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Abstract. The aim of this review is to integrate earlier
results and recent findings to present the current state-of-the-
art vision concerning the dynamic behavior of the ribosomal
DNA (rDNA) fraction in plants. The global organization and
behavioral features of rDNA make it a most useful system to
analyse the relationship between chromatin topology and gene

expression patterns. Correlations between several heterochro-
matin fractions and rDNA arrays demonstrate the heterochro-
matic nature of the rDNA and reveal the importance of the
genomic environment and of developmental controls in modu-
lating its dynamics.
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Gene function in higher eukaryotes is modulated, amongst
other regulatory mechanisms, by the surrounding chromatin in
which genes are embedded. At the same time it is also clear that
genes constitute just a small fraction of complex genomes, and
that most of the DNA that comprises the genome has a non-
coding nature. This general feature of eukaryote genomics
seems enhanced in plants, since they usually bear larger
amounts of non-coding chromatin than many other organisms
(Redi et al., 2001; Avramova, 2002). Chromatin has several
classes of proteins complexed with its DNA which are responsi-
ble for the major levels of its compaction. Of these states of
chromatin compaction, one of the most conspicuous to the eye
of the cytogeneticist is the fraction that remains highly con-
densed throughout the cell cycle, the marker that Heitz initially
used to define heterochromatin (het; review in Richards and
Elgin, 2002). The fact that het is largely the gene-poor fraction
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of the genome (reviews in Redi et al., 2001; Avramova, 2002)
mislead many into believing that it represents an “evolutionary
relic” maintained in the genome only as a by-product of histori-
cal molecular events (John, 1988). During the last 20 years,
however, and based on evolutionary genetics and modern
molecular approaches, definitive evidence has accumulated to
shift the status of het to a role of increasing variability and func-
tional significance. Intense research on the functional genomics
of het shows that it plays important roles in the modulation of
gene expression, in chromosome structure and in speciation
and evolution (reviews in Redi et al., 2001; Avramova, 2002;
Richards and Elgin, 2002; Grewal and Moazed, 2003). In this
context, and as clearly pointed out by Avramova (2002), coding
sequences found in heterochromatin provide our major source
of knowledge on the structure and function of this genomic
fraction. Accordingly, and considering the het nature of the
ribosomal RNA genes that will be discussed, we will draw
attention to the relationship between het genomics and the
behaviour of ribosomal DNA (rDNA) arrays.

Heterochromatin: nature and functional significance

Heitz (1928) described het as the genome fraction that is
more compact than euchromatin, maintaining high levels of
condensation throughout the cell cycle. These densely packed
regions in the nucleus are almost exclusively composed of re-

Fax +41 61 306 12 34
E-mail karger@karger.ch
www. karger.com

© 2005 S. Karger AG, Basel
0301-0171/05/1093-0104$22.00/0

KARGER

Accessible online at:
www. karger.com/cgr



petitive DNA (Richards and Elgin, 2002), which may also be
organized into small het islands not detectable through classical
cytogenetic analysis (Kunze et al., 1996; Weichenhan et al.,
1998). The het fraction is divided into constitutive het, with a
tight chromatin configuration regardless of the cell type in anal-
ysis; and facultative het, as the genome fraction that undergoes
decondensation and expression in a certain cell lineage but not
in other lineages (Avramova, 2002). A classical example of
facultative het is the inactive X chromosome in somatic cells of
mammalian females (Boggs et al., 2002). The description of
well characterized het islands in Arabidopsis shows that differ-
ent het fractions are distinct in terms of their molecular, struc-
tural and functional organization, thus reflecting the diverse
functional activities associated with het (Copenhaver et al.,
1999; Fransz et al., 2000; McCombie et al., 2000).

Since blocks of repeats that have nothing obvious in com-
mon have the ability to form het, several studies tried to test if
the repetitive nature of DNA sequences is itself sufficient to
trigger het assembly. Sensitive phenotypic assays for mosaic
gene silencing (known as position-effect variegation, PEV) are
one of the most widely used systems to evaluate het dynamics
and its implication in gene expression. The potent silencing
capacity of the het fractions can be exerted by spreading of the
tight chromatin configuration of het into adjoining coding
sequences (in cis) or by nuclear co-localization between het
domains and genes distantly located in the same or at different
chromosomes (in trans) (Henikoff, 2000; Richards and Elgin,
2002). Using this system in Drosophila, Henikoff and co-work-
ers demonstrated that at least some repetitive sequences have
an innate capacity to promote het formation, affecting PEV
phenomena, and showing that enhanced silencing occurs when
higher copy number of those sequences are inserted (Dorer and
Henikoff, 1994; Henikoff, 2000). Furthermore, transgene ar-
rays induce silencing of nearby endogenous euchromatic genes,
indicating that PEV requires only the repeat array itself (Heni-
koff, 2000). Inactivation of gene expression following gene
duplication has also been described in plants (Flavell, 1994).
Taken together, these results clearly suggest that repetitiveness
alone seems sufficient to promote het formation (Henikoff,
2000).

The chromatin underlying het has several characteristic fea-
tures, besides its repetitive DNA motifs. The DNA that usually
organizes in het is commonly methylated at cytosine residues,
which correlates with transcriptional inactivation (review in
Martienssen and Colot, 2001). In Arabidopsis, fine mapping of
methylated cytosines showed that the density of DNA methyl-
ation increases from euchromatin towards pericentromeric het
(Mathieu et al., 2002). Particular histone covalent modifica-
tions have also been associated with het formation and mainte-
nance. In contrast to euchromatic domains, deacetylation of
histone tails and methylation of histone H3 at lysine 9
(H3mK9) mark a “close” chromatin configuration characteris-
tic of het, which correspond to repressed domains concerning
transcription (reviews in Richards and Elgin, 2002; Felsenfeld
and Groudine, 2003). Interestingly, several studies in different
systems show the interplay of DNA methylation and H3mK?9
methylation in the establishment of het (Johnson et al., 2002;
Soppe et al., 2002; Tariq et al., 2003; also reviewed in van Driel

et al., 2003). In addition to these chromatin modifications an
important role is also played by several protein classes, which
are known to establish the nature of het fractions. Of these pro-
teins the best characterized is the heterochromatin-protein 1
(HP1) initially discovered in Drosophila and present in many
other eukaryotic systems (Filesi et al., 2001; Grewal and Elgin,
2002; Cheutin et al., 2003). In parallel, recent findings demon-
strate the involvement of RNA interference of tandem repeats
in the maintenance of het domains (Finnegan and Matzke,
2003; Martienssen, 2003). A cascade of events that involves
ATP-dependent protein complexes and integrates both DNA
and histone chemical modifications have been proposed, mod-
ulating the conversion between eu- and heterochromatin con-
figurations (Grewal and Elgin, 2002).

The heterochromatic nature of ribosomal DNA arrays

Ribosomal RNAs (rRNAs), together with several classes of
protein complexes, build up the translation factory for protein
synthesis, the ribosomes. According to their Svedberg coeffi-
cient, rRNAs are named as 58S, 5.8S, 18S and 25/28S (25S in
plants; 28S in mammals; Sumner, 1990; Pederson and Politz,
2000). Of these, the 5.8, 18 and 25S rRNAs result from splicing
of a single 458 transcript encoded by rDNA repeated units clus-
tered at particular chromosomal loci the nucleolar organizing
regions — NORs (Fig. 1), whereas the 5S rRNA results from
transcription of different gene sets located in distinct chromo-
somal sites (Heslop-Harrison, 2000). For simplicity, and fol-
lowing general literature, rDNA will refer only to the genes cod-
ing the 45S primary transcript. Transcription of the rDNA
gives rise to the most conspicuous nuclear compartment, the
nucleolus; hence, the loci where rRNA genes are localized are
termed nucleolar organizing regions (McClintock, 1934; review
in Pikaard, 2002). The suspension of gene transcription during
mitosis results in the disappearance of the nucleolus in late pro-
phase in higher eukaryotes. Nevertheless, the activity of the
NOR loci at interphase can often be visualized at the following
metaphase as a secondary constriction (McClintock, 1934),
thought to reflect the necessary DNA decondensation that
allows the access of transcription machinery during interphase
(Jimenez et al., 1988). NORs that were engaged in nucleolus
formation retain in metaphase some of the proteins, related to
rRNA gene transcription (Roussel et al., 1996). The ability of
these proteins to reduce silver under acid conditions enables a
differential staining of mitotic NORs that were transcribed
during the preceding interphase, as well as the staining of
nucleoli in interphase nuclei (Goodpasture and Bloom, 1975;
Robert-Fortel et al., 1993).

The first key feature that enables the inclusion of the nucleo-
lar organizer regions as het loci is the repetitive nature of the
rDNA units. In most eukaryotes the number of rRNA genes is
largely redundant in relation to that required to sustain ribo-
some assemblage; hence only a small fraction of the rDNA
units are transcribed (Carmo-Fonseca et al., 2000). In pea, a
recent study demonstrated that only about 5% of the units are
transcribed (Gonzalez-Melendi et al., 2001), suggesting that the
majority of the rDNA units remain transcriptionally silent. In
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many species, this inactivation seems to involve a high level of
rDNA chromatin condensation. In situ hybridization with an
rDNA probe in interphase nuclei of cereals, pea and Arabidop-
sis, amongst other species, shows that the condensed rDNA
fraction is seen as chromatin blocks at the nucleolar periphery
(Fig. 2A; Leitch et al., 1992; Delgado et al., 1995; Shaw and
Jordan, 1995; Morais-Cecilio et al., 2000; Pontes et al., 2003).
Shaw et al. (1993) have demonstrated in pea that the perinu-
cleolar blocks can undergo decondensation and incorporation
into the nucleolus, which is directly related with nucleolar vol-
ume and hence, with transcriptional activity. Through BrUTP
incorporation assays in wheat, further evidence was obtained
that these rDNA knobs are transcriptionally silent (Santos, Sil-
va, Neves, Shaw, and Viegas, manuscript in preparation).
Using sequential silver staining and in situ hybridization in rye
nuclei it was found that the untranscribed rDNA units always
reside at the centromere proximal NOR domain (Fig. 2B;
Caperta et al., 2002), as was also reported for Saccharomyces
cerevisiae (Buck et al., 2002). Besides conspicuous blocks at the
nucleolar boundaries, condensed rDNA chromatin may also
appear inside the nucleolus, a feature that seems to be depen-
dent on the species concerned (Fig. 2A). For example, whereas
in wheat there are condensed rDNA foci inside the nucleoli
(Leitch et al., 1992; Morais-Cecilio et al., 2000; Santos, Silva,
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Fig. 3. Epigenetic markers on ribosomal chromatin.
Condensed perinucleolar blocks are enriched in histone
H3 methylated at lysine 9, and are densely methylated at
their rDNA gene promoters. The rDNA units available
for transcription have an intranucleolar allocation, and
show a low density of cytosine methylation at gene pro-
moters; histone H3 is barely methylated at lysine 9.



Neves, Shaw, and Viegas, manuscript in preparation), such
spots are not detected in rye (Delgado et al., 1995; Caperta et
al., 2002). In any case, these intranucleolar foci of condensed
ribosomal chromatin are also transcriptionally inactive (San-
tos, Silva, Neves, Shaw, and Viegas, manuscript in prepara-
tion), re-enforcing the idea that condensation of rDNA chroma-
tin is tightly related to rRNA gene silencing. These findings are
in agreement with the current model for NOR chromatin orga-
nization, in which a subset of rRNA genes is tightly packaged
and inaccessible to the transcription machinery, whereas
another fraction is transcribed (Carmo-Fonseca et al., 2000).

Chromatin modifications that usually mark het, such as
cytosine methylation, and post-translational changes in his-
tones, are also found within silenced rRNA gene arrays (Fig. 3).
For instance, heavy cytosine methylation is found in NORs,
and in several plant systems transcription of rRNA genes seems
to occur within gene arrays that are less methylated at their pro-
moters (Jupe and Zimmer, 1993; Neves et al., 1995; Pikaard,
2002). Furthermore, recent findings in Drosophila show that
histone modifications characteristic of het, such as H3mKO9,
are correlated with silencing of particular NOR loci (Ner et al.,
2002).

Findings in mammals revealed that although H3mK9 is
found in both constitutive and facultative het fractions (Peters
etal., 2001; Boggs et al., 2002), HP1 does not accumulate at the
facultative het (such as in the inactivated X chromosome in
female mammals; Peters et al., 2001). These observations sug-
gest the existence of an HP1-independent pathway intervening
in the formation of some facultative het domains. However,
indirect evidence of the involvement of HP1 in ribosomal chro-
matin organization was gained through the discovery in mice
and humans of a developmentally regulated protein (ARLS)
that interacts with HP1 complexes, and localizes to both nuclei
and nucleoli (Lin et al., 2002).

In parallel to what happens in classical het fractions, rDNA
arrays are subjected to chromatin remodelling mediated by
ATP-dependent engines. Nucleolar remodelling complex
(NoRCQ), a protein complex that includes a chromatin remod-
elling subunit (Strohner et al., 2001), is responsible for the mod-
ulation of rDNA silencing by recruiting DNA methyltransfer-
ase and histone deacetylase to the rDNA promoter (Santoro et
al., 2002). This concerted action was found to be responsible
for establishing the structural characteristics of het, such as
DNA methylation, and H3 histone hypoacetylation and meth-
ylation of the lysine 9 residue. Taken together, these results
indicate that rRNA genes exist in distinct chromatin conforma-
tions that can be discriminated by specific epigenetic codes
which modulate their expression patterns through the conver-
sion between non-available (het) and potential transcription
available configurations. It must however be emphasized that
single rRNA genes can be transcribed at equivalent rates to the
endogenous tandem arrays, organizing mini-nucleoli (Frieman
et al., 1999; Pikaard, 2002). Although these results seem not to
support the necessity of a het environment to allow transcrip-
tion of rRNA genes, it does not rule out the involvement of the
het surroundings in the modulation of rDNA expression pat-
terns. This relationship is further sustained by the differential
expression of NOR loci observed in both “pure” and polyploid
species, as discussed below.

Differential expression of NORs modulated by
establishment and maintenance of heterochromatic
domains

One of the most used systems to investigate rRNA genes in
active and inactive states are interspecific and intergeneric
hybrids. In many of these animal and plant hybrids, only one
parental set of rRNA genes retain the ability for nucleolus for-
mation, while the NORs of the other (under-dominant) species
are rendered silent, a phenomenon termed nucleolar domi-
nance. This situation was first described in Crepis hybrids by
Navashin (1934), and has been the scope of several recent
reviews (Pikaard, 2000, 2002; Viegas et al., 2002). The fact that
the process does not result from permanent damage of rDNA
sequences, as shown by the recovery of activity of under-domi-
nant NORs following appropriate backcrosses (Navashin,
1934; Chen et al., 1998; Pikaard, 1999), demonstrates that we
are in the presence of an epigenetic route. Combined molecular
and cytogenetic efforts allowed the proposal of several mecha-
nisms for establishing and enforcing nucleolar dominance (re-
view in Viegas et al., 2002). These mechanisms range from the
number and size of rRNA intergenic sequences, in that longer
spacers would be more effective in titrating the transcription
machinery; to concerted/evolutionary divergence of intergenic
rDNA sequences and RNA pol I transcription factors in a spe-
cies-specific manner. Although some experimental data sustain
these explanatory mechanisms, there are several cases contra-
dicting the general validity of these models. These “rules and
exceptions” have been thoroughly discussed elsewhere (Viegas
et al., 2002) and are beyond the scope of this review.

Chromatin modifications such as rDNA promoter methy-
lation and histone acetylation have shown to be integrated into
the modulation of rRNA gene activity. In wheat x rye F1 hybrids,
and in its amphiploid triticale, the rye-origin under-dominant
NORs are more methylated within intergenic spacer sequences
(Neves et al., 1995; Houchins et al., 1997). In Arabidopsis and
Brassica hybrids the same happens in the silent NOR loci (Chen
and Pikaard, 1997; Chen et al., 1998). Furthermore, seedling
treatments with the hypomethylating chemical 5-aza-2’-deoxy-
cytosine (5-AdC) induce reactivation of previously silenced
NORs in the wheat-rye system (Vieira et al., 1990; Neves et al.,
1995), and also in Arabidopsis (Chen et al., 1998) and Brassica
(Chen and Pikaard, 1997) allopolyploids. In Brassica hybrids
moreover, it was demonstrated that silent rRNA gene arrays can
be reactivated following treatment with the hyperacethylating
agent trichostatin (Chen and Pikaard, 1997).

The influence of DNA methylation and histone modifica-
tions in the silencing of rRNA genes is however restricted to the
chromosome environment. In Brassica hybrids normal and
methylated under-dominant rRNA minigenes (cloned in plas-
mid vectors) have equal capabilities for in vitro transcription
(Frieman et al., 1999). In Arabidopsis and Brassica intrageneric
hybrids, under-dominant rRNA minigenes are expressed in
hybrid protoplasts, whereas the chromosomal copies of these
genes remain untranscribed (Chen et al., 1998; Frieman et al.,
1999). These results confirm that chromatin-based genetic con-
tents bear an informational charge that marks their expression
profiles.
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Considering the exceptions to each of the putative mecha-
nisms involved in the establishment of nucleolar dominance in
hybrids, Viegas et al. (2002) recently proposed an unifying mod-
el for the initial discrimination between parental sets of rDNA
loci. This model arose from the integration of several lines of
evidence: (1) higher DNA contents represent higher amounts of
repetitive, non-coding sequences (i.e. the same sequences that
build up het) (Garagnaet al., 1997; Bennetzen, 2000; Redi et al.,
2001); (2) repetitive DNA sequences are more effective in titrat-
ing het-specific protein complexes, such as HP1 (Grewal and
Elgin, 2002; Saveliev et al., 2003); (3) the rDNA fraction is
arranged at the NORs, where hundreds to thousands of basic
rRNA gene units are repeated in tandem. Furthermore, the
presence of two genomes in the same nucleus can be envisioned
as adjusting each parental genome to a shared space. Concern-
ing this aspect, it should be stressed that the nuclear volumes of
polyploids are usually smaller than the addition of the parental
nuclear volumes (e.g. wheat x rye hybrids; Silva and Viegas,
unpublished results). Therefore, if a genome has less space
available in the hybrids nucleus, chromatin association is more
likely to occur, and to a greater extent in the larger (het richer)
genome, establishing a higher level of het-het interactions.
Hence, as the model points out, the silenced rDNA belongs
always to the larger genome, and the differential expression of
rRNA gene sets according to their parental origin is explained in
terms of relative het contents of the progenitor species. The
model that is consistent with all well described cases of nucleo-
lar dominance (namely in the Triticea, Arabidopsis, Xenopus
and Drosophila) makes use of the spatial and functional relation
between het fractions that are thoroughly described in many
systems. Long-range het interactions leading to gene silencing
are found in humans, where inactive genes in pre-B cells asso-
ciate with het gamma satellite, whereas active B cell genes do
not (Brown et al., 1997). Het associations linked to the regula-
tion of gene expression are extremely well documented in Dro-
sophila: for example, both the brown and white gene systems
show that silencing is stronger when they are placed together
with pericentromeric het (Talbert et al., 1994; Dorer and Heni-
koff, 1997). Concerning rRNA gene activity, it was shown that
Drosophila melanogaster NORs dominate over the rDNA loci
of D. simulans in hybrids (Durica and Krider, 1977). However,
rearrangements of the het fractions that flank the D. melanogas-
ter NORs enable transcription of the under-dominant (D. simu-
lans) rDNA loci, as well as allowing normal expression of the
D. melanogaster rRNA gene arrays (Durica and Krider, 1978).

This current model of the primary mechanism establishing
nucleolar dominance, along with the results lastly discussed,
point out to the functional importance of the het nature of the
rRNA gene arrays in the modulation of NOR transcriptional
activity.

Functional genomics of the rDNA fraction:
the importance of being het

Recent analysis of the expression and organization of rRNA
genes further sustains the view that het genomics can be gener-
ally applied to the analysis of the functional organization of the
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rDNA fraction. As a first insight to this relation, we may look
into the organization and expression of wheat major NORs.
Bread wheat is an allohexaploid species composed of three dif-
ferent genomes (A, B and D genomes). The NORs, located on
chromosomes 1B and 6B, account for 90% of the total nucleolar
volume in wheat nuclei, and hence are called major NORs
(Martini and Flavell, 1985). The 1B loci are responsible for
60% of the nucleolar mass, and bear half the number of rRNA
genes compared with the 6B loci (Flavell and O’Dell, 1976;
Flavell, 1986; Sardana et al., 1993). Therefore, the 6B loci have
more rDNA repeats and transcribe less, a characteristic com-
mon to het fractions. The physical organization of the 1B and
6B loci also correlates with this analysis. Mukai et al. (1991),
and Morais-Cecilio et al. (2000) have independently shown
that at metaphase the 1B locus has one centromere-proximal
condensed rDNA block, whereas the 6B NOR has two con-
densed blocks (centromere-proximal and distal blocks). This
metaphase configuration of 1B and 6B NORs also fits with
their organization at interphase, as demonstrated by Mukai et
al. (1991).

Another line of evidence that brings rDNA functional orga-
nization to the level of het genomics is the positional effects in
modulating NOR activity. An example of this relation is found
in barley where two co-dominant NORs exist, located on chro-
mosomes 6 and 7. In barley lines where these two NORs are
located in the same chromosome, due to a translocation involv-
ing the two NOR-bearing chromosomes at breakage sites far
from the rDNA loci, the NOR 6 becomes dominant (Schubert
and Kunzel, 1990). These investigators attribute this result to
positional effects that affect transcription of rDNA arrays.
More recently Briscoe and Tomkiel (2000) proved that chro-
mosome rearrangements in Drosophila that affect neither copy
number nor organization of the rDNA cause a reduction in the
amount of rRNA. The addition of Y heterochromatin lacking
rDNA arrays suppresses the transcriptional silencing of rRNA
genes in a manner that is reminiscent of the PEV phenomena
referred earlier. Furthermore, Caperta et al. (2002) found that
homologous NORs in rye have differential expression patterns
independently of the number of rDNA cistrons. In a chromo-
some structural variant rye line (used to identify the parental
origin of each NOR locus), it was demonstrated that homolo-
gous rDNAs have random differential expression, i.e. either
one or the other NOR is transcribed at higher levels in each cell
(Caperta et al., 2002). It is still unclear whether the random
inter-homologous NOR dominance results from differential
expression patterns established after each cell division, or from
patterns imposed early on in development and then main-
tained by epigenetic markers, recalling cell mosaicism pre-
viously described, namely for PEV phenomena (Platero et al.,
1998; Henikoff, 2000). Regardless of the need for tests that will
allow discrimination between these two possibilities, it is
known that in wheat-rye hybrids the rye-origin NORs remain
active following fertilization until the 5th day of embryo devel-
opment, thereafter being silenced (Castilho et al., 1995; Neves
et al., 1997). These results suggest that rDNA differential tran-
scription observed both in diploid and polyploid species may
be related to PEV and other het-mediated gene silencing pro-
cesses, in the sense of being developmentally dependent.



A more detailed developmental analysis reinforces the link
between rDNA and classical het behavior. In Drosophila, C-
bands only appear after the blastoderm stage, as no C-bands
can be detected on metaphase chromosomes during early em-
bryogenesis (Vlassova et al., 1991). In addition, pattern forma-
tion during Drosophila embryogenesis is shown to be under the
action of particular protein groups responsible for the establish-
ment of repressive chromatin states (Gould, 1997; Gerasimova
and Corces, 1998). Also in plants, the het contents are not stat-
ic: Ceccarelli and Cionini (1993) showed that the number and
size of interphase het domains are related to nuclear functional
activity and tissue differentiation. In parallel to this het dyna-
mism associated with developmental progression, nucleolar
activity also correlates with cell type and metabolic rates (Car-
mo-Fonseca et al., 2000; Leitch, 2000). In non-growing cells,
rRNA transcription is barely detected, while in growing cells
rDNA loci may account for 40-80% of total transcription (Pi-
kaard, 2002). Growth and hormonal regulation of RNA pol I
have also been described in both animals and plants (Jacob,
1995; Gaudino and Pikaard, 1997; Pikaard, 2002). Evaluation
of the nucleolar dominance process in plant hybrids also illus-
trates the characteristic reprogramming of het patterns associ-
ated with meiosis. In the wheat-rye system, the under-domi-
nant rye NORs are active in pollen grains following meiotic
reprogramming (Silva et al., 1995), and Pikaard and co-workers
demonstrated in Brassica hybrids that silent NORs become
active in the transition to the floral meristem (review in
Pikaard, 2000). Also, the largest nucleoli are formed in wheat
haploid microspores (Martini and Flavell, 1985). Therefore,
these findings link plant development with large-scale rDNA
chromatin remodelling.

After establishing that the regulation of rDNA expression
mechanisms matches the het functional genomics, a final note
should be added on the biological significance of rDNA silenc-
ing. In baker’s yeast (S. cerevisiae) the importance of rDNA
silencing is involved with silencing of transposable elements
that integrate into the NOR loci (Bryk et al., 1997); and with
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suppression of rDNA recombination (Gottlieb and Esposito,
1989), as also found in higher eukaryotes (Akhmanova et al.,
2000; Carmo-Fonseca et al., 2000; Pikaard, 2002). Another
emerging role for rDNA silencing is in the regulation of cellular
life span, where both features are associated in yeast with Sir2
protein dosage (Guarente, 2000). The Sir2 protein is a histone
deacetylase that makes part of the RENT complex that is
required for rDNA silencing, causing tight chromatin configu-
rations (Straight et al., 1999). In Caenorhabditis elegans, in-
creased dosage of SIR2 also extends organism life span (Tissen-
baum and Guarente, 2001). Hence, the het nature of the rDNA
may have a highly conserved function in life span and aging
through the modulation of a specialized ribosomal chromatin
structure (Buck et al., 2002).

Similar pathways in the plant kingdom have not yet been
analyzed. Nevertheless, it was recently found that the con-
densed pattern of rye rDNA characteristic of meristematic root
cells from young wheat-rye hybrid seedlings is modified in the
meristematic root cells of older plants (Silva and Viegas,
unpublished data). This aging-modulated change in ribosomal
chromatin configuration is associated with an increase in
nuclear area, indicating a regulation checkpoint that involves
overall chromatin compaction. Interestingly, as early as in 1934
Navashin reported that chromosomes are shorter in embryonic
Crepis roots than in adult roots. These findings disclose for the
first time a correlation between het dynamics and aging phe-
nomena in plants, and reinforce the interest in continuing the
analysis of the rDNA fraction as an effective model for under-
standing chromatin remodelling processes associated with de-
velopmental cues and epigenetics.

Acknowledgements

We are most grateful to Prof. Neil Jones for critical review of the manu-
script.

Akhmanova A, Verkerk T, Langeveld A, Grosveld F,
Galjart N: Characterisation of transcriptionally ac-
tive and inactive chromatin domains in neurons. J
Cell Sci 113:4463-4474 (2000).

Avramova ZV: Heterochromatin in animals and
plants. Similarities and differences. Plant Phys 129:
40-49 (2002).

Bennetzen JL: The many hues of plant heterochroma-
tin. Genome Biol 1: REVIEWS107 (2000).

Boggs BA, Cheung P, Heard E, Spector DL, Chinault
AC, Allis CD: Differentially methylated forms of
histone H3 show unique association patterns with
inactive human X chromosomes. Nat Genet 30:
73-76 (2002).

Briscoe A Jr, Tomkiel JE: Chromosomal position ef-
fects reveal different cis-acting requirements for
rDNA transcription and sex chromosome pairing
in Drosophila melanogaster. Genetics 155:1195-
1211 (2000).

Brown KE, Guest SS, Smale ST, Hahm K, Merken-
schlager M, Fisher AG: Association of transcrip-
tionally silent genes with Ikaros complexes at cen-
tromeric  heterochromatin. Cell 91:845-854
(1997).

Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfin-
kel DJ, Curcio MJ: Transcriptional silencing of
Tyl elements in the RDN1 locus of yeast. Genes
Dev 11:255-269 (1997).

Buck SW, Sandmeier JJ, Smith JS: RNA polymerase I
propagates unidirectional spreading of rDNA si-
lent chromatin. Cell 111:1003-1014 (2002).

Caperta A, Neves N, Morais-Cecilio L, Malh¢ R, Vie-
gas W: Genome restructuring in rye affects the
expression, organization and disposition of homol-
ogous rDNA loci. J Cell Sci 115:2839-2846
(2002).

Carmo-Fonseca M, Mendes-Soares L, Campos I: To be
or not to be in the nucleolus. Nat Cell Biol 2:107-
112 (2000).

Castilho A, Queiroz A, Silva M, Bardo A, Neves N, Vie-
gas W: The developmental stage of inactivation of
rye origin rRNA genes in the embryo and endo-
sperm of wheat x rye F1 hybrids. Chromosome Res
3:169-174 (1995).

Ceccarelli M, Cionini PG: Tissue-specific nuclear re-
patterning in plant cells. Genome 36:1092-1098
(1993).

Chen J, Comai L, Pikaard C: Gene dosage and stochas-
tic effects determine the severity and direction of
uniparental rRNA gene silencing (nucleolar domi-
nance) in Arabidopsis allopolyploids. Proc Natl
Acad Sci USA 95:14891-14896 (1998).

Chen ZJ, Pikaard CS: Epigenetic silencing of RNA
polymerase I transcription: a role for DNA methyl-
ation and histone modification in nucleolar domi-
nance. Gene Dev 11:2124-2136 (1997).

Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM,
Singh PB, Misteli T: Maintenance of stable het-
erochromatin domains by dynamic HP1 binding.
Science 299:721-725 (2003).

Copenhaver GP, Nickel K, Kuromori T, Benito M-I,
Kaul S, Lin X, Bevan M, Murphy G, Harris B, Par-
nell LD, McCombie WR, Martienssen RA, Marra
M, Preuss D: Genetic definition and sequence
analysis of Arabidopsis centromeres. Science 286:
2468-2474 (1999).

Delgado M, Morais-Cecilio L, Neves N, Jones RN, Vie-
gas W: The influence of B chromosomes on rDNA
organization in rye interphase nuclei. Chromo-
some Res 3:487-491 (1995).

Cytogenet Genome Res 109:104-111 (2005) 109



Dorer DR, Henikoff S: Expansions of transgene repeats
cause heterochromatin formation and gene silenc-
ing. Cell 77:993-1002 (1994).

Dorer DR, Henikoff S: Transgene repeat arrays interact
with distant heterochromatin and cause silencing
in cis and trans. Genetics 147:1181-1190 (1997).

Durica DS, Krider HM: Studies on the ribosomal RNA
cistrons in interspecific Drosophila hybrids. 1. Nu-
cleolar dominance. Dev Biol 59:62-74 (1977).

Durica DS, Krider HM: Studies on the ribosomal RNA
cistrons in interspecific Drosophila hybrids.
II. Heterochromatic regions mediating nucleolar
dominance. Genetics 89:37-64 (1978).

Felsenfeld G, Groudine M: Controlling the double
helix. Nature 421:448-453 (2003).

Filesi I, Cardinale A, van der Sar S, Cowell IG, Singh
PB, Biocca S: Loss of Heterochromatin Protein 1
(HP1) chromodomain function in mammalian
cells by intracellular antibodies causes cell death. J
Cell Sci 115:1803-1813 (2001).

Finnegan EJ, Matzke MA: The small RNA world. J Cell
Sci 116:4689-4693 (2003).

Flavell RB: The structure and control of expression of
ribosomal RNA genes. Oxford Surv Pl Mol Cell
Biol 3:251-273 (1986).

Flavell RB: Inactivation of gene expression in plants as
a consequence of specific sequence duplication.
Proc Natl Acad Sci USA 91:3490-3496 (1994).

Flavell RB, O’Dell M: Ribosomal RNA genes on ho-
moeologous chromosomes of groups 5 and 6 in
hexaploid wheat. Heredity 37:377-385 (1976).

Fransz PF, Armstrong A, de Jong JH, Parnell LD, van
Drunen C, Dean C, Zabel P, Bisseling T, Jones
GH: Integrated cytogenetic map of chromosome
arm 4S of A thaliana: structural organization of
heterochromatic knob and centromere region. Cell
100:367-376 (2000).

Frieman M, Chen ZJ, Saez-Vasquez J, Shen LA, Pi-
kaard CS: RNA polymerase I transcription in a
Brassica interspecific hybrid and its progenitors:
tests of transcription factor involvement in nucleo-
lar dominance. Genetics 152:451-460 (1999).

Garagna S, Perez-Zapata A, Zuccotti M, Mascheretti S,
Marziliano N, Redi CA, Aguilera M, Capanna E:
Genome composition in Venezuelan spiny-rats of
the genus Proechimys (Rodentia, Echimyidae).
1. Genome size, C-heterochromatin and repetitive
DNAs in situ hybridization patterns. Cytogenet
Cell Genet 78:36-43 (1997).

Gaudino RJ, Pikaard CS: Cytokinin induction of RNA
polymerase I transcription in Arabidopsis thaliana.
J Biol Chem 272:6799-6804 (1997).

Gerasimova TI, Corces VG: Polycomb and trithorax
group proteins mediate the function of a chromatin
insulator. Cell 92:511-521 (1998).

Gonzélez-Melendi P, Wells B, Beven A, Shaw PJ: Sin-
gle ribosomal transcription units are linear, com-
pacted Christmas trees in plant nucleoli. Plant J
27:223-233(2001).

Goodpasture C, Bloom SE: Visualization of nucleolar
organizer regions in mammalian chromosomes us-
ing silver staining. Chromosoma 53:37-50 (1975).

Gottlieb S, Esposito RE: A new role for a yeast tran-
scriptional silencer gene, SIR2, in regulation of
recombination in ribosomal DNA. Cell 56:771-
776 (1989).

Gould A: Functions of mammalian Polycomb group
and trithorax group related genes. Curr Opin Ge-
net Dev 7:488-494 (1997).

Grewal SIS, Elgin SCR: Heterochromatin: New possi-
bilities for the inheritance of structure. Curr Opin
Genet Dev 12:178-187 (2002).

Grewal SI, Moazed D: Heterochromatin and epigenetic
control of gene expression. Science 301:798-802
(2003).

Guarente L: Sir2 links chromatin silencing, metabo-
lism, and aging. Genes Dev 14:1021-1026 (2000).

Heitz E: Das Heterochromatin der Moose I. Jahrb Wiss
Biol 69:762-818 (1928).

Henikoff S: Heterochromatin function in complex ge-
nomes. Biochem Biophys Acta 1470:1-8 (2000).

Heslop-Harrison JS: Comparative genome organiza-
tion in plants: from sequence and markers to chro-
matin and chromosomes. Plant Cell 12:617-635
(2000).

Houchins K, O’Dell M, Flavell RB, Gustafson JP:
Cytosine methylation and nucleolar dominance in
cereal hybrids. Mol Gen Genet 255:294-301
(1997).

Jacob ST: Regulation of ribosomal gene transcription.
Biochem J 306:617-626 (1995).

Jimenez R, Burgos M, Diaz de la Guardia RA: Study of
the Ag-staining significance in mitotic NORs. He-
redity 60:125-127 (1988).

John B: The biology of heterochromatin, in Verma S
(ed): Heterochromatin, pp 1-147 (Cambridge Uni-
versity Press, Cambridge 1988).

Johnson L, Cao X, Jacobsen S: Interplay between two
epigenetic marks: DNA methylation and histone
H3 lysine 9 methylation. Curr Biol 12:1360-1367
(2002).

Jupe ER, Zimmer EA: DNase I sensitive and under-
methylated rDNA is preferentially expressed in a
maize hybrid. Plant Mol Biol 21:805-821 (1993).

Kunze B, Weichenhan D, Virks P, Traut W, Winking
H: Copy numbers of a clustered long-range repeat
determine C-band staining. Cytogenet Cell Genet
73:86-91 (1996).

Leitch AR: Higher levels of organization in the inter-
phase nucleus of cycling and differentiated cells.
Micro Mol Biol Rev 64:138-152 (2000).

Leitch AR, Mosgoller W, Shi M, Heslop-Harrison JS:
Different patterns of rDNA organization at inter-
phase nuclei of wheat and rye. J Cell Sci 101:751-
757 (1992).

Lin CY, Li CC, Huang PH, Lee FJ: A developmentally
regulated AFR-like 5 protein (ARLS), localized to
nuclei and nucleoli, interacts with heterochroma-
tin. J Cell Sci 115:4433-4445 (2002).

Martienssen R: Maintenance of heterochromatin by
RNA interference of tandem repeats. Nat Genet
35:213-214 (2003).

Martienssen R, Colot V: DNA methylation and epige-
netic inheritance in plants and fungi. Science 293:
1070-1074 (2001).

Martini G, Flavell R: The control of the nucleolus vol-
ume in wheat, a genetic study of three develop-
mental stages. Heredity 54:111-120 (1985).

Mathieu O, Picard, G, Tourmante S: Methylation of a
euchromatin-heterochromatin transition region in
Arabidopsis thaliana chromosome 5 left arm.
Chromosome Res 10:455-466 (2002).

McClintock B: The relationship of a particular chromo-
somal element to the development of the nucleoli
in Zea mays. Z Zellforch Mikrosk Anat 21:294-
328(1934).

McCombie WR, et al: The complete sequence of a het-
erochromatic island from a higher eukaryote. Cell
100:377-386 (2000).

Morais-Cecilio L, Delgado M, Jones RN, Viegas W:
Modification of wheat rDNA loci by rye B chromo-
somes: a chromatin organization model. Chromo-
some Res 8:341-351 (2000).

Mukai Y, Endo TR, Gill BS: Physical mapping of the
18S 26S rRNA multigene family in common
wheat: identification of a new locus. Chromosoma
100:71-78 (1991).

Navashin M: Chromosomal alterations caused by hy-
bridization and their bearing upon certain general
genetic problems. Cytologia 5:169-203 (1934).

Ner SS, Harrington MJ, Grigliatti TA: A role for the
Drosophila SU(VAR)3-9 protein in chromatin or-
ganization at the histone gene cluster and in sup-
pression of position-effect variegation. Genetics
162:1763-1764 (2002).

110 Cytogenet Genome Res 109:104-111 (2005)

Neves N, Heslop-Harrison JS, Viegas W: rRNA gene
activity and control of expression mediated by
methylation and imprinting during embryo devel-
opment in wheat x rye hybrids. Theor Appl Genet
91:529-533 (1995).

Neves N, Castilho A, Silva M, Heslop-Harrison JS, Vie-
gas W: Genomic interactions: gene expression,
DNA methylation and nuclear architecture. Chro-
mosomes Today 12:182-200 (1997).

Pederson T, Politz JC: The nucleolus and the four ribo-
nucleoproteins of translation. J Cell Biol 148:
1091-1095 (2000).

Peters AHFM, Mermoud JE, O’Carroll D, Pagani M,
Schweizer D, Brockdorff N, Jenuwein T: Histone
H3 lysine 9 methylation is an epigenetic imprint of
facultative heterochromatin. Nat Genet 30:77-80

(2001).

Pikaard CS: Nucleolar dominance and silencing of
transcription. Trends Plant Sci 12:478-483
(1999).

Pikaard CS: The epigenetics of nucleolar dominance.
Trends Genet 16:495-500 (2000).

Pikaard CS: Transcription and tyranny in the nucleo-
lus: the organization, activation, dominance, and
repression of ribosomal RNA genes, in Somerville
CR, Meyerowitz EM (eds): The Arabidopsis Book
(American Society of Plant Biologists, Rockville
MD 2002).

Platero JS, Csink AK, Quintanilla A, Henikoff S:
Changes in chromosomal localization of hetero-
chromatin-binding proteins during the cell cycle in
Drosophila. J Cell Biol 140:1297-1306 (1998).

Pontes O, Lawrence RJ, Neves N, Silva M, Lee J-H,
Chen ZJ, Viegas W, Pikaard CS: Natural variation
in nucleolar dominance reveals the relationship
between nucleolus organizer chromatin topology
and rRNA gene transcription in Arabidopsis. Proc
Natl Acad Sci USA 100:11418-11423 (2003).

Redi CA, Garagna S, Zacharias H, Zuccotti M, Capan-
na E: The other chromatin. Chromosoma 110:
136-147 (2001).

Richards EJ, Elgin SCR: Epigenetic codes for hetero-
chromatin formation and silencing: rounding up
the usual suspects. Cell 108:489-500 (2002).

Robert-Fortel I, Junéra HR, Géraud G, Hernandez-
Verdun D: Three-dimensional organization of the
ribosomal genes and Ag-NOR proteins during in-
terphase and mitosis in PtK1 cells studied by con-
focal microscopy. Chromosoma 102:146-157
(1993).

Roussel P, Andre C, Comai L, Hernandez-Verdun D:
The rDNA transcription machinery is assembled
during mitosis in active NORs and absent in inac-
tive NORs. J Cell Biol 133:235-246 (1996).

Santoro R, Li J, Grummt I: The nucleolar remodeling
complex NoRC mediates heterochromatin forma-
tion and silencing of ribosomal gene transcription.
Nat Genet 32:393-396 (2002).

Sardana R, O’Dell M, Flavell RB: Correlation between
the size of the intergenic regulatory region, the sta-
tus of cytosine methylation of rRNA genes and
nucleolar expression in wheat. Mol Gen Genet
236:155-162 (1993).

Saveliev A, Everett C, Sharpe T, Webster Z, Festen-
stein R: DNA triplet repeats mediate heterochro-
matin-protein-1-sensitive variegated gene silenc-
ing. Nature 422:909-913 (2003).

Schubert I, Kunzel G: Position-dependent NOR activi-
ty in barley. Chromosoma 99:352-359 (1990).
Shaw PJ, Jordan EG: The nucleolus. Annu Rev Cell

Devel Biol 11:93-121 (1995).

Shaw PJ, Rawlins DJ, Highett MI: Nuclear and nucleo-
lar structure in plants, in Heslop-Harrison JS, Fla-
vell RB (eds): John Innes Review — The Chromo-
some, pp 161-171 (Bios Scientific Publishers, Ox-
ford 1993).



Silva M, Queiroz A, Neves N, Bardo A, Castilho A,
Morais-Cecilio L, Viegas W: Reprogramming of
rye rDNA in triticale during microsporogenesis.
Chromosome Res 3:492-496 (1995).

Soppe W, Jasencakova JZ, Houben A, Kakutani T,
Meister A, Huang MS, Jacobsen SE, Schubert I,
Fransz PF: DNA methylation controls histone H3
lysine 9 methylation and heterochromatin assem-
bly in Arabidopsis. EMBO J 21:6549-6559 (2002).

Straight AF, Shou W, Dowd GJ, Turck CW, Deshaies
RJ, Johnson AD, Moazed D: Netl, a Sir2-associat-
ed nucleolar protein required for rDNA silencing
and nucleolar integrity. Cell 97:245-256 (1999).

Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U,
Santoro R, Langst G, Grummt I: NoRC - novel
member of mammalian ISWI-containing chroma-
tin remodeling machines. EMBO J 20:4892-4900
(2001).

Sumner AT: Nucleolar organizers (NORs), in: Chromo-
some Banding, pp 187-205 (Unwin Hyman Ltd,
London 1990).

Talbert PB, Leciel CDS, Henikoff S: Modification of
the Drosophila heterochromatic mutation brown-
Dominant by linkage alterations. Genetics
136:559-571 (1994).

Tarig M, Saze H, Probst AV, Lichota J, Habu Y, Pasz-
kowski J: Erasure of CpG methylation in Arabidop-
sis alters patterns of histone H3 methylation in
heterochromatin. Proc Natl Acad Sci USA 100:
8823-8827 (2003).

Tissenbaum HA, Guarente L: Increased dosage of a sir-
2 gene extends lifespan in Caenorhabditis elegans.
Nature 410:227-230 (2001).

van Driel R, Fransz PF, Verschure PJ: The eukaryotic
genome: a system regulated at different hierarchi-
cal levels. J Cell Sci 116:4067-4075 (2003).

Viegas W, Neves N, Silva M, Caperta A, Morais-Ceci-
lio L: Nucleolar dominance: a “David and Gol-
iath” chromatin imprinting process. Curr Genom-
ics 3:563-576 (2002).

Vieira R, Queiroz A, Morais L, Bario A, Mello-Sam-
payo T, Viegas W: 1R chromosome nucleolus or-
ganizer region activation by 5-azacytidine in
wheat-rye hybrids. Genome 33:707-712 (1990).

Vlassova IE, Graphodatsky AS, Belyaeva ES, Zhimulev
IF: Constitutive heterochromatin in early embryo-
genesis of Drosophila melanogaster. Mol Gen Ge-
net 229:316-318 (1991).

Weichenhan D, Kunze B, Traut W, Winking H: Evolu-
tion by fusion and amplification: the murine
Sp100-rs gene cluster. Cytogenet Cell Genet 80:
226-231(1998).

Cytogenet Genome Res 109:104-111 (2005) 111



Copyright: S. Karger AG, Basel 2005. Reproduced with the permission of 5. Karger
AG, Basel. Further reproduction or distribution (electronic or otherwise) is prohibited
without permission from the copyright holder.



Copyright: S. Karger AG, Basel 2005. Reproduced with the permission of 5. Karger
AG, Basel. Further reproduction or distribution (electronic or otherwise) is prohibited
without permission from the copyright holder.





