11 -313.59292.90 -402.2891.21 

Sham 35.4111.38 29.0613.91 -282.91263.38 -383.13220.56 

Knee EXa 71.1819.46 73.745.71 860.40333.73 1035.40145.63 

EXp 72.1317.87 74.7912.39 872.07230.25 1099.1594.48 

Crush 61.8814.04 64.7512.20 976.08249.34 1073.30101.82 

Sham 65.9614.70 76.7210.27 844.78165.17 1100.27173.29 

Hip EXa 71.259.53 78.3812.15 109.07100.53 137.1896.65 

EXp 75.3815.71 71.897.19 125.4386.07 124.8975.40 

Crush 63.6913.66 63.9411.47 115.21140.41 73.9278.72 

Sham 80.6311.15 77.2610.80 95.1983.82 157.03107.46 
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1.3 Nerve stereology 

 
Figure 35 - Representative micrographs toluidine blue stained semithin sections from EXa (A), Exp 

(B), Ctrl (C) and Sham (D) groups. The presence smaller myelinated nerve fibers can be 

appreciated in all axonotmesis groups (A-C) in comparison to controls (D). Morphometrical 

changes have been quantified by stereology and results are reported in table 6. Original 

magnification = 1,000x. 

 

Figure 35 shows representative images of myelinated nerve fibers from nerves 

belonging to the four experimental groups included in this study. The results of the 

stereological analysis of myelinated nerve fibers are reported in Table 13. Overall, 

regenerated sciatic nerves present increased number and density of myelinated nerve 

fibers in comparison to intact nerves. The regenerated nerve fibers are also 

characterized by smaller diameter and lower myelin sheet thickness. Slight effects of 

exercise were observed in the morphology of the regenerated sciatic nerves. When 

compared to the Sham group, the increase in total number of myelinated fibers was 

only significant for the Crush group (p<0.05), suggesting that both types of exercise 

prevented an excessive increase in regenerating axonal collaterals. Despite this 

apparently positive effect of active and passive exercise, nerve density was increased 

in EXp group only, when compared to Sham control group (p<0.05).  Other 

morphological features characterizing the myelinated nerve fibers, i.e. diameter of 
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nerve fiber (D) and axon (d) and the g-ratio (D/d), were all significantly different in 

regenerated sciatic nerves, compared to the intact nerves. 

 

Table 13 - stereological analysis of myelinated nerve fibers 

 

Group Density of 

myelinated nerve 

fibers (N/mm2) 

Total number of 

myelinated nerve 

fibers (N) 

d - axonal 

diameter (µm) 

D - nerve fiber 

diameter (µm) 

d/D 

(g-ratio) 

EXa 14786 ± 4186 9255 ± 1618 3.90 ± 0.32 5.37 ± 0.41 0.72 ± 0.02 

EXp 18146 ± 4691 8974 ± 1918 3.85 ± 0.37 5.35 ± 0.44 0.71 ± 0.03 

Crush 16701 ± 4251 10473 ± 1487 3.72 ± 0.31 5.22 ± 0.42 0.71 ± 0.04 

Sham 11680 ± 1282 6883 ± 1222 5.35 ± 0.35 8.22 ± 0.38 0.65 ± 0.04 
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6 Discussion 

In this study we evaluated the role of two different methods of exercise on sciatic nerve 

regeneration and functional recovery after a sciatic nerve crush lesion. The two 

exercise modes consisted on treadmill exercise walking and passive mobilization of the 

affected hindlimb. The effect of both exercise programs was evaluated in contrast to a 

non-exercise group of sciatic nerve crushed animals and sham operated controls. The 

results showed marginal effects of both active and passive exercise on functional 

recovery, assessed by hindlimb joint kinematics during level walking. Although the 

impact of exercise on functional recovery was relatively modest it was nonetheless 

accompanied by improved nerve morphology, particularly by preventing excessive 

increase in total number of myelinated fibers in regenerated sciatic nerves.   

Physical exercise has received much interest recently due to its potential effect in 

enhancing nerve regeneration and reinnervation in different models of peripheral nerve 

pathology (11; 13; 15-17; 29; 30). The results of the majority of these studies point to a 

small to moderate positive effect of the active exercise stimulus in nerve regeneration 

after sciatic injury and repair in rodents either when used alone (16; 17; 31) or in 

combination with nerve electrical stimulation (13), as well as in the degree of 

reinnervation and  extent of functional recovery (12; 13; 16; 31).  

To date, the exact mechanisms explaining the beneficial effect of active exercise on 

nerve regenerations are still not completely elucidated; although several mechanisms 

have been alluded. After sciatic nerve transection and repair, walking exercise has 

been shown to increase the number of myelinated nerve fibers distal to injury site (13; 

16), as well as to enhance the rate of axonal elongation in the common fibular nerve of 

mice (12). After being cut, elongating axons are well known to divide profusely in a 

variable number of collaterals that, afterwards, may either travel in parallel along the 

same nerve or take a divergent route through alternative nerve pathway leading to 

inappropriate reinnervation. Increased axonal branching, although important in the 

sense that it contributes with more regenerating nerve fibers to reinnervation, has a 

downside consequence if accompanied by aberrant reinnervation of target organs. 

Studies in mice demonstrate that nerve regeneration is considerably enhanced by 

electrical stimulation applied to the proximal nerve stump for a brief period of time just 

prior to nerve repair, as well as by distal nerve stump treatment with chondroitinase 

ABC, an enzyme that removes the axonal growth-inhibiting glycosaminoglycans from 

chondroitin sulfate proteoglycans (18). This conclusion is driven by the use of different 

retrograde fluorescent tracers applied to the tibial and common fibular branches of the 
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sciatic nerve and consequent enumeration of labeled motoneurons at the anterior horn 

of the spinal cord (18). However, the increased number of labeled motoneurons was 

most pronounced two weeks after sciatic transection, lowering to almost control levels 

at four weeks survival time. Importantly, the enhanced nerve regeneration, noticed two 

weeks after the sciatic nerve injury, was manifested with clear loss of the normal spinal 

topographical organization of tibial and common fibular motoneurons, consequent to 

elongating axon collaterals entering erroneous ending nerves, which in turn might 

compromise function (18). Comparable increase in the number of labeled motoneurons 

of the sciatic motor nucleus also occurred at 2-week and 4-week after sciatic nerve 

transection and repair when animals performed either mild-intensity continuous or high-

intensity intermittent treadmill exercise during the two recovery periods of time, with 

more robust effect with the more intense treadmill exercise protocol (17). Treadmill 

exercise, however, not just enhanced nerve regeneration but importantly had such 

effect without simultaneously raising inappropriate target reinnervation. In addition, 

treadmill exercise seems to exert a sustained nerve regeneration enhancing effect, with 

the number of tibial nerve labeled motoneurons in exercised animals increasing from 

week-2 to week-4 after sciatic nerve transection and repair whereas this number 

remained unchanged between these two recovery times in animals that had nerve 

regeneration accelerated by treatment with electrical stimulation and chondroitinase 

ABC (17; 18). 

Active treadmill exercise was also shown to improve nerve regeneration in the rat after 

sciatic transection and direct repair (13; 16). Morphological evaluation at the level of 

the tibial nerve reveals increased number of regenerated myelinated fibers in the active 

exercise group, compared to the non-exercise, control group (16). Detailed 

morphometry of regenerated sciatic crushed nerve in the rat again supports a positive 

role of treadmill endurance exercise in nerve regeneration (31). In this latter study, 

treadmill exercise started two weeks after the sciatic nerve injury and was maintained 

throughout the next five weeks, with animals of the endurance exercise group walking 

at 50% of their maximal exercise capacity determined pre-operatively, corresponding to 

a mean walking velocity of around 9 m/min, thus comparable to that we used in the 

present study. When compared to untrained control animals, the endurance-trained 

group depicted better nerve regeneration, demonstrated by greater myelin thickness, 

higher area fraction of myelinated nerve fibers and less of that of endoneurial 

connective tissue in regenerated sciatic nerves (31).  

A major aim of the present study was to test for the effect of brief passive manual 

mobilization of the affected hindlimb on sciatic nerve regeneration and functional 

recovery. Our data of the sciatic nerve morphology collected distally to injury site again 
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showed signs of better regeneration as a result of passive hindlimb mobilization and 

gentle stretching. As for the EXa group, and when excluding outliers from statistical 

testing, mean total number of myelinated fibers in the EXp group was indistinct from 

that of the Sham group. To some extent , this agrees with other studies investigating 

the effect of passive exercise on sciatic nerve regeneration after transection injury and 

direct cooptation (16). Udina et al. (16) tested the effect of passive bicycling in the rat 

on sciatic regeneration and noticed improved sciatic regeneration to a similar degree to 

that registered for active treadmill exercise. It is difficult to interpret, and thus it 

deserves further research, the discrepancy between the results of this authors who 

revealed an increase in the number of myelinated axons and our results, which 

evidenced the opposite. 

In the case of the facial nerve, manual mobilization of the whisker pad reduced muscle 

fibers poly-innervation two months after nerve transection and repair. In this case, 

however, the passive exercise showed no effect on the degree of regenerating nerve 

fibers misdirection (15). Thus, our results of a seemingly positive role of manual 

mobilization on sciatic nerve regeneration add to those of the latter studies, and 

reinforce the notion that passive exercise is an effective strategy to stimulate nerve 

regeneration.  

Despite the importance of nerve regeneration, a successful nerve treatment is much 

dictated by the degree of reinnervation and of functional recovery. Here, we conducted 

gait analysis to track functional recovery and assessed motion changes at the hip, knee 

and ankle joints during voluntary level walking. Several motion changes occurred that 

can be attributed to the sciatic nerve injury and that affected all recorded joints. In the 

weeks following the sciatic nerve crush and before initiating either active or passive 

exercise, relevant changes in hip and knee kinematics were noticed, particularly during 

the stance phase. Higher hip joint velocity and overall increase in knee extension 

characterized walking of sciatic-injured animals acutely post injury. This profound 

reorganization of the role played by each individual joint reveals most likely a strategy 

to overcome dysfunction at the level of ankle joint and to permit walking. Similar to 

other studies (2; 32; 33), twelve weeks after sciatic injury ankle kinematics was recover 

in all sciatic-injured groups, taking into account either the ankle angle and the ankle 

angular velocity during both the stance and swing phases. Complete recovery of the 

normal ankle kinematics during level walking in a walkway is a common observation 

after a sciatic nerve crush, however some studies report few kinematic changes 

appearing late during recovery suggesting that walking is altered after this type of injury 

(32; 33). Also, it should be kept in mind that the morphology of regenerated crushed 
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sciatic nerves are clearly distinct from intact nerves, which suggest that complete 

functional recovery is unlikely to occur on these animals. However, and in contrast to 

ankle joint kinematics, hip and knee joint kinematics in the Crush group clearly deviated 

to that of the Sham group. Such changes in the normal hip and knee kinematics during 

walking were not noticed in both the EXa and EXp groups. We interpret these results 

as a demonstration that the hindlimb motion pattern during level walking is not fully 

reestablished after sciatic crush injury and those compensatory changes at the hip and 

knee joint kinematics emerges that masks disability at the ankle joint. The mechanisms 

guiding these changes cannot be discerned by our data, but studies have shown 

altered pattern of electromyographical activity of the muscles crossing the ankle joint 

after sciatic nerve transection that are best explained by changes at spinal neural 

output (34). A possibility is that hip and knee motion pattern changes result from 

altered proprioceptive feedback originating from muscles crossing the ankle joint and 

other hindleg afferents (35; 36). A simpler explanation, and probably one that better 

adjusts to our results, is that hip and knee kinematic changes reflect past 

compensatory changes that are not corrected even if their purpose is not justified 

anymore. In fact, the stimulus of active and passive exercise corrected hip and knee 

motion changes during level walking in our exercised animals. 

This study was not designed to investigate the mechanisms by which active or passive 

exercise improves nerve regeneration and functional recovery. The mechanisms are 

potentially many and might operate at several levels and at distinct organs, including 

the spinal cord (19; 37), the regenerating nerve (Sabatier, Redmon et al. 2008) and the 

reinnervated muscles (15; 38). The enhancing effect of active exercise on nerve 

regeneration and reinnervation probably expresses the maintenance of an adequate 

degree of stimulation onto the affected motor groups at the spinal cord level. This 

stimulus might come either from the descending pathways that are active when 

animals attempt to walk, even if due to denervation the movement itself does not 

happen, or from afferent pathways originating from non-denervated hindlimb territories 

but projecting onto the sciatic motoneuron pools (15; 39). It is known from cultured 

retinal ganglion cells that neuronal outgrowth does not occur spontaneously and is 

dependent on soluble neurotrophic factors and neuronal electrical activity (40). It is 

likely that both active and passive exercise originate bursts of electrical activity at the 

neuronal soma in the spinal cord that then travel along the severed axons and 

stimulate axonal outgrowth.  

The positive effect of passive exercise on nerve regeneration and functional recovery is 

probably less anticipated, compared to active exercise. Previous studies used a 

passive exercise stimulus that was designed to closely resemble natural active 



Chapter 6 – The effect of active and passive exercise on nerve regeneration and functional recovery after sciatic 

crush injury  157 

 

 

Sandra Cristina Fernandes Amado 

movements and behaviors. For instance, passive bicycling used by Udina et al. (16) 

emulated the range of motion of hindlimb joints observed during walking in the rat. 

Similarly, the manual strokes of the whisker pad implemented by Angelov et al. (15) 

took into consideration the normal sweep exploratory motions of the vibrissae in these 

animals. Our manual passive mobilization of the hindlimb was not planned to mimic 

any specific task but otherwise to move the hip, knee and ankle joints through most of 

their movement amplitude and to cause a mild stretch of the muscles crossing the 

ankle joint. This protocol is in line with rehabilitation techniques aiming to maintain the 

joint amplitude and prevent muscle shortening and contracture. However, the stimulus 

caused by this rather unspecific passive motion proves also to have a positive effect on 

the regenerating nerve morphology and in overall hindlimb motion pattern during 

walking. Such apparent positive direct effect on nerve regeneration might result from 

increased afferent input due to the movement stimulus (19; 37). Another possibility is 

that our passive movement induced rhythmic mechanical load onto the regenerating 

nerve inducing local cellular and molecular responses that enhance nerve regeneration 

(41).  

 Lastly, some limitations of our study must be addressed. Our active walking exercise 

might be envisaged as a mild-intensity endurance exercise, consisting of daily sessions 

of 30 minutes continuous level walking at a 10 m/min speed. This exercising protocol 

was initiated two weeks after sciatic nerve crush, when injured axons start 

reinnervating the target muscles. However, there is evidence that the nerve 

regeneration enhancing effect of exercise might be dose-dependent, being endurance 

high-intensity, intermittent physical exercise capable of inducing higher effect than mild-

intensity (17). Also, some protocols use treadmill exercise of one-to two-hours duration 

(13; 16; 31). It is then possible that our slight positive effect of active exercise on nerve 

regeneration and functional recovery is the reflection of a relatively low exercise 

stimulus. Also, our walking conditions used to test functional recovery might not 

challenge the walking animals to a degree sufficient to uncover the disability associated 

to faulty reinnervation or changes at spinal neural output (42). 

In summary, active continuous walking exercise and passive mobilization of whole 

hindlimb had a positive effect on the morphology of regenerating crushed sciatic nerves 

and improved overall hindlimb kinematics during the rat gait. These results are in line 

with growing evidence that not just active exercise but passive exercise as well are 

suitable strategies to help nerve regeneration after injury and, most important, to aid in 

function restoration. Moreover, the positive effect of passive exercise after sciatic nerve 

injury does not require a strict task-specific movement and might alternatively result 
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from a general action of movement stimulation, including a direct mechanical effect on 

the nerve and muscles. Clearly, further studies are needed for in vivo investigation of 

the mechanism responsible for the effect of passive exercise. 
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1 General discussion 

The main objective of this thesis was to investigate functional recovery of rats’ hindlimb 

after therapeutic strategies for peripheral nerve repair in axonotmesis and neurotmesis 

injuries. The results obtained in the experimental studies included in this thesis allowed 

to verify functional and morphological differences between different therapeutic 

strategies, when using tissue engineering and cellular therapies based on new 

biomaterials. Chitosan (Chapter 3) and collagen (Chapter 4) associated to a cellular 

system capable of neurotrophic factors production are the different therapeutic 

strategies. Exercise-based neurorehabilitation was also studied in chapter 6.  

The relevance of rat model in this thesis is related with the possibility to isolate several 

levels of complexity to understand biological systems and develop cellular systems to 

promote nervous tissue regeneration. It was possible to evaluate functional recovery in 

vivo after therapeutic intervention for peripheral nerve repair during a follow-up period 

with morphological evaluation of the nerve at the end of the experiment. Our 

experimental model was the sciatic nerve, and we have verified that the possibility of 

peripheral nerve repair is a promising reality. Peripheral nerve regeneration can be 

studied in a number of different experimental models based on the use of nerves from 

both forelimb and hindlimb (1-3). The experimental animal model of choice for many 

researchers remains the rat sciatic nerve. It provides an inexpensive source of 

mammalian nervous tissue of identical genetic stock that it is easy to work with and 

well studied (4) and shows a similar capacity for regeneration in rats and sub-humans 

primates (5). The rat sciatic nerve is a widely used model for the evaluation of motor as 

well as sensory nerve function at the same time (3). 

 

Our studies of sciatic nerve regeneration include a post-surgery follow-up period of 20 

weeks after neurotmesis and 12 weeks after axonotmesis based on the assumption 

that, by the end of this time, functional and morphological recovery are complete (6-9). 

Although both morphological and functional data have been used to assess neural 

regeneration after induced neurotmesis and axonotmesis injuries, the correlation 

between these two types of assessment is usually poor (10-12). Classical and newly 

developed methods of assessing nerve recovery, including histomorphometry, 

retrograde transport of horseradish peroxidase and retrograde fluorescent labelling (13; 

14) do not necessarily predict the reestablishment of motor and sensory functions (10; 

15-17). Although such techniques are useful in studying the nerve regeneration 

process, they generally fail in assessing functional recovery (10). In this sense, 
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research on peripheral nerve injury needs to combine both functional and 

morphological assessment. The use of biomechanical techniques and rat’s gait 

kinematic evaluation is a progress in documenting functional recovery (17). Indeed, the 

use of biomechanical parameters has given valuable insight into the effects of the 

sciatic denervation/reinnervation, and thus represents an integration of the neural 

control acting on the ankle and foot muscles (17-20). 

 

After peripheral nerve injury, acute changes were particularly evident during push off 

phase during stance, reflected in increased dorsiflexion at Toe Off (TO). With time, 

there was a somewhat limited recovery towards normality during stance phase with 

less pronounced dorsiflexion at TO, suggesting that extensor muscles regained the 

ability to partially perform the push off action.  

In sciatic-crushed (i.e. axonotmesis) animals, functional recovery is fast and by week 6 

to 8 most of the kinematic parameters show values similar to those post-surgery. 

However, some of the parameters remain altered even after a 12-weeks recovery 

period which contrasts to other functional test that recover within 8 weeks following 

sciatic crush injury (8). 

 

After axonotmesis injury, hybrid chitosan membranes were used for peripheral nerve 

regeneration. Chitosan has recently attracted particular attention because of its 

biocompatibility, biodegradability, low toxicity, low cost, enhancement of wound-healing 

and antibacterial effects. Its potential usefulness in nerve regeneration have been 

demonstrated both in vitro and in vivo (7; 22). Chitosan is a partially deacetylated 

polymer of acetyl glucosamine obtained after the alkaline deacetylation of chitin (23). 

Chitosan matrices have been shown to have low mechanical strength under 

physiological conditions and to be unable to maintain a predefined shape for 

transplantation, which has limited their use as nerve guidance conduits in clinical 

applications. The improvement of their mechanical properties can be achieved by 

modifying chitosan with a silane agent. γ-glycidoxypropyltrimethoxysilane (GPTMS) is 

one of the silane-coupling agents, which has epoxy and methoxysilane groups. The 

epoxy group reacts with the amino groups of chitosan molecules, while the 

methoxysilane groups are hydrolyzed and form silanol groups, and the silanol groups 

are subjected to the construction of a siloxane network due to the condensation. Thus, 

the mechanical strength of chitosan can be improved by the crosslinking between 

chitosan and GPTMS and siloxane network. Chitosan and chitosan-based materials 
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have been proven to promote adhesion, survival, and neuritis outgrowth of neural cells 

(7). 

 

The normal pattern of ankle motion during stance characterized by initial dorsiflexion 

followed by plantarflexion (push off action) was lost and dorsiflexion continues up to the 

end of the stance phase caused by inability of the leg muscles to generate 

plantarflexion moment (21). The ankle joint angle at Initial Contact changed 

significantly after the sciatic crush. Such changes were transient and by week4 ankle 

joint angle at Initial Contact was indistinguishable from baseline. Ankle joint angle at 

Opposite Toe-off was significantly affected after the crush injury but by week 4 of 

recovery joint position at this point of stance had recovered to normal values. At Heel 

Rise ankle joint angle was significantly altered after the sciatic nerve injury until week 

12. Ankle joint angle at Toe-Off was significantly altered after the sciatic nerve injury. At 

week 12 ankle’s joint angle mean value at Toe-Off was similar to the one registered 

before the sciatic nerve injury.  

 

Group differences were observed, being the values at Initial Contact in the ChitosanII 

group different from all the other four groups. Ankle joint angular position at Opposite 

Toe in the ChitosanII group, throughout the study, were significantly different from 

Crush and ChitosanIII groups. At Heel Rise, it was possible to verify differences 

between ChitosanII and the Crush and ChitosanIIICell groups. Ankle’s joint angle at 

Toe-Off was different between ChitosanII and ChitosanIIICell groups. 

 

Ankle angular velocity at Opposite Toe was significantly affected after the crush injury 

and returned to preoperative values at week 4. Instantaneous ankle’s joint velocity at 

Heel Rise was significantly affected after axonotmesis with differences from normal 

values until week 4 of recovery. Ankle’s joint velocity at Toe-Off was significantly 

affected after the crush injury and did not recover completely within the 12-weeks 

follow up time.  

 

There were significant differences between the groups for ankle joint velocity at 

Opposite Toe with significant differences between ChitosanII and ChitosanIICell 

groups. Differences between ChitosanII and ChistosanIICell groups were registered at 

Heel Rise. At Toe-Off, differences between ChitosanIICell, from one hand and Crush, 

ChitosanIII and ChistosanIIICell groups, on the other were found. At week12, results of 

the gait kinematic analysis of the experimental groups revealed that the group using 
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ChitosanIII group differs from Crush group in a smaller number of variables. This 

indicates that at the end of the recovery period animals in ChitosanIII group presented 

a degree of functional recovery similar to that registered in the Crush group. 

 

Sciatic functional index (SFI) and Static Sciatic Index (SSI) results showed that SFI 

values changed significantly after the crush injury. SFI values were different from 

baseline until week 7 of recovery.  

The effect of group was observed for SFI values indicating that values from 

ChitosanIICell group were different from those of the ChitosanII and ChitosanIII groups. 

Analysis on SSI data was similar to the reported SFI results. However, SSI results from 

the ChitosanIIICell group were different from those of the Crush, ChitosanII and 

ChitosanIICell groups. 

 

The Extensor Postural Trust (EPT) values obtained during the healing period of 12 

weeks were significantly affected by the crush injury and at week 12, EPT had still not 

recovered to baseline values.  

There were significant differences in EPT values between the experimental groups 

analysis shows that the EPT values from the Crush group were significantly different 

from those of the ChitosanIICell and ChitosanIIICell, suggesting a negative effect of the 

N1E 115-differentiated cells on motor recovery after sciatic crush injury. 

 

Withdrawal Reflex Latency (WRL) assessed nociceptive function and it was affected up 

to week 8. Beyond this time point, WRL values, the experimental groups pooled 

together, were similar to those preoperatively.  

The effect of group was found for WRL data and analysis showed that differences were 

significant between ChitosanII group from one side and ChitosanIICell, ChitosanIII and 

ChitosanIIICell groups on the other side. These results are suggestive of a slower rate 

of recovery in WRL with the use of type II chitosan. 

 

Functional assessment partially supported the histomorphometric results since results 

of the WRL, EPT, SFI and SSI tests suggest that chitosan type II and the N1E-115 

cells have a reduced degree of functional recovery which is in line with results of 

histomorphometric analysis.  Histological appearance of control normal sciatic nerve 

cross sections in comparison to cross sections of the regenerated nerve fibers in all 

five experimental groups were organized in microfascicles and were smaller than 

control nerve fibers. In the two experimental groups in which cell delivery was carried 
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out, the presence of unusual cell profiles, interpretable as the transplanted cells, was 

detectable at the periphery of the nerves. This was seldom observed in inner parts of 

the nerve suggesting that only few transplanted cells colonized the inner nerve 

interstice. Electron microscopy confirms that a good regeneration pattern of both 

unmyelinated and myelinated nerve fibers occurred in all experimental groups, 

irrespectively of the enrichment with neural stem cells. The border zone of the nerve 

still shows the presence of some chitosan debris integrated with the collagen fibers of 

the epineurium. Moreover, in the two experimental groups in which cell delivery was 

carried out, it was possible to find some of transplanted cells localized in the border 

zone of the regenerated nerve. Results of the design-based morphoquantitative 

analysis of regenerated myelinated nerve fibers permitted to quantitatively compare the 

different experimental groups. As expected, fiber density was significantly higher in all 

experimental groups in comparison to control sciatic nerves, while mean axon and fiber 

diameter and myelin thickness were significantly lower. On what regards the number of 

regenerated myelinated nerve fibers, was found to be significantly higher in comparison 

to controls in four out of the five experimental groups only; in fact, ChitosanIII group 

showed a number of fibers not significantly different in comparison to normal control 

nerves. The peculiarity of the experimental group, characterized by type III chitosan 

membrane enwrapment, was also confirmed by statistical analysis of inter-group 

variability among experimental groups which demonstrated that ChitosanIII group 

presented a significantly higher mean fiber and axon diameter and myelin thickness in 

comparison with all other experimental crush groups. 

 

We also studied the effects on nerve regeneration when using collagen membranes 

after neurotmesis without gap (end-to-end microsurgical technique) associated with in 

vitro differentiated cellular system (chapter 3). After 20 weeks animals were sacrificed 

and the repaired sciatic nerves were processed for histological and stereological 

analysis. SFI was not possible to perform because of automutilation of the fingers after 

sciatic nerve injury.  

In the weeks following sciatic nerve transection, ankle joint motion became severely 

abnormal, particularly throughout the second half of stance corresponding to the push-

off sub-phase. In clear contrast to the normal pattern of ankle movement, at week-2 

post-injury animals were unable to extend this joint and dorsiflexion continued 

increasing during the entire stance. This result could be associated to the paralysis of 

plantarflexor muscles. The pattern of the ankle joint motion seemed to have improved 

only slightly during recovery. For OT velocity and HR angle no differences were found 
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before and after sciatic nerve transection, whereas for OT angle differences from pre-

injury values were significant only at weeks 2 and 16 of recovery. The angle at IC 

showed a unique pattern of changes, being unaffected at week-2 post-injury and 

altered from normal in the following weeks of recovery. Probably the most consistent 

results are those of HR velocity, TO angle and TO velocity. These parameters were 

affected immediately after the nerve injury and remained abnormal along the entire 20-

weeks recovery period.  

 

Generally, no differences in the kinematic parameters were found between the groups. 

Exceptions were IC velocity in the End-to-EndMembCell group, which was different 

from the other two groups, and OT angle in the End-to-EndMemb group that was also 

different from the other two groups.  

 

Reflex activity also revealed relevant information concerning functional recovery. The 

EPT response steadily improved during recovery but at week-20 the EPT values of the 

injured side were still significantly lower compared to values at week-0.  

A significant main effect for treatment was found, with better recovery of the EPT 

response in the End-to-EndMembCell group when compared to the other two 

experimental groups: at week-20, motor deficit decreased to 27% in the End-to-

EndMembCell and to 34% and 42% in the End-to-End and End-to-EndMemb groups, 

respectively.  

 

During the following weeks after injury there was recovery in paw nociception, which 

was more clearly seen between weeks 6 and 8 post-surgery. At week-6, half of the 

animals still had no withdrawal response to the noxious thermal stimulus in the 

operated side, which is in contrast with week-8, when all animals presented a 

consistent, although delayed, response. Despite such improvement in WRL response, 

persistence of sensory deficit in all groups by the end of the 20-weeks recovery time 

was reported. No difference between the groups was observed in the level of WRL 

impairment after the sciatic nerve neurotmesis. 

 

After neurotmesis, regeneration of axons was organized in many smaller fascicles in 

comparison to controls. No significant difference regarding any of the morphological 

parameters investigated in the regenerated axons from the three experimental groups. 

On the other hand, comparison between regenerated and control nerves showed, as 

expected, the presence of a significantly higher density and total number of myelinated 
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axons in experimental groups accompanied by a significantly lower fiber diameter. 

Results showed that enwrapment of the rapair site with a collagen membrane, with or 

without neural cell enrichment, did not lead to any significant improvement in most of 

functional and stereological predictors of nerve regeneration. The exception was EPT 

which recovered significantly better after neural cell enriched membrane employment. 

Results of this study revealed that this particular type of nerve tissue engineering 

approach has very limited effects on nerve regeneration after sciatic end-to-end nerve 

reconstruction in the rat. 

We have concluded that the sciatic nerve regeneration after neurotmesis and end-to-

end suture can be improved by in vitro differentiated N1E-115 neural cells seeded on a 

type III equine collagen membrane, enwrapped around the injury site. The N1E-115 

cell line has been established from a mouse neuroblastoma (24) and have already 

been used, with conflicting results due to its neoplasic origin, as a cellular system to 

locally produce and deliver neurotrophic factors (25). In vitro, the N1E-115 cells 

undergo neuronal differentiation in response to dimethylsulfoxide (DMSO), adenosine 

3’, 5’- cyclic monophosphate (cAMP), or serum withdrawal (24). Upon induction of 

differentiation, proliferation of N1E-115 cells ceases, extensive neurite outgrowth is 

observed and the membranes become highly excitable (8; 9; 26-30). The interval 

period of 48 hours of differentiation was previously determined by measurement of the 

intracellular calcium concentration (Ca2+i). Notice that at this time, the N1E-115 cells 

present, already, the morphological characteristics of neuronal cells, nevertheless cell 

death due to increased Ca2+i is not yet occurring as described elsewhere (8; 9; 26; 

29-36). 

 

Neurotrophic factors play an important role in nerve regeneration after injury or disease 

and it is conceivable that if neurotrophic factors are applied in the close vicinity of the 

injured nerve their healing potency is optimized. In spite of these assumptions and 

contrary to our initial hypothesis, the N1E-115 cells did not facilitate either nerve 

regeneration or functional recovery and, as far as morphometrical parameters are 

concerned, results showed that the presence of this cellular system reduced the 

number and size of the regenerated fibers. These results suggest that this type of 

nerve guides can partially impair nerve regeneration, at least from a morphological 

point of view (8; 9; 26; 29-36). The impaired axonal regeneration seems to be the result 

of N1E-115 cells surrounding and invading the regenerating nerve, since numerous of 

these cells where seen colonizing the nerve and might have deprived regenerated 

nerve fibers blood supply (8; 9; 26-30). The use of N1E-115 cells did not promote nerve 
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healing and their use might even derange the nerve regenerating process. Whereas 

the effects on nerve regeneration were negative, an interesting result of this study was 

the demonstration that the cell delivery system that we have used was effecting in 

enabling long-term colonization of the regenerated nerve by transplanted neural cells. 

Whether the negative effects of using N1E-115 cells as a cellular aid to peripheral 

neural tissue regeneration extends to other types of cells is not known at present and 

further studies are warranted to assess the role of other cellular systems, e.g. 

mesenchymal stem cells, as a foreseeable therapeutic strategy in peripheral nerve 

regeneration. Our experimental results with this cellular system are also important in 

the perspective of stem cell transplantation employment for improving posttraumatic 

nerve regeneration with patients (8; 9; 26; 29-36). Undoubtedly, great enthusiasm has 

raised among researchers and in the general public about cell-based therapies in 

regenerative medicine (8; 9; 26; 29-36). There is a widespread opinion that this type of 

therapy is also very safe in comparison to other pharmacological or surgical therapeutic 

approaches. By contrast, recent studies showed that cell-based therapy might be 

ineffective for improving nerve regeneration (8; 9; 26; 29-36) or even have negative 

effects by hindering the nerve regeneration process after tubulisation repair. Whereas 

the choice of the cell type to be used for transplantation is certainly very important for 

the therapeutic success, our present results suggest that the paradigm that donor 

tissues guide transplanted stem cells to differentiate in the direction that is useful for 

the regeneration process it is not always true and the possibility that transplanted stem 

cells choose another differentiation line potentially in contrast with the regenerative 

process should be always taken in consideration.  

 

From a functional point of view, it was verified that independently from the type of 

sciatic nerve injury, ankle motion is severely affected in the weeks immediately after 

the injury. After neurotmesis (chapter 4), automutilation, chronic foot deformities, 

inversion or eversion deformations were the main methodological source of limitation 

for the functional assessment with the use of others widely used behavioural tests, i.e. 

Sciatic Functional Index (SFI) and Static Sciatic Index (SSI) (12; 37). Despite this 

limitation SFI is a widely used parameter because of its reliability (38), but recent 

studies revealed that SFI method is only reliable from the 3rd week on after a severe 

lesion (39). Although SFI is a quantitative method, it only considers stance phase and 

several aspects have been reported as methodological limitations since some of the 

measurements (i.e. Print Length factor) are dependent on the walking velocity and 

pressure exerted by the foot on the floor influenced for instance by the weight of the 
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animal. Performing kinematic analysis for assessment of gait as dynamic function, as it 

describes the trajectory of a joint during the movement, was a good alternative. 

Although kinematics are only the description of movement and only takes into 

consideration joint angles, it represent a good approach to understand joint 

coordination and changes in kinematics during walking could be indicative of the role of 

muscles in regulating locomotor activity. Using 2D video analysis and dedicated 

software for motion analysis, our group reported measures of both angle and angular 

velocity of the ankle joint during the stance phase (8; 26). Angular velocity data were 

calculated in an attempt to raise the precision of joint motion analysis and to increase 

its power in detecting subtle differences in functional recovery when testing alternative 

treatments after sciatic crush (26). We reasoned that functional deficits during walking 

in rat nerve models might be masked by the high redundancy and adaptability of the 

motor apparatus in response to sensorimotor alterations (12; 37). 

 

Almost all the kinematics parameters analysed regarding ankle motion during the 

whole phase of the rat walk reveals a persistent abnormal pattern. Muscles innervated 

by sciatic nerve rami includes both dorsiflexors and plantarflexors and although in 

previous studies we focused our kinematic analysis only in the stance phase, including 

analysis of all joints also during the swing phase provided additional information. 

However, a key question regarding joint motion analysis is which parameters present 

enough sensitivity to evaluate function after different types of sciatic injury. We have 

evaluated the sensitivity and the specificity of ankle motion analysis to detect functional 

deficits in the rat sciatic model (Chapter 5). By using a set of kinematic variables 

describing angle and velocity during walking, a statistical model was generated that 

robustly separates animals shortly after sciatic crush from sham-operated controls and 

animals after 12 weeks of recovery. Moreover, the model displayed a moderate ability 

to separate between the two latter groups of animals. Therefore, 2D kinematic analysis 

of joint motion is sensitive to detect motor deficit caused by sciatic nerve injury even 

when functional deficits are minimized by long-term recovery. 

All kinematic measures were significantly altered in the time shortly after the sciatic 

crush, when compared to sham-operated and recovered animals, with the exception of 

angular velocity at mid-swing, which apparently is not affected by the sciatic nerve 

crush and therefore seems not to be of great utility to assess functional status in the rat 

sciatic model. Moreover, the introduction of interjoint coordination was also important in 

order to have insights about the behaviour of all hindlimb joints, considering the 

denervated chain of muscles after injury. Sciatic nerve gives off branches to the hip 
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extensors and leg flexors and continues its courses beneath the gluteus medius 

muscle into the thigh, in the mid-thigh the nerve trifurcates into the peroneal, tibial and 

sural branches; the peroneal nerve subsequently innervates the tibialis anterior and 

extensor digitorum longus, while the tibial nerve supplies the plantar flexor, toe flexors, 

and the tibialis posterior. Thus, it is expected that after sciatic nerve injury hip, knee 

and ankle motion reflect functional deficits. Although kinematics is only the description 

of movement and only takes into consideration joint angles, it represents a good 

approach to understand joint coordination. Recent studies revealed that different joint 

positions were combined to achieve functional movement during cat walking after 

peripheral nerve injury (12; 37). The whole limb position and orientation were 

considered a preferable parameter than joint position (38). Therefore, inter segmental 

transfer of energy might also be a mechanisms of economical movement production 

after muscle denervation.  

 

Our data suggest that joint kinematics has the ability to highlight minor walking 

changes after long-term recovery from sciatic crush injury. However, the kinematics 

changes during walking twelve weeks after sciatic nerve crush were noticed in the hip 

and knee joints, while ankle joint kinematics had recovered its normal pattern. In line 

with joint kinematics data, discriminant analysis clearly demonstrated that walking 

measures, either spatiotemporal features or hindlimb joint kinematics, accurately 

recognize sciatic-denervated animals and distinguishes them from sciatic-reinnervated 

animals and sham controls. Spatiotemporal parameters like gait velocity, stride length, 

stance phase duration and swing phase duration are relevant for the study of 

pathological pattern of gait after peripheral nerve injury in experimental rat model (39). 

Stance phase duration measured the time hind foot was in contact with the floor. After 

sciatic nerve injury, the injured limb has a smaller stance phase duration. Step length, 

is accurately measured using the location of the middle metatarsal head to metatarsal 

head in successive steps (8; 26) and walking speed is considered a parameter that 

influences stance phase and step length after sciatic crush injury (26).  

The relevance of spatiotemporal parameters is related with mechanical aspects of 

locomotion and its functional relevance for performance. Considering that the basic 

functions of locomotion are propulsion, stance stability, shock absorption and energy 

conservation (40; 41), gravitational forces are important in walking and gait 

disturbances reduces the ability to use gravity and inertia in ambulation and therefore 

must resort to actual muscle work, which means that they have to spend more energy 

to cover certain distance.  
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Finally, it was possible to detect subtle differences between two types of therapeutic 

exercise widely used in neurorehabilitation clinical practice. The two exercise modes 

consisted on treadmill exercise walking and passive mobilization of the affected 

hindlimb and their effect was evaluated in contrast to a non-exercise group of sciatic 

nerve crushed animals and sham operated controls. Passive exercise consisted on 

manual mobilization of the entire right hindlimb. The manual mobilization included 

movement of the hip, knee and ankle joints in concert, and alternating flexion and 

extension of the joints. The results demonstrate marginal effects of both active and 

passive exercise on functional recovery, assessed by hindlimb joint kinematics during 

level walking. Although the impact of exercise on functional recovery was relatively 

modest it was nonetheless accompanied by improved nerve morphology, particularly 

by preventing excessive increase in total number of myelinated fibers in regenerated 

sciatic nerves.   

Kinematic analysis distinguished recovery of movement pattern between groups. 

Twelve weeks after injury, ankle joint was similar between groups. In contrast to ankle 

joint kinematics, hip and knee joint kinematics in the Crush group clearly deviated to 

that of the Sham group. Such changes in the normal hip and knee kinematics during 

walking were not noticed in both the active and passive exercise groups. We interpret 

these results as a demonstration that the hindlimb motion pattern during level walking 

is not fully reestablished after sciatic crush injury and that compensatory change at the 

hip and knee joint kinematics masking disability at the ankle joint. The mechanisms 

underlying these changes cannot be discerned by our data. The stimulus caused by 

this rather unspecific passive motion proves also to have a positive effect on the 

regenerating nerve morphology and in overall hindlimb motion pattern during walking. 

Such apparent positive direct effect on nerve regeneration might result from increased 

afferent input due to the movement stimulus (38). Another possibility is that our passive 

movement induced rhythmic mechanical load onto the regenerating nerve inducing 

local cellular and molecular responses that enhance nerve regeneration (39) 

 

Comparison between regenerated and non-injured nerves showed morphological 

differences. Signs of better regeneration as a result of passive hindlimb mobilization 

were observed. As for the active exercise group, mean total number of myelinated 

fibers in the passive exercise group was indistinct from that of the Sham group. 

Interpretation of these results is difficult, and thus it deserves further research, the 
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discrepancy between different authors who revealed an increase in the number of 

myelinated axons and our results, which evidenced the opposite. Thus, results from 

exercise-based neurorehabilitation are promising. In conclusion, passive and active 

joint movement causes joint kinematics and nerve morphological changes. Results of 

this study suggest that mechanical load plays a role on functional recovery after 

peripheral nerve repair. However, further studies are needed to understand the 

functional meaning of results.  
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2 Future perspectives  

2.1 Nerve regeneration 

Enwrapment of the site of a nerve crush lesion with a chitosan type III membrane 

significantly improves nerve regeneration in the rat, whereas enrichment of chitosan 

membranes with N1E-115 neural cells does have positive effects. Whereas 

transposition of animal studies to patients should always be dealt with caution, the 

results obtained in this experimental study opened interesting perspectives for the 

clinical use of hybrid chitosan membranes in peripheral nerve reconstruction. 

More complex devices will be needed, such as multilayered tube guides where growth 

factors are entrapped in polymer layers with varying physicochemical properties or 

tissue engineered tube guides containing viable stem cells (8; 26). The combination of 

two or more growth factors will likely exert a synergistic effect on nerve regeneration, 

especially when the growth factors belong to different families and act via different 

mechanisms. Combinations of growth factors can be expected to enhance further 

nerve regeneration, particularly when each of them is delivered at individually tailored 

kinetics (26). The determination and control of suitable delivery kinetics for each of 

several growth factors will constitute a major hurdle both technically and biologically 

with the biological hurdle lying in the compliance with the naturally occurring cross talk 

between growth factors and cells. A solution to this problem may be the use of 

mesenchymal autologous or heterologous stem cells because they can synthesize 

several growth factors and differentiate into Schwann cells which are critical for very 

long gaps (40; 41). 

Tissue engineering advances promotes the development of other biomaterials to 

enhance peripheral nerve regeneration. The choice of the cellular system to be applyed 

is crucial for the therapeutic success. Using another cell line other than N1E-115 could 

have led to better results, concerning for instance, the emerging knowledge about 

autologous or heterologous mesenchymal stem cells from extra-fetal sources (38). 

Moreover, the construction of more appropriate tube-guides with integrated growth 

factor delivery systems and/or cellular components could improve the effectiveness of 

nerve tissue engineering. In fact, single-molded tube guides may not give sufficient 

control over both the mechanical properties and the delivery of bioactive agents.  
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2.2 Methodological improvement of functional assay  

Kinematic analysis has improved the sensitivity of functional recovery assessment after 

peripheral nerve injury in experimental animals and its importance seems will increase 

in the future as a result of advanced technology and improved biomechanical models. 

From a biomechanical perspective, joint rotational velocity has a more direct 

relationship with the forces actuating onto the hindlimb segments and therefore velocity 

measures may be better indicators of dysfunction caused by nerve injury. Moreover, 

ankle position data is sometimes difficult to interpret, for example in those cases where 

ankle joint angle remains unaffected in the weeks immediately after sciatic nerve crush 

(8; 26). This shows that measures of ankle joint angle taken at snapshots during 

walking may lack sensitivity to assess functional impairment. In the near future, other 

statistical methods should be considered. Individual joint kinematics either in control or 

nerve-injured animals is characterized by high variability, with notable differences 

between different animals and even from step to step (42). Such high level of 

variability, which seems to be an intrinsic property of normal quadruped walking, 

seriously affects the precision of joint kinematic measures of functional recovery after 

nerve injury. Reducing this variability is a challenge for efficient use of walking analysis 

to assess functional recovery. Attempts to overcome this limitation include constraining 

walking velocity by using treadmill walking instead of self-paced locomotion (28; 43-

48). This, of course, is likely to reduce step-by-step variability in joint kinematics but 

has the disadvantage of requiring expensive equipment and limits the possibility of 

combining kinematic analysis with other data, such as ground reaction forces. Other 

possibilities look at a global, limb-level movement analyses as an alternative to 

individual joints kinematics (28; 43-48). Also, systematic changes in the biomechanical 

and movement control constraints of the locomotor task, such as using up- and down-

slope walking might also increase the accuracy of walking analysis within the context of 

peripheral nerve research (28; 43-48). 

 

Study the influence of gait velocity on functional parameters. Yu et al (2001) (37) 

showed that gait analysis method is highly sensitive and studied seven spatial and 

kinematic parameters. It was also pointed out that when the spontaneous walking 

speed exceeded 55 cm/s was approached the limit of walking. When the walking speed 

was less than 25cm/s the rats looked nervous and overcautious. Moreover, the stance 

phase and step length, accurately measured by middle metatarsal head to metatarsal 

head distance, was affected by walking speed.  
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Bilateral hindlimb model should be constructed. Yu et al. (2001) defined the right:left 

stance/swing ratio (SS); right:left step length ratio (SLR); angle of the ankle joint at 

terminal stance (ATS); angle of the ankle joint at midswing (AMS); tail height; tail 

deviation, and midline deviation (MID). Concerning to tail and midline deviation, they 

verified that the tail of normal rats deviated towards the side where the hindlimb was at 

terminal stance, and during walking the body leans towards the contralateral side when 

the hindlimb is at midswing. During a gait cycle after sciatic nerve injury produces ankle 

dorsiflexion deformity presumably due to the dominance of tibial nerve innervation in 

the lower extremities. Based on discriminant analysis these authors concluded that 

right:left stance/swing ratio, right:left step length ratio and ankle joint at terminal stance 

contributed significantly to the equation developed to obtain sciatic injury score.  

 

Methodological errors related with skin movement artefacts should be studied in 

kinematic analysis with optimization methods. In fact, the main sources of error 

affecting in vivo estimation of the pose of a skeletal bone with a non invasive skin 

markers technique are related with skin slippage, namely soft tissue artefacts (37), 

anatomical landmarks misallocation and instrumental noise (40; 41), and efforts have 

been made to overcome this limitation. While the estimation of instrumental errors is 

not problematic, the in vivo quantification of soft tissue artefacts and their effect on the 

determination of the bone position and orientation is still an open issue. Rats have 

excessive skin mobility that can generate large soft tissue artefacts therefore 

increasing the kinematic and kinetics data error during motion analysis. Thus, it was 

verified that using tattooing the anatomical landmarks misallocation and consequent 

inter-test variability was controlled (50). Soft tissue artefacts were verified to be 

problematic at the knee joint (51). The position of the knee joint is loosed by skin 

coverage; (8; 26) proposed that it could be calculated by using hip and ankle joint 

position and external individual measurements of femur and tibia length. (26), used 

high speed X-ray video and reported that the largest error between skin and bone 

derived angles occurred immediately before the paw contact, and at toe-off the error 

was the smallest. It was also reported that skin-derived kinematics overestimated 

angular values and the knee position was the joint most affected. The choice of skin 

marker placement is a critical aspect for discussion about motion analysis, and 

comparisons between studies should consider this aspect when interpreting for 

instance joint angle values. Sagittal values derived from skin markers are only 

approximation of the actual movements of the bones that comprises a joint of interest. 
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Another problem in kinematic studies related with protocol is the accurate 

determination of cycle landmarks such as Initial contact and toe-off. Ground reaction 

forces will improve the accuracy of determination of stance phase events. The 

introduction of optoelectronic motion capture system (Chapter 4) improved accuracy of 

the kinematic model, allowing instantaneous position estimation and reducing the error 

introduced by digitalization process, improving data processing. Position estimation is 

performed automatically and when a marker is missing it is estimated with 

mathematical algorithm considering the coordinates of the following frames. Data using 

this system has surprisingly showed that unlike our previous stance phase based 

results showing significant improvement in ankle joint motion after sciatic injury, 

analysis of swing phase shows that the abnormal ankle motion pattern remains without 

significant improvement over the entire recovery period. Using optoelectronic 

technology it will be possible to introduce anthropometric characteristics. In what 

concerns biomechanical model, the relative position of anatomical segments is 

important to perform biomechanical modelling. Reconstruction and analysis of in vivo 

skeletal system kinematics using optoelectronic stereophotogrammetric data will allows 

the joint kinematic description providing segment morphology (40; 41). Anatomical 3D 

analyses (42) will be possible to quantify observable functional deficits in others planes 

of movement further than sagittal, like rotation of the injured paw, curvation and 

inversion of the feet (37; 49). 

2.3 Functional meaning  

From animal models we know that neural control of locomotion operates automatically 

at a basic level, without conscious perception. There is a spinal network, which 

generates a detailed muscle-specific spatio-temporal pattern similar to what is 

observed during walking. However, this automatic level does not operates in isolation, 

the final muscle activation pattern is also influenced by sensory feedback from joint, 

muscle, and skin receptors (37). During ongoing movement fundamental mechanical 

variables of force, length, and velocity are monitored within muscles by Golgi tendon 

organs and by muscle spindle receptors, respectively. Thus, kinematics description of 

motor behaviour provides a foundation for integrating morphology and physiology with 

mechanics and function (28; 43-48). Moreover, force generated by a muscle depends 

on activation by nerve impulses as well as the length and velocity of the muscle. The 

functional meaning of recovery after peripheral nerve injuries implies the study of motor 

control since peripheral nerves enclose both sensory and motor information, which are 

important to produce controlled movement. From our results, we demonstrated that 
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joint angular displacement and joint velocity during locomotion movement might 

quantify functional recovery after peripheral nerve injury. Moreover, nociception was 

the first variable achieving signs of recovery. How could these quantities be related 

with neuromuscular function and have functional meaning and clinical implications? 

When we analyze joint kinematics data, it should be taken into consideration that these 

results are also related with neural and muscle function thus being relevant to perform 

a comprehensive description of movement of individual muscle action within the joint or 

the joints it crosses. Dynamics of muscle function is usually examined by indirect 

assessment of muscle length change based on kinematics (51) and muscle moment 

arms, or estimates of fascicle length change that must take into account in-series 

elastic stretch of a tendon and a simplification of the effects of muscle architecture. 

Knowledge of the more complex, but a realistic pattern of 3D movement is important for 

understanding its neuromuscular control, as well as the principles of musculoskeletal 

design (52) that are crucial to the production of movement. During dynamic conditions, 

combining kinematic data with kinetics and electromyography would be desirable to 

make a comprehensive understanding of movement patterns and its changes as well 

as the study of inefficient movement after injury. The study of the relationship between 

joint angular velocity and muscle moments would contribute to understand muscle 

contraction and work production. Results from the last study awake us for the 

relevance of mechanical load, fatigue and the influence of joint rotational velocity, 

which should be explored to understand performance and make available results 

translation for motor rehabilitation.  

 

Understanding functional results after peripheral nerve injury is complex, especially 

when both sensory and motor pathways are impaired. Moreover, some limitation of 

WRL and EPT should be considered and the interpretation of functional results should 

be made carefully. Motor reflex deficit was assessed by extensor postural test (EPT) 

that is characterized by the exertion of force on the ground, in a hand-controlled 

loading condition, quantified with a scale. The reduction in this force, representing 

reduced extensor muscle tone, was considered a deficit of motor function. Moreover, 

the muscles that has been considered for interpretation of the results was the ankle 

extensors i.e. gastrocnemius and soleus muscles. Also for sensory function, some 

authors considered that the influence of mecanoreceptors should be controlled for the 

interpretation of the results controlling the pressure exerted on the thermal platform. 

Although WRL reflex was originally named flexion-withdrawal reflex (42), it has since 

been shown to involve other muscles besides flexors (52). The WRL can vary because 
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it depends on which afferents are stimulated and signals transmitted over polysynaptic 

pathways. This means that the input signal can be modified along its path. The 

recovery of sensory function is undertaken by several afferent fibers and may not be 

explained by the outgrowth of regenerating axons from the sectioned proximal sciatic 

nerve stumps but also by collateral sprouts from intact fibers in the skin surrounding the 

denervated zone. In fact, the recovery of sensory nerve function might be started with 

the expansion of the territory of intact neighbouring fibers (28; 43-48). Regenerated 

sciatic nerve began to regain function between 3 (28; 43-48) to 7 (52) weeks after 

injury. The borderline between a sensory-motor response involving both sensory 

ascending and descending motor pathways and a pain-based withdrawal reflex-

response is not always possible. It cannot always be sure that all responses are based 

on proper temperature sensing. Reflex activity should be integrated in a dynamic 

model, assessed during movement, since it might comprise an important aspect on 

motor control with functional meaning for the position of the limb and movement. 

Mathematical modelling is a possible solution to simplify and understand the potential 

environmental effect with similar neural control and exclude neural feedback. Efforts 

will be made to improve the biomechanical modelling with musculoskeletal model and 

methodologies to understand the reflex mechanisms involved in the sensory and motor 

recovery of function.  

 

In summary, gait analysis is a promising method to assess functional recovery after 

hindlimb nerve injury. However, in order to provide accurate measures of functional 

recovery, gait analysis after hindlimb peripheral nerve injury should evolve from a 

simple ankle kinematics analysis to a full 3D biomechanical description of complete 

hindlimb motion, meaning analysis of hip, knee and ankle joints. Further refinements of 

gait analysis in the field of peripheral nerve research using the rat model should include 

the combined use of joint kinematics, ground reaction forces and electromyography 

data.  

 

Innervation regulates muscle mass and muscle phenotype (53) and peripheral nerve 

injury in the rat is a widely used model to investigate nerve regeneration and can also 

be employed as a model of muscle inactivity and muscle atrophy (54). Previous work of 

our research team has been devoted to enhance nerve regeneration after injury, 

including the use of biomaterials and cellular systems (26). By combining motor and 

sensory function tests, biomechanical analysis of the rat gait and nerve morphology 

assessment by unbiased stereological methods, we could demonstrate that animals 
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almost fully recover from sciatic nerve crush in 12 weeks (8). However, nerve 

morphology remains significantly different in control and injured animals as well as 

ankle joint motion during walk (8). Muscle function was not assessed in our previous 

work. Aside incomplete nerve regeneration, changes in the muscles may contribute to 

functional deficit after nerve injury (54-56). 

Denervation induces muscle atrophy and, 25 months post denervation, muscle fibres 

crossectional area of the EDL muscle diminish to only 2.5% of control animals although 

their fascicular organization is maintained (57). The effect of denervation on muscle 

atrophy is both activity-dependent and activity-independent since the degree of 

hindlimb muscle atrophy after spinal isolation (activity-independent nerve influence) is 

less when compared to the atrophy caused by removal of all nerve influences by 

transecting the sciatic nerve (53). Two basic mechanisms are responsible for 

denervation-induced muscle atrophy. First, there is augmented activity of the ubiquitin-

proteasome pathway and proteolysis (58). Second, there is cell death and myonuclei 

apoptosis conjugated with decreased capacity of satellite cell-dependent reparative 

myogenesis (54; 57). Together with atrophy, denervated/reinnervated muscles undergo 

phenotypical changes and conversion between muscle fibre types (55). 

The relative increase in type I or type II muscle fibres following denervation seems to 

depend on the type of muscle fibres predominant in the muscle, with type II muscle 

fibres (fast fibres) increasing in proportion in soleus (slow muscle) and type I muscle 

fibre number increasing in gastrocnemius and tibialis anterior muscles (54). Likewise, 

the degree of muscle fibre atrophy in short-term denervation (4 weeks) has been 

noticed to be greater in the muscle fibre type that is more abundant in the affected 

muscles (59). However, it must be stressed that for many purposes there is a lack of 

detailed morphological description of denervated/reinnervated muscles since in most 

cases the morphoquantitative methods employed lack accuracy and completeness. 

Muscle architectural changes, and also likely remodeling of the enveloping connective 

tissue (60) might contribute to altered function in denervated/reinnervated muscles. 

Ideally, muscle contractile properties are evaluated in minimally dissected muscle-

nerve preparations in which muscle contractions are elicited by electrical stimulation of 

the nerve (61). Using such approach, fundamental properties of hindlimb muscles of 

the rat, like isometric peak force, range of active force, slack length, and passive 

length-force curve can be obtained. All these parameters are potentially affected by 

changes in muscle morphology secondary to denervation/reinnervation (60). Unlike the 

classical view, skeletal muscles are not isolated units and their mechanical properties 

are dependent on the context, meaning the mechanical load in surrounding muscles 
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and connective tissue (62). The transmission of force out from the muscle fibres to the 

skeleton follows both myotendinous and myofascial links (63). The latter involves load 

being transmitted to synergistic and antagonistic muscles (60) and occurs through the 

muscular and non-muscular connective tissues (e.g. neurovascular tracts, i.e. the 

collagen fiber reinforced tissues surrounding nerves and blood vessels). Surgical 

reconstruction of the peripheral nerves affects the mechanical properties of the 

neurovascular tract supplying leg muscles in unknown ways as well as the architecture 

of denervated muscles. In addition, altered properties of supportive connective tissue 

may affect myofascial force transmission and overall function (60). In situ testing of 

muscle function, keeping the connective tissue that envelops the muscle or muscle 

groups undamaged, is a unique method to evaluate possible changes in myofascial 

force transmission (62), and by measuring the force produced at the proximal and 

distal ends of the EDL an indication of myofascial force transmission is obtained (64). 

In recent years, great emphasis has been placed on kinematic analysis of the rat 

locomotion [(19). Although gait analysis is an elegant and meaningful way to assess 

functionality, it is limited in evaluating physiological and mechanical properties of the 

affected muscles. The potential for biomechanical gait analysis to assess hindlimb 

muscle function requires precise motion capture system combined with ground reaction 

force data (65) and a geometrical model of the rat hindlimb musculoskeletal system 

(66). 

 

The development of biological and material therapeutic strategies to enhance 

functional recovery is the major interest of several research areas such as Biology, 

Engineering, and Medicine. The assessment of functional recovery is a complex 

question that has many different facts to be addressed in detail. A common feature of 

these problems is that they address relationships between morphological, physiological 

and behavioural aspects of information processing in nervous system (“structure-

function” relationships). Movement Sciences should be considered for the 

interdisciplinary approaches across established neuroscience disciplines. Moreover, 

functional recovery after peripheral nerve injury assessed with dynamical model of 

locomotion might represent an integrative approach to have deep knowledge about 

neural activity, mechanical and structural relationship. 
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