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 M.EERI 4 

The Uniform California Earthquake Rupture Forecast version 3-Time 5 

Dependent depicts California’s seismic faults and their activity. Its logic tree has 6 

5,760 leaves. Considering 30 more model combinations related to ground motion 7 

produces 172,800 distinct models representing so-called epistemic uncertainties. 8 

To calculate risk to a portfolio of buildings, one also considers millions of 9 

earthquakes and spatially correlated ground-motion variability. We offer a tree-10 

trimming technique that retains the probability distribution of portfolio loss. We 11 

applied it to a California statewide building portfolio and various levels of 12 

nonexceedance probability between 1 in 100 and 1 in 2,500. We trimmed the logic 13 

tree from 172,800 leaves to as few as 15. The result: a supercomputer that would 14 

otherwise run 24 hours to estimate the distribution of 1-in-250-year loss can 15 

calculate it in moments with the reduced-order model. Others can use the reduced-16 

order model to calculate risk to different California portfolios, and scientists can 17 

prioritize study to reduce the remaining epistemic uncertainty.   18 

INTRODUCTION 19 

Why the size of the UCERF3-TD logic tree matters. The Uniform California Earthquake 20 

Rupture Forecast version 3-Time Dependent (UCERF3-TD, Field et al. 2015) mathematically 21 

models seismic activity in California. UCERF3-TD can be represented using a logic tree with 22 

eight modeling choices—branches in the logic tree—often called epistemic uncertainties. 23 

Branches have as few as two and as many as five discrete possible values. The choices allow 24 

for 5,760 combinations. Counting three more logic-tree branches for aspects of ground motion 25 

prediction, UCERF3-TD with a full ground-shaking model has 172,800 combinations of 11 26 
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model elements. One must choose one option for each model element before one can calculate 27 

loss in a single earthquake. Each set of choices can produce a different value of loss.  28 

With 172,800 choices, each with an associated probability of being the right choice and 29 

each capable of giving a different answer, the loss takes on a probability distribution. Its range 30 

of possible values spans an order of magnitude, i.e., a multiplicative error of 3 or more either 31 

way. Multiply by the so-called aleatory uncertainties of the between-events ground-motion 32 

variability, spatially correlated within-event ground-motion variability, and approximately 33 

6,000,000 possible earthquake ruptures, and one can glimpse how robust calculation of the risk 34 

to a large portfolio of properties can grow prohibitively computationally expensive for anyone 35 

without access to a supercomputer. How large can a portfolio get? We estimate that the state 36 

of California has on the order of 10 million buildings.  37 

State policymakers and insurance executives might want to know the monetary loss or 38 

number of fatalities with some specified rare but inevitable likelihood, such as the loss with 1 39 

chance in 500 of happening next year. Few people have the resources to calculate the 40 

probability distribution of loss without making simplifying assumptions that might lead to a 41 

gross over- or under-estimate of the value with 0.2% chance of happening next year.  42 

Some decision-makers can tolerate an answer that could be low or high by a factor of 3, 43 

but many cannot. Large insurers must buy reinsurance to be confident that a rare earthquake 44 

has a low chance of bankrupting them. Reinsurance can represent half of an insurer’s annual 45 

budget (California Earthquake Authority 2022). If they buy 1/3rd as much as they need, they 46 

risk ruining themselves and their insureds through their inability to pay claims. If they buy 47 

three times too much, they must double the premiums they charge policyholders, which merely 48 

accelerates their bankruptcy when insureds cancel their policies. To make the right choice with 49 

confidence requires knowing the probability distribution of loss.  50 

In two prior works that we discuss later, we offer new methods for trimming an earthquake 51 

rupture forecast logic tree to reduce computational effort without reducing uncertainty or 52 

biasing an estimate of expected annualized loss. In the present work, we revisit those methods 53 

with a similar goal, but considering large, rare losses rather than average annualized losses.  54 

Objectives. The branches of the logic tree contribute unequally to loss uncertainty. Some 55 

contribute greatly to uncertainty, some do not. If one can find out which is which, one can fix 56 

the less-important modeling choices to a single value. If one can eliminate a branch with three 57 



 

choices, one reduces the size of the model by 3 times. Fix two logic-tree branches and the 58 

problem gets smaller by 9 times, requiring 1/9th the computational effort. Fix another and the 59 

problem is smaller by 27 times, requiring only 4% of the computational effort as before.  60 

Mathematicians call that process “model order reduction.” Refer toSchilders et al. (2008) 61 

for general treatment. The goal of model order reduction is to find and fix as many branches of 62 

the logic tree as possible without changing the probability distribution of loss. Mathematicians 63 

have developed a rich body of model order reduction techniques. Most of them only work with 64 

scalar random variables, i.e., one-dimensional numbers that have scale such as the maximum 65 

earthquake magnitude that can occur away from a mapped fault. But between UCERF3-TD’s 66 

native earthquake-rupture branches and the additional ground-motion model elements, 7 of 11 67 

logic-tree branches for a statewide risk calculation are nominal random variables.  68 

A nominal random variable can take on values with no scale or order, no average, no 69 

standard deviation. For example, in one branch of UCERF3-TD, one chooses between five 70 

models of the relationship among slip length, rupture area, and magnitude. Each model 71 

corresponds to a different scholarly article. One chooses between the five articles. There is no 72 

sense in which the articles have a meaningful order or scale. Most existing model-order-73 

reduction techniques do not apply to models with nominal random variables.  74 

Here, we seek to select a single option for as many branches of UCERF3-TD plus the added 75 

ground motion uncertainties as we can, without changing the probability distribution of 76 

statewide portfolio loss each year with 1 chance in 100, 1 in 250, 1 in 400, 1 in 550, and 1 in 77 

2,500. How does doing so help anyone? Our goals are twofold: 78 

(1) Make the calculation of portfolio loss easier for other people who have different portfolios 79 

and no supercomputer. If they can ignore some branches, they can perform robust risk 80 

calculations that would otherwise take too long. That is, we aim to find a subset of logic 81 

tree branches in the present work that other people can use in their loss estimates so that 82 

they do not have to model all the logic tree branches of UCERF3-TD.  83 

(2) Find the UCERF3-TD model variables that contribute most to uncertainty. Further study 84 

of those branches might yield new knowledge and reduce epistemic uncertainty. 85 

Although we apply our solution to UCERF3-TD, it could apply to other problems: to future 86 

California earthquake hazard risk models, to earthquake models outside of California, to 87 



 

catastrophe risk models for other perils, and perhaps to other models with a mixture of nominal 88 

and scalar random variables.  89 

LITERATURE REVIEW 90 

UCERF3-TD logic tree. Let us first review the UCERF3-TD logic tree, then review model 91 

order reduction techniques. Field et al. (2013) offer a new earthquake rupture forecast for 92 

California: the Uniform California Earthquake Rupture Forecast version 3, Time-Independent, 93 

or UCERF3-TI. It has seven uncertain model components arranged in a logic tree. Each branch 94 

has two to five choices, each with a weight (a degree of belief or Bayesian probability). Field 95 

et al. (2015) add an eighth element to model aperiodicity in earthquake recurrence that makes 96 

the model time-dependent (hence the name Uniform California Earthquake Rupture Forecast 97 

version 3, Time-Dependent, or UCERF3-TD). Refer to Figure 1. Of the eight uncertain 98 

parameters, only three are scalar: total event rate of earthquakes of magnitude 5 or greater, 99 

maximum off-fault magnitude, and aperiodicity. We detail UCERF3-TD later. 100 

 101 
Figure 1. UCERF3-TD logic tree. Each branching point represents an uncertain variable; each branch 102 
a possible value. 103 

Model order reduction techniques. Size limitations prevent a thorough review of model 104 

order reduction techniques, but a summary seems useful. They fall into five classes: proper 105 



 

orthogonal decomposition, reduced bias, simplified physics, nonlinear dimensionality 106 

reduction, and balancing methods. Proper orthogonal decomposition (e.g., Loeve 1955) 107 

requires one to evaluate and operate on a covariance matrix and find a smaller number of 108 

eigenvalues and eigenvectors, essentially changing n potentially correlated random variables 109 

into fewer than n uncorrelated ones. But there is no such thing as a correlation matrix for 110 

nominal random variables. The reduced-bias technique (e.g., Prud’homme et al. 2002) operates 111 

on linear functions of elliptic and parabolic partial differential equations; again, only scalar 112 

variables. A simplified-physics approach replaces a complex model with a simpler one using 113 

physical insight or empirical observation, which seems unhelpful to choosing between the 114 

modeling options considered here, which are already physically based and empirically 115 

supported. Balancing methods involve diagonalization of positive definite matrices (e.g., 116 

Antoulas 2005), again a problem limited to scalar values. Some nonlinear dimensionality 117 

reduction techniques might accommodate nominal variables: Graeme Weatherill (GFZ 118 

German Research Centre for Geosciences, written commun., November 8, 2023) suggests that 119 

t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and 120 

projection (UMAP) could accommodate nominal variables. One can encode the nominal 121 

dimensions numerically such as with binary variables representing each category. Refer to e.g., 122 

McInnes et al. (2020) appendix C and Awan (2023). These methods might work, but the one 123 

we have in mind seems simpler, at least to us, and we know it works with OpenSHA (Field et 124 

al 2005), the software that encodes UCERF3-TD. 125 

To reduce the computational expense of UCERF3-TD, some authors have replaced the 126 

earthquake rupture forecast with a Monte Carlo time series called an event set. That is, one 127 

creates a sequence of scenario earthquakes spread over thousands of years or more, consistent 128 

with the earthquake rupture forecast. For example, Perkins and Taylor (2003) use a 50,000-129 

year event set to estimate risk to a roadway system. They find the effort highly computationally 130 

demanding and attempt a variety of model order reduction techniques, including bootstrap 131 

sampling, the use of antithetic variates, the use of Latin Squares (or permutation) sampling, the 132 

use of control functions, a compound Poisson approach, and importance sampling. They 133 

achieved large reductions in the required number of simulations for the mean and confidence 134 

limits of the conditional loss distribution (the loss distribution given some loss in a specific 135 

year), but only a threefold reduction for the unconditional, annual-loss distribution.  136 



 

Kotha et al. (2018) offer a method to select an event set by matching the mean hazard at 137 

selected locations. Using six small portfolios of buildings in the San Franisco Bay Area, they 138 

show that they can reasonably reproduce average annualized losses and the loss exceedance 139 

curves generated by a catalog that represents a reduced version of the UCERF2 earthquake 140 

rupture forecast (Field et al. 2007). Event sets can reduce computational effort, but they shed 141 

no light on which branches of the logic tree matter to the distribution of loss, a central objective 142 

of the present work.  143 

In prior work (Porter et al. 2012) we applied a deterministic sensitivity analysis technique 144 

called tornado-diagram analysis meant to identify the important variables in UCERF2 (Field 145 

et al. 2007). In Porter et al. (2017), we offer new a model order reduction technique that works 146 

on models with nominal random variables. We applied it to UCERF3-TD, using the expected 147 

annualized loss, EAL, to a proxy for the California Earthquake Authority’s (CEA) statewide 148 

insurance portfolio. (EAL measured ground-up repair cost rather than insured loss after 149 

deductibles and limits.) We found a reduced-order model that required evaluating 60 leaves 150 

out of 57,600. Why not 172,800? Because in that work, we ignored a variable called added 151 

epistemic uncertainty recommended by Atik and Youngs (2014). 152 

METHODOLOGY 153 

Evaluate the model output for one logic-tree leaf. One begins by selecting an asset 154 

portfolio and evaluating the portfolio loss exceedance curve for one logic-tree leaf. That is, fix 155 

every branch to one value and evaluate loss in each rupture in the UCERF3-TD model. 156 

Calculate the loss exceedance curve as follows. Let 157 

Na = number of assets in the portfolio 158 

a = an index to assets in the portfolio, a  {0, 1, … Na – 1}  159 

Va = replacement cost of asset a 160 

V = replacement cost of the portfolio; refer to equation (1) 161 
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Nk = number of possible ruptures among full UCERF3-TD model 163 

k = an index to scenario ruptures (“ruptures”), k  {0, 1, … Nk – 1}  164 

Xa|k = uncertain ground motion at asset a given rupture k 165 



 

x = ground motion, e.g., 5% damaged elastic spectral acceleration response at 1.0 sec period  166 

fXa|k(x) = probability density function of Xa|k, evaluated at x, given by the ground-motion-167 

prediction equation, as in equation (2), in which  denotes the Gaussian probability density 168 

function. Ground-motion-prediction equations generally assume lognormally distributed 169 

ground motion conditioned on rupture and site parameters, and provide a median and 170 

logarithmic standard deviation, denoted here by 
aX and 

aX .  171 
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ya(x) = mean repair cost as a fraction of replacement cost for asset a, given ground motion x. 173 

This quantity is evaluated using a vulnerability function (e.g., Porter 2009a, b, and 2010).   174 

L,|k = expected value of portfolio loss L given rupture k. For portfolios with assets that are 175 

spaced less than a few kilometers apart, within-event spatial correlation of ground motion 176 

matters. One can sample over N values of the between-event ground-motion variability 177 

and Nf spatially correlated random fields of within-event ground-motion variability, and 178 

apply equation (3). In the equation, i is an index to between-event values, j is an index to 179 

stochastic simulations of within-event variability, xai,j is the ground motion at asset a given 180 

between-event term i and within-event simulation j, and w i denotes the weight applied to 181 

between-event value i. Refer to Porter et al. (2024) for details of the spatially correlated 182 

ground motions and for a simplification to equation (3).  183 
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 (3) 184 

L = uncertain portfolio loss 185 

l = a value of L   186 

L|k = coefficient of variation of portfolio loss in rupture k. Refer to Porter et al. (2024) for a 187 

method to estimate L|k as a function of L|k. As others have found for individual assets 188 

(e.g., Porter 2010), portfolio loss uncertainty decreases with increasing portfolio loss, as in 189 

the equation (4). In the equation, the coefficient 1000/V normalizes the mean loss in terms 190 

of loss per $1000 of replacement cost, a loss measure sometimes used in the catastrophe-191 

risk modeling industry. Porter et al. (2024) presents a regression analysis that suggests the 192 



 

following values for c1 and c2. The resulting curve gradually drops from 2 (at low portfolio 193 

loss) to 0.5 (at high portfolio loss).  194 

c1 = a parameter for estimating L|k = 0.9832 195 

c2 = a parameter for estimating L|k  = -0.117 196 
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L|k = median value of portfolio loss L given rupture k, assuming that L is approximately 198 

lognormally distributed; refer to equation (5). Porter et al. (2024) offers evidence. 199 
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  (5) 200 

L|k = standard deviation of the natural logarithm of portfolio loss L given rupture k, assuming 201 

that L is approximately lognormally distributed. Refer to equation (6). 202 

 ( )( )2

| |ln 1L k L k = +   (6) 203 

rk = rate at which rupture k occurs, given the choice of logic tree leaf. The earthquake rupture 204 

forecast (e.g., Field et al. 2015) provides rk. The reader may wonder how rate comes from 205 

a time-dependent model. Here, rk is the equivalent Poisson rate implied by the chosen start 206 

date and duration of the forecast. 207 

G(l) = number of earthquakes per year producing L ≥ l. The relationship between G(l) and l is 208 

often called the loss exceedance curve. By the theorem of total probability, the rate is the 209 

sum of event rates rk times probability that the loss in rupture k is greater than or equal to 210 

l, as shown in equation (7). 211 
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Lp = loss with a specified exceedance rate, rather than the exceedance rate of some value of 213 

loss. It is the inverse of the loss exceedance curve evaluated at p, as shown in equation (8) 214 

 ( )1

pL G p−=   (8) 215 

Evaluate the cumulative distribution function of the full model output. Let 216 

Z = number of leaves in the original model 217 



 

j = an index to leaves, j  {0, 1, … Z – 1} 218 

wj = weight of leaf j in the full model. The earthquake rupture forecast (e.g., Field et al. 2015) 219 

specifies leaf weights. 220 

Lp,j = loss associated with exceedance frequency p in logic-tree leaf j, from equation (8). Note 221 

that each leaf j can have a different loss exceedance curve and therefore a different value 222 

of loss associated with exceedance frequency p, and therefore a probability distribution of 223 

Lp, as illustrated in Figure 2. The figure shows a suite of loss exceedance curves for many 224 

logic-tree leaves. It also shows a horizontal line at some exceedance rate p of interest (0.004 225 

per year), and a probability density function of Lp. The probability density function has 226 

some mean value that we could denote by Lp and a coefficient of variation denoted by Lp. 227 

It will not be necessary to assume a parametric form of the distribution of Lp such as normal 228 

or lognormal.   229 

 230 
Figure 2. Illustration of the probability density function (PDF) of Lp. The colored curves represent loss-231 
exceedance curves for different logic-tree leaves. The present model-order-reduction effort aims to 232 
reduce the number of possible loss exceedance curves (thereby simplifying the model and reducing 233 
computational effort) without strongly affecting the PDF of large, rare loss. 234 

𝐹𝐿𝑝(𝑙) = cumulative distribution function for Lp in the full model using equation (9), in which 235 

H is the Heaviside function, as shown in equation (10). 𝐹𝐿𝑝(𝑙) has a mean value given by 236 

equation (11), variance by equation (12), and coefficient of variation by equation (13).  237 
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Evaluate the loss exceedance curve for a reduced-order model. Here is how to evaluate 243 

the exceedance curve for a reduced model and to measure the error in loss with a specified 244 

exceedance rate Lp. 245 

Ij = a binary indicator (1,0) whether a reduced model includes (Ij = 1) or excludes (Ij = 0) logic-246 

tree leaf j 247 

z = model size of reduced model, meaning the number of leaves in it, by equation (14). 248 
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c0 = normalizing constant for weights in the reduced-order model, using equation (15). 250 
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Now find the cumulative distribution function of Lp in the reduced model:  252 

( )ˆ
pLF l  = cumulative distribution function for Lp in reduced model, by equation (16), which 253 

has an expected value given by equation (17), variance given by equation (18), and 254 

coefficient of variation given by equation (19).  255 
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Now we check the goodness of fit for the reduced-order model, that is, how well 𝐹̂𝐿𝑝 260 

matches that of the full model, 𝐹𝐿𝑝. One calculates the maximum difference in the cumulative 261 

distribution functions, Dn, as in equation (20), and checks that satisfies inequality (21). To 262 

apply the two-sample Kolmogorov-Smirnov goodness-of-fit test at the 1% significance level, 263 

use cks = 1.63; at the 5% significance level, cks = 1.36. It is also desirable to ensure that errors 264 

in the mean and coefficient of variation of Lp, defined by equations (22) and (23) respectively, 265 

are both less than some reasonable limit, say 5%; refer to inequalities (24) and (25). If the 266 

reduced model passes the test specified in equation (21), we can reject at the 1% significance 267 

level that the two distributions differ. If it fails equation (24), the reduced model is drifting too 268 

far in the mean, even if the Kolmogorov-Smirnov test says that it and the full model are still 269 

drawn from the same distribution. If it fails equation (25), the reduced model is (probably) 270 

getting too certain, even if the Kolmogorov-Smirnov test says it is drawn from the same 271 

distribution.  272 
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Path search. With the foregoing equations, we can apply the path-search technique from 279 

Porter et al. (2017) to model order reduction for Lp.  280 

1. Evaluate 𝐹𝐿𝑝(𝑙), pL
 , and 

pL
  for the full model as shown in equations (1) through (13). 281 

2. Let a denote an index to independent variables and b denote an index to their possible 282 

values. For each (a, b) pair, fix variable a at value b. For each leaf j, calculate Dn, , and 283 



 

 from equations (20), (22), and (23), where Ij = 1 if the leaf has variable a equal to value 284 

b, or Ij = 0 if otherwise.   285 

3. Trim the first branch (c = 0) by selecting the (a, b) pair with the smallest value of Dn that 286 

satisfies the goodness-of-fit test in inequality (21) and inequalities (24) and (25). Fix 287 

variable a at value b. Variable a is no longer a free variable. One can say the model has 288 

been reduced by variable a. Record the model size z of the model with one trimmed branch.  289 

4. Trim the second branch (c = 1) by repeating steps 2 and 3 starting with the reduced model 290 

from step 3, but allowing every remaining (a,b) pair where a has not already been fixed.  291 

5. Repeat until all branches are fixed (c = 2, 3, ... Nc – 1) where Nc is the number of branches 292 

in the logic tree.  293 

APPLICATION TO UCERF3-TD TREE TRIMMING PROBLEM 294 

Independent variables: branches of UCERF3-TD plus three ground-motion branches. 295 

To estimate ground motion, we add three uncertainties not shown in Figure 1: site 296 

characteristics (which model of Vs30—average shear-wave velocity in the upper 30 m of 297 

soil—to use), which of five ground-motion-prediction equations to use, and how much 298 

epistemic uncertainty to add. Note that Field et al. (2020) suggest that added epistemic 299 

uncertainty is improperly posed and may exert a large, unjustified influence on results, but we 300 

still included it here. 301 

Table 1 summarizes the independent variables considered here: their type (scalars, denoted 302 

by S, ordinals, denoted by O, and nominal, denoted by N), their possible values, weights (that 303 

is, their conditional probabilities in a Bayesian sense), and a brief description. The description 304 

explains to the reader who is unfamiliar with UCERF3-TD what each variable represents. The 305 

description includes notes about how influential one might expect the variable to be on overall 306 

uncertainty in rare portfolio loss. These notes are largely drawn from observations by Field et 307 

al. (2013) on the influence each variable has on peak ground acceleration with 2% exceedance 308 

probability in 50 years.  309 

Table 1. Independent variables, variable types, possible values, weights, and descriptions 310 

A 
Variable 
(branch) name  

Type b Possible value1 w Description. See Field et al. (2013) Table 15 for maps of size and extent of effects. 

0 Fault model N 0 FM 3.1 0.5 Geometry of larger, more active faults. FM3.1 has 2,606 subsection and 253,706 multi-

subsection ruptures; FM3.2, 2,665 and 305,709.  1 FM 3.2 0.5 

1 Deformation 

model 

N 0 Geol 0.3 Slip rates and related factors for each fault section; strain accumulation before fault 

rupture; energy released. Reflects approach to handling earthquake dynamics. 

Significant effects on 2%/50-year PGA (25%) over many large regions (≥200 km). 

Geol and ZengBB are closer to UCERF3.3 average than others. 

1 ABM 0.1 

2 NeoK 0.3 

3 ZengBB 0.3 



 

A 
Variable 

(branch) name  
Type b Possible value1 w Description. See Field et al. (2013) Table 15 for maps of size and extent of effects. 

2 Scaling 

relationship 

N 0 SHAW 09m 0.2 Relates earthquake magnitude to rupture surface area or to area and rupture aspect ratio 

(length divided by width). Also relates slip length to rupture length and width. Effects 

are modest (12%) but affects many large regions (≥200 km). ELL B SQL and SHAW 

09m closer to UCERF3.2 average 2%/50-year PGA than others.  

1 ELL B 0.2 

2 H&B 08 0.2 

3 ELL B SQL 0.2 

4 SHAW CSD 0.2 

3 Slip along 

rupture 

N 0 Tapered 0.5 Relates fault slip to location along rupture. Very little influence: modest effect (12%) 

in a few (~5) local (≤100 km) areas.  1 Boxcar 0.5 

4 Total M>5 

event rate yr-1 

S 0 6.5 0.1 Small (5%) effect throughout much of California, but mostly away from metro areas. 

7.9 closest to UCERF3.3 average 2%/50-year PGA.  1 7.9 0.6 

2 9.6 0.3 

5 Maximum off-

fault 

magnitude 

S 0 7.3 0.1 Maximum magnitude of earthquakes away from mapped faults. Almost no noticeable 

influence on 2%/50-year PGA from any of the three models.  1 7.6 0.8 

2 7.9 0.1 

6 Off-fault spatl 

seism PDF 

N 0 UCERF2  0.5 Depicts the spatial distribution of off-fault gridded seismicity. Significant (25%) 

influence throughout much of California, but mostly away from metro areas.  1 UCERF3  0.5 

7 Earthquake  

probability  

model  

N 0 Low COV  0.1 Estimates how ready each fault segment is to rupture given stress accumulation since 

last rupture. Probabilities are lower on faults with recent large earthquakes. Mid to high 

coefficient of variation (COV, aperiodicity) likely closer to average than the other, more 
extreme, options. 

1 Mid COV  0.4 

2 High COV  0.3 

3 Poisson 0.2 

8 Vs30 model N 0 Wills (2015) 0.5 Average shear-wave velocity in upper 30 m of soil using correlation between observed 
Vs30 and geologic unit (Wills et al. 2015) or topographic slope (Wald and Allen 2007). 1 Wald Allen 

(2007) 
0.5 

9 Ground-

motion- 
prediction  

equation 

N 0 ASK2014 0.22 Relates ground motion (e.g., 5% damped spectral acceleration response) to magnitude, 

distance, fault attributes, and site conditions. BSSA2014 and CY2014 tend to be closer 
to the average of the four for common conditions in the middle distance (10-30 km) for 

a large (M7.8) earthquake on common site conditions (Vs30 = 300 m/sec, D1.0 = 100 

m, D2.5 = 1 km). Significant (25%) influence statewide. 

1 BSSA2014 0.22 

2 CB2014 0.22 

3 CY2014 0.22 

4 IDR2014 0.12 

10 Added 

epistemic  

uncertainty 

S 0 Low 0.185 Adds ground motion uncertainty to account for collaboration among the NGAWest-2 

developers and their use of common sets of statistical analyses and simulations to 

constrain parts of the models. Likely to have significant statewide effect. 
1 Med 0.630 

2 High 0.185 

1. Abbreviations per Field et al. (2013) 311 

Variables 0 through 7 are elements of UCERF3-TD. They represent 2 × 4 × 5 × 2 × 3 × 3 312 

× 2 × 4 = 5,760 possible combinations. To calculate the repair cost to a portfolio of buildings 313 

requires additional variables 8 through 10, that is, variables that are exogenous to UCERF3-314 

TD but endogenous to the (broader) loss model used here to trim the UCERF3-TD logic tree 315 

using losses. Variables 8, 9, and 10 have 2 × 5 × 3 = 30 possible combinations, for a total of 316 

172,800 model leaves when combined with the UCERF3-TD leaves. Of the 11 variables, four 317 

(numbers 4, 5, 7, and 10) involve scalar quantities and the others are nominal, that is, a choice 318 

among values with no order or scale. To calculate repair cost for a single scenario or for a loss 319 

exceedance curve also requires inputs that one could consider independent variables: 320 

Portfolio. We considered a portfolio of buildings similar in composition, value, and 321 

geographic distribution to the one insured by the California Earthquake Authority, the state’s 322 

largest insurer of earthquake risk to residences. The portfolio represents an estimate of the 323 

assets exposed to risk. Each asset is parameterized with its geographic location, site conditions 324 

(Vs30), replacement cost new (the cost to build a new facility approximately functionally and 325 

aesthetically equivalent to the existing one), and a building type.  “Building type” is often 326 

parameterized (as it is here) by structural material (e.g., wood), lateral force resisting system 327 

(e.g., shearwall), height category (e.g., 1-3 stories), and era of construction (e.g., pre-1940). 328 



 

We estimated the inventory of woodframe single-family dwellings in California using a 2002-329 

era database in Hazus-MH (Federal Emergency Management Agency 2012), factored up on a 330 

statewide basis to account for population growth and construction costs, and then factored 331 

down on a county-by-county basis to account for the California Earthquake Authority’s market 332 

penetration rate—that is, the fraction of homes they insure. We use a fixed value of the 333 

portfolio, rather than varying it. In the present case, the portfolio has an estimated replacement 334 

cost new of $483 billion (2019 USD).  Refer to the research data statement for the portfolio 335 

data. 336 

Vulnerability functions. These relate ground motion to mean repair cost (and sometimes 337 

variability) as a fraction of replacement cost new. We used Hazus-based vulnerability functions 338 

from Porter (2009a, b, 2010). Vulnerability functions can be considered a variable that we 339 

fixed. Other models are available, but to vary the vulnerability functions seems relatively 340 

unimportant for the present objective of trimming the UCERF3-TD logic tree.   341 

RESULTS FOR LOSS L WITH VARIOUS EXCEEDANCE PROBABILITIES 342 

Insurers commonly evaluate liquidity at the 1-in-250-year mark (p = 0.004 per year) 343 

primarily because of rating agencies’ target and stress-test levels since the 2004/2005 hurricane 344 

seasons. That target assumes an insurer with several lines of business in several states, which 345 

provide diversification benefits. The California Earthquake Authority is different for exactly 346 

these reasons: one line of business, one state, all catastrophe risk. The California Earthquake 347 

Authority’s current risk-transfer strategy approved by its board (and revealed in the public 348 

domain) is to maintain a minimum of 1 in 400 and a maximum of 1 in 550-year claim-paying 349 

capacity (here, p = 0.0025 to 0.0018). Therefore, we evaluate p  {0.01, 0.004, 0.0025, 0.0018, 350 

0.0004}. Refer to Porter et al. (2024) for more details. 351 

Table 2 summarizes results. Columns reflect probability levels. Rows show independent 352 

variables organized from least to most important. The least important can be trimmed from all 353 

models without significantly affecting the probability distribution of the dependent variable. 354 

Where a variable can be trimmed, the table shows the value to which it can be set. Some 355 

variables always strongly influence the dependent variable. Some only affect the dependent 356 

variable for some probabilities. The maximum off-fault earthquake magnitude can be set to 7.6 357 

in all cases. The fault model can also be fixed in all cases, but the preferred value is FM3.1 in 358 

some cases and FM3.2 in others. One variable, called “additional epistemic uncertainty” cannot 359 



 

be trimmed at all without greatly disturbing the dependent variables. It seems improperly posed 360 

and may exert an unjustified influence on results. 361 

Table 2 shows that the optimal trimmed logic tree differs depending on exceedance 362 

probability level. So how can one get value from it in practice? We suggest a pragmatic 363 

approach: use the 1/250 choices regardless of the probability level of interest. Its choices share 364 

parameter values most common to all five probability levels. It greatly reduces the 365 

computational effort, but neither by the most nor the least, a sort of golden mean for model 366 

order reduction. And 1/250 may be the most common point insurers and reinsurers consider on 367 

the loss exceedance curve. However, this is just a suggestion; other opinions may differ. 368 

Table 3 summarizes the size of each reduced-order model. Columns indicate the dependent 369 

variable for which the model was trimmed. Rows show the size of the full and reduced models. 370 

Table 2. Variables that can be trimmed from the logic tree and set to a deterministic value 371 

Variable 
Preferred value of trimmed variable for exceedance probability p = EAL 

(app 4) 1/100 1/250* 1/400 1/550 1/2500 
Maximum Off-Fault 

Magnitude  

7.6 7.6 7.6 7.6 7.6 7.6 

Fault Model 3.1 3.2 3.1 3.2 3.2 3.1 

Total Mag 5 Rate 7.9 7.9 7.9 7.9 7.9 7.9 

Earthquake Probability Model Mid COV Mid COV High COV Mid COV   

Vs30 Model  W2015 WA2008 W2015 W2015  

Slip Along Rupt Mod (Dsr)  Uniform Uniform Uniform Uniform  

Deformation Model   Neokinema Avg Block Neokinema ZengBB 

Scaling Relationship   ELL B SQL Shaw 09m   

Spatial Seismicity PDF   UCERF2 UCERF2   

Ground Motion Model      ASK2014 

Added Epist Uncertainty       

* We recommend using the 1/250 results in general for reasons explained in the text 372 
 373 

Table 3. Summary of the degree of model order reduction  374 

Model size 
Repair cost Lp with exceedance probability p = 

1/100 1/250 1/400 1/550 1/2500 
Full model Independent variables 11 11 11 11 11 

Logic-tree leaves 172,800 172,800 172,800 172,800 172,800 

Reduced order Independent variables 8 5 2 2 5 

Logic-tree leaves 7,200 600 15 15 600 

Reduced  full Independent variables 73% 45% 18% 18% 45% 

Logic-tree leaves 4% 0.3% 0.009% 0.009% 0.3% 

 375 

SUMMARY AND CONCLUSIONS 376 

We identify a reduced-order model for the UCERF3-TD logic-tree model using a subset of 377 

11 independent variables that reproduces the probability distribution of an important dependent 378 

variable: loss at a low nonexceedance probability. We considered six dependent variables 379 

related to the building repair cost for a statewide portfolio of buildings that approximates that 380 

of the California Earthquake Authority’s insurance portfolio of insured single-family 381 



 

dwellings. The dependent variables are the total repair cost in a single earthquake with each of 382 

five exceedance probabilities, plus expected annualized loss.   383 

Our model order reduction technique starts by evaluating the probability distribution of the 384 

full model’s dependent variable. It trims one independent variable at a time, setting it to one 385 

possible value and tests whether the probability distribution of the dependent variable 386 

significantly changes or its first two moments significantly change relative to the full model. 387 

The reduced-order model with the smallest change is preferred. One iterates until reaching the 388 

smallest model that preserves the probability distribution of the dependent variable (passing a 389 

two-sample Kolmogorov-Smirnov test at 1% significance) and the dependent variable’s first 390 

two moments within 5%. We applied the technique to the loss exceedance curve. 391 

At loss-exceedance probabilities generally used by insurers and the California Earthquake 392 

Authority in particular (1/250 to 1/550), one can trim six to nine of UCERF3-TD’s 11 393 

independent variables, reducing the model by 99.7% to 99.991%. We recommend fixing six 394 

parameters as shown in Table 2 for the California Earthquake Authority’s 1/250-year loss. 395 

Doing so reduces the model size and computational effort by 99.7%. A hypothetical risk 396 

calculation that takes 24 hours for the full model can be reduced one that takes seconds.   397 

This technique can handle a model that produces a scalar dependent variable that depends 398 

on scalar and nominal independent variables. It allows for interaction between independent 399 

variables. This is the first time this technique was applied to large, rare losses (points on the 400 

loss exceedance curve) in a large building portfolio. An earlier application of the technique 401 

only examined expected annualized loss. The technique worked as expected, since the 402 

problems differ mostly in the choice of the dependent variable. The technique reduced the loss 403 

model from 172,800 leaves to 15 leaves in the cases of the 400- and 550-year repair cost.  404 

Which independent variables can be trimmed depends on the choice of dependent variable. 405 

The preferred value of the trimmed variables can also depend on which dependent variable one 406 

cares about. Only two variables cannot be trimmed from the logic tree for any of the dependent 407 

variables considered here: ground-motion-model additional epistemic uncertainty and ground 408 

motion model. With greater study of those two uncertainties, researchers might reduce them. 409 

Doing so would thin the upper tail of the loss distribution. It would save insurers on 410 

reinsurance. And it would save policyholders on premium costs that help pay for reinsurance. 411 



 

With some limitations discussed next, the present model order reduction technique seems 412 

applicable to future earthquake rupture forecasts and other risk models that share the features 413 

of UCERF3-TD: a combination of independent (or transformable to independent) scalar and 414 

nominal uncertain variables, and probably ordinal variables as well.  415 

All studies are limited. Good ones raise interesting questions. Here are some limitations 416 

and some questions. First, we applied the technique only to a single deterministic statewide 417 

portfolio. Would other portfolios have different results? We suspect they will be like the 418 

differences between columns in Table 2, sharing many common choices.  419 

We did not account for uncertainty in the vulnerability functions. How important is that? 420 

Nor did we account for other uncertainties in the portfolio. For example, how important is 421 

uncertainty in the assignment of building type to individual assets, or uncertainty in asset 422 

replacement cost? Both EAL and Lp would scale linearly with an across-the-board under- or 423 

over-estimation of asset replacement cost, but the uncertainty might not work that way.  424 

We did not consider the effects of spatiotemporal clustering (e.g., large damaging 425 

aftershocks), which can have a larger influence on expected annual losses than all the 426 

uncertainties considered here, as demonstrated by Field et al. (2017).  427 

Can one identify a priori the branches of the complete logic-tree that contribute much less 428 

to the uncertainty than others, without first computing the losses for each combination? 429 

Tornado-diagram analysis examines the effect of each branch separately; it would be 430 

interesting to check whether the approach reliably predicts that the same variables matter. 431 

Our method operates on one dependent variable. What if the model has more? Here are two 432 

options: (1) Produce a separate reduced-order model for each dependent variable, or (2) In step 433 

3 of the path search, calculate Dn for each dependent variable and trim branches by selecting 434 

the (a, b) pair with the smallest value of the sum of Dn values where each individual Dn satisfies 435 

the goodness-of-fit test in inequality (21) and inequalities (24) and (25).  436 

ACKNOWLEDGEMENTS AND DISCLAIMERS 437 

The California Earthquake Authority and the U.S. Geological Survey funded this work. 438 

The authors have no conflict of interest. Any use of trade, firm, or product names is for 439 

descriptive purposes only and does not imply endorsement by the U.S. Government. We thank 440 

reviewers E. Bilderback, J. Carter, R. Gold, K. Jaiswal, S.R. Kotha, and G. Weatherill. 441 



 

RESEARCH DATA AND CODE AVAILABILITY 442 

Find the SA10 random fields at https://doi.org/10.25810/xf0m-m080, the building portfolio 443 

at https://doi.org/10.25810/094s-mp33, and OpenSHA code at https://github.com/opensha/.  444 
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