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ON MEAN OUTER RADII OF RANDOM POLYTOPES

D. ALONSO-GUTIÉRREZ, N. DAFNIS, M. Á. HERNÁNDEZ CIFRE, AND J. PROCHNO

Abstract. In this paper we introduce a new sequence of quantities for random
polytopes. Let KN = conv{X1, . . . ,XN} be a random polytope generated by
independent random vectors uniformly distributed in an isotropic convex body

K of R
n. We prove that the so-called k-th mean outer radius R̃k(KN ) has

order max{
√
k,

√
logN}LK with high probability if n2 ≤ N ≤ e

√

n. We also

show that this is also the right order of the expected value of R̃k(KN ) in the

full range n ≤ N ≤ e
√

n.

1. Introduction and Notation

The study of random polytopes began with Sylvester and the famous four-point
problem nearly 150 years ago and it represents the starting point for an exten-
sive study. In 1963, Rényi and Sulanke [31] continued it in their innovative work,
studying expectations of various basic functionals of random polytopes. Important
quantities are expectations, variances and distributions of those functionals. The
tools combine a variety of mathematical disciplines such as convex geometry, geo-
metric analysis or geometric probability (see also [4, 30] and the references therein).

Random polytopes appear in many important applications and other fields, e.g.,
in statistics (extreme points of random samples), convex geometry (approximation
of convex sets), but also in computer science in the analysis of the average com-
plexity of algorithms [28], optimization [6], and even in biology [32]. These are
several reasons why in the last 30 years random polytopes have gained more and
more interest.

Important and very recent developments in the study of random polytopes can
be found in [20], where the authors prove that the isotropic constant of a Gaussian
random polytope is bounded with high probability, and in [1, 2, 3, 9, 10, 11, 27]
where the authors study the relation between several parameters of a random poly-
tope in an isotropic convex body and the isotropic constant of the body.
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The main goal of this paper is to estimate a new sequence of quantities for random
polytopes defined by N random points in an isotropic convex body in R

n, namely,
a certain family of outer radii. In the last years, the so-called successive outer
radii have been intensively studied, e.g. their geometric and analytical properties,
size for special bodies, relation with other measures, and computational aspects
(see e.g. [5, 7, 14, 15, 16, 17, 18, 29] and the references inside). These families of
quantities are defined as the maximum/minimum of the (classical) circumradii of
the projections of a convex body onto all k-dimensional subspaces. If we restrict
to the family of polytopes, there is not too much information (see e.g. [8, 16] and,
in particular, [7], where the precise values of -among others- the successive outer
radii of the regular cube, cross-polytope and simplex can be found).

So, it is a natural generalization to consider a kind of mean outer radii. In
the context of random polytopes, we will define them as the outer radius of the
projection of the random polytope onto a subspace F of dimension k, averaged over
the Grassmannian manifold Gn,k, 1 ≤ k ≤ n, with respect to the Haar probability
measure, and we will prove that, with high probability, this quantity has order
max{

√
k,
√
logN}LK , where LK is the isotropic constant of K.

We will work in R
n equipped with a Euclidean structure 〈·, ·〉. We denote by

| · | the corresponding Euclidean norm, as well as the volume (i.e., the Lebesgue
measure) in R

n. A convex body K ⊂ R
n is a compact convex set with non-empty

interior, and it is called (centrally) symmetric if −x ∈ K, whenever x ∈ K. We
write Bn

2 to denote the Euclidean unit ball, Sn−1 =
{
x ∈ R

n : |x| = 1
}
for the

unit sphere in R
n and σ for the uniform probability measure on Sn−1. Moreover,

if F ⊂ R
n is a k-dimensional linear subspace, we denote by Sk−1

F and σF the
corresponding unit sphere and probability measure in F , respectively.

We use the notation a ≃ b to denote that there exist absolute constants c1 > 0,
c2 > 0 such that c1a ≤ b ≤ c2a.

A convex body K is isotropic if |K| = 1, its centroid lies at the origin, i.e.,∫
K
x dx = 0, and it satisfies the isotropic condition

∫

K

〈x, θ〉2dx = L2
K , for all θ ∈ Sn−1,

where LK is a constant depending only on K, the so-called isotropic constant of
K. We refer to [12, 23] for further background information and results on isotropic
convex bodies.

For a given convex body K ⊂ R
n and independent random vectors X1, . . . , XN ,

uniformly distributed in K, we denote the corresponding random polytopes by

KN = conv{X1, . . . , XN} and SN = conv{±X1, . . . ,±XN}.
Moreover, if 0 ∈ intK, the outer radius of K is defined as the quantity

R(K) = min {t > 0 : K ⊆ tBn
2 } = max

x∈K
|x|.

We observe that if K is symmetric, then R(K) coincides with the classical circum-

radius of K, namely, min{R : ∃x ∈ R
n with K ⊆ x+RBn

2 }.
This magnitude leads to the definition of the main concept of this paper. For a

convex body K ⊆ R
n, the k-th mean outer radius of K, 1 ≤ k ≤ n, is defined as

R̃k(K) =

∫

Gn,k

R(PFK) dνn,k(F ),
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where Gn,k denotes the set of k-dimensional linear subspaces of Rn, νn,k is the
unique Haar probability measure on Gn,k invariant under orthogonal maps, and
PFK is the orthogonal projection of K onto F . We will write dνF,k if we work with

the Grassmannian manifold GF,k restricted to a fixed subspace F . Clearly R̃n(K)

is the outer radius of K and, moreover, if K is symmetric, then R̃1(K) = ω(K) is

the mean width of K and R̃n(K) its classical circumradius. We also observe that
for the polytopes KN and SN and every F ∈ Gn,k, 1 ≤ k ≤ n, we have

R(PFKN ) = R(PFSN ) = max
1≤j≤N

|PFXj |.

Hence, all results in this paper are valid for both KN and SN , and so it suffices to
deal only with one of them, say KN .

The main result of this paper is an asymptotic formula which gives the right
order for the mean outer radii of a random polytope lying in an isotropic convex
body, with high probability:

Theorem 1.1. Let K ⊂ R
n be an isotropic convex body and KN be a random poly-

tope generated by independent random vectors X1, . . . , XN , uniformly distributed in

K. If n ≤ N ≤ e
√
n then, for all 1 ≤ k ≤ n and s > 0,

(1) c1(s)max

{
√
k,

√
log

N

n

}
LK ≤ R̃k(KN ) ≤ c2(s)max

{√
k,
√
logN

}
LK

with probability greater than 1 − N−s, where c1(s) and c2(s) are positive absolute

constants depending only on s. In particular, if n2 ≤ N ≤ e
√
n, then both the upper

and the lower bounds have the same order, i.e.,

(2) R̃k(KN ) ≃ max
{√

k,
√
logN

}
LK .

In order to prove Theorem 1.1, we modify some arguments appearing in [10, 11],
and use in a crucial way two strong inequalities of Paouris (see [25, 26]). We observe
(see Remark 4.1) that we cannot expect to extend the range for N from above in
estimate (2) with high probability. On the other hand, even though we can extend
this range of N from below, we cannot obtain this estimate with high probability
when N is proportional to n with the techniques we use. However, this is feasible
if the expectation is involved:

Theorem 1.2. Let K ⊂ R
n be an isotropic convex body and KN be a random poly-

tope generated by independent random vectors X1, . . . , XN , uniformly distributed in

K. Then, for n ≤ N ≤ e
√
n and all 1 ≤ k ≤ n,

ER̃k(KN ) ≃ max
{√

k,
√
logN

}
LK .

We mention here that using a new method, in [3] the authors established a sharp
lower estimate for the expectation of the mean width of a (symmetric) random
polytope inside an isotropic convex body, for the range N ≃ n. We will use their
result in the proof of Theorem 1.1 in order to show Theorem 1.2.

The paper is organized as follows. In Section 2 we state additional notation and
known results that we will use throughout the paper. Section 3 is devoted to show
several technical lemmas which will be needed in the proofs of the theorems. Finally,
in Section 4 we prove Theorems 1.1 and 1.2. We conclude the paper showing in
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Section 5 the following result, in the flavor of Theorem 1.2, for Gaussian random
polytopes:

Theorem 1.3. Let X1, . . . , XN be independent standard Gaussian random vectors

in R
n, n ≤ N , and let KN = conv{X1, . . . , XN}. Then, for all 1 ≤ k ≤ n,

ER̃k(KN ) ≃ max
{√

k,
√
logN

}
.

2. Additional notation and background results

The following definition can be found in [25] (see also [26]). Let K be a convex
body in R

n with volume one. For every −n < p < +∞, p 6= 0, and every F ∈ Gn,k,
the p-moment of the Euclidean norm of the projection of K onto F is defined as

Ip(K,F ) =

(∫

K

|PFx|p dx
)1/p

.

If F = R
n we write

Ip(K) = Ip(K,Rn) =

(∫

K

|x|p dx
)1/p

.

In [25], Paouris proved a sharp reverse Hölder type inequality for the moments of
the Euclidean norm of an isotropic convex body K in R

n:

(3) Iq(K) ≃ I2(K) =
√
nLK , for all 1 ≤ q ≤

√
n.

This inequality provides a sharp concentration result for the mass distribution in
an isotropic convex body in R

n, i.e., for any t > 0,

P
(
|x| ≥ ct

√
nLK

)
≤ e−

√
n t.

We will need this result for the proof of the upper bound in Theorem 1.1.
In [26], the same author got the following small ball probability result for isotropic

random vectors, i.e., centered random vectors X verifying that E〈X, θ〉2 = 1 for
any θ ∈ Sn−1:

Theorem 2.1 (Paouris, [26]). Let X be an isotropic log-concave random vector in

R
n. Let M be a non-zero n× n matrix, y ∈ R

n and ε ∈ (0, 1). Then

P
(
|MX − y| ≤ c1ε‖M‖HS

)
≤ ε

c2
‖M‖HS
‖M‖op ,

where c1, c2 are positive absolute constants and ‖M‖HS, ‖M‖op denote the Hilbert-

Smith and the operator norm of M , respectively.

In order to show the theorem, the author proved a reverse Hölder inequality for
the negative moments of the Euclidean norm on an isotropic convex body K ⊂ R

n:

(4) I−q(K) ≃ I2(K) =
√
nLK , for all 1 ≤ q ≤

√
n.

For the proof of the lower bound in Theorem 1.1 we need some more background.
For a convex body K ⊂ R

n, 0 ∈ intK, and every −∞ < p < +∞, p 6= 0, we define

wp(K) =

(∫

Sn−1

hK(θ)p dσ(θ)

)1/p

,
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where hK(θ) = maxx∈K〈x, θ〉 denotes the support function of K in the direction
θ ∈ Sn−1. If |K| = 1, then for all q ≥ 1, the Lq-centroid body of K is defined to
be the symmetric convex body in R

n whose support function is given by

hZq(K)(θ) =

(∫

K

∣∣〈x, θ〉
∣∣q dx

)1/q

.

In [26], Paouris also established the following asymptotic formula for the negative
moments I−q(K,F ) (see [26, Propositions 5.4 and 4.1]):

Proposition 2.1 (Paouris, [26]). Let K ⊂ R
n be a convex body with |K| = 1 and

centroid at the origin. Let k ∈ {1, . . . , n} and F ∈ Gn,k. Then, for every integer

q < k it holds

I−q(K,F ) ≃
√

k

q
w−q

(
PFZq(K)

)
.

3. Some preliminary lemmas

We state here some preliminary technical results which will be needed in the
proofs of the main theorems. The first observation states the monotonicity of the

family of mean outer radii R̃k in k.

Lemma 3.1. Let K ⊂ R
n be a convex body. Then R̃k−1(K) ≤ R̃k(K), 2 ≤ k ≤ n.

Proof. Let F ∈ Gn,k, with k ≥ 2. Then, for any (k− 1)-dimensional subspace E of
F , we have that R(PEK) ≤ R(PFK). Thus

∫

GF,k−1

R(PEK) dνF,k−1(E) ≤ R(PFK),

and hence
∫

Gn,k

∫

GF,k−1

R(PEK) dνF,k−1(E) dνn,k(F ) ≤
∫

Gn,k

R(PFK) dνn,k(F ) = R̃k(K).

By the uniqueness of the Haar probability measure on Gn,k−1, the integral on the
left hand side of the previous inequality is

∫

Gn,k−1

R(PEK) dνn,k−1(E) = R̃k−1(K). �

The following lemmas will be needed to estimate from above the mean outer
radii of KN with high probability, for which we will follow the arguments from [10]
and [11], used there to estimate the normalized quermassintegrals of KN .

Lemma 3.2. Let K ⊂ R
n be an isotropic convex body and KN be a random polytope

generated by N ≥ n independent random vectors X1, . . . , XN uniformly distributed

in K. Then, for all 1 ≤ k ≤ n, t > 1 and q ≥ logN ,

R̃k(KN) ≤ ct

(∫

Gn,k

Iq(K,F )q dνn,k(F )

)1/q

with probability greater than 1− t−q, where c > 0 is an absolute constant.
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Proof. Applying Hölder’s inequality and Cauchy-Schwartz’s inequality we get

R̃k(KN) =

∫

Gn,k

R(PFKN) dνn,k(F ) ≤
(∫

Gn,k

R(PFKN )q/2 dνn,k(F )

)2/q

≤
(∫

Gn,k

Iq(K,F )q dνn,k(F )

)1/q(∫

Gn,k

R(PFKN )q

Iq(K,F )q
dνn,k(F )

)1/q

.

So, in order to conclude the proof, it suffices to show that

(5)

(∫

Gn,k

R(PFKN)q

Iq(K,F )q
dνn,k(F )

)1/q

≤ ct

with probability greater than 1− t−q, where c > 0 is an absolute constant.
In order to prove (5) we notice that, on the one hand, since K is isotropic then

for every F ∈ Gn,k it holds R(K) ≤ (n+1)LK (see, for instance, [19]), and together
with the definition of isotropic constant and Hölder’s inequality we get

R(PFKN ) ≤ R(K) ≤ (n+ 1)LK ≤ n+ 1√
k

Iq(K,F ).

Therefore,

E

∫

Gn,k

R(PFKN)q

Iq(K,F )q
dνn,k(F )

= E

∫ +∞

0

qtq−1νn,k
{
F ∈ Gn,k : R(PFKN ) ≥ t Iq(K,F )

}
dt

=

∫ n+1√
k

0

qtq−1
Eνn,k

{
F ∈ Gn,k : R(PFKN) ≥ t Iq(K,F )

}
dt.

(6)

On the other hand, since R(PFKN) = max1≤j≤N |PFXj | for every F ∈ Gn,k, using
Markov’s inequality we get that for any 1 ≤ j ≤ N ,

P
(
|PFXj| ≥ tIq(K,F )

)
≤ t−q,

and thus the union bound gives

P
(
R(PFKN) ≥ tIq(K,F )

)
≤ Nt−q.

By a standard application of Fubini’s theorem we get that

Eνn,k
{
F ∈ Gn,k :R(PFKN) ≥ tIq(K,F )

}

=

∫

Gn,k

P
(
R(PFKN ) ≥ tIq(K,F )

)
dνn,k(F ) ≤ Nt−q.

This, together with (6) show that for any A ∈
(
0, (n+ 1)/

√
k
)
it holds

E

∫

Gn,k

R(PFKN )q

Iq(K,F )q
dνn,k(F ) ≤

∫ A

0

qtq−1 dt+

∫ n+1√
k

A

qtq−1Nt−q dt

= Aq + qN log

(
n+ 1

A
√
k

)
.

Taking A = e and q ≥ logN we obtain that this is bounded from above by cq with
c an absolute constant. Inequality (5) now follows from Markov’s inequality. It
completes the proof of the lemma. �
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Lemma 3.3. Let K ⊂ R
n be a convex body, 1 ≤ k ≤ n and q ≥ 1. Then

(∫

Gn,k

Iq(K,F )q dνn,k(F )

)1/q

≃
√

k + q

n+ q
Iq(K).

Proof. In [24] it was shown that for any x ∈ R
n and all q ≥ 1 it holds

|x| ≃
√

n+ q

q

(∫

Sn−1

∣∣〈x, θ〉
∣∣q dσ(θ)

)1/q

.

Applying Fubini’s theorem, the above formula and the uniqueness of the Haar
measure on Sn−1 we obtain

(∫

Gn,k

Iq(K,F )q dνn,k(F )

)1/q

=

(∫

K

∫

Gn,k

|PFx|q dνn,k(F ) dx

)1/q

≃
√

k + q

q

(∫

K

∫

Gn,k

∫

Sk−1
F

∣∣〈PFx, θ〉
∣∣q dσF (θ) dνn,k(F ) dx

)1/q

=

√
k + q

q

(∫

K

∫

Gn,k

∫

Sk−1
F

∣∣〈x, θ〉
∣∣q dσF (θ) dνn,k(F ) dx

)1/q

=

√
k + q

q

(∫

K

∫

Sn−1

∣∣〈x, θ〉
∣∣q dσn−1(θ) dx

)1/q

≃
√

k + q

n+ q

(∫

K

|x|q dx
)1/q

=

√
k + q

n+ q
Iq(K). �

The following lemmas will be used for estimating the lower bound in Theorem 1.1.
The method will be similar to the one for the upper bound, but involving the
negative moments of the Euclidean norm.

Lemma 3.4. Let K ⊂ R
n be a convex body and KN be a random polytope generated

by N ≥ n independent random vectors X1, . . . , XN uniformly distributed in K.

Then, for any 1 ≤ k ≤ n, q < k and t ∈ (0, 1),

(∫

Gn,k

R(PFKN)−q

I−q(K,F )−q
dνn,k(F )

)−1/q

≥ t

(
N − 1

N

)1/q

with probability greater than 1− tq.

Proof. Since R(PFKN ) = max1≤j≤N |PFXj | for every F ∈ Gn,k, using Markov’s
inequality we get that for any 1 ≤ j ≤ N and all q < k,

P
(
|PFXj | ≤ εI−q(K,F )

)
= P

(
|PFXj |−q ≥ ε−q I−q(K,F )−q

)
≤ εq,

for every ε ∈ (0, 1), and thus

P
(
R(PFKN ) ≤ εI−q(K,F )

)
≤ εNq.

Then, a standard application of Fubini’s theorem leads to

Eνn,k
{
F ∈ Gn,k : R(PFKN) ≤ εI−q(K,F )

}
≤ εNq, ε ∈ (0, 1),
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which can be used to bound the expectation from above:

E

∫

Gn,k

R(PFKN)−q

I−q(K,F )−q
dνn,k(F )

= E

∫ +∞

0

qtq−1νn,k
{
F ∈ Gn,k : I−q(K,F ) ≥ tR(PFKN )

}
dt

=

∫ +∞

0

qtq−1
Eνn,k

{
F ∈ Gn,k : R(PFKN ) ≤ 1

t
I−q(K,F )

}
dt

≤
∫ 1

0

qtq−1 dt+

∫ +∞

1

qtq−1−Nq dt = 1 +
1

N − 1
=

N

N − 1
.

To finish the proof we apply Markov’s inequality. �

In the next lemma, Proposition 2.1 plays a crucial role.

Lemma 3.5. Let K ⊂ R
n be a convex body with |K| = 1 and centroid at the origin.

For every 1 ≤ k ≤ n and every q < k it holds

(∫

Gn,k

I−q(K,F )−q dνn,k(F )

)−1/q

≃
√

k

n
I−q(K).

Proof. Using Proposition 2.1 and the uniqueness of the Haar probability measure
on the sphere Sn−1, we get

(∫

Gn,k

I−q(K,F )−qdνn,k(F )

)−1/q

≃
√

k

q

(∫

Gn,k

w−q

(
PFZq(K)

)−q
dνn,k(F )

)−1/q

=

√
k

q

(∫

Gn,k

∫

Sk−1
F

hPFZq(K)(θ)
−q dσF (θ) dνn,k(F )

)−1/q

=

√
k

q

(∫

Gn,k

∫

Sk−1
F

hZq(K)(θ)
−q dσF (θ) dνn,k(F )

)−1/q

=

√
k

q

(∫

Sn−1

hZq(K)(θ)
−q dσ(θ)

)−1/q

=

√
k

q
w−q

(
Zq(K)

)
.

Applying again Proposition 2.1 we get the result. �

4. Asymptotic Formula for the Mean Outer Radii of Random

Polytopes

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First we state the upper bound for the mean outer radii of
KN in the full range n ≤ N ≤ e

√
n. Applying Lemma 3.2 and Lemma 3.3 with

q = logN and t = es for any s > 0, we get that

R̃k(KN ) ≤ c(s)

√
k + logN

n+ logN
IlogN (K)
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with probability greater than 1 − N−s, where c(s) > 0 is an absolute constant

depending only on s. Using (3) for q = logN , and since N ≤ e
√
n, we obtain that

IlogN (K) ≤ c
√
nLK . Consequently, we get

R̃k(KN) ≤ c(s)
√

k + logN LK ≃ max
{√

k,
√
logN

}
LK .

Next we show the lower bound in Theorem 1.1. We start assuming that logN <
k, 1 ≤ k ≤ n. By Hölder’s inequality,

R̃k(KN) =

∫

Gn,k

R(PFKN) dνn,k(F ) ≥
(∫

Gn,k

R(PFKN )−q/2 dνn,k(F )

)−2/q

≥
(∫

Gn,k

I−q(K,F )−q dνn,k(F )

)−1/q(∫

Gn,k

R(PFKN )−q

I−q(K,F )−q
dνn,k(F )

)−1/q

,

and then Lemmas 3.4 and 3.5 for q = logN < k and t = e−s imply that

(7) R̃k(KN ) ≥ c(s)

√
k

n
I− logN (K)

with probability greater than 1−N−s, where c(s) is an absolute constant depending
only on s. Since logN ≤ √

n, using (4) we get that I− logN (K) ≃ √
nLK and the

result follows.
In [11] it was shown that

(
|KN |/|Bn

2 |
)1/n ≥ c(s)

√
log(N/n)LK with probability

greater than 1−N−s. The monotonicity of the mean outer radii (Lemma 3.1) and

the fact that
(
|KN |/|Bn

2 |
)1/n ≤ R̃1(KN ) complete the proof of this case. �

Remark 4.1. In order to obtain the upper bound for the mean outer radii in Theo-
rem 1.1 we cannot expect to extend the range of N to N = eβn for some β ∈ (0, 1).
In fact, if this holds for, say, β = 1/2, then in the case k = 1 we get that for every
isotropic convex body K ⊂ R

n, we have

P
(
ω(KN) ≤ R̃1(KN ) ≤

√
nLK

)
≥ 1− e−n/2.

Since it is known (see [13]) that for N ≃ en/2 it holds

P
(
KN ⊆ K ⊆ c(δ)KN

)
≥ 1− δ,

then choosing the parameters (δ > 1/2, n ≥ 2) we get that the event
{
ω(KN) ≤

√
nLK and K ⊆ cKN

}

occurs with positive probability. Thus, for every isotropic convex body K ⊂ R
n,

ω(K) ≤ c ω(KN) ≤ C
√
nLK , which is not true, as the cross-polytope shows.

Regarding an extension of the range of N from below, we note that similar
arguments work also for n1+δ < N < e

√
n, for any δ > 0, just replacing the

constants c1(δ) and c2(δ). However, if the number of vertices N is proportional to
the dimension n, i.e., N ≃ n, more refined arguments are needed.

Now we show that if the expectation is involved, the range for N can be extended
from below till N ≥ n. In the proof we will need the following result which was
shown in [3]: in our notation, ifK ⊂ R

n is an isotropic convex body andX1, . . . , XN

are independent random vectors uniformly distributed inK, then for every n ≤ N ≤
e
√
n we have

(8) ER̃1(KN ) ≃
√
logN LK .
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Remark 4.2. Since in [3] the authors were interested in studying the value of the

mean width of KN , which is the same as R̃1(KN ) only when KN is symmetric,
equation (8) is specifically written only in the symmetric case. However, the same
proof leads to this equation in the non-symmetric case.

Proof of Theorem 1.2. First we use the fact that the upper bound in Theorem 1.1
is valid for the whole range n ≤ N ≤ e

√
n. Thus, for every 1 ≤ k ≤ n and all s > 0,

ER̃k(KN ) ≤ c(s)max
{√

k,
√
logN

}
LK +N−sR(K).

Since R(K) ≤ (n+ 1)LK and taking s = 1, we obtain, on the one hand, that

(9) ER̃k(KN ) ≤ cmax
{√

k,
√
logN

}
LK .

On the other hand, by Markov’s inequality, we have that for every α > 0

ER̃k(KN ) ≥ αP(R̃k(KN ) ≥ α).

From equation (7) we have

(10) ER̃k(KN) ≥ c(s)
√
kLK

(
1−N−s

)
≥ c

√
LK

choosing s to be some absolute constant. Finally, using (8) and the monotonicity
of the mean outer radii (Lemma 3.1), we have that, for all 1 ≤ k ≤ n and n < N <

e
√
n,

(11) ER̃k(KN ) ≥ ER̃1(KN ) ≃
√
logN LK .

The theorem follows from (9), (10) and (11). �

5. The Gaussian case

In this last section we consider the case of Gaussian random polytopes, and
show Theorem 1.3. We observe that, since the distribution of a Gaussian vector
is rotationally invariant and its projection on any k-dimensional subspace is a k-
dimensional Gaussian vector, it is a direct consequence of the following result for
the orthogonal projection of Gaussian random vectors:

Proposition 5.1. Let G1, . . . , GN be independent standard Gaussian random vec-

tors in R
k. Then

E max
1≤j≤N

|Gj | ≃ max
{√

k,
√
logN

}
.

Although this result is probably known by specialists, we include a proof, since
we were not able to find one in the literature except for the 1-dimensional case (see
[22]). First we need the following lemma:

Lemma 5.1. Let k ≥ 1 and t ≥ max
{√

2(k − 1), 1
}
. Then

tk−1e−
t2

2 ≤
∫ ∞

t

rke−
r2

2 dr ≤ 2tk−1e−
t2

2 .

Proof. Since t ≥ 1
∫ ∞

t

rke−
r2

2 dr ≥ tk−1

∫ ∞

t

re−
r2

2 dr = tk−1e−
t2

2 ,
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which shows the left inequality. In order to prove the right hand side inequality,
we consider the function

f(t) = 2tk−1e−
t2

2 −
∫ ∞

t

rke−
r2

2 dr.

Since f ′(t) = tk−2e−
t2

2

(
2(k − 1) − t2

)
, f(t) decreases if t ≥

√
2(k − 1) which,

together with the fact that limt→∞ f(t) = 0, gives the result. �

Proof of Proposition 5.1. For k = 1 the result is well known, so we assume that
k ≥ 2. Integrating in polar coordinates and taking into account that k ≥ 2, we
have

P

(
max

1≤j≤N
|Gj | ≤ t

)
= P

(
|Gj | ≤ t

)N
=

(
k|Bk

2 |
∫ t

0

rk−1 e−
r2

2

(√
2π
)k dr

)N

=

(
1− k|Bk

2 |
∫ ∞

t

rk−1 e−
r2

2

(√
2π
)k dr

)N

≤
(
1− k|Bk

2 |tk−2

∫ ∞

t

r
e−

r2

2

(√
2π
)k dr

)N

=

(
1− k|Bk

2 |tk−2 e−
t2

2

(√
2π
)k

)N

= e
N log

(

1−k|Bk
2 |tk−2 e

− t2

2

(
√

2π)k

)

≤ e
−Nk|Bk

2 |tk−2 e
− t2

2

(
√

2π)k .

Now, using the well-known value of the volume of the Euclidean unit ball, namely,
|Bk

2 | = πk/2/Γ
(
1+k/2

)
, by Stirling’s formula we have that there exists an absolute

constant c such that

P

(
max

1≤j≤N
|Gj | ≤ t

)
≤ e

−cN
√

k

t2

(√
et√
k

)k
e−

t2

2

.

Thus, taking t =
√
k we obtain that

P

(
max

1≤j≤N
|Gj | ≤

√
k

)
≤ e

−c N√
k ≤ e−c

√
n,

which tends to 0 when n → ∞. Hence, there exists n0 ∈ N such that if n ≥ n0,

P

(
max

1≤j≤N
|Gj | >

√
k

)
≥ 1

2

and so, if n ≥ n0,

E max
1≤j≤N

|Gj | ≥
√
k P

(
max

1≤j≤N
|Gj | ≥

√
k

)
>

√
k

2
.

This shows the lower estimate for the expectation when k ≥ e logN . Otherwise,
taking t =

√
logN we obtain

P

(
max

1≤j≤N
|Gj | ≤

√
logN

)
≤ e

−c
√

N
√

k
log N

(√
e log N√

k

)k

≤ e−c
√

N
log N ,
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because 1 ≤ k ≤ e logN . Thus, there exists n0 ∈ N such that if n ≥ n0,

P

(
max

1≤j≤N
|Gj | ≥

√
logN

)
≥ 1

2

and therefore, if n ≥ n0 and 1 ≤ k ≤ e logN ,

E max
1≤j≤N

|Gj | ≥
√
logN P

(
max

1≤j≤N
|Gj | ≥

√
logN

)
≥

√
logN

2
.

On the other hand, for any A > 0,

E max
1≤j≤N

|Gj | =
∫ ∞

0

P

(
max

1≤j≤N
|Gj | ≥ t

)
dt

=

∫ A

0

P

(
max

1≤j≤N
|Gj | ≥ t

)
dt+

∫ ∞

A

P

(
max

1≤j≤N
|Gj | ≥ t

)
dt

≤ A+N

∫ ∞

A

P
(
|G1| ≥ t

)
dt

= A+Nk |Bk
2 |
∫ ∞

A

∫ ∞

t

rk−1 e−
r2

2

(√
2π
)k dr dt.

Taking A = max
{
2
√
logN,

√
2k
}
we get that

E max
1≤j≤N

|Gj | ≤ A+ 2Nk |Bk
2 |
∫ ∞

A

tk−2 e−
t2

2

(√
2π
)k dt

≤ A+ 4Nk |Bk
2 |Ak−3 e−

A2

2

(√
2π
)k ≤ A+

CN
√
k

A3

(√
eA√
k

)k

e−
A2

2 .

If A = 2
√
logN it can be checked that

E max
1≤j≤N

|Gj | ≤ 2
√
logN +

C

N logN
2
√
e
√
logN ≤ C

√
logN.

Finally, if A =
√
2k, then

E max
1≤j≤N

|Gj | ≤
√
2k +

CN

k
e−

k
2 ≤

√
2k +

C

k
≤ C

√
k. �
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[31] A. Rényi, R. Sulanke, Über die konvexe Hülle von n zufällig gewählten Punkten, Z.
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