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Expression and characterization of calreticulin gene isolated from 

Rhipicephalus (Boophilus) annulatus after Babesia bigemina 

infection. 

 

Abstract 
 

Ticks are obligate parasites in a large variety of hosts and are considered to be, after 

mosquitoes, the second worldwide vector of human and animal diseases.  

Bovine babesiosis causes substantial economic losses due to animal mortality, abortions and 

anaemia, among other effects. Calreticulin protein that has been identified in several species 

including ticks and previous experiments showed that calreticulin gene was up-regulated in R. 

annulatus ticks infected with B. bigemina and that its knockdown by RNAi technique leads to 

a reduction of both pathogen transmission and ticks weight. 

This Master thesis was developed within a project on “Differential expression and functional 

characterization of tick (Rhipicephalus annulatus) genes in response to pathogen infection 

(Babesia bigemina)”, financed by the Science and Technology Foundation (FCT), with the 

project number of PTDC/CVT/112050/2009. 

The aim of this study was the isolation of calreticulin gene, purification of calreticulin protein 

and its further use to produce antibodies for the purpose of immunolocalization studies and 

vaccination tests. In this Master thesis, calreticulin gene was amplified by PCR technique, 

sequenced and compared with calreticulin from the R. annulatus sequence, showing 98% 

identity. Afterwards, an Escherichia coli recombinant system was used in order to produce a 

calreticulin protein. Finally, recombinant proteins were purified using IMAC technique, due 

to the affinity of expressed calreticulin protein histidine tail to nickel ions. After specific 

elution and a final sample concentration, a unique protein was achieved in the purified 

sample, corresponding to recombinant calreticulin. 

The results of this study were optimistic and represent one more step to improve ticks control, 

as we showed in this study that CRT can be produced and purified without contaminants, 

though further vaccination and immunolocalization studies will be the key to understand CRT 

future use. 

 

Keywords: Babesia bigemina/ Rhipicephalus (Boophilus) annulatus/ Calreticulin/ Escherichia 

coli/ Immobilized metal ion affinity chromatography. 
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Expressão e caracterização do gene calreticulina isolado de 

Rhipicephalus (Boophilus) annulatus após infecção com Babesia 

bigemina. 

Resumo 
 

As carraças são parasitas obrigatórios de uma grande variedade de hospedeiros, sendo 

consideradas, depois dos mosquitos, os mais importantes vectores de doenças em humanos e 

animais. A babesiose bovina conduz a elevados prejuízos económicos, devido ao aumento da 

mortalidade animal, abortos e anemia, entre outros. A calreticulina é uma proteína já 

identificada em várias espécies, incluindo carraças e estudos anteriores demonstraram que o 

gene calreticulina estava sobreexpresso em carraças R. annulatus infectadas com B. bigemina 

e, após o seu silenciamento através da técnica de RNAi, ocorria uma redução tanto na 

transmissão do agente patogénico, como no peso das carraças. 

Esta tese de Mestrado foi desenvolvida em paralelo com o projecto “Expressão diferencial e 

caracterização de genes de carraça (Rhipicephalus annulatus) em resposta à infecção por 

agente patogénico (Babesia bigemina)”, financiado pela Fundação para a Ciência e 

Tecnologia, sendo o número do projecto PTDC/CVT/112050/2009. 

A finalidade deste trabalho consistiu no isolamento do gene calreticulina e purificação da 

correspondente proteína, para posteriormente ser usada na produção de anticorpos destinados 

a estudos de imunolocalização e de vacinação. Nesta tese de mestrado, amplificou-se o gene 

da calreticulina pela técnica de PCR, e sequenciou-se esse gene e comparou-se com a 

sequência da calreticulina da carraça R. annulatus, obtendo-se uma identidade de 98%. 

Posteriormente, o gene foi expresso em Escherichia coli de modo a produzir-se calreticulina. 

Finalmente, as proteínas recombinantes foram purificadas através do método IMAC, dado a 

calreticulina expressa ter uma cauda de histina com afinidade para iões níquel. Após a eluição 

específica e a concentração das amostras finais, verificou-se que uma única proteína, 

correspondente à calreticulina recombinante, se encontrava presente na amostra purificada. 

Os resultados deste estudo foram positivos e representam mais um passo para melhorar o 

controlo das carraças, uma vez que este estudo demonstrou que a CRT pode ser produzida e 

purificada sem contaminantes, apesar de estudos posteriores de vacinação e imunolocalização 

serão essenciais para perceber qual o futuro da CRT. 

 

Palavras-chave: Babesia bigemina/ Rhipicephalus (Boophilus) annulatus/ Calreticulina/ 

Escherichia coli/ Cromatografia de afinidade por iões metálicos imobilizados.
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CChhaapptteerr  11..  PPrreeaammbbllee  

 

This Master thesis was carried out in the Center for Malaria and other Tropical Diseases 

(CMDT), Institute of Hygiene and Tropical Medicine (IHMT) of New University of Lisbon 

(UNL), from September 2011 to February 2012. The main objectives of this work plan were 

the isolation of calreticulin (CRT) gene and the production and purification of the CRT 

protein in a recombinant system; this purified protein will be further used to generate 

antibodies to be applied in immunolocalization studies and in vaccination trials. 

Among several possible themes, it was decided to study this parasite, because Babesiosis is 

probably one of the most relevant and expensive cattle affecting diseases in Portugal and, it 

may also become a public health problem, further enhancing the need to control this disease. 

It is already well known that the use of chemoprophylaxis to fight babesiosis is difficult and 

increases tick-resistance, the development of new vaccines being urgently needed. 

This Master project was developed within a project on “Differential expression and functional 

characterization of tick (Rhipicephalus annulatus) genes in response to pathogen infection 

(Babesia bigemina)”, financed by the portuguese Science and Technology Foundation (FCT) 

and developed in IHMT in collaboration with other institutions, namely the Institute for 

Cinegetic Resources Research of Castilla-La Mancha University (IREC-UCLM-JCCM) in 

Spain and the Kimron Veterinary Institute (KVI) in Israel. The aim of this project is the 

functional characterization of the R. annulatus genes differentially expressed after pathogen 

infection, thus constituting candidate protective antigens for the development of vaccines to 

control ticks infestations and the transmission of tick-borne pathogens. During this project, 

genes differentially expressed in a R. annulatus infected with B. bigemina, but not in non-

infected population, were selected by suppression-subtractive hybridization library. A total of 

96 contigs were obtained and 16 candidates with putative functions in tick-pathogen 

interactions were further selected for expression validation by real-time PCR, CRT being one 

of the differentially expressed genes in B. bigemina infected ticks. Gene silencing of selected 

genes (including CRT), using RNA interference (RNAi) technique was performed and results 

revealed that CRT knockdown induced a lower B. bigemina infection levels and reduced ticks 

weight, when compared to controls, suggesting that CRT could contribute to the development 

of novel vaccines designed to reduce ticks infestations and prevent pathogens infection in 
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ticks and, consequently, in vertebrate hosts. So, based on these results, CRT was chosen for 

gene isolation and recombinant protein production, being the subject of this Master project. 
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CChhaapptteerr  22..  LLiitteerraattuurree  RReevviieeww  

 

2.1. Ticks 

2.1.1. Introduction 

 

Throughout history, ticks have been condemned for their activity as pathogen vectors. Dating 

back to 16
th
 Century B.C., a reference to a possible 'tick fever' was found on a papyrus scroll 

(Krantz, 1978) and even in Anazasi culture (400-1300 A.D.) it was described ticks presence 

(Mcllwain, 1984). 

Ticks are obligate ectoparasites with a worldwide distribution and a major importance in 

animal and human health, only matched by mosquitoes as vectors of disease (Heyman et al., 

2010). Over the past two decades, ticks have become a great problem in animal production 

(Randolph, 2004; Pattnaik, 2006) due to their direct and indirect damage capacity and 

particularly their vector ability to transmit important diseases (Graf et al., 2004). Ticks 

parasitize terrestrial vertebrates, including amphibians, reptiles, birds and mammals (Barker & 

Murrel, 2004) and their prevalence differs depending on the locals, as it happens, for instance, 

on Europe where species on its North or South areas are different (table 1). Theobald Smith 

and Frederíck Kilbourne first demonstrated (1889 - 1893) that ticks were responsible for 

spreading diseases from their experiments on transmission by Rhipicephalus (Boophilus) 

annulatus of B. bigemina in cattle (Assadian & Stanek, 2002). 

Ticks transmit pathogens such as Borrelia burgdorferi (agent of Lyme disease), Anaplasma 

spp., Babesia spp. (agent of tick fever), Coxiella burnetti (agent of Q fever), Francisella spp., 

Rickettsia spp. (Peter, Van den Bosseche, Penzhom & Sharp, 2005), Theileria spp., Ehrlichia 

spp. (Dumler et al., 2001; de la Fuente, Estrada-Pena, Venzal, Kocan & Sonenshine, 2008) 

and viruses such as tickborne encephalitis virus (TBE) (Peter et al., 2005), conveying some of 

the most important diseases transmitted by ticks. 
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2.1.2. Characterization, identification and morphology 

 

Ticks belong to phylum Arthropoda, subphylum Chelicerata, class Arachnida, subclass Acari, 

superorder Parasitiformes, order Ixodida and superfamily Ixodoidea. There are three families: 

Argasidae or soft ticks with 185 species, Ixodidae or hard ticks with 713 species and 

Nuttalliellidae with only one species (Barker & Murrell, 2004). The Ixodidae family has a 

chitin cover that extends throughout all dorsal surface of the male and over a small area 

behind the head in case of larvae, nymphs and female ticks. The mouth pieces are anterior, 

there are a series of wrinkles in the cover and body, genital orifice is in ventral medial line, 

anus is posterior and adults have spiracles behind their fourth legs pair. In the case of 

Argasidae family, the difference lies in the fact that these ticks do not have a chitin cover 

(Urquhart, Armour, Duncan, Dunn & Jennings, 1996). As mentioned above, Nuttalliellidae 

comprises one single species, Nuttalliella namaqua, found in Southern Africa from Tanzania 

to Namibia (Aragão, 1936) and it is considered the most basal lineage of ticks (Klompen, 

Lekveishvili & Black, 2007; Klompen, 2010). 

 

Table 1 Prevalent ticks species in Europe 

North Europe South Europe 

- Dermacentor reticulatus - Rhipicephalus annulatus 

- Dermacentor marginatus - Dermacentor marginatus 

-Haemaphysalis concinna - Haemaphysalis leachi 

- Hyalinella punctata - Haemaphysalis parva 

- Ixodes canisuga - H. punctata 

- Ixodes hexagonus - Hyalomma anatolicum anatolicum 

 - Hyalomma marginatum marginatum 

- I. canisuga 

- I. hexagonus 

- I. ricinus 

- Rhipicephalus bursa 
- Rhipicephalus sanguineus 

- Rhipicephalus turanicus 

Adapted from Heyman et al. (2010). 

 

2.1.3. Life cycle 

 

The life cycle of a tick can be classified into 4 stages. Ticks begin as eggs (stage 1) that hatch 

into larvae (stage 2). Larvae live and feed on animal hosts before detaching and molting 

(shedding) anywhere. The larvae molt to nymph (stage 3), which feed on animals, engorge, 

detach and molt. Once nymph molts, it becomes an adult tick (male or female). To distinguish 

larvae from nymphs and adults, the first have 6 legs and adults/nymphs has 8 legs (Kohls, 

http://en.wikipedia.org/wiki/Africa
http://en.wikipedia.org/wiki/Tanzania
http://en.wikipedia.org/wiki/Basal_clade
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Sonenshine & Clifford, 1965). Adults climb up grass and plants to hold their prey and when a 

warm-blooded animal walks on the pasture, tick can crawl onto them and begin feeding. Ticks 

insert their mouths, attach to their prey and engorge themselves with a blood meal (stage 4). 

During feeding, ticks saliva can get into the host body and blood stream. 

Usually Ixodes adult ticks take 4 to 10 days to get full engorgement and feed themselves by 

forcing their hypostome through the host skin and sucking blood and fluids that are drained 

from the resulting wound (Sonenshine, 1991). Ticks from Ixodidae family may have between 

one to three vertebral hosts. The coupling occurs in the host, where the adult female tick feeds 

itself for several days; then it falls into the ground, where the oviposition of millions of eggs 

occurs, culminating with tick’s death. The male ticks can couple many times without dying, 

feeding themselves intermitting. In the Argasidae family, females feed themselves frequently, 

coupling happens outside the host and oviposition occurs more than once in ticks life 

(Urquhart et al., 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 1 One host ticks life cycle. 
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2.1.4. Tick control 

2.1.4.1. Introduction 

 

Ticks control is essential to diminish tick-borne diseases prevalence and, therefore, reduce 

ticks impact on livestock productivity. Nowadays, ticks control is mainly based in the 

application of acaricides, despite their disadvantages and limitations, although other control 

methods as vaccination or biocontrol agents are available (Willadsen, 2006). Probably, 

vaccination will be one of the most important methods for ticks control and its transmited 

pathogens, because several different vaccines have already been used against B. bovis and B. 

bigemina in Australia (Bock & de Vos, 2001) or against Theileria annulata in Israel (Shkap & 

Pipano, 2000) and China (Gu et al., 1997; Shirong, 1997) with good results. 

 

2.1.4.2. Chemoprophylaxis 

 

There are many acaricides that can be used against ticks: pyrethroids as flumethrin and 

deltamethrin; organochlorines as dichlorodiphenyltrichloroethane (DDT); organophosphates 

as diazinon and coumaphos; carbamates as carbaril; formamidines as amitraz; cicloamidines 

as clenpirin and macrocyclic lactones (avermectins and milbemycins), among others (Botana, 

Landoni & Martín-Jiménez, 2002). Synthetic flumethrin in pour-on protects cattle from ticks 

for 2 weeks and, in case of deltamethrin, for 3 weeks; this approach, in the case of babesiosis 

control, led to a significant decay in clinical disease (Zintl, Mulcahy, Skerrett, Taylor & Gray, 

2003). The application of acaricides has some drawbacks: the appearance of residues in milk 

and meat products, the environmental contamination and, most important nowadays, the 

development of ticks’ resistance against acaricides (Botana et al., 2002). This resistance is 

mainly due to mutations in genes encoding detoxificating enzymes, as esterases, glutathione-

S-transferases and monooxidases and due to genetic drift (Rosario-Cruz et al., 2009). 

Resistance to compounds such as organophosphorous, pyrethroids and amitraz has been 

described for R. microplus (Ortiz et al., 1995; Soberanes, Santamaría, Fragoso & García, 

2002). Pesticides rotation is used in crop agriculture to minimize resistance, but its application 

in ticks control is not widely used yet. The association of acaricides with vaccines acts in a 

synergetic manner, because, in the case of R. microplus, efficacy of macrocyclic lactone 

acaricides is deeply enhanced in cattle vaccinated against those ticks (Kemp, McKenna, 

Thullner & Willadsen, 1999). 
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2.1.4.3. Biocontrol 

 

Currently, an appeal is being made to biocontrol and to the use of more “environmental 

friendly” acaricide products. Like other parasites, ticks carry some microorganisms in their 

bodies, which, along with ticks, are essential for the survival of each other (endosymbiosis). 

Since endosymbionts are essential for ticks’ survival, elimination of those microorganisms 

would be deleterious for the continued existence, growth and development of ticks. Those 

endosymbionts could be either destroyed by a chemical approach or used to animals’ 

immunization, in order to interfere in ticks’ nutrition (Noda, Munderloh & Kuffi, 1997; 

Benson, Grawronski, Eveleigh & Benson, 2004). The use of other organisms pathogenic to 

ticks, like fungi of genera Beauveria and Metarhizium (Frazzon, Vaz Junior, Masuda, 

Scharank & Vainstein, 2000; Gindin, Samish, Zangi, Mishoutchenko & Glazer, 2002) or 

herbal acaricides (Khudrathulla & Jagannath, 2000; Lundh, Wiktelius & Chirico, 2005) are an 

alternative and important possibility of achieve the control of ticks. 

 

2.1.4.4. Genetic resistance 

 

The genetic resistance to ticks and tick-borne diseases is complex, but, facing other control 

methods and their problems, breeds resistance has become an important parameter in some 

regions. 

Bos indicus cattle is more resistant to R. microplus ticks and babesiosis than Bos taurus, this 

acquire resistance being heritable, though those animals remain susceptible to A. marginale 

(Bock et al., 1997, 1999). This additional resistance is possibly due to the fact that zebuine 

cattle breeds have more dermal mast cells than taurine breeds, as F2 crossbreed cattle has a 

higher developed resistance against ticks correlated with an increased number of mast cells in 

dermis (Engracia Filho, Bechara & Teodoro, 2006). 

 

2.1.4.5. Vaccines 

2.1.4.5.1. Introduction 

 

Major alternatives to conventional acaricide treatments have been developed in recent years 

and vaccines are among the most important developments. It is now a decade since the first 

commercial vaccine against R. microplus based on the recombinant antigen Bm86 was 

released (Willadsen, Bird, Cobon & Hungerford, 1995; de la Fuente et al., 1999). 

In the market there are two vaccines based on recombinant R. microplus Bm86 gut antigen: 
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Gavac™ vaccine (Heber Biotec S.A., Havana, Cuba) and TickGARD (Hoechst Animal 

Health, Australia), which confirming the advantages of tick control by this method, because it 

is cost-effective, it reduces environmental contamination, it prevents acaricide-resistant ticks 

selection and it can reduce pathogens transmission, by decreasing ticks number and/or 

changing their vector capacity. This control scheme also has another advantage, as vaccines 

can protect the animal-host against both pathogens and vector, especially if antigens are 

conserved in both species (de la Fuente et al., 1998; de la Fuente & Kocan, 2003; de la 

Fuente, Kocan & Blouin, 2007). 

Nevertheless, there is a problem with vaccines formulation because many of tick-protective 

antigens studied for propose of a future application are cytoplasmic and highly conserved, 

which can favour host tolerance to them and a total inefficacy of vaccine; yet this is one of the 

most promisor methods to fight these ectoparasites (Almazán et al., 2010). 

There are two different kinds of antigens, the exposed and the concealed antigens (Willadsen, 

1980). The first type is the most used in vaccines production, even though vaccines with 

concealed antigens may inhibit other parasites development, such as Babesia spp., by altering 

gut homeostasis and preventing pathogen transmission (Rachinsky, Guerrero & Scoles, 2007). 

Another kind of vaccines are the transmission blocking vaccines (TBV), which are supposed 

to block pathogen development in arthropod vectors through targeting pathogen or arthropod 

molecules as transmission blocking targets (Carter, 2001). 

 

2.1.4.5.2. Recombinant vaccines 

 

These vaccines use recombinant proteins as antigens to immunize animals and have several 

advantages, such as prevention or reduction of pathogens transmission (de la Fuente et al., 

1998), environmental safety, low cost production (Odongo et al., 2007), prevention of drug-

resistant ticks selection and inclusion of multiple antigens that could target several tick 

species (de la Fuente & Kocan, 2006), among others. 

Canales, Almazán, Naranjo, Jongejan & de la Fuente (2009) have cloned ortholog genes 

(Ba86 and Bm86 genes) from R. annulatus and R. microplus, respectively, which were used 

in vaccine trials later on. Vaccination of cattle with Ba86 reduced, respectively for R. 

annulatus and R. microplus, ticks infestations (71% and 40%), ticks weight (8% and 15%), 

oviposition (22% and 5%) and eggs fertility (25% and 50%). For R. decoloratus, Odongo et 

al. (2007), using a Bm86 based-vaccine, found a reduction of 46% on engorged adult female 

ticks number, 56% on ticks weight and 61% on eggs weight after cattle immunization and de 
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Vos, Zeinstra, Taoufik, Willadsen & Jongejan (2001) described a reduction of 70% in R. 

decoloratus reproductive capacity after feeding on vaccinated calves and 50% in engorged H. 

anatolicum anatolicum nymphs total weight. Despite these results, vaccine had no action 

against A. variegatum and R. appendiculatus nymphs. Pipano et al. (2003) tested the efficacy 

of a Bm86 vaccine in protection against ticks and pathogens (B. bovis and B. bigemina) 

transmitted by those ectoparasites. The results showed that immunized cattle, when 

challenged with B. bovis-infected ticks, continued to become infected, but in the case of        

B. bigemina, Bm86-immunized animals remained protected against infection, probably due to 

the fact that larvae didn’t molt to nymph. Still related to the Bm86 gene, Bastos, Ueti, 

Knowles & Scoles (2010) studied the effect of Bm86 gene silencing on fitness of R. 

microplus ticks fed in B. bovis infected cattle, showing that this procedure decreased survival 

engorged ticks rate and eggs weight. A gene from R. microplus (strain A) called Bm95, 

homologue to Bm86, was used to immunize cattle, after it has been discovered that some R. 

microplus ticks (strain A) had a moderate low susceptibly to Bm86 vaccine, possibly due to a 

genetic variation in ticks (Freeman, Davey, Kappmeyer, Kammlah & Olafson, 2010). Bm95 

immunized cattle showed a higher protection efficacy to both susceptible and strain A than 

Bm86 vaccine (García-García et al., 2000). Other authors showed that Bm95 antigen based 

vaccine presents better responses than Bm86 vaccine to low susceptibility ticks populations 

(Jittapalapong et al., 2010). 

Immunization trials in cattle with recombinant subolesin, a conserved protein among 

vertebrates and insects, decreased R. microplus survival and reproduction rates (Merino et al., 

2011), weight and oviposition (de la Fuente et al., 2011) and, moreover, protein knockdown 

led to degeneration of ticks parts as embryos, salivary glands and reproductive tissues 

(Merino et al., 2011). Further studies with this antigen showed that immunization of rats 

decreased vector capacity of I. scapularis nymphs for A. phagocytophilum (de la Fuente & 

Kocan, 2006).  

The recombinant antigen 64P from R. appendiculatus was found to be involved in ticks 

attachment and feeding and was used to immunize guinea pigs, reducing, respectively, 48% 

and 70% nymph and adult infestation rates; additionally, response of animals immunized with 

64P was similar to those observed during development of natural resistance in guinea pigs 

infested with R. appendiculatus, showing the typical local cutaneous inflammatory immune 

response (Trimnell, Hails & Nuttall, 2002). The recombinant protein from R. sanguineus and 

I. ricinus was again tested by Trimnell et al. (2002), respectively in guinea pigs and hamsters, 

demonstrating damage on ticks post-challenge. Other study indicated that there is an antigenic 

cross-reactivity between tick extracts of R. sanguineus, I. ricinus, A. variegatum and R. 
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microplus, showing the potential of this protein to develop a large-spectrum anti-tick vaccine 

(Havlíková et al., 2009). 

 

2.1.4.5.3. Antigens selection 

 

Molecular tools are important experimental components for the study of tick gene functions. 

RNAi technique allows silencing of gene expression, contributing to the characterization of 

gene function and its phenotypic effect (Fire et al., 1998). The first report related to the use of 

RNAi in ticks belongs to Aljamali, Sauer & Esseberg (2002) and quickly that technique has 

become universally adopted for gene-silencing in ticks (de la Fuente & Kocan, 2006). 

Kocan, Manzano-Roman & de la Fuente (2007) showed that subolesin knockdown in I. 

scapularis, D. variabilis and A. americanum also affected oviposition, eggs embryogenesis, 

larval hatching and fertility (reduction of 93% and 71% for D. variabilis and I. scapularis, 

respectively). Subolesin expression is activated when ticks are infected with A. marginale and 

B. bigemina, suggesting a connection between tick gene expression and pathogen-infection 

(Merino et al., 2011). Zivkovic et al. (2010) obtained the opposite result, showing that D. 

variabilis, D. andersoni, D. reticulatus, R. sanguineus, R. microplus and R. annulatus had 

equal or even lower mRNAs level than control groups. 

Almazán et al. (2010) studied the knockdown effect of several R. microplus genes, such as 

glutathione-S transferase (GST), ubiquitin (UBQ), selenoprotein W (SEL), elongation factor-

1 alpha (EF-1a) and subolesin, and found out that GST and SEL genes knockdown lead to a 

lower ticks attachment when compared to control group, but did not influence ticks mortality 

or oviposition, though the other three genes results showed an increase on R. microplus 

mortality and reduction of oviposition. 
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2.2. Babesia 

2.2.1. Introduction 

 

Babesia spp. was first discovered in the 19
th

 century in association to bovine hemoglobinuria 

(Babes, 1888). In 1893, Smith and Kilbourne recognized B. bigemina as the causative agent 

of Texas Cattle Fever (Smith & Kilbourne, 1893). 

All over the world, there are some 100 Babesia species or even more (Homer, Aguilar-Delfin, 

Telford 3
rd

, Krause & Persing, 2000), Rhipicephalus spp. being one of its main tick vector 

(Urquhart et al., 1996). Bovine babesiosis are generally caused by B. bovis, B. bigemina and 

B. divergens which are the most important Babesia species for cattle babesiosis; however B. 

major can also cause disease in cattle (Zintl et al., 2003) and in the case of human babesiosis, 

B. divergens and B. microti are the most dangerous species (Antunes, 2008). The different 

Babesia species infect a large variety of animals (Bock, Jackson, de Vos & Jorgensen, 2004; 

de Vos & Geysen, 2004) and in cattle they can induce animal mortality, abortions, reduction 

of milk/meat production, and, sometimes, neurological symptoms (Saegerman et al., 2003). 

 

2.2.2. Characterization and life cycle 

 

Babesia spp. belongs to phylum Apicomplexa, class Aconoidasida, family Babesiidae and 

genus Babesia. In blood smears stained by Giemsa method, Babesia parasites usually appear 

in pairs, with a pear-shape, an elongated or a cigar form with a red nucleus and a blue 

cytoplasm (figure 2). Concerning to its size, Babesia species can be divided in small and big 

Babesia, with 1.0-2.5 µm and 2.5-5.0 µm of length, respectively (Urquhart et al., 1996). 

These morphological categorizations are usually consistent with the phylogenetic 

characterization based on nuclear small subunit-ribossomal RNA gene (18S rDNA) 

sequences, showing that small babesias are divided in two different phylogenetic clusters 

(Homer et al., 2000). 
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Taken from DPI- Queensland (EUA) http://www.dpi.qld.gov.au 

 

Figure 2 Giemsa staining of B. bigemina (A) and B. bovis (B) infected red blood cells. 

 

The life cycles of all Babesia parasites are very similar and all species are transmitted by 

infected ticks’ bites. The main difference among these life cycles is the presence of 

transovarial transmission in some species and not in others (Hunfeld, Hildebrandt & Gray, 

2008). The Babesia spp. life cycle includes three phases, merogony, gamogony and 

sporogony, and two hosts, one vertebrate (mammal) and one invertebrate (tick), being R. 

annulatus and R. microplus the main vectors for both B. bovis and B. bigemina (Walker et al., 

2003; Taylor, Coop & Wall, 2007). The parasite come into vertebrate hosts blood stream 

through infected ticks saliva, allowing sporozoites to invade erythrocytes. In these cells, 

parasite asexually divides itself and becomes a merozoite, with a typical pear-shape. This 

multiplication leads to erythrocytes lysis, with merozoites release, which infects other red 

blood cells, becoming trophozoites. These new-forms can divide themselves producing a new 

pair of merozoites, perpetuating merogony phase (1). Some merozoites turn to gametocytes 

and, when tick feeds in a vertebrate host, it becomes infected. In ticks’ midgut, gametocytes 

suffer a sexual phase involving the formation of macro and micro gametes, culminating in 

zygote production (gamogony). The zygote invades midgut digestive cells and then 

transforms into kinetes, which can access the hemolyimph in the haemocoel of tick (2). After 

this phase, organisms can be transferred either transtadial (between stages) or transovariac 

(from female to offspring via the egg). Once in larvae, kinetes migrate to salivary glands cells, 

where they become sporozoites and multiply themselves (sporogony (3)). When ticks feed 

again, they transmit the sporozoites parasites to vertebrate host (Riek, 1966; Melhorn & 

Schein, 1984). 

A B 
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Adapted from Bock et al. (2004). 

 

Figure 3 The life cycle of Babesia bigemina in cattle and in the ixodid tick vector R. microplus. 

 

2.2.3. Symptoms of bovine babesiosis 

 

Most cases of Babesia infection are symptomatic. Depending on affected species, clinical 

signals of babesiosis are different, occasionally culminating to death in few days, as the 

globular volume may decrease to less than 20% (Urquhart et al., 1996; Melo, Passos, Facury-

Filho, Saturnino & Ribeiro, 2001). Some of the clinical symptoms in acute disease are similar 

to malaria and include high fever, hemolytic anaemia, lethargy, hemoglobinuria, icterus liver 

(figure 3-B), kidneys with congestion (figure 4-A), abortion, weight loss, splenomegaly and 

decreased milk/meat production (Bock et al., 2004). Cerebral babesiosis (figure 3-A), caused 

3 
1 

2 
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by B. bovis, is characterized by convulsions, hyperaesthesia and paralysis, due to 

sequestrations of parasites in the brains capillaries, resulting in low parasitaemia level (less 

than 1%) in circulating blood. B. bigemina infection usually leads to a less pathogenic disease, 

even though parasitaemia often exceeds 10% (Ristic, 1981; Bock et al., 2004). At necropsy, 

animal skin and mucous membranes are pale and icteric, bile is granular and dense (Urquhart 

et al., 1996), bladder is distended and there is hematuria (figure 4-B) (Howard, Rozza, Graça 

& Fighera, 2001). 

 

   

 

Taken from Howard et al. (2001). Bovine Babesiosis. 

http://www.vet.uga.edu/vpp/archives/NSEP/babesia/PORT/necropsy_findings.htm 
 

Figure 4 Cerebral form of babesiosis (A); icterus liver (B) 

 

     

 

 

Taken from Howard et al. (2001). Bovine Babesiosis. 

http://www.vet.uga.edu/vpp/archives/NSEP/babesia/PORT/necropsy_findings.htm 
 

Figure 5 Kidneys with edema and congestion (A); hematuria (“Red water”) (B) 

 

 

 

 

A B 

A B 
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2.2.4. Diagnosis 

 

Diagnosis of clinical cases of babesiosis is most frequently made by examination of blood 

smears stained with Giemsa or acridine orange. Blood films from B. bovis are prepared from 

capillary blood, as blood of general circulation may contain up to 20 times fewer parasites due 

to sequestration of infected erythrocytes in capillaries of brain and other organs (Bӧse, 

Jorgensen, Dalgliesh, Friedhoff & de Vos, 1995). In B. bigemina infections, parasitized cells 

are evenly distributed throughout blood circulation. These techniques are inexpensive and 

reasonably portable, though accuracy of diagnosis relies on training and skill of microscopist 

(Papadopoulos, Brossard & Perié, 1996). Low parasitaemias and the presence of different, but 

morphologically similar parasites (e.g. other Babesia spp. and also Theileria spp.) may 

adversely affect the proper classification of infections (Homer et al., 2000). 

Another test is the cultivation in vitro, which can be used to detect infection in animals with 

low parasitaemia and has the advantage of being very sensitive, yet a long period of time 

needed for parasites to grow (Thomford, Conrad, Boyce, Holman & Jessup, 1993). Indirect 

immunofluorescent antibody tests (IFATs) have been used as standard diagnosis test for 

babesiosis; nevertheless, sensibility, specificity and subjective interpretation are the major 

problems with this technique. IFATs and enzyme-linked immunosorbent assay (ELISA) can 

reveal animals that were in contact with parasites, but do not have an active infection. 

However, long-term carriers are frequently sera-negative and, moreover, serological tests are 

often cross-reactive among different piroplasm species (Burridge, Young, Stagg, Kanhai & 

Kimber, 1974; Papadopoulos et al., 1996). 

In cases whose diagnosis is difficult by means of blood smear or serology, or when detection 

of carrier animals with very low parasitaemias is required, direct recognition of parasites by 

polymerase chain reaction (PCR) based assays can be used. With the evolution of more 

sensitive PCR based techniques, several methods for the detection and differentiation of 

bovine babesiosis infections have been described, including nested PCR (Figueroa, Alvarez, 

Ramos, Vega & Buening, 1993), reverse line blot (RLB) hybridization (Gubbels et al., 1999), 

LAMP (Loop-Mediated Isothermal PCR) (Iseki et al., 2007) and real time PCR (Buling et al., 

2007). Currently, none of these methods is used globally, because some have not been 

validated to worldwide use, others require complicated post-PCR detection methods to further 

enhance sensitivity or differentiation, or require special equipment and also some may be 

prone to amplicon contamination issues (Martins, 2009). 
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2.2.5. Human babesiosis 

 

A risk factor for being infected with Babesia spp. sensu stricto is splenectomy (Telford 3
rd

 & 

Maguire, 2006). B. microti is recognized as a diverse species complex, parasitizing a variety 

of hosts, including rodents, insectivores and carnivores, but the majority of zoonotic strains 

utilize microtine rodents as reservoir hosts. The reservoir host for B. divergens sensu stricto, 

which is implicated in most cases of human babesiosis in Europe, is cattle and the vector for 

this parasite is I. ricinus (Duh, Petrovec & Avsic-Zupanc, 2001). In United States of America, 

white-footed mouse Peromyscus leucopus is the main reservoir host and I. scapularis the 

invertebrate vector, also known as the deer or black-legged tick. Symptoms and signs can 

appear one to nine weeks post infection and include hemolytic anaemia, fever, myalgia, 

headache, drenching sweats, malaise and chills (Hunfeld et al. 2008) or even disseminated 

intravascular coagulation and respiratory distress syndrome in fulminant cases (Homer et al, 

2000). Diagnose involves the same techniques used for animals, namely the presence of the 

parasite in blood smears (Healy & Ruebush, 1980), PCR (Brandt, Healy & Welch, 1977) and 

serologic studies (Krause et al., 1994). In human babesiosis treatment, there are different 

approaches, such as the clindamycin plus quinine (Wittner et al., 1982) or the atovaquone plus 

azithromycin (Krause et al., 2000). Recently, randomized trials in humans infected with B. 

microti showed that atovaquone plus azithromycin therapy achieved the same results of 

standard quinine/clindamycin combination, but causing fewer side effects (15% versus 72%) 

(Hunfeld et al., 2008). 

 

2.2.6. Babesiosis control 

2.2.6.1. Introduction 

 

Babesiosis control is essential, due to its huge implications in livestock production and its 

relations to public health issues (Bock et al., 2004), infecting a large variety of animals and 

humans. Nowadays, with the introduction of exotic breeds, babesiosis control is even more 

important, because those breeds usually do not have natural immunity against Babesia spp. 

(Graf et al., 2004). Several approaches, as ticks-vectors control (see chapter 2.1.4.), 

chemoprophylaxis and vaccination can be applied. 
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2.2.6.2. Chemoprophylaxis  

 

One way to control this parasite is to control its vector, using acaricides, vaccines against 

ticks, among others (see chapter 2.1.4.). There are some drugs used against these parasites, as 

quinuronium sulfate, amicarbilide, diminazene and imidocarb dipropionate. The anti-babesia 

drugs, when used inappropriately, result in the drug-resistant Babesia strains emergence (Zintl 

et al., 2003). 

 

2.2.6.3. Genetic resistance  

 

Babesiosis control can also be achieved by introducing hosts genetically resistant to 

hemoparasite infections. The nonspecific immune response against Babesia infection is 

attributed to age or breed related factors since, in general, young cattle is less susceptible to 

Babesia spp. infections than adult cattle, possibly due to the effect of passive immunity 

conferred by colostrum antibodies (Rogers et al., 2005). Bos indicus shows more resistance 

than Bos taurus and animals resulting from crosses between breeds are more resistant to 

Babesia spp. infection and to tick infestation (Bock et al., 1997). 

 

2.2.6.4. Vaccines 

 

There are many types of vaccines against Babesia spp. parasites, including attenuated (calf-

derived and culture-derived), recombinant and subunit vaccines. 

Attenuated vaccines can be produced by parasites multiple passages in vivo in splenectomized 

calves, the calf-derived vaccines (Bock et al., 2004; De Waal & Combrink, 2006), or by 

parasites growth in vitro, the culture-derived vaccines (Jorgensen, de Vos & Dalgliesh, 1989; 

Echaide, de Echaide & Guglielmone, 1993; Shkap & Pipano, 2000). 

Calf-derived vaccines have several associated concerns, such as the possible spread of silent 

pathogens, difficulties in standardizing vaccine dose, risk of virulence reversion, maintenance 

of carrier animals, which might serve as reservoirs for pathogens transmission, quality of 

vaccine production (Shkap et al., 2007), short shelf-life (Bock et al., 2004), vaccines 

maintenance and transportation (Shkap et al., 2007), limitations of use in animals older than 

8-9 months, adverse effects (De Waal & Combrink, 2006) and potential risk of parasite 

transmission, since vaccinated cattle remains persistently infected for several months (Pipano, 

1995). 
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Culture-derived vaccines do not have entail the risk of pathogens spreading, however, for 

Babesia spp. culture, the main disadvantages remain in the need to fresh bovine erythrocytes 

and serum from specific donors, which have to be maintained in highly strict conditions and 

in the fact that vaccines can lose their immunogenicity and virulence in a long-term 

cultivation (de Vos, 1978). Despite some attenuated vaccines disadvantages, live attenuated 

strains of B. bovis and B. bigemina have been used for many years, because they offer a long-

lasting protection (Benavides & Sacco, 2007). 

There are several studies reporting the use of these attenuated vaccines. An in vitro derived 

attenuated live vaccine (B. bovis-B. bigemina) was used in endemic areas to protect cattle 

against these parasites, conferring an effective level of protection of 93%, showing a very 

favorable way to protect animals against this disease (Ojeda et al., 2010). 

Fish, Leiboyich, Krigel, McElwains & Shkap (2008) studied the efficacy of calf-derived B. 

bovis vaccine. Immunized cattle developed a good immunity, though very susceptible animals 

had fever, low parasitaemia and a decrease of hematocrit. There was a 65.3% inhibition of B. 

bovis dissemination and a solid protection against babesiosis was acquired in vaccinated 

animals. 

Shkap et al. (2007) studied two different vaccines against B. bigemina, a culture-derived and a 

calf-derived. It was shown in that study that, attenuated vaccines, whether produced from 

splenectomized calf or from cultures, offered a total protection against clinical babesiosis 

upon challenge with virulent homologous parasites. 

Cysteine peptidases are molecules with a huge importance to many parasites, including 

Babesia spp., as specific inhibitors of these enzymes can stop B. bovis merozoites growth in 

vitro (Okubo, Yokoyama, Govind, Alhassan & Igarashi, 2007). Mesplet et al. (2010) showed 

that gene coding to B. bovis cysteine peptidases - bovipaine-1 and bovipaine-2 - were 

transcripted only into the infected erythrocytes and that animals vaccinated with bovipaine-2 

protein strongly reacted with the formation of antibodies. Furthermore, the anti-bovipaine-2 

antibodies cross-reacted with erythrocytes infected with B. bigemina. Martins et al. (2010, 

2011) also showed that cysteine proteases from B. bigemina are potential vaccine candidates. 

Silva et al. (2010) analyzed a recombinant microneme protein from B. bovis (Bbo-MIC1), 

secreted on parasite surface, demonstrating that antibodies against Bbo-MIC1 inhibit 

erythrocyte invasion in B. bovis in vitro cultures and this protein was recognized by antibodies 

in serum of B. bovis infected cattle, showing the immunogenicity of Bbo-MIC1 and its use as 

potential vaccine. 

Carcy, Précigout, Schetters & Gorenflot (2006) recognized that recombinant merozoite 

surface antigens (MSA) were expressed in the merozoites and sporozoites and that antibodies 
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anti-MSA-1 and MSA-2c inhibit, in vitro, the invasion of erythrocytes by sporozoites, 

suggesting this may be used in vivo to block erythrocytes invasion. The same authors used a 

B. bigemina protein, gp 45, similar to MSA-1 of B. bovis, to immunize cattle, which became 

protected against the parasite. 

The apical membrane antigen 1 (AMA-1), has been evaluated as a possible subunit vaccine. 

Antibodies against B. bovis AMA-1 (BbAMA-1) reduced the invasion efficiency in vitro; 

moreover, this molecule is highly similar to another AMA-1 from B. bigemina, indicating that 

this vaccine could, possibly, have a cross reactivity with other Babesia species (Torina et al., 

2009). 
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2.3. Calreticulin 

2.3.1. Introduction 

 

CRT was first isolated by Ostwald and Maclennan in 1974 and further cloned by Fliegel, 

Burns, MacLennan, Reithmeier & Michalak in 1989 (Fliegel et al., 1989). 

CRT has been identified in several species, but there is no CRT genes identified in yeasts and 

prokaryotes, whose genomes were totally sequenced (Persson, Rosenquist & Sommarin, 

2002). CRT importance to cells is relevant, given that the absence of CRT gene is 

embryonically lethal (Mesaeli et al., 1999). Since its first detection, CRT has been identified 

in other cellular structures, as cytoplasm, cell membranes and extracellular matrix (Burns, 

Atkinson, Bleackley & Michalak, 1994); several functions have been attributed to CRT, such 

as acting as a chaperone to help other proteins to fold correctly (Nauseef, McCormick & 

Clark, 1995). This activity was demonstrated by immunoprecipitation experiments, which 

showed that CRT associates itself transiently to several cellular proteins immediately after 

their synthesis (Peterson, Ora, Van & Helenius, 1995). When a polypeptide is incorrectly 

folded, it bounds to one or more chaperones (including CRT) and is retained in endoplasmatic 

reticulum (ER), mechanism that prevents expression, aggregation and secretion of misfolded 

proteins (Nauseef et al., 1995). 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Burns%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22MacLennan%20DH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22MacLennan%20DH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Michalak%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Persson%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Persson%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sommarin%20M%22%5BAuthor%5D
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Adapted from Mendlovic & Conconi (2011). 

 
Figure 6 CRT action as a chaperone. 

 

Besides the essential functions that CRT performs in ER lumen, this multifaceted protein has 

also been implicated in many unexpected roles that occur at cells surface, cytosol, nucleus and 

extracellular matrix. Indeed, since discovery of CRT chaperone and calcium-regulating 

functions, scientists have learned that CRT has many other duties in the cell. This protein has 

been implicated in diverse cellular processes including signaling (Mitra & Schlaepfer, 2006), 

regulation of gene expression (Gardai et al., 2005), wound healing (Pallero, Elzie, Chen, 

Mosher & Murphy-Ullrich, 2008), removal of cancer cells (Tesniere et al., 2008) and 

autoimmunity (Eggleton & Llewellyn, 1999). 

 

2.3.2. Calreticulin structure 

 

CRT has two codifying genes, CRT-1 and CRT-2 (Persson et al., 2002), and is highly 

conservative with a 96% amino acid identity for CRT from human, rabbit, rat and mouse 

(Waser, Mesaeli, Spencer & Michalak, 1997). The CRT gene has nine exons and is localized 

in chromosomes 19 and 8, respectively for human and mouse genes. These sequences have 

more than 70% identity, with the exception of introns 3 and 6, showing a great gene 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pallero%20MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pallero%20MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chen%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mosher%20DF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Murphy-Ullrich%20JE%22%5BAuthor%5D
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evolutionary conservation (McCauliffe, Yang, Wilson, Sontheimer & Capra, 1992). CRT 

gene from ticks has two exons and one intron, the last one with a conserved position, but 

variable size and nucleotide sequence. In R. annulatus CRT gene, intron is localized between 

nucleotides 88 and 412 and has 1559 base pairs (bp) (Xu, Fang, Sun, Keirans & Durden, 

2005). 

CRT proteins have a molecular weight around 46 kDa (Fliegel et al., 1989), an N-terminal 

cleavable amino acid signal sequence and a KDEL ER retrieval signal in the C-terminal 

domain. These amino acids are responsible for CRT targeting and retaining in ER lumen 

(Michalak et al., 1999). The protein has three cysteine residues, all located in N-domain of the 

protein. Two of those cysteine residues form a disulphide bridge (Matsuoka et al., 1994), 

which probably is responsible for correct folding of CRT N-terminal region. Structural studies 

show that CRT has three domains (Bedard, Szabo, Michalak & Opas, 2005), as illustrated in 

figure 7: 

 

 The N-terminal domain (amino acid residues 1 to 180) is the most conserved domain, 

contains a binding site to monoglycosylated oligosaccharides (Schrag et al., 2001), 

several phosphorylation sites and is anticipated to have a folded globular structure 

with eight anti-parallel β-strands connected by protein loops (Michalak et al., 1999); 

 The P-domain (amino acid residues 181 to 290) forms an β-stranded hairpin 

configuration extended curved-arm structure rich in prolin, which binds to Ca
2+

 with 

high affinity and low capacity (Ellgaard et al., 2001) and interacts with ER chaperones 

(Michalak, Groenendyk, Szabo, Gold & Opas, 2009); 

 The C-terminal region or (C-domain) (amino acids residues 291-400) (Giraldo et al., 

2010), characterized by a helix form (Del Cid et al., 2010), mainly constituted by 

aspartic acid and glutamic acid amino acids (Michalak et al., 1999), shows low affinity 

to Ca
2+

, but a high capacity, important for Ca
2+

 storage in ER (Castãneda-Patlán, 

Razo-Paredes, Carrisoza-Gaytán, González-Mariscal & Robles-Flores, 2010). The 

structure of CRT differs at C-domain considering Ca
2+

 level, since this domain has a 

disordered structure with a low calcium concentration, but when this level rises, 

protein becomes more rigid and compact (Giraldo et al., 2010). 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fliegel%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Szabo%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Michalak%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Opas%20M%22%5BAuthor%5D
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Adapted from Mendlovic & Conconi (2011). 
 

Figure 7 Structure and functions of the CRT domains. 

 

2.3.3. Calreticulin in ticks and other parasites 

 

CRT is a protein that exists in ticks salivary glands and saliva; probably, this protein is 

essential to ticks feeding and pathogen transmission, through its anti-thrombotic and 

complement inhibition functions. All these facts reveal the possibility of CRT being used as 

an antigen in a vaccine against cattle ticks (Kaewhom, Stich, Needham & Jittapalapong, 

2008). 

Immunization assays with CRT showed its importance to immune reaction against ticks and, 

consequently, its relevance as a possible global anti-ticks vaccine component. Immunization 

of rabbits with CRT from A. americanum, followed by rabbits’ infestation with those ticks led 

to necrotic lesions in ticks’ local bite, demonstrating an immune reaction capable to 

interfering with ticks feeding (Jaworsky et al., 1995). 

Gao et al. (2008) used a recombinant CRT (rCRT) protein from H. qinghaiensis (rHqCRT) to 

immunize sheep and results showed a reduced ticks weight and oviposition and a higher 

mortality comparing to control group. 

There are various evidences of cross-reactivity between different anti-CRT antibodies, 

probably due to the fact that CRT is a highly conserved protein. Parizi et al. (2009) used rCRT 

from H. longicornis (rHlCRT) to immunize cattle and their sera reacted to both rHlCRT and 

rCRT from R. annulatus (rBmCRT). Besides, sera from cattle, whether immunized with 

rHlCRT or with rBmCRT, recognized native BmCRT. 
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Immunolocalization experiments using polyclonal antibodies anti-CRT from A. americanum 

and D. variabilis, revealed a specific protein from salivary glands homologous to CRT, which 

appears to be secreted during tick feeding (Jaworsky et al., 1995). 

Finally, as CRT is a conserved protein, its use in a vaccine could protect animals not only 

from ticks, but also from tick-borne diseases. Concerning this aspect, Rachinsky et al. (2007) 

associated CRT with R. microplus infection by B. bovis, when they tested proteins up and 

down-regulated in infected and uninfected ticks and discovered that, among up-regulated 

proteins, there was CRT. Antunes et al. (2012) studied differentially expressed genes in R. 

microplus and R. annulatus after infection by B. bigemina, showing that gene encoding CRT 

was overexpressed. Knockdown of CRT in R. microplus reduced 73% the pathogen 

transmission as well as ticks weight. 

As described previously with respect to ticks, there are several studies referring the use of 

CRT to protect animals from other parasites. Winter et al. (2005) used a N. americanus-CRT 

based vaccine to immunize mice, resulting in a significant reduction of worm number in lungs 

(43-49%) comparing with control group. In another study, hamsters were immunized with 

Taenia solium-CRT and, besides reduction of parasite numbers, worms were unable to mature 

in vaccinated animals (Mendlovic et al., 2004). 

Immunolocalization studies using Haemonchus contortus-CRT antibodies showed that this 

protein is localized in external openings, such as the buccal cavity, vaginal tipi of female and 

bursa of male worms (Suchitra & Joshi, 2005). CRT from Echinococcus granulosus (EgCRT) 

is expressed in external tegument and cellular region of hydatic cysts germinal layer, possibly 

with the intent to inhibit classical complement pathway or to lead to an antiangiogenic effect 

in cysts periphery (Cabezón, Cabrera, Paredes, Ferreira & Galanti, 2008). 

Debrabant, Lee, Pogue, Dwyer & Nakhasi (2002) evaluated the effect of Leishmania 

donovani-CRT P-domain overexpression in transfected parasites, which resulted in reduction 

of acid phosphatase-secretion and in a survival decrease in human macrophages, showing that 

changes in CRT expression may affect the “virulence” of the parasite. 
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Table 2 CRT functions in parasites that cause disease in humans and animals 

Parasite Disease CRT localization CRT function 

Entamoeba 

histolytica 

Amibiosis ER, cell surface, uropod Phagocytosis 

Trypanossoma 

cruzi 

Chagas disease ER, cell surface Lectin-like chaperone, interaction 

with C1q, recognized by iGg from 

patients 

L. donovani Visceral 

leishmaniosis 

Somatic and secreted forms Involved in secretion of acid 

phosphatases 

N. americanus Hookworm infection Somatic and secreted forms Allergen, induces basophil 

histamine release, interaction with 
C1q 

Schistosoma 

mansoni 

Schistosomiosis Somatic and secreted forms, 
penetration glands 

Regulation of Ca2+ dependent 
proteases involved in skin 

penetration and migration, T and B 

cell immunogen 

T. solium Taeniosis and 

neurocysticercosis 

Somatic and secreted forms, 

gametes and developing 

embryos 

Possible role in egg development 

Adapted from Mendlovic & Conconi (2011). 
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CChhaapptteerr  33..  MMaatteerriiaall  aanndd  MMeetthhooddss  

 

3.1. Rhipicephalus annulatus ticks 

 

Total RNA was extracted from R. annulatus female ticks as described in Antunes et al. 

(2012). Briefly, ticks were rinsed in distilled water and 75% (v/v) ethanol, dissected and the 

whole of the internal organs were placed in a 2 ml tube with 1 ml of Tri Reagent (Sigma-

Aldrich, St. Louis, Missouri, USA). Total RNA was used in the synthesis of approximately 1 

μg of cDNA using the iScript™ cDNA synthesis (Bio-Rad, Hercules, California, USA). 

 

3.2. Amplification of the calreticulin gene 

 

The CRT sequence was amplified by PCR technique. Primers were designed based on the 

CRT gene sequence of R. annulatus (accession number AY395253), ensuring full coding 

region coverage. The primers used were: forward 5’-CACC AT GCG GCT TCT CTG CAT 

TTT G -3’ and reverse  5’- CAG TTC TTC GTG CTT GTG GTC -3’. 

PCR was performed using Kit GoTaq® (Promega, Madison, Wisconsin, USA) under the 

following conditions: one amplification round in a final volume of 25 μl, including 1 μl of 

template cDNA and 1 μl of each primer (95ºC for 2 min, then 40 cycles: 30 s at 94ºC, 45 s at 

55ºC and 2 min at 72ºC; final extension 2 min at 72ºC). PCR assays were performed in MJ 

Research PTC-200 Thermo Cycler (GMI Biotech, Minnesota, USA). 

The positive PCR products were purified using the illustra
 
GFX

TM
 PCR DNA and Gel Band 

Purification Kit (GE Healthcare, Buckinghamshire, UK) according to manufacturer’s 

instructions. Purified samples were sequenced at Stab Vida (Almada, Portugal) and further 

analysed. 

 

3.3. Expression of recombinant calreticulin 

 

For rCRT expression in Escherichia coli system, Champion
TM

 pET101 directional TOPO® 

Expression Kit (Invitrogen Life Technologies, Carlsbad, California, USA) was used. This 



28 

expression kit uses a highly efficient 5-min cloning strategy to insert a blunt end PCR product 

into a vector with no requirement of post-PCR procedures or restriction enzymes (Invitrogen, 

2010). The recombinant proteins produced, using this expression kit, have a histidine tail 

attached. 

 

3.3.1. Cloning and transformation 

 

The purified PCR products, previously obtained (chapter 3.2.), were initially cloned into 

plasmids pET101/D-TOPO vectors using the above described kit according to manufacturer’s 

instructions. 10 µl of pET TOPO® (Invitrogen Life Technologies, Carlsbad, California, USA) 

construct, previously obtained, was mixed with 50 µl of the E. coli OneShot® cells 

(Invitrogen Life Technologies, Carlsbad, California, USA), and then incubated in ice during 

30 min, followed by incubation for 30 s at 42ºC and further incubated in ice. Afterwards, 250 

µl S.O.C. medium were added to the previous sample and incubated at 37ºC, 200 rpm during 

1 hour. After that period, 200 µl of the sample were used to seed 4 LB-agar/ampicillin (100 

µg/ml) Petri-dishes, followed by overnight incubation at 37ºC. 

 

3.3.1.1. Screening of the transformed colonies 

 

Cell colonies were analyzed by PCR to confirm plasmids incorporation. Six colonies were 

picked up and individually suspended into 12 µl of water. Kit GoTaq® (Promega, Madison, 

Wisconsin, USA) was used. The PCR conditions were as followed: 94ºC for 10 min to lyse 

cells and inactivate nucleases, then 35 cycles: 94ºC for 3 min, 53ºC for 30 s and 72ºC for 1 

min, followed by 72ºC for 10 min, in MJ Research PTC-200 Thermo Cycler (GMI Biotech, 

Minnesota, USA). 

 

3.3.1.2. Plasmid purification for sequencing 

 

For plasmids purification, illustra plasmidPrep Mini Spin Kit (GE Healthcare, 

Buckinghamshire, UK) was used, since it applies a simple plasmid DNA purification protocol 

involving a modified alkaline lysis procedure and a silica-based membrane to achieve highly 

efficient plasmid DNA purification (GE Healthcare, 2008). 

The colonies, previously obtained (chapter 3.3.1.), were picked and suspended in 5 ml of 

LB/ampicillin (100 µg/ml) and incubated overnight at 37ºC and 200 rpm. Samples were then 

centrifuged at 16000 rpm during 10 min using a Heraeuspico 17 centrifuge (Thermo Electron 



29 

Corporation, Marietta, Ohio, USA) and supernatant were discarded. The obtained pellet was 

further purified using the above described kit according to manufacturer’s instructions and 

samples were then sequenced in Stab Vida (Almada, Portugal). 

 

3.3.2. Expression 

 

For rCRT expression, BL21 Star™ (DE3) One Shot E. coli cells were used. Plasmids, 

previously purified (chapter 3.3.1.2.), were inserted in BL21 Star™ (DE3) One Shot E. coli 

cells according to manufacturer’s instructions. The entire transformation was used to 

inoculate 10 ml of LB/ampicillin (100 µg/ml) and was incubated overnight at 37ºC and 200 

rpm. 850 µl of cells culture were mixed with 150 µl of glycerol and stored at -80ºC 

maintaining, therefore, a stock of cells with plasmid incorporated, and 500 µl were used to, 

once again, inoculate 10 ml of LB/ampicillin (100 µg/ml), in order to perform a pilot 

expression assay. Cells were incubated at 37ºC and 200 rpm, split into two 5 ml cultures and 

one was induced at an Abs 600 nm (optical density) of 0.5-0.8 with 1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG). To determine the optimal induction time, 500 µl aliquot from 

each culture have been removed every hour for 5 hours. Samples were centrifuged at 16000 

rpm for 1 min, supernatant discarded and pellets frozen at -20ºC. 

 

3.3.3. SDS-PAGE 

 

A common method for proteins separation by electrophoresis uses a discontinuous 

polyacrylamide gel as a support medium and sodium dodecyl sulfate (SDS) to denature 

proteins. According to Laemmli method, sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used to analyze the previously obtained cellular lysate 

(chapter 3.3.2.) and confirm the presence of rCRT. 

Cellular lysates were mixed with 1x SDS-PAGE sample buffer, denatured by heat and 

separated in a 12.5% SDS-PAGE polyacrylamide gel using the SDS-PAGE apparatus Mini-

protean Tetra Cell (Bio-Rad, Hercules, California, USA). Electrophoresis was performed at 

120 V using a running buffer and a low molecular marker (Amersham
TM

 LMW calibration kit 

for SDS electrophoresis, GE Healthcare, Buckinghamshire, UK) was added. Gel was stained 

using Coomassie Brilliant Blue dye solution. 
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3.3.4. Western-Blot 

 

Western-Blot is a technique that identifies proteins which have been separated according to 

their size by gel electrophoresis, using specific antibodies. The blotting membrane, usually 

made of nitrocellulose or PVDF (polyvinylidene fluoride), binds to proteins. With this 

method, the polyacrylamide gel is placed over the membrane and the application of electrical 

current forces proteins to move from gel to membrane, where they adhere and can be 

subsequently linked to a specific antibody. This binding can then be visualized using a second 

antibody which recognizes the first one, developing a visual signal in the presence of the 

appropriate substrate (Abcam, 2012). 

To detect the rCRT using Western-Blot technique, a SDS-PAGE gel was prepared without 

Coomassie Brilliant Blue staining, as previously described. Briefly, a cassette was constructed 

with sponge, filter papers, SDS-PAGE gel and nitrocellulose membrane (Trans-Blot® 

Transfer Medium pure cellulose membrane (0.45 µm), Bio-Rad, Hercules, California, USA) 

and was applied on a Western-Blot apparatus (Mini Trans-blot® Cell, Bio-Rad, Hercules, 

California, USA) with transfer buffer running overnight at 90 mA. Nitrocellulose membrane 

was then placed in a container with Ponceau Red 0.2% (w/v) diluted in acetic acid 3% (v/v) 

allowing bands visualization. Membrane was cutted into strips, which were placed in 1.5 ml 

of blockage solution for 1 hour. Subsequently, the strips were washed 3 times with 2 ml of 

TTBS for 15 min. Strips were incubated in 1 ml of anti-histidine antibodies solution (1:5000) 

(Anti-His (C-term) antibody, Invitrogen Life Technologies, Carlsbad, California, USA) for 1 

hour and washed again as described above. Then, the strips were incubated in 1 ml of 

polyvalent anti-mouse antibody solution (1:10000) (Anti-Mouse Polyvalent Immunoglobulins 

(G, A, M) - Alkaline Phosphatase, Sigma-Aldrich, St. Louis, Missouri, USA) for 1 hour and 

the wash procedure was repeated. 1.5 ml of revelation buffer (AP Color Development Buffer, 

Bio-Rad, Hercules, California, USA) was used to develop the visual signal. The reaction was 

stopped by adding water and keeping the membrane in the dark. 

 

3.4. Production of soluble calreticulin 

 

The previously produced stock of BL21 Star™ (DE3) One Shot E. coli cells (chapter 3.3.2.) 

was used to seed a LB/ampicillin (100 µg/ml) Petri-dish and was incubated overnight at 37ºC. 

Then, six colonies were used to perform a PCR in the same conditions previously described in 

chapter 3.3.1.1.. Afterwards, four colonies were used to inoculate 200 ml of LB/ampicillin 

(100 µg/ml). Cells were induced with IPTG and were grown for two hours at 37ºC and 200 
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rpm as described in chapter 3.3.2.. Then, pellet was suspended in 20 ml lysis buffer and 

divided into 2 fractions; in one of the samples a sonicator (Ultrasonic Homogenizer Power 

Supply 4710 Series, Cole Parmer, Illinois, USA) with an amplitude of 80%, a frequency of 20 

kHz and cycles of 10 s/min for a total of 5 min were applied and the other fraction was 

thawed at 42ºC and frozen at -80ºC for three times. Subsequently, samples were centrifuged 

for 15 min at 16000 rpm, pellet was suspended in 1 ml of PBS and supernatant stored. These 

samples were used to perform a SDS-PAGE and Western-Blot, as described in chapters 3.3.3. 

and 3.3.4., respectively, in order to determine whether the protein was present in the soluble 

or insoluble fractions of lysate. 

 

3.5. Purification of recombinant calreticulin 

 

To perform the purification of rCRT, HisTrap HP column (GE Healthcare, Buckinghamshire, 

UK) associated with fast performance liquid chromatography (System Pump-500, GE 

Healthcare, Buckinghamshire, UK) was used. Prior to purification, samples were diluted in 

binding buffer. Purification protocol, according to manufacturer’s instructions, was as 

follows: 

 Column was washed with 15 ml of distilled water and equilibrated with 25 ml of 

binding buffer at a flow-rate of 5 ml/min; 

 Samples were applied with a pump and column washed with 75 ml of binding buffer; 

 25 ml of elution buffer were added. 

The above described protocol was also performed with some adjustments in order to select 

optimal purification conditions: 

 Elution buffer without imidazole and with a pH of 4.5; 

 Different binding buffer imidazole concentrations (20 mM, 30 mM and 40 mM) with 

two washes; 

 Concentration of purified samples (1.5 ml Microcon® YM-3 tube, membrane: 

regenerated cellulose MCO 3000). 

The obtained samples (non-purified, purified and samples resulting from washes) were loaded 

into the SDS-PAGE, as described in chapter 3.3.3..
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Chapter 4. Results 

 

4.1. Amplification of calreticulin cDNA fragment 

 

Reverse-transcriptase PCR technique was used to amplify the fragment correspondent to 

CRT, in order to allow the posterior rCRT protein production. This procedure was performed 

several times using different PCR condictions (different cycles number, elongation time and 

annealing temperature) and different samples in order to improve RNA quality and obtain a 

unique band with 1235 bp, which is the length of CRT without introns. This result (figure 8) 

was obtained with the specific PCR condictions: 95ºC for 2 min, then 40 cycles of 30 s at 

94ºC, 45 s at 55ºC and 2 min at 72ºC; final extension 2 min at 72ºC. 

 

 

 

           Lane 1. Ladder 100bp 

         Lane 2. Negative PCR control 

         Lanes 3-9. Different cDNA samples 

 
Figure 8 PCR results. Samples were electrophoresed in a 1% Agarose/CYBRsafe gel, 1x TAE. 

 

PCR amplified fragments were further purified and sequenced (StabVida, Almada). The 

obtained fragment sequence had only 1100 bp (figure 9) instead of 1235 bp and, when 

compared with annotated R. annulatus-CRT, had an overall identity of 98%. When compared 

with CRT from different ticks, the sequence showed a identity from 83% to 98% (table 3), 

confirming the fact that this protein is highly conserved among ticks. 

 

1500bp 

1000bp 

    1           2              3            4              5             6             7             8              9 
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CNNNCNNNNTCGCTATATCGGCCGACCCGACCGTATACTTCAAAGAGGAGTTCAACGATGGAGACGCGTGGAAGGAC

CGGTGGGTGGAGTCTACGAAAGGCGACAACCTCGGAAAGTTCGTTCTAAGCGCTGGCAAGTTCTACGGTGACGCGGA

GAAGAGCAAAGGACTGCAGACCTCTGAAGACGCCCGCTTCTACGGCATCTCCGCCAAGTTCGAACCCTTCTCCAACG

AAGACAAGACCCTGGTCATCCAATTCGCGGTGAAGCACGAGCAGAACATCGACTGCGGCGGTGGCTACGTCAAGCTG

TTCGACTGCAGCCTAGACCAGACTCAAATGCACGGCGAATCTCCCTACCTCATCATGTTCGGCCCTGACATCTGCGGT

CCCGGCACCAAAAAAGTGCACGCCATCTTCAACTACAAGGGCAAGAACCACCTTATCAACAAGGAGGTGCGCTGCAA

AGACGACGTCTTCAGCCACCTGTACACCCTGATCGTTAAGCCCGATAACACATACCAGATCAAGATCGACAACGAAG

TGGTCGAGAAGGGCGAACTCGAGAAGGACTGGTCCTTCCTGCCCCCCAAGAAGATCAAGGACCCCGACGCCAAGAAG

CCCGAGGACTGGGACGACCGGGCCAAGATCGACGACCCCGACGACAAGAAGCCCGAGGACTGGGACAAGCCCGAGT

ACATTCCCGACCCGGACGCCACCAAGCCCGAGGACTGGGACGACGACATGGACGGCGAGTGGGAACCCCCGCAGAT

CAACAACCCCGAGTACAAGGGCGAGTGGAAACCCAAGCAGATCGACAACCCGGCCTACAAGGGTGCCTGGGTACAC

CCGGAGATCGACAACCCCGAGTACACGCCGGACCCCAAGCTGTACCGCTACAAGGAGATCTGCAAGATCGGCTTCGA

CCTGTGGCAGGTCAAGTCTGGCACCATCTTCGACAACATCCTCATCACGGACGACGAAGAGTACGCCCGGGTGCACG

GCGAGGAGACCTGGGCCGCGCTCAANACGAGAGAAAAGATGANNNCAAGCAGGAAGAGAGAGAGCAAAGAGCAGA

AGAGATGACGCTAGACGAGGACGANN 
 

Figure 9 Sequence of the purified sample with the amplified fragment. 

 

Table 3 Identity of calreticulin sequences from different ticks 
 

 
 

4.2. Cloning and transformation 

 

To express rCRT, pET101/D-TOPO® (Invitrogen Life Technologies, Carlsbad, California, 

USA) plasmids were used as vectors. Plasmids were incorporated into two different cell 

types: One Shot® TOP10 E. coli cells (Invitrogen Life Technologies, Carlsbad, California, 

USA), which allows a stable propagation and maintenance of recombinant plasmids, and 

BL21 Star™ (DE3) One Shot® E. coli cells (Invitrogen Life Technologies, Carlsbad, 

California, USA), that were used to produce the protein. Transformation procedures in both 

cell types were performed twice, always in the same conditions, until the PCR results showed 

a single band corresponding to CRT fragment (figure 10). 
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Lane 1. Ladder 100 bp 

Lane 2. Negative PCR control 
Lane 3. E. coli cells sample 

 
Figure 10 PCR results. Samples were electrophoresed in a 1% Agarose/CYBRsafe gel, 1x TAE. 

 

Obtained fragments were sequenced to confirm the correct position of the fragment, since that 

is essential to produce the correct protein, as a different nucleotides sequence will correspond 

to different aminoacides and, consequently, to a different protein. 

Sequence analysis of the fragment incorporated in the plasmid revealed a 500 bp length, 

instead of 1235 bp. 

 

4.3. Recombinant calreticulin expression 

 

After the cells transformation, several samples at different time points were picked from 

induced and non-induced cells cultures. The level of rCRT expression was first evaluated by 

SDS-PAGE, but, as shown in figure 11, no distinct rCRT band was obtained in induced 

fraction; instead there were several bands in the SDS-PAGE gel. So, a Western-Blot 

procedure was performed in order to confirm the expression of CRT and, as demonstrated by 

figure 12, a unique band of approximately 60 kDa was obtained in induced fraction of time 

points 1 and 2, which correspond to 1 and 2 hours of induction, respectively, and there were 

no bands in the other time points (T3 to T5). 

 

 

 

 

 

 

 

     1         2         3 

1500bp 

1000bp 
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       Lane 1. Ladder 100 bp                Lane 1. Ladder 100 bp 

       Lane 2. T0 - induced                Lane 8. T3 - induced 

       Lane 3. T0 - non-induced                Lane 9. T3 - non-induced 
       Lane 4. T1 - induced                Lane 10. T4 - non-induced 

       Lane 5. T1 - non-induced               Lane 11. T4 - induced 

       Lane 6. T2 - induced                Lane 12. T5 - non-induced 

       Lane 7. T2 - non-induced               Lane 13. T5 - induced 

 

Figure 11 SDS-PAGE results.Protein bands from cell cultures induced by IPTG and non-induced at 

different time points (A) T0 to T3 and (B) T4 to T5. 

 

            

 
 Lane 1. Ladder 100 bp     Lane 1. Ladder 100 bp 

 Lane 2. T2 - non-induced     Lane 8. T3 - non-induced 

 Lane 3. T2 - induced     Lane 9. T3 - induced 

 Lane 4. T1 - non-induced     Lane 10. T4 - non-induced 

 Lane 5. T1 - induced     Lane 11. T4 - induced 
 Lane 6. T0 - non-induced     Lane 12. T5 - non-induced 

 Lane 7. T0 - induced     Lane 13. T5 - induced 

 

Figure 12 Western-Blot results. Protein bands from cell cultures induced by IPTG and non-induced at 

different time points (A) T0 to T2 and (B) T3 to T5. 
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4.4. Purification of recombinant calreticulin 

 

The first protocol used a binding buffer with 30 mM of imidazole, an elution buffer with 500 

mM of imidazole, both with pH of 7.4, and one washing step. The results showed several 

contaminants in all samples (purified, non-purified and samples obtained from washes) and no 

distinct rCRT corresponding band. Thereafter, the protocol was slightly altered, using a 

different elution buffer with no imidazole and a pH of 4.5. However, the results contained 

even more contaminants than those obtained with the original protocol. Hence, as the pH 

reduction was worthless, it was decided to alter the original protocol by using different 

imidazole concentrations in the binding buffer (20 mM, 30 mM and 40 mM) and adding one 

more washing step. The results showed that samples obtained using the binding buffers with 

20 mM and 40 mM of imidazole had almost no bands and those obtained using the binding 

buffer with 30 mM of imidazole had few contaminants, but also had the most visible bands in 

the purified fraction. Taking these results into consideration, the protocol using the binding 

buffer with 30 mM of imidazole and pH 7.4, two washing steps and the elution buffer with 

500 mM was applied to the samples. After obtaining the purified sample, it was concentrated 

and, finally, results produced a single band with approximately 50 kDa, corresponding to 

rCRT (figure 16). 

To determine the presence of rCRT in the soluble fraction, the first cells sample, suspended in 

PBS, were lysed by sonication. Figure 13 depicts the results of Western-Blot corresponding to 

the sonicated cells, showing that rCRT was only present in the insoluble fractions of the 

cellular lysate. Because CRT had been obtained in previous studies from the soluble fraction 

(Rachinsky et al., 2007; Gao et al., 2008; Parizi et al., 2009), the sonication protocol was 

altered and another method (freeze/thaw) was added to provoke cell lysis, it was admitted that 

sonication of cells in PBS was not enough to lyse them. Therefore, instead of using PBS, lysis 

buffer was used to suspend the cells, and, subsequently, sonication and freeze/thaw methods 

were applied. Once again, the SDS-PAGE results with those samples (figure 14) showed no 

distinct rCRT band. A Western-Blot approach was then performed, as that technique, in 

previous results (chapter 4.3.), revealed an rCRT corresponding band, where the SDS-PAGE 

procedure did not. The Western-Blot results confirmed the presence of rCRT, not only in the 

insoluble fraction, but also in the soluble phase, as two bands next to each other (doublet) 

were revealed by both methods results (figure 15). 

After rCRT purification in collumns, it was necessary to confirm the purity level of the 

obtained samples so a SDS-PAGE technique was used once more. Different purification 

protocols were apllied until a unique band corresponding to rCRT was obtained in the SDS-
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PAGE results. Despite their differences, all the protocols applied 15 ml of distilled water, 

followed by an equilibration with 25 ml of binding buffer at a flow-rate of 5 ml/min, a 

washing step(s) with 75 ml of binding buffer and, finally, an elution step with 25 ml of elution 

buffer. 
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Figure 13 Western-Blot results. Protein 

bands from soluble and insoluble fractions. 
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Figure 14 Western-Blot results. Protein bands 

from soluble and insoluble fractions. 
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Figure 15 Western-Blot results. Protein bands 

from soluble and insoluble fractions. 
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Figure 16 SDS-PAGE results. CRT 

band from purified samples (2 to 6). 
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CChhaapptteerr  55..  DDiissccuussssiioonn  

 

Babesiosis and other tick-borne diseases are relevant issues all over the world, especially in 

countries where cattle production plays a major role in the economy. Nowadays, vaccines 

against both tick-vector and parasites became an innovation and tend to be the most capable 

method to control ticks and their transmitted pathogens (de la Fuente et al., 2007). 

This study reports the production of rCRT protein from R. annulatus, that is up-regulated in 

ticks infected with B. bigemina (Antunes et al., 2012), having in mind its further application 

in vaccination and immunolocalization tests. 

The study is focused in the amplification of CRT gene by PCR technique. The results of the 

purified PCR product sequence showed 98% identity with native R. annulatus-CRT (table 3), 

though amplified fragment had only 1100 bp (instead of 1235 bp, as in the original one) 

(figure 9). It was considered that the fragment had been fully amplified within the PCR 

performance and the different length was due to a sequencing error. This hypothesis is 

corroborated by the high level of identity between original gene and the amplified fragment 

and also by the discrepancy found between bands length (in agarose gel and in the sequenced 

one), pointing out to the conclusion that the fragment probably had a length of 1235 bp, but 

only 1100 bp were amplified. 

The following task involved rCRT cloning into a plasmid for its posterior use in bacteria 

transformation. Subsequent actions were facilitated due to the characteristics of the chosen 

plasmid, such as the C-terminal fusion tag for detection and purification of recombinant 

fusion proteins (V5 epitope and 6xHis, composed by 6 histidine residues), the antibiotic 

resistance marker for selection in E. coli and a T7 promoter that allows an IPTG-inducible 

expression of recombinant protein in E. coli strains (Invitrogen, 2010). The first characteristic 

is important, not only to protein detection by Western-Blot technique, but also to its 

purification, since rCRT has a histidine tail. The antibiotic resistance marker permits a 

“selector mechanism” that, after cell transformation, allow only those with an antibiotic 

resistance gene to grow in a selective medium. Finally, IPTG-inducible expression allows the 

growth of two groups of colonies, one induced and another uninduced, achieving the 

emergence of a negative control. Lastly, to clone the fragment into the plasmid, the forward 

primer had to have nucleotides CACC in 5’ end, so that incorporation could take place 
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properly and in the correct sense. In the case of the primer reverse, it had to anneal to the last 

codon before the stop codon so that recombinant protein could have a histidine tail 

(Invitrogen, 2010). 

Purified plasmids were sent to be sequenced, though the result showed only 500 bp instead of 

the expected 1235 bp. It was considered that this result was due to a sequencing error, 

corroborated by the fact the PCR previously performed using those purified plasmids 

produced a band with approximately 1200 bp. Moreover, previously purified PCR fragment 

sequence had also a different length with respect to the expected one (figure 9) and it was 

considered to be due to a sequencing error. 

There are several recombinant systems that may be used to express recombinant proteins. In 

this study, an E. coli recombinant system was used, what is in line with other studies of 

recombinant proteins from ticks (Gao et al., 2008; Parizi et al., 2009; Tanaka et al., 2010; 

Almazán et al., 2012). As an alternative, a recombinant system with Pichia pastoris could 

have been used, because it is commonly chosen to express recombinant proteins from ticks 

and have been applied with success by several authors (Canales et al., 2008; Cunha, Andreotti 

& Leite, 2011; Ebrahimi, Dabaghian, Jazi, Mohammadi & Saberfar, 2012; Said et al., 2012) 

There are numerous reported methods to include foreign DNA into E. coli cells 

(transformation), though chemical methods are the most commonly used, due to their 

accessibility and cost effectiveness (Singh, Yadav, Ma & Amoah, 2010). In this work, the 

transformation kit already provided chemical competent E. coli cells and transformation was 

performed through a brief incubation at 42ºC, followed by ice immersion, as it has already 

been demonstrated that these sequence improves transformation (Yoshida & Sato, 2009). The 

S.O.C. medium was added to the transformed cells, because it is a rich medium used in 

recovery step of E. coli cells transformation, maximizing its efficiency. Moreover, S.O.C. 

medium has glucose, which prevents induction of lac promoter by lactose, so preventing 

transcription of target gene (Sun et al., 2009). 

To confirm transformation efficiency, colonies were screened by PCR and several did not 

generate the expected band in agarose gel. Supposedly, only cells with plasmid would be able 

to grow in LB medium with ampicillin, as it was previously explained. There are some 

possible explanations for this fact: ampicillin was not stable, primers did not anneal properly 

within PCR procedure or plasmid was unstable. Among all these possible causes, the most 

likely is the lack of ampicillin stability, since antibiotic solution was frozen and unfrozen 

several times impairing and corrupting its stability (Okerman, Van Hende & De Zutter, 2007). 

The other possible explanations are unlikely, since a previously performed PCR with purified 

plasmid, the same primers were used and a band with the expected length was obtained. In the 
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case of plasmid instability, although this phenomenon occurs during cellular growth period 

(Monbouquette & Ollis, 1986), Xu et al. (2006) showed that under resistance-selective 

pressure, cells with plasmid remain in a higher level than under nonselective pressure after 

induction, turning this hypothesis unlikely as well. 

In rCRT expression, two cultures were used in order to provide induce and non-induce 

samples, what concurs to achieve more credible results, as negative control (non-induce 

sample) was available. The various time points adopted were decise to understand when rCRT 

production was at the highest level. This information was relevant to make decisions about 

subsequent cells cultures and the production and purification of rCRT. Therefore, having in 

hand the various time points samples, they were applied in a SDS-PAGE gel with the purpose 

to visualize which one had a band corresponding to rCRT (figure 11). In this procedure, 

proteins were denatured to achieve their primary conformation, so that the test would only be 

influenced by proteins molecular weight. In order to meet this goal, a SDS buffer was used, 

embodying a component that attaches to proteins and confers them a negative charge; β-

mercaptoethanol was used to disrupt proteins disulphide bridges allowing molecules to adopt 

an extended monomeric form (EncorBio, 2012); glycerol was used to increase sample density, 

maintaining proteins on the wells bottom, overflow or uneven gel loading is restricted and 

bromophenol blue was used to visualize proteins migration, as it is a small molecule and 

migrates faster than all the other components (Grabski & Burgess, 2001). The heating process 

is important, because proteins heated with SDS are denatured and become negative charged 

(Hames, 1990). Concerning gel percentage, that was chosen according to proteins size and, 

since CRT would have, supposedly, 46 kDa (Fliegel et al., 1989) a percentage of 12.5 was 

selected. 

 

Table 4 Gel percentage according to protein size. 

Protein size (kDa) Gel percentage (%) 

4-40 20 

12-45 15 

10-70 12.5 

15-100 10 

25-200 8 

Adapted from Abcam (2012). 

 

However, with the SDS-PAGE gel, there was not a significant difference between induced 

and non-induced bands, so it was impossible to understand if rCRT had been produced or not. 

A Western-Blot was carried out because this technique favours the appearance of bands by 
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antibody-antigen binding, what is much more specific, and, as rCRT had a histidine tail, anti-

histidine antibodies were used. The Western-Blot results showed a band corresponding to a 

protein with approximately 60 kDa, but only in time points 1 and 2 (figure 12). The predicted 

rCRT molecular weight was 46 kDa (Fliegel et al. 1989) plus 0.84 kDa, corresponding to 

hexa-histidine molecular weight (Terpe, 2003). The discrepancy between predicted and 

apparent rCRT molecular weight have already been described in CRT from other organisms, 

as ticks (Gao et al., 2008; Parizi et al., 2009), rats (Zhu, Zelinka, White & Tanzer, 1997; 

Rendón-Huerta, Mendoza-Hernández & Robles-Flores, 1999; Coling et al., 2007), humans 

(Coppolino & Dedhar, 1998; Hong et al., 2004), nematodes as Heligmosomoides polygyrus 

(Rzepecka et al., 2009) and N. americanus (Kasper et al., 2001; Winter et al., 2005) and 

insects as Cotesia rubecula (Zhang, Schmidt & Asgari, 2006), among others. The authors of 

these studies had two main explanations to molecular weight discrepancy: CRT glycosylation 

(Rendón-Huerta et al., 1999; Hong et al., 2004; Coling et al., 2007; Rzepecka et al., 2009), 

phenomenon that is common in proteins and the fact that CRT is highly negative charged with 

a pI of 4.7 (Coppolino & Dedhar, 1998; Rendón-Huerta et al., 1999; Gao et al., 2008; 

Rzepecka et al., 2009; Parizi et al., 2009). Besides those hypotheses, Zhu et al. (1997) 

described the putative existence of two isoforms of CRT, an endocalreticulin with 52 kDa and 

an exocalreticulin with 62 kDa. These results could also be due to the connection of another 

protein to collumns. Concerning that possibility, although it has been described the natural 

occurrence of histidine residues in E. coli proteins (Robichon, Luo, Causey, Benner & 

Samuelson, 2011), those molecules have non-consecutive histide residues and not a hexa-

histidine molecule; moreover, those proteins were described as contaminants in IMAC 

technique and not in Western-Blot procedures. The exo/endocalreticulin hypothesis is also 

unlikely, since results showed only one band. Probably, the increased rCRT apparent 

molecular weight was due to either posttranslational modification that can increase proteins 

predicted molecular weight (Totten & Lory, 1990), as glycosylation, or to CRT negative 

charge. These hypothesis are more likely because CRT has several described binding sites to 

glycosylation (Schrag et al., 2001) and has already been defined as a negative charged protein 

(Michalak et al., 2009). About the fact that CRT was only detected in T1 and T2 time points, 

the result was unexpected, because the detectable rCRT at T1, supposedly should imply a 

higher protein level in the other time points. One explanation for these results may be related 

to technical errors during the manipulation of T3, T4 and T5 samples, namely incorrect 

sample loading, errors in proteins transference to blotting membrane or contamination of cell 

cultures. On the other hand, these explanations are not very likely, because cell cultures were 

always manipulated in a laminar flow chamber with all aseptic concerns; a transference error, 

http://www.google.pt/search?hl=pt-PT&biw=1366&bih=649&sa=X&ei=x6BpT7fsMuKV0QXazYD7CA&ved=0CBkQBSgA&q=supposedly&spell=1
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i.e., proteins not being transferred to the membrane or an incorrect sample loading are also 

unlikely because membrane coloring by means of Ponceau solution and SDS-PAGE gel, 

showed bands in all time points. Comparing with our cells cultures, their concentration was 

always increasing with time and, as IPTG was only added once at T0, there could be a lower 

impact of IPTG in distant time points, as described by Lewis, Taylor, Nienow & Hewitt 

(2004). Furthermore, substrate growth was always the same, so, as the experiment progressed 

in time, nutrients were degraded and excretion products accumulated, including acetate, 

which could inhibit cellular growth (Andersson, 1996) and recombinant protein production 

(Shimizu et al., 1998). Probably, from T2 on, there was a reduction of rCRT production due to 

lower impact of IPTG and to inhibition of recombinant protein production caused by either 

IPTG lower impact or acetate production, culminating in the absence of rCRT or such a low 

production level that would not be detectable at those time points samples. 

Next, at the first attempt to produce soluble rCRT, cells were suspended in PBS and sonicated 

to provoke their lysis, as sonication was used in several studies of recombinant proteins from 

ticks (Liao et al., 2007; Gao et al., 2008; Almazán et al., 2012; Ebrahimi et al., 2012). As 

described in other studies, this method could have been associated to freeze/thaw technique 

(Parizi et al., 2009; Tian et al., 2011), a lysozyme addition (Miyoshi, Tsuji, Islam, Kamio & 

Fujisaki, 2004), cells could have been suspended in binding buffer instead of PBS and 

sonicated (Díaz-Martín, Manzano-Román, Siles-Lucas, Oleaga & Pérez-Sánchez, 2011); it 

could also have been used protein extraction with Triton X-100 in TBS (Almazán et al., 2005) 

or vortexing with glass beads (García-García et al., 2000). The sonicator has the ability to 

destroy cells membrane by powerful ultrasounds, which rise molecules distance exceeding the 

minimum molecular distance essential to maintain membrane intact, culminating with lysis 

(Santos, Lodeiro & Capelo-Martínez, 2009). The freeze/thaw method involved cells 

suspended in lysis buffer freezing at -80ºC and then thawing at 42ºC. This technique forms ice 

crystals in freezing phase, which contracts and breaks during thawing and, consequently, 

causes cells lysis (Thermo Scientific, 2009). 

The Western-Blot results of the sonicated cells (figure 13) showed, in the insoluble fraction, 

two close bands (approximately 55 and 60 kDa). The lack of bands in the soluble phase may 

be explained by the presence of rCRT only in the other fraction or due to the fact that cells 

were not correctly lysed and, consequently, remained in the pellet (insoluble phase) and so 

was rCRT. The second explanation is most likely, because CRT from several ticks has already 

been produced as a soluble protein (Rachinsky et al., 2007; Gao et al., 2008; Parizi et al., 

2009). Subsequently, sonication was used once more, but PBS was replaced by lysis buffer 

and another method (frozen and thaw samples suspended in lysis buffer) was adopted. When 
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the membrane was revealed (figure 15), there were bands in insoluble and soluble phases, 

probably due to an incomplete cells lysis and, consequently, part of rCRT was still in cells 

and so in pellet (insoluble phase). In each fraction, only one band corresponding to rCRT 

should appear; however, two close bands became visible (approximately 55 and 60 kDa), 

similar to the first attempt result. The two bands found in acrylamide gel are probably due to 

either protein denaturation, as the electrophoresis run in denaturing conditions (in the 

presence of SDS) or to protein degradation. 

Concerning recombinant proteins purification, there are many described processes: IMAC 

(López et al., 2009), purification according to proteins sizes (Canales et al., 2008; Said et al., 

2012) and excision from polyacrylamide gel (Ebrahimi et al., 2012) among others. In the 

process of rCRT purification, IMAC was the chosen method, because it is a quick and widely 

used method for histidine-tagged proteins purification (Kuo & Chase, 2011) and it has already 

been used successfully with recombinant proteins from ticks (Miyoshi et al., 2004; Almazán 

et al., 2005; Tanaka et al., 2010; Cunha et al., 2011; Díaz-Martín et al., 2011; Tian et al., 

2011). There are other described purifying methods to recombinant proteins from ticks, such 

as purification according to proteins sizes (Canales et al., 2008; Said et al., 2012) and excision 

from polyacrylamide (SDS-PAGE) gel (Ebrahimi et al., 2012). 

The columns used to purify rCRT have nickel ions. The imidazole concentration of binding 

buffer was low in order to minimize binding of host-cell proteins, though it may decrease 

binding of histidine-tagged proteins (GE Healthcare, 2005). The elution buffer had a higher 

imidazole quantity than the binding buffer, because these molecules have a greater affinity to 

the column than the protein, allowing the rCRT elution (GE Healthcare, 2005), though the pH 

diminishment would have the same effect (Du, Zhang, JieWang, Yao & Hu, 2008). Despite 

the facts described before, results in the first attempt showed that almost no rCRT was 

purified and that there was a huge contamination with other proteins, causing the appearance 

of several bands instead of just one band corresponding to rCRT. First of all, column protocol 

refers that an optimization should be performed, i.e., different factors should be tested, such as 

imidazole concentration, in order to obtain the best balance of high purity and high yield, as 

well as the use of different metals, since protein-metal ion binding strength is affected by 

length, position and exposure of proteins affinity tag, ions and buffers pH. From the above 

mentioned aspects, the use of different metals is not of great importance, since nickel and 

cobalt are usually the chosen by several authors as the metal ions to bind to histidine-tagged 

proteins (Sun et al., 2005; Chong, Tan, Biak, Ling & Tey, 2009; Knecht, Ricklin, Eberle & 

Ernst, 2009). The use of pH reduction, instead of imidazole different concentrations, to purify 

rCRT revealed to be worthless, since there were almost no bands. On the other hand, lack of 
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optimization with different imidazole concentrations could be one of the main reasons for 

these results once, as explained above, imidazole concentration can decrease binding of 

histidine-tagged proteins. Next attempt, where three different binding buffer imidazole 

concentrations were tested, all samples had contaminants. However, the one washed with 

binding buffer with 30 mM of imidazole had the most visible bands, including rCRT 

corresponding band, being this imidazole concentration the one used in the first attempt. This 

result made clear that imidazole concentration was not influencing purification process. Low 

purification level could be related to some recombinant proteins having its histidine-tag 

partially hidden from protein surface, caused by intra or inter-molecular interactions 

(Mohanty & Wiener, 2004), leading to a lower liaison of rCRT to the columns and, 

consequently, to lower recombinant protein purification. There are many E. coli proteins 

described as contaminants when IMAC technique is used to purify histidine-tagged proteins. 

Most of them are probably due to bacteria response to stress conditions (nutrient starvation, 

heat shock or oxidative damage). Contaminant proteins production depends on culture 

conditions, media compositions and genetic background of expression strain (Bolanos-Garcia 

& Davies, 2006). Bolanos-Garcia & Davies (2006) described three contaminant proteins 

classes based on imidazole concentration required for elution: class I (≥80 mM), class II (55 

to 80 mM) and class III (30 to 50 mM), placing our samples contaminants in class I, which 

includes contaminants protein ferric update regulator (Fur), cAMP regulatory protein (CRP), 

peptidoylproline cis-trans isomerase (SlyD), acetylornithinase (ArgE), Cu/Zn-superoxide 

dismutase (Cu/Zn-SODM) and metal-binding lipocalin (YodA). These proteins may bind to 

metal-chelating resins by possession of native metal-binding sites to Ni
2+

 or Co
2+

 (Fur, YodA, 

Cu/Zn SODM and ArgE) or due to the presence of histidine clusters (CRP and SlyD), both 

binding equally as histidine residues of a histidine-tagged protein, showing that contaminant 

proteins may not have histidine residues at all. Probably, the low concentration of rCRT and 

their histidine-tag, partially hidden from protein surface, consequently led to the liaison of 

contaminants to the column and their elution, instead of rCRT. In order to improve rCRT 

purification other methods were used, and only when two washes were applied, plus the 

concentration of purified samples, a single band correspondent to CRT appeared in the SDS-

PAGE gel (figure 16). The IMAC technique might have been associated to a second 

purification step. Applying two different purification principles in sequence would improve 

the degree of purity, because each stage separates a certain amount of contaminants, 

increasing its total level of removal. 
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CChhaapptteerr  66..  CCoonncclluussiioonn  

 

The results of this project were optimistic and represent one more step to improve ticks 

control, as we showed in this study that CRT can be produced and purified without 

contaminants, though further vaccination and immunolocalization studies will be the key to 

understand CRT future use. 

B. bigemina has a great importance worldwide, as it provokes a disease that affects not only 

animals, with a great impact in cattle production, but also humans, which turns it into a public 

health issue and a priority disease to be eliminated or, at least, to be controlled. The first 

attempt to control ticks and their transmitted pathogens was using molecules that would kill 

them in a quick and efficient way. However, all this pressure in the parasites survival leads to 

one of the biggest disasters of our existence: the appearance of resistant ticks against almost 

all acaricides. At this point, vaccines are the future of ticks and babesiosis control, especially 

vaccines that have action against more than one target, either several ticks or ticks and their 

transmitted pathogens. Possibly, due to be highly conserved among ticks, CRT may be a 

component of a large-spectrum anti-tick vaccine or in a vaccine against both vector and its 

transmitted pathogen, but only the future will confirm that. 
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AAnnnneexx  II  --  MMaatteerriiaall  aanndd  MMeetthhooddss  AAppppeennddiixx  

 

1. Mediums 

1.1. Luria-Bertani (LB)-agar: 

6.25g of LB and 3.75g of agar in 250ml of distilled water 

 

1.2. Luria-Bertani 

6,25g of LB in 250ml of distilled water 

 

1.3. S.O.C. 

2% (w/v) tryptone, 0.5% (w/v) yeast extract, 1.0mM NaCl, 2.5mM KCl, 10mM MgCl2, 

10mM MgSO4 and 20mM glucose 

 

2. Solutions 

2.1. Lysis buffer 

0.3ml KH2PO4, 4.7ml K2HPO4, 2.3g NaCl, 0.75g KCl, 10ml glycerol 100% (v/v), 0.5ml 

Triton X-100 and 0.068mg imidazole, obtain the final volume of 100ml with water and a final 

pH of 7.8 

 

2.2. Coomassie Brilliant Blue dye 

40% methanol, 10% acetic acid and 0.025% Coomassie Brilliant Blue R-250 

 

2.3. Distaining solution 

30% (v/v) of ethanol, 10% of acetic acid (v/v) and 60% of water 

 

2.4. 1X SDS-PAGE sample buffer 

1.25ml of 0.5M Tris-HCl at pH 6.8, 1.0ml of glycerol 100% (v/v), 0.2ml of β-

mercaptoethanol, 0.01g of bromophenol blue and 0.2g SDS, obtain the final volume of 10ml 

with water 
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2.5. Running buffer (SDS 1%) 

10g of SDS, 144.1g of glycine and 30.3g of Tris to a final pH of 8.3, obtain the final volume 

of 100ml with water 

 

2.6. Transfer buffer 

3.1g of Tris, 14.3g of glycine and 200ml of methanol, obtain the final volume of 1L with 

water 

 

2.7. TTBS 

18.18g Tris, 72.05g NaCl and 11.63g NaH2PO4 · H2O with a final pH 7.4, obtain the final 

volume of 1L with water, dilute 1:10 and add 0.05% of Tween 20 

 

2.8. Blockage solution 

0.3g of powder milk and 100ml of TTBS 

 

2.9. Binding buffer 

20mM Na2PO4, 500 mM NaCl and 30mM imidazole with a final pH 7.4 

 

2.10. Elution buffer 

20mM Na2PO4, 500 mM NaCl and 500mM imidazole with a final pH 7.4 

 

3. Gels 

3.1. Separating and Slacking gels 

 

 Separating 

gel (12.5%) 

Slacking 

gel (2.5%) 

Bis acrylamide 3.125ml 0.625ml 

Tris HCl 3M 

(pH=8,8) 

0.938ml  

Tris-HCl 0,5M 
(pH= 6,8) 

 1.25ml 

Sodium dodecyl sulfate (SDS) 

10% (w/v) 

75 µl 50µl 

Ammonium sulfate (APS) 37.5µl 25µl 

Tetramethylethylenediamine 
(TEMED) 

3.75µl 3.75µl 

H2O miliQ 2.988ml 2.825ml 

 


