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Abstract 
A wide range of approaches can be used to detect micro RNA (miRNA)–target gene pairs (mTPs) from expression data, differing in 
the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on 
which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct 
rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to 
the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. 
This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the 
detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP 
detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one 
with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method 
to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important 
implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https:// 
bioconductor.org/packages/ExpHunterSuite. 
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INTRODUCTION 
MicroRNAs (miRNAs) are small RNA sequences of ∼22 nt that 
have an important role in post-transcriptional repression and 
regulation of mRNA expression in many biological systems. 
Their research is important for disease as they show potential 
as biomarkers and therapeutic targets [1, 2]. 

Transcriptomic sequencing technologies are increasingly being 
applied to various aspects of gene expression. An important 
approach is to integrate in silico the expression of mRNAs and 
miRNAs to detect miRNA–target gene pairs (mTPs). 

The simplest strategy to find mTPs is to analyze the expression 
of mRNA and miRNA separately to find differentially expressed 
genes (DEGs) and differentially expressed miRNAs (DEMs), and 
then determine which DEGs–DEMs pairs are likely to be mTPs 
using sequence based prediction methods [3–5]. Such methods 
include TargetScan [6], PITA [7], miRanda [8] and  miRDB [9]. How-
ever, only TargetScan and miRDB have been consistently updated 
over the last 8 years [10] and the precision of recently published 
predictive tools is still low when compared with high-throughput 
validation datasets [9, 11, 12]. In recent years, new tools based on 
deep learning have emerged, such as DMISO [13], TargetNet [14], 
miRBind [15] and ncRNAInter [16]. 

Anti-correlation between the expression levels of miRNAs and 
their targets also provides evidence of potential regulation. Many 
studies have exploited this idea to find mTPs [17–20]. However, 
there is considerable difference in the implementation of this 
general approach between studies. Some have calculated the 
Pearson correlation coefficient between all miRNA and mRNA 
expression profiles directly [17, 18]. Others have grouped the 
mRNAs into co-expression modules using weighted gene corre-
lation network analysis (WGCNA) as a first step, then calculated 
the correlation coefficient between co-expressed genes and the 
single miRNA expression profiles using the module eigengene 
to represent the gene modules [19]. In other studies they have 
grouped miRNAs and mRNAs, respectively, into co-expression 
modules and computed the correlation coefficient between their 
module eigengenes [20, 21]. 

In addition, there are studies that filter the detected mTPs 
using databases of experimentally validated mTPs [22]. Such 
databases include miRTarBase [23], Tarbase [24] and miRecords 
[25]. 

Despite there being multiple approaches for mTP detection 
based on anti-correlation, there is no clear consensus as to which 
leads to the most reliable results. 

Here we present coRmiT, a novel method for the analysis, 
comparison, selection and integration of seven mTP correlation 
strategies based on mRNA and miRNA expression data, using 
a range of anti-correlation thresholds. We apply it to three dis-
tinct datasets with very different properties, all of which model 
rare diseases. We evaluate the strategies by analyzing the mTPs 
detected by each approach at different correlation thresholds, 
comparing them with predicted and experimentally validated 
mTPs sourced from databases. Finally, we propose a novel method 
that integrates the results of the correlation strategies at the 
miRNA level and demonstrate its robustness. coRmiT is available 
as part of the ExpHunterSuite Bioconductor package. 

MATERIAL AND METHODS 
In this study, we implemented coRmiT to investigate different 
strategies for detecting mTPs by comparing expression profiles, 
and applied it to multiple datasets. 

As coRmiT implements multiple strategies to find mTPs, we 
performed a systematic comparison of the results derived from 
these strategies, evaluating their overlap with both predicted and 
experimentally validated mTPs. We also implemented a novel 
approach based on selecting the best-performing strategy at the 
miRNA level and integrating the results. The coRmiT results for 
the three different datasets were used for functional analysis and 
a selection of genes were validated in terms of expression. 

Experimental datasets 
For each experiment, data were generated in the form of miRNA 
and mRNA sequence data (fastq files) using Illumina technology. 
The data and experimental models are described as follows: 

PMM2 congenital disorder of glycosylation 
PMM2 congenital disorder of glycosylation (PMM2-CDG) is 

caused by loss-of-function mutations affecting the PMM2 enzyme 
[26, 27], leading to impaired protein glycosylation. Currently, 
there is no effective treatment available [26]. The dataset used 
in this study consists of skin fibroblast cell lines, including 
five derived from PMM2-CDG patients and five from healthy 
individuals. The patients were considered to have a high degree of 
disease severity, determined according to the Nijmegen Pediatric 
CDG Rating Score (NPCRS), the International Cooperative Ataxia 
Rating Scale (ICARS) and the midsaggital relative vermis diameter 
(MVRD) based on magnetic resonance imaging. Libraries were 
prepared using the TruSeq Stranded mRNA Library Prep Kit 
(Illumina, San Diego, CA) and sequenced in a NovaSeq 6000 
system (Illumina, San Diego, CA). This RNA-Seq dataset consists 
of 100 bp paired end reads, with an average depth of 37.7 M reads. 
The smallRNA-Seq libraries were produced using the TruSeq 
Small RNA Library Preparation Kit and sequenced in a NextSeq500 
platform (Illumina, San Diego, CA). The initial smallRNA-Seq 
dataset consists of 75 bp single end reads, with an average depth 
of 16.0 M reads per sample. 

Lafora Disease 
Lafora disease (LD) is a neurodegenerative disorder charac-

terized by the inclusion of insoluble poorly branched glycogen, 
forming Lafora bodies within neurons. This dataset was designed 
to compare the transcriptomic expression of four wild-type mice 
and seven knock out mice mutants for the Epm2a (three mice) 
and Epm2b (four mice) genes in brain. The smallRNA-Seq libraries 
were generated using the NEXTFLEX small RNA-Seq kit v3 (Perkin 
Elmer, Waltham, MA, USA). The cDNA libraries were generated 
using the TruSeq Stranded mRNA LP kit (48 Spl) (Illumina, San 
Diego, CA). Both smallRNA-Seq and RNA-Seq samples were 
sequenced using Illumina NextSeq 550, obtaining reads of 75 and 
50 bp for RNA-Seq and smallRNA-Seq, respectively. The average 
depth was 18.0 M reads for the RNA-Seq samples and 5.6 M reads 
for the smallRNA-Seq samples. Further sequencing details for 
the RNA-Seq experiment are given in [28, 29] (mRNA) and  [30] 
(miRNA). 

Dilated cardiomyopathy 
Dilated cardiomyopathy (DCM) encompasses a set of heart 

diseases characterized by the presence of left ventricular or 
biventricular dilatation and systolic dysfunction. Mutations in 
LMNA can cause DCM [31]. This dataset was designed to compare 
myocardial samples of six wild-type mice and six Lmna mutant 
mice with DCM. The mRNA-Seq data were produced using the 
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina, 
using the NEBNext Poly(A) mRNA Magnetic Isolation Module 
(New England Biolabs, Ipswich, MA). Libraries were sequenced

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae060/7618076 by U

niversidad de C
adiz user on 28 June 2024



miRNA–gene correlation strategy integration | 3

on an Illumina PE75 Platform with an average depth of 70.7 M 
reads of 72 bp. The smallRNA-Seq samples were generated using 
the NEXTFLEX small RNA-Seq kit v3 (Perkin Elmer, Waltham, MA, 
USA), and single-end libraries were sequenced on an Illumina 
SE75 Platform, producing 75 bp reads, with an average depth of 
22.1 M reads. 

Expression analysis workflow 
We obtained normalized expression tables, lists of DEGs/DEMsand 
modules of co-expressed genes/miRNAs from fastq files using an 
automated workflow for miRNA-Seq/RNA-Seq expression analy-
sis. This workflow was implemented with the AutoFlow workflow 
manager [32]. Full details are shown in Supplementary Methods 
(Supplementary Figure 1). This workflow comprises (i) an miRNA 
detection module that identifies the miRNA sequences in all 
fastq files; (ii) an miRNA quantification module that counts the 
reads that correspond to each identified miRNA from the miRNA 
detection module and quantifies their expression and (iii) an 
RNA-Seq analysis module that quantifies genes and analyzes 
their expression. The workflow is available at https://github.com/ 
seoanezonjic/DEG_workflow. 

Correlation strategies to obtain mTPs: coRmiT 
Multiple approaches have been used to obtain mTPs from expres-
sion data based on anti-correlation [17–21]. We have designed 
coRmiT to implement different strategies, rather than focusing on 
a single approach, based on the expression of individual genes and 
miRNAs, and co-expression modules. Multiple correlation thresh-
olds have been used for each strategy, from -0.9 to -0.5 in intervals 
of 0.05. Overall and specific odds ratios are computed for the 
different strategies and correlation thresholds, to quantify their 
overlap with mTPs obtained from databases. Strategies are then 
combined using the selection-integration method. This method 
ranks the strategies for each miRNA based on the specific odds 
ratio and selects the mTPs for the top strategy (Figure 1). Full 
details are given in Supplementary Methods. 

Testing the robustness of the 
selection-integration method rankings 
The selection-integration method generates a ranking of strate-
gies and correlation thresholds for each miRNA based on the odds 
ratios. To assess the robustness of this ranking in response to 
changes in the underlying databases, we re-ranked the strategies 
and thresholds using randomized subsets of the multiMiR mTPs. 

This process involved randomly selecting 75% of the multiMiR 
mTPs and recalculating the miRNA specific odds ratios, following 
the procedure described above, for each strategy and correlation 
threshold. This random sampling was repeated 40 times, and 
the resulting rankings were compared with the ranking obtained 
using the complete multiMiR mTPs dataset. 

Functional enrichment of miRNA targets 
Over-representation analysis was conducted for the targets 
of each miRNA using the Gene Ontology (GO) [33], KEGG 
[34] and Reactome [35]. We used the ExpHunterSuite script 
clusters_to_enrichment.R, which is based on the clusterProfiler 
package [36], to perform the analysis. An FDR threshold 
(-p 0.1) was applied, and the parental GO terms of each signif-
icantly enriched term were removed from the results using the 
argument -c. 

Table 1: Summary of the expression analysis results for the 
three datasets. The DEGs column shows the numbers of 
differentially expressed genes; the DEMs column shows the 
differentially expressed miRNAs. The DE packages column 
shows the differential expression packages used to find DEMs. 
The modules column indicates the number of gene modules 
found by WGCNA. DCM: dilated cardiomyopathy, PMM2-CDG: 
PMM2 congenital disorder of glycosylation, LD: Lafora Disease, L: 
limma, D: DESeq2 and E: edgeR 

Project DEGs Gene 
modules 

DEMs DE 
Packages 

miRNA 
modules 

DCM 2148 60 53 E,D 7 
PMM2-CDG 415 163 17 E,D,L 55 
LD 179 350 3 E,D 15 

Analyzing positive correlation with coRmiT 
We also used coRmiT to inspect the positive correlations between 
miRNAs and their targets in the LD dataset. We varied the corre-
lation thresholds from 0.5 to 0.9 in intervals of 0.05. With these 
thresholds and the –corr_type higher option, coRmiT identified 
pairs with a Pearson correlation exceeding the thresholds, which 
were considered strategy mTPs. Subsequently, we computed the 
specific miRNA odds ratio and performed Fisher’s exact test 
for each strategy and correlation threshold combination. The 
selection-integration method was applied in the same way as for 
the anti-correlated mTPs. 

Validation of target gene expression changes 
The expression levels of the putative LD targets were analyzed 
by RT-qPCR to confirm differential expression. The target genes 
selected were Tert, Tgm1, Trem2, Smc1A, Gabrg2, Gabrb3, Gfap, 
Tyrobp, Arg1 and Psmb8. Further details of the RT-qPCR procedure 
and gene target selection can be found in Supplementary Meth-
ods, in Section: ‘Validation of differential expression of targets in 
LD’. 

RESULTS 
For each dataset, the expression data were analyzed to obtain 
the CPM matrix, co-expression modules and DEGs and DEMs, 
all three of which are necessary to run coRmiT. A summary of 
the expression analysis results is shown in Table 1. Additional 
results are available in the Online Repository (https://github.com/ 
JoseCorCab/coRmiT_additional_files). Full details of each analysis 
are shown in the Online Repository Files 1, 2 and 3. 

For the DCM dataset, we observed more than five times as 
many DEGs and three times as many DEMs compared with the 
other datasets. However, genes and miRNAs were distributed 
across fewer WCGNA modules. In terms of the DEM detection 
methods, NOISeq did not yield any significant results, and 
limma only identified significant results for the PMM2-CDG 
dataset. 

Using the filtered data, coRmiT was used to detect anti-
correlated mTPs, using the seven strategies shown in the 
Supplementary Methods, Table 1. For each strategy, an overall 
odds ratio was calculated for each of the different correlation 
thresholds investigated. This calculation was based on the overlap 
between the mTPs detected for each strategy with correlation 
values lower than the threshold and the predicted/validated 
mTPs obtained from multiMiR, as described in the Methods 
section.
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Figure 1. General overview of the coRmiT methodology. Sequencing data for miRNA and gene expression are processed to generate all possible pairs 
of expressed genes/miRNAs. Correlation between these pairs is computed using different strategies that combine individual gene/miRNA expression 
and co-expression module expression. Odds ratios are computed for each strategy (Overall odds ratio) and each miRNA (Specific odds ratio) based 
on overlap with mTPs obtained from databases. The selection-integration method ranks, for each miRNA, the strategies based on their specific odds 
ratio and selects the top strategy. The integrated mTPs are those detected with the selected strategy for each miRNA. DEGs and DEMs represent the 
differentially expressed genes and miRNAs, respectively. CPM is the expression matrix normalized to show counts per million mapped reads for each 
gene/miRNA. Eigengene and hub are the representative profiles for each co-expression module. mTPs are the miRNA–target gene pairs. STRAT N 
represents an example correlation strategy and miR-N represents an example miRNA. 

No consensus found for the best strategy 
or threshold 
The overall odds ratio values for all strategy and correlation 
threshold combinations are shown in Figure 2. For  the  LD  and  

DCM datasets, the three strategies that led to the highest odds 
ratio values at more restrictive correlation thresholds were those 
that compare single miRNA expression profiles with the different 
gene expression profiles (Figures 2A and B). Conversely, strategies
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Figure 2. Overall odds ratios of all strategies for the A LD, B DCM and C PMM2-CDG datasets. Overall odds ratios are shown on the Y-axis; different 
correlation thresholds are shown on the X-axis. Colors, points and line styles are used to indicate the different strategies. 

that correlate the representative profiles for the miRNAs with 
gene modules performed better for the PMM2-CDG dataset 
( Figure 2C), except for very strict correlation thresholds where 
the gene count, miRNA count strategy performed best. However, 
this led to a comparatively small number of detected mTPs (20, 
of which five are multiMiR mTPs). 

Focusing on the miRNA count expression profile methods, 
when comparing odds ratio values at different correlation 
thresholds for the different strategies, we see that for the LD 
and DCM datasets, more restrictive thresholds tended to lead to 
higher odds ratio values, with there being a critical correlation 
value, above which the odds ratios tended to decrease rapidly; 
this critical value was different for each dataset: -0.85 and -0.9, 
respectively, for LD and DCM. The rate of the decrease in odds 
ratio values also differed between these datasets. Conversely, 
the PMM2-CDG dataset actually showed a gradual increase in 
odds ratios with more restrictive thresholds for most strategies 
(Figure 2C). 

In general, although the LD and DCM datasets showed some 
similarity, there was no strategy and correlation threshold combi-
nation that performed best for all datasets. 

Strategies perform differently at the miRNA level 
Given the varying results for the different datasets in terms 
of optimal strategy and threshold, we further investigated how 
each miRNA responds to the different strategies. For this, we 
computed the specific odds ratio at the miRNA level for each 
strategy and threshold, based on the overlap between the mTPs 
detected for a given miRNA and the predicted/validated mTPs 
for the same miRNA in multiMiR. We then ranked the strat-
egy and correlation threshold combinations based on this odd 
ratio and kept those that showed a significant overlap using 
Fisher’s exact test. Applying the selection-integration strategy, 
we selected the top strategy and correlation threshold for each 
miRNA in each dataset as shown in Figure 3. There  was  no  con-
sensus best strategy for all miRNAs detected, with the exception 
of the LD dataset for which the CPM vs CPM strategy had the 
highest specific odds ratio for all DEMs, but there were still dif-
ferences in optimal correlation threshold. Interestingly, analysis 
of both the LD and DCM datasets led to mTPs that included 
miR-155, and analysis of both the DCM and PMM2 datasets led 

to mTPs that included miR-183; however the optimal strategy 
differed between datasets. Other benchmarking measures such 
as specificity, accuracy, precision and recall were also calculated 
(Online Repository Files 8, 9 and 10: Section Tables ‘Best Strategy 
Benchmark’). 

Robustness to database changes 
We investigated the robustness of the selection-integration 
method to potential changes in the underlying databases from 
which the multMiR mTPs were extracted. This was performed by 
comparing the ranking obtained using all multiMiR mTPs with 
the ranking from a randomized subset of 75%. This was repeated 
40 times. 

The top strategy obtained using all multiMiR mTPs was always 
top or close to top in the rankings obtained using the randomized 
subsets (Figure 4), with the exception of miR-218 and miR-34a in 
the PMM2-CDG dataset and miR-690 in the DCM dataset. 

Functional analysis of miRNA targets 
We used the mTPs obtained using the selection-integration 
method that were also found in multiMiR to perform functional 
analysis. For each dataset, we looked for functional enrichment of 
GO terms and KEGG and Reactome pathways among the targets 
of each miRNA using over representation analysis. 

Dilated cardiomyopathy 
Of the 53 DEMs identified in the DCM dataset, coRmiT found 
targets for nine (Figure 3B). Full details of the enriched categories 
among the targets of each of these miRNAs are shown for all anno-
tation sources in Online Repository File 5. Enrichment results for 
GO Biological Process terms are shown in Figure 5. Interestingly, 
the targets of all nine miRNAs identified by coRmiT were enriched 
for GO Biological Processes, except for miR-183, which did not 
show enrichment for any term. 

The top most significantly enriched terms for miR-155 and 
miR-196b targets were related to immune response regulation at 
different levels. The miR-196 targets are enriched in exogenous 
peptide antigen processing and presentation via MHC class II. On 
the other hand, miR-155 targets are enriched in the processing 
and presentation of endogenous peptide antigen through MHC
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Figure 3. Top strategy and correlation thresholds according to the selection-integration method for the A LD, B DCM and C PMM2-CDG datasets. MiRNAs 
are displayed on the X-axis, and odds ratio on the Y-axis. The odds ratios are calculated based on the overlap between the mTPs for a given miRNA 
detected by each strategy and the mTPs for the same miRNA in multiMiR. Only strategies showing a significant association for at least one correlation 
threshold (Fisher’s exact test P < 0.05) are shown. The number in black above each bar indicates the threshold, and the number in white inside the bar 
represents the total number of mTPs detected by the strategy for that miRNA that overlap with multiMiR. 

Figure 4. Rankings for the selection-integration method applied to randomized samples of multiMiR mTPs A LD, B DCM and C PMM2-CDG datasets. In 
some of the replicas, the top strategy was ranked relatively low when using the randomized subset, such as for miR-155, miR-324 and miR-3473a in the 
DCM dataset, and miR-let-7i in the PMM2-CDG dataset. 

class Ib via the ER and cell response/signaling for type I interferon 
( Figure 5). 

The targets of miR-182 are also enriched in the modulation of 
heart rate by regulating cardiac conduction (Figure 5). 

The targets of miR-690 and miR-758 are involved in DNA repair, 
chromatin organization and transcription regulation. Notably, the 
miR-758 targets involved in transcription regulation also exert 
a negative regulatory effect on the differentiation of stem cells 
(Figure 5). 

PMM2-CDG 
For the PMM2-CDG study, coRmiT found gene targets for seven 
miRNAs (Figure 3C). Detailed information on the enriched cate-
gories among the targets of each of these miRNAs are shown for 
all annotation sources in the Online Repository File 6. 

The results for the Reactome and Biological Process subontolo-
gies are shown in Figure 6 and Online Repository File 6: Section 
BP Over Representation analysis, respectively. Enriched Reactome 

pathways were found for the targets of all seven miRNAs, except 
for miR-148a. 

Enrichment in Biological Function terms was found for miR-let-
7i, miR-224, miR-183, miR-218 and miR-148a. The only common 
term between targets of different miRNAs was the synthesis of IP3 
and IP4 in the cytosol, which was also enriched among the targets 
of both miR-let-7i and miR-218. 

Furthermore, miR-let-7i target genes were enriched in terms 
related to extracellular matrix components, specifically colla-
gen, which confers tensile strength and activates tyrosine kinase 
receptors (Figure 6 and Online Repository File 6: Section BP Over 
Representation analysis). 

The targets of miR-224 were enriched for necroptotic processes 
related to serine/threonine/tyrosin kinase activity, the Jun amino-
terminal kinases (JNK) cascade, tumor necrosis factor receptors, 
cytokine-mediated signaling and protein autophosphorylation via 
the targeting of RIPK1 (Figure 6 and Online Repository File 6: 
Section BP Over Representation analysis).
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Figure 5. Top GO Biological Process terms enriched among the miRNA targets obtained from the mTPs found using the integrated strategy applied to 
the DCM disease dataset. Up to 10 significantly enriched terms are shown for each miRNA. The circles represent enriched GO terms, with the size of the 
circle corresponding to the number of genes among the targets that are annotated with that term (the transparent circle in the bottom left indicates 
the scale). The circles are colored according to the miRNA whose targets are annotated with that term. The circles with two colors represent terms that 
contain genes that are targets of two different miRNAs. The links between circles indicate that both terms contain the same gene. 

Lafora disease 
Regarding the LD dataset, coRmiT found significant targets for the 
three DEMs (Figure 3A). Full details of the enrichment analysis are 
shown in Online Repository File 4. 

Focusing on the GO Cellular Components subontology, we 
found that miR-142a targets were enriched in terms related to the 
synaptic membrane, involved in the glutaminergic synapse and 
associated with the ion channel complex. In contrast, miR-146a 
targets are located in the perikaryon (Figure 7). Additionally, miR-
155 targets are enriched in processes related to mRNA binding and 
transmitter-gated ion channel activity related processes (Online 
Repository File 4: Section BP Over Representation analysis). 

miR-155 also forms positively correlated mTPs 
We used coRmiT to find mTPs that showed positive correlation 

in the LD dataset, as explained in the Methods section. Only miR-
155 mTPs showed significant overlap with multiMiR. The strategy 
and correlation threshold combination that led to the highest 
odds ratio was Cg Cm (normalized gene counts and normalized 
miRNA counts) with a correlation threshold of 0.9. The most 
significantly enriched terms and pathways for the targets of 

miR-155 were related to immune system activation, including 
cytokine activity, immunoglobulin and complement binding and 
apoptosis. Full details are given in Online Repository File 7. 

Validation of miRNA target expression changes 
We analyzed the expression of the targets of miR-155 using 

RT-qPCR, for both correlated and anti-correlated mTPs. Four anti-
correlated target genes were selected and are shown in Figure 8A. 
Among these, a significant change in expression could only 
be found for the Tert gene when comparing Epm2b-/- samples 
with wild-type. Additionally, six positively correlated targets were 
selected (Figure 8B). While Tgm1, Trem2, Arg1 and Gfap genes were 
overexpressed in Epm2b-/- samples, both Tyrobp and Psmb8 genes 
were overexpressed in Epm2a-/- and Epm2b-/- (Figure 8B). 

DISCUSSION 
The use of anti-correlation between RNA-Seq and miRNA-Seq 
expression profiles is a commonly used technique to detect mTPs 
[17–20]. Multiple approaches based on different representations of 
gene expression profiles have been employed, however consensus
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Figure 6. Top Reactome pathways enriched among the miRNA targets obtained from the mTPs found using the integrated strategy applied to the 
PMM2-CDG dataset. Up to 10 significantly enriched terms are shown for each miRNA. The circles represent enriched Reactome pathways, with the size 
of the circle corresponding to the number of genes among the targets that are annotated with that pathway (the transparent circle in the bottom left 
indicates the scale). The circles are colored according to the miRNA whose targets are annotated with that pathway. The circles with two colors represent 
pathways that contain genes that are targets of two different miRNAs. The links between circles indicate that both pathways contain the same gene. 

on the optimal method remains unclear. Considering these 
premises, we have developed coRmiT, which implements multiple 
mTP detection strategies with varying correlation thresholds. We 
applied it to multiple datasets. Our results show that no single 
approach consistently outperforms others across all situations. 
We propose the selection of the strategy and threshold with the 
highest odds ratio for each miRNA, based on overlap with known 
and predicted mTPs, as a novel approach to combine strategies. 

We applied our methodology to three rare disease datasets 
with different experimental designs, including differences in the 
organism studied and the number of samples. We applied the 
same expression analysis workflow upstream of coRmiT to ensure 
that the mTPs detected were not influenced unduly by aspects of 
the initial analysis [37]. It is noteworthy that the datasets had a 
relatively small number of samples per group, a common theme 
in rare disease analysis. 

The datasets differed considerably in the number of DEGs, 
DEMs and co-expression modules detected, despite similar anal-
ysis settings (Table 1). Additionally, variations were observed in 
terms of the best strategy for detecting mTPs using the overall 

odds ratio. Specifically, the Cg Cm, Eg Cm (Eigengene of gene 
module and normalized miRNA counts) and Eg Hm (Eigengene 
of gene module and normalized expression of miRNA module 
hub gene) strategies yielded the highest odds ratios for the LD, 
DCM and PMM2-CDG datasets, respectively, at higher thresholds 
(Figure 2). We did not find any previous studies that used the 
correlation between miRNA modules and gene CPM, as such these 
strategies are not included here. 

In addition to the differences observed in the expression results 
(Table 1), it is notable that strategies using individual miRNA 
profiles for detecting mTPs, rather than relying on miRNA co-
expression modules, tended to perform best, in line with previous 
studies [17, 18]. 

In terms of the overall odds ratio, the PMM2-CDG dataset 
showed better results using a less strict threshold. This obser-
vation may be attributed to the distribution of correlation 
values between DEMs and genes, which appears to be shifted 
toward 0 in the PMM2 dataset compared with the others, as 
shown in the correlation distributions in Online Repository 
Files 8, 9 and 10. Consequently, this results in fewer correlated
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Figure 7. Top GO Cellular Component terms enriched among the miRNA targets obtained from the mTPs found using the integrated strategy applied 
to the LD dataset. The circles represent enriched GO terms, with the size of the circle corresponding to the number of genes among the targets that 
are annotated with that term (the transparent circle in the bottom left indicates the scale). Circles are colored according to miRNA whose targets are 
annotated with that term. The links between circles indicate that both pathways contain the same gene. 

Figure 8. Analysis of the putative targets of miRNA in LD. A Includes anti-correlated targets and B includes the correlated targets. The graphs compare 
the 2-��CT values of wild-type samples, samples with the mutated laforin gene (Epm2a-/-) and the mutated malin gene (Epm2b-/-). Results are expressed 
as the mean ± SD. ∗∗∗∗P<0.0001, ∗∗∗P<0.001, ∗∗P<0.01, ∗P<0.05. 

pairs at very strict thresholds, suggesting a weaker relationship 
between the expression of miRNAs and their targets. Possible 
explanations for this phenomenon include increased variability 
among the human samples or other characteristics related to the 

experimental design. These findings underscore the absence of 
an optimal strategy across all datasets. It is noteworthy that there 
is significant variance between datasets in terms of the overall 
odds ratios ( Figure 2). This could be a consequence of combining
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the pairs of different miRNA to compute a unique measure, due to 
the varying numbers of mTPs for each miRNA in multiMiR. These 
differences were reduced when the odds ratio was computed 
specifically for each miRNA (Figure 3). 

Regarding individual miRNAs, for both DCM and PMM2-CDG 
datasets the optimal strategy and threshold differed between 
miRNAs. In the case of the LD dataset, while the strategy remained 
consistent, the threshold differed (Figure 3). Interestingly, at 
the miRNA level, one of the strategies that performed poorly 
at the dataset level, Eg Em (Eigengene of gene module and 
eigengene of miRNA module), was the best for many of the 
miRNAs identified in the DCM dataset. Notably, we observed 
significant discrepancies between the specific odds ratio and 
the overall odds ratio when considering miRNAs individually, 
particularly for the LD dataset, for which the specific miRNA 
odds ratios were considerably smaller. This is because the overall 
odds ratio is sensitive to the number of mTPs for each miRNA in 
multiMiR. 

To further explain this, we can use the LD dataset as an 
example: among the three DEMs detected, two (miR-155 and miR-
146a) are highly represented in multiMiR. Consequently, when 
calculating the overall odds ratio, which considers all pair-wise 
permutations formed between expressed miRNAs and genes as 
the universe of pairs, the denominator (Sd/R in the odds ratio 
formula in Supplementary Methods) is significantly smaller. This 
is due to the inclusion of many other miRNAs that are less well 
represented in multiMiR. Conversely, the specific miRNA odds 
ratio only includes the possible mTPs formed by the given miRNA 
and the expressed genes. In this case, the same miRNA is used in 
both the numerator and denominator of the odds ratio, mitigating 
bias introduced by differences in miRNA representation in the 
databases [38]. 

Moreover, when the same miRNA was detected in different 
datasets, we observed variation in the optimal strategy for detect-
ing mTPs involving that specific miRNA. Collectively, these results 
suggest that each miRNA exhibits distinct regulatory behavior 
in terms of gene expression depending on the context, i.e., the 
disease or the tissue involved [39]. This aligns with our existing 
knowledge of miRNAs, where each miRNA has its own repression 
mechanisms and actions; a single or multiple miRNAs can inhibit 
the expression of multiple target genes or only a small number 
[40]. In cases where an miRNA acts on many targets, the repres-
sion tends to be milder [41]. These observations support the low 
correlation between the expression profile of an miRNA and their 
targets for certain strategies (Figure 3). These findings show that 
the optimal correlation strategy for identifying mTPs is likely to 
vary for each miRNA and differ in performance based on how well 
it reflects the underlying miRNA–mRNA regulation mechanisms. 

This motivated the development of the selection-integration 
method, designed to treat each miRNA separately and select mTPs 
according to the strategy and threshold that leads to the greatest 
odds ratio. The other benchmarking measures showed differences 
in terms of how they ranked the different strategies. This reflects 
how these measures are calculated, being affected to different 
extents by both missing mTPs in multiMiR and conversely, mTPs 
in multiMiR that were not detected by coRmiT. 

With the growing adoption of high-throughput techniques 
for mTP detection, like CLASH and Ago-CLIP, the amount 
of data in multiMiR and other databases will also grow. 
We therefore investigated the robustness of the selection-
integration method to such changes. In simulation studies the 
top-performing strategy tends to remain unchanged for almost 
all miRNAs across iterations (Figure 4). Future work should 

look at other ways of integrating the results of the different 
strategies, taking into account the consensus between the results. 
Validation of the different integration methods should also be 
investigated. 

Using the selection-integration method, we successfully 
detected mTPs for each dataset. We will now discuss the potential 
implications of these findings. 

Dilated cardiomyopathy 
The functional enrichment analysis of the DCM dataset showed 
that the targets we detected for miR-155 play key roles in the 
regulation of the immune response. miR-155 has been shown 
to be key regulator of inflammation in different cardiovascular 
diseases, including DCM [42–46]. 

In accordance with our results, miR-155 was previously 
found to be overexpressed in cardiac tissue of inflammatory 
DCM patients. Notably, its expression levels correlated with 
inflammatory cell counts, supporting its role as an inflammatory 
marker in DCM [46]. Our analysis revealed that some of 
the miR-196b target genes encode structural constituents of 
the extracellular matrix contributing to tensile strength and 
participating in extracellular matrix binding. The accumulation 
of collagen and other components of the extracellular matrix, 
following cardiomyocyte death, cardiac fibrosis, is a key process 
in the progression of DCM [43]. 

Our results also suggest that miR-135a may be a potential reg-
ulator of the WNT pathway, a mechanism previously described as 
contributing to the pathophysiology of LMNA cardiomyopathy [31, 
41]. Additionally, the targets of miR-182 showed enrichment for 
the cardiac conduction system. Abnormalities in this system are 
commonly observed for DCM associated with LMNA mutations 
[47], heightening the risk of arrhythmia. 

The target genes of miR-324, miR-690 and miR-758 are involved 
in chromatin organization, a process known to be affected by 
mutations in the LMNA gene [48]. 

PMM2-CDG 
The application of coRmiT and the selection-integration method 
to the PMM2-CDG dataset revealed seven miRNA with targets 
exhibiting significant overlap with multiMiR mTPs. Notably, many 
targets of miR-let-7i are collagen type IV genes and are enriched 
for related processes as detailed in Online Repository File 6: Sec-
tions MF Over Representation Analysis, BP Over Representation 
Analysis and Reactome Over Representation Analysis. Previous 
studies have suggested that impairment of the collagen IV net-
work contributes to PMM2-CDG-related symptoms, such as intra-
cerebral hemorrhage and stroke-like episodes [29, 49, 50]. As 
such, we suggest further investigation into the role of collagen IV 
expression under the control of miR-let-7i in this disease. 

Furthermore, our analysis revealed that miR-224 forms mTPs 
with TNF-α receptor genes. The activation of PMM2 activity with 
epalrestat has been recently shown to be related to the prevention 
of TNF-α-mediated pro-inflammatory metabolism by increasing 
sensitization to the therapeutic effect of mannose [51]. Therefore, 
the miR-224 may have a role in regulating this process. 

Lafora disease 
In the case of LD we found significant targets for all three DEMs, 
which showed over representation for GO terms related to the glu-
taminergic synapse and perikaryon (Figure 7 and Online Reposi-
tory File 4: Section BP Over Representation Analysis). 

We previously proposed the pharmacological modulation of 
glutaminergic and neuroinflammatory pathways as a therapeutic
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strategy [52]. In this study, we have shown that both miR-146a 
and miR-155 anti-correlated targets are related to glutaminergic 
receptor activity (Figure 7 and Online Repository File 4: Sections 
CC Over Representation Analysis and BP Over Representation 
Analysis). 

Both miR-155 and miR-146a have been shown to be involved 
in complementary regulatory pathways activated during the 
inflammatory response, being the first pro-inflammatory and 
the second anti-inflammatory [53]. We showed that both miRNAs 
are overexpressed, in an age-dependent manner in brains 
from Epm2a-/- and Epm2b-/- mice models [30]. Interestingly, 
this overexpression coincided with the increased expression of 
putative target genes involved in the inflammatory cascade 
and oxidative stress responses, such as Sod2, Socs1 and Traf6 
[30]. The joint action of both miRNAs has also been detected 
in systemic lupus erythematosus (SLE) patients [54]. Moreover, 
the overexpression of miR-155 and the insufficiency of Dicer may 
suggest a Dicer-independent alternative mechanism of miRNA 
regulation under inflammatory conditions in SLE [44]. 

Based on these results, we decided to extend our analysis 
toward the search of mTPs that showed a positive correlation 
between miRNAs and their target genes. Only miR-155 formed 
mTPs that were significantly over represented in multiMiR. We 
validated the differential expression of six of these targets using 
RT-qPCR in another set of samples. We were able to replicate all 
changes. Conversely, for the anti-correlated gene targets, we were 
able to replicate the differential expression results for one gene 
out of the four tested, Tert (Figure 8). 

Functional analysis of the positively correlated target genes 
found roles in activating the inflammatory response and apopto-
sis (Online Repository File 7: Section BP Over Representation Anal-
ysis). Interestingly, we also detected underexpression of Dicer1 in 
the LD RNA-Seq dataset (log2FC = -0.17 and FDR = 5.33e-06, Online 
Repository File 1). This may suggest that the previously described 
Dicer-independent mechanism of miRNA regulation detected in 
SLE is also present in LD. A relationship between the lack of 
malin in LD KO mice models and alterations in Dicer-mediated 
regulation of RNA expression has been reported previously [55]. 

In summary, the application of coRmiT to the three datasets, 
followed by functional analysis of the targets of detected mTPs, 
demonstrates the capability of our methodology to unveil molec-
ular mechanisms potentially regulated by miRNAs and their 
impact on disease. Despite the insightful findings, our analysis 
faces limitations attributed to the limited information available in 
databases and the variable accuracy of mTPs prediction methods 
[38]. Another challenge is the over-representation of certain miR-
NAs in the databases, similar to observations for some genes [38]. 
This bias is expected to diminish as more data become available 
for a broader range of miRNAs. Additionally, our results highlight 
the robustness of coRmiT to changes in the underlying databases, 
as evidenced by the consistency in top-ranking strategies for each 
miRNA. 

Key Points 
• An integrated approach for miRNA–target detection 

based on correlation is needed 
• We have implemented coRmiT to integrate the results of 

multiple strategies and select the optimal one 
• The robustness of coRmiT to differences in the underly-

ing validation dataset has been shown 
• CoRmiT has been applied to three real case studies of 

rare diseases 

• The discovered miRNA–target pairs are relevant to the 
diseases, and their expression has been validated 

SUPPLEMENTARY DATA 
Supplementary data are available online at https://academic.oup. 
com/bib. 
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