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Abstract

In this dissertation, I assess under which circumstances normality can be a good descriptive

model for the U.S. excess returns. I explore two possible sources of deviations from normal-

ity: structural breaks and regime switching in long term aggregate time series. In addition,

I study temporal aggregation (i.e., considering the frequency of data as a variable) for ex-

cess returns in short term time series. My main findings are summarized as follows. First,

using long spanning monthly time series data from 1871 to 2010, I find that (1) there are

structural breaks in monthly excess returns between pre-WWII and post-WWII data; and,

(2) while pre-WWII data is consistent with normality, post-WWII data is not. Second, I

provide evidence of two market regimes for excess returns in post-WWII data. These regimes

may be seen as bull and bear market conditions. Third, using high frequency post-WWII

data, I check for aggregational Gaussianity, from daily to annual data. I find that Gaus-

sianity depends on the frequency of data: it may hold for highly aggregate data (starting

from semi-annual to annual data) but it does not hold for high frequency data (less than

semi-annual). My main contribution is to demonstrate the ”normality survival” when fre-

quency is taken as a variable. After a careful look at the available literature on aggregational

Gaussianity, I found no previous applications and results for excess returns.

Keywords: Excess returns, Normality, Structural breaks, regime switching, Time aggre-

gation

JEL codes: C1, G12



Resumo

Nesta dissertação, eu avalio sob que condições a normalidade pode ser um bom modelo des-

critivo para os excess returns nos E.U.A.. Para tal, exploro duas fontes potenciais de desvio

da normalidade: quebras de estrutura e mistura de regimes para séries temporais longas

agregadas. Adicionalmente, estudo a agregação temporal (i.e., tomando a frequência dos

dados como variável) para os excess returns em séries temporais. Os principais resultados

obtidos são os seguintes. Primeiro, utilizando dados mensais para um longo perodo temporal

de 1871 até 2010, conclui-se que: (1) existem quebras de estrutura nos excess returns mensais

entre o peŕıodo antes e depois da Segunda Guerra Mundial (SGM) e, (2) enquanto os dados

do peŕıodo antes da SGM são consistentes com a normalidade, os dados do pós-guerra não

são. Segundo, apresenta-se evidência de dois regimes de mercado para o peŕıodo pós-SGM.

Estes regimes podem ser vistos como descrevendo condições de mercado bull e bear. Terceiro,

usando dados com frequências mais altas para o peŕıodo pós-SGM, testa-se a aggregational

Gaussianity para dados de diários até dados anuais. Conclui-se que a Gaussianity depende

da frequência dos dados: pode ser válida para dados mais agregados (começando em da-

dos semestrais até dados anuais) mas não é válida para dados com frequências mais altas

(menores que semestrais). O principal contributo desta dissertação é demonstrar a sobre-

vivência da normalidade quando se toma a frequncia dos dados como variável. Após uma

revisão aprofundada da literatura sobre aggregational Gaussianity, n ao encontrei resultados

anteriores para os excess returns.

Keywords: Excess returns, Normalidade, Quebras de Estrutura, Regime Switching, Agregação

Temporal

JEL codes: C1, G12
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conselhos que me acompanharam ao longo da minha vida académica no ISEG. À Joana pela
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1 Introduction

Normality of excess returns is maybe the central assumption in finance and macrofinance.

Normality allows for the use of a powerful instrument such as the Itô calculus, which is

the stepping stone of most of the results in theoretical asset pricing. However, empirical

results have systematically pointed out to deviations from normality. In almost all the cases

it has been established that empirical distributions of returns are skewed and leptokurtic

(Mandelbrot, 1963; Fama, 1965; Campbell et al., 1997).

Should we consider most of finance theory as unrealistic, and therefore irrelevant? Should

we just use empirical measurement without theory given the lack of appropriate theoretical

background?

In this dissertation, I try to assess under which circumstances normality can be a good

descriptive model for the U.S. excess returns. There are several reasons why normality may

not hold. One branch of the literature studies deviations from normality assuming that

parameters are time-varying, that is, assuming non-stationarity. In this context, deviations

from normality in financial returns may arise if these are mean-reverting (Poterba and Sum-

mers, 1988) or characterized by GARCH features (Bollerslev et al., 1992). I explore other

possible sources of deviations from normality: structural breaks and regime switching in long

term aggregate time series. The existence of structural breaks or regime switching may pro-

vide a solution to obtain normality for excess returns conditional on subperiods or regimes,

respectively. In addition, I study temporal aggregation (i.e., considering the frequency of

data as a variable) for excess returns in short term time series.

The standard approach to test normality for excess returns uses the sample estimate of

the mean and the sample estimate of the variance for a given sample period. This approach is

acceptable if excess returns are assumed to be independent and identically distributed (i.i.d.)

and, therefore, the estimated parameters - mean and variance - remain constant for the entire

sample period. However, when long histories are being used, stationarity may not hold: for

the sample period under investigation, the parameters of the probability distribution could
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be changing over time, experiencing shifts known as ”structural breaks”, or switching among

a finite set of values, that is, they are ”regime-switching”.

Deviations from normality, such as structural breaks or regime switching, have been found

for excess returns. Pástor and Stambaugh (2001) estimated the expected U.S. excess return

in a Bayesian framework in which the prior distribution is subject to structural breaks. They

reported a total of fifteen structural breaks for excess returns using a sample period covering

1834-1999. The most significant break, however, was found to be in the late 1990s.

Kim et al. (2005) adopted also a Bayesian likelihood analysis to compare four univariate

models of excess returns using monthly data for a shorter sample period covering 1926-1999.

They constructed Bayes factors based on the marginal likelihoods, which allowed them to

make model comparisons and to test structural breaks. Their findings are similar to mine.

First, they found statistical evidence of a structural break in excess returns around the

WWII period. In particular, they found that there is a permanent reduction in the general

level of stock market volatility in the 1940s. My methodology finds support of breaks in the

variance but not in the mean of excess returns. Second, Kim et al. (2005) found that the

empirical Bayes factors strongly favour the three models that incorporate Markov switching

volatility over the simple iid model. My findings support evidence of two market regimes

possibly connected with two different business cycle stages. In particular, I observe times

where excess returns are expected to be low and highly volatile and times where, in contrast,

excess returns behave in the opposite way.

Empirical research also indicates that the shape of the distribution of stock returns is not

the same for different time scales (Cont, 2001 and Eberlein and Keller, 1995). For instance,

it has been established that daily returns depart more from normality than monthly returns

do (see, e.g., Blattberg and Gonedes, 1974; Eberlein and Keller, 1995; and Campbell et

al., 1997). Campbell et al. (1997) compared the distributions of daily and monthly stock

returns for two indices and ten stocks from the U.S. for the period 1962–94. They found

that the non-Gaussian character (the skewness and kurtosis) displayed by the distributions

2



of monthly data is significantly lower than that displayed by the distributions of daily data.

This stylized fact, also known as ”aggregational Gaussianity”, indicates that as one increases

the time scale over which returns are calculated their distribution looks more and more like

a normal distribution (Cont, 2001). In particular, it has been observed that, as we move

from higher to lower frequencies, the degree of leptokurtosis diminishes and the empirical

distributions tend to approximate normality.

My main findings can be summarized as follows. First, using long spanning monthly time

series data from 1871 to 2010, I find that (1) there are structural breaks in monthly excess

returns between pre-WWII and post-WWII data; and, (2) while pre-WWII data is consistent

with normality, post-WWII data is not. Second, I provide evidence of two different market

regimes for excess returns in post-WWII data. These regimes may be seen as bull and bear

market regimes. Third, using high frequency post-WWII data, I check for aggregational

Gaussianity, from daily to annual data. I find that Gaussianity depends on the frequency of

data: it may hold for highly aggregate data (starting from semi-annual to annual data) but

it does not hold for high frequency data (less than semi annual).

In this dissertation, I incorporate two branches of literature that study deviations from

normality in excess returns: (i) one that tests for the existence of structural breaks and

regime switching and (ii) other that explores time aggregation. After a careful look at the

available literature on aggregational Gaussianity, I found no previous applications and results

on excess returns. My main contribution is to demonstrate the ”normality survival” when

frequency is taken as a variable.

This dissertation is organized as follows. In section 2, I define excess returns and I

present the formal proof for the normality of log excess returns as well as some stylized

facts for monthly excess returns. In Section 3, I test if non-normality is associated with the

presence of structural breaks and regime switching for monthly data. In Section 4, I test for

Gaussianity with disaggregated data. In Section 5, I conclude.
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2 Excess returns and normality

2.1 Excess returns - a definition

Total returns for stocks are defined as the sum of returns from capital gains and reinvested

dividends from a market stock index. Let Pt be the average price value of the stock index

at period t and Dt the average dividend payment between periods t − 1 and t. Thus, the

continuously compounded return on the aggregate stock market at time t is

rt = log(Pt +Dt)− log(Pt−1).

In addition, let rft denote the average log-return on a riskless security at period t. Typi-

cally, yields from long-term Government Bonds have been used as a proxy for the relatively

risk-free asset.

Excess return can be seen as the risk premium paid to investors for holding stocks - which

are risky - instead of riskless securities. In this sense, the excess return may also be thought

of as the payoff on an arbitrage market portfolio where investors go long on stocks and take

short positions on riskless securities. In such market portfolio, the continuously compounded

excess return at time t is defined by

zt = rt − r
f
t .

2.2 Normality and Itô calculus

Normality allows for the use of the Itô calculus, which is the stepping stone of almost all

the results in theoretical asset pricing. In continuous-time asset pricing models, financial

prices are assumed to be geometric Brownian motions, and, therefore, by the Itô’s lemma,

logarithmic returns follow a Normal distribution. This lognormality assumption is used, for

instance, in the Black and Scholes model (1973).
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In this part, using a continuous-time framework, I present the formal proof that the log

excess returns are normally distributed.

Let the time be continuous and consider two assets: X1 (t) being the stock price and

X2 (t) the risk-free price1. For the sake of simplicity, I assume for these assets that there

are no accruing dividends nor accruing interest. The stochastic processes for the risky asset

X1 (t) and for the riskless asset X2 (t) follow two diffusion processes,

dX1 (t) = µ1X1 (t) dt+ σ1X1 (t) dW (t)

and,

dX2 (t) = µ2X2 (t) dt+ σ2X2 (t) dW (t)

where µ1 and µ2 represent the expected rate of return and σ1 and σ2 the expected volatility.

I explicitly assume that these parameters are constant and, therefore, that the processes are

stationary. In addition, I consider that these two asset prices are subject to the same source

of uncertainty, dW , which follows a standard Wiener process2.

Let the excess returns Z (t) be defined by Z = X1

X2

, or in logarithms by,

z = ln

(

X1

X2

)

= ln (X1)− ln (X2)

Itô’s lemma, which is a stochastic calculus theorem, yields an equivalent continuous-time

equation for the d lnX1 (t) and d lnX2 (t). To illustrate this, let F (X1 (t) , t) = ln (X1 (t))

and G (X2 (t) , t) = ln (X2 (t)) be functions of the log prices of the underlying assets X1 and

X2 and time t. Therefore, from the Itô’s lemma, d lnX1 (t) and d lnX2 (t) are also stochastic

1Without loss of generality, assume a small value of volatility for the riskless asset.
2A continuous stochastic process W (t) is a Wiener process if (i) each increment follow a normal distri-

bution and (ii) increments over non-overlapping time intervals are independent and identically distributed
random variables.
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process, satisfying,

d lnX1(t) =

(

∂F

∂t
+

∂F

∂X1
µ1X1 +

1

2

∂2F

∂X2
1

σ2
1X

2
1

)

dt+

(

∂F

∂X1
X1σ1

)

dW (t) (2.1)

and,

d lnX2(t) =

(

∂G

∂t
+

∂G

∂X2
µ2X2 +

1

2

∂2G

∂X2
2

σ2
2X

2
2

)

dt+

(

∂G

∂X2
X2σ2

)

dW (t) (2.2)

From (2.1) and (2.2), and rearranging the terms, we may also find the stochastic process

for the excess returns,

dz (t) = d ln (Z (t)) = d ln (X1 (t))−d ln (X2 (t)) =

[

µ1 − µ2 −
1

2

(

σ2
1 − σ2

2

)

]

dt+(σ1−σ2)dW (t)

(2.3)

where, excess returns dz (t) follow a generalized Wiener process with a constant drift rate

µ1 − µ2 −
1
2
(σ2

1 − σ2
2) and a constant variance rate (σ1 − σ2)

23.

Finally, integrating out equation (2.3) between two arbitrary moments t and t + 1, it

is obtained the approximation which allows to apply the theoretical results from stochastic

calculus into discrete time,

ln (Z (t+ 1))− ln (Z (t)) ∼ φ

{[

µ1 − µ2 −
1

2

(

σ2
1 − σ2

2

)

]

, (σ1 − σ2)
2

}

, (2.4)

3A similar result may be achieved using the following set up:
Let z (t) = G (X1 (t) , X2 (t)) = ln (X1) − ln (X2) with G (·) a continuous and differentiable function in

relation to the variables X1 and X2. From a Taylor series expansion for dz (t) it follows that,

dz (t) =
∂G

∂X1

dX1 +
∂G

∂X2

dX2 +
1

2

(

∂2G

∂X2

1

dX2

1
+ 2

∂2G

∂X1∂X2

dX1dX2 +
∂2G

∂X2

2

dX2

2

)

and, since dt2 = 0, dtdw = 0 and dw2 = dt, then, rearranging this equation,

dZ (t) =

[

µ1 − µ2 −
1

2

(

σ2

1 − σ2

2

)

]

dt+ (σ1 − σ2)dW (t)

where, excess returns dz (t) follow a generalizedWiener process with a constant drift rate µ1−µ2−
1

2

(

σ2
1 − σ2

2

)

and a constant variance rate (σ1 − σ2)
2.
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Equation (2.4), states that the change in log excess returns between time t and some

future time t + 1 is normally distributed. Therefore, from Itô’s lemma, a variable Z (t)

has a lognormal distribution if the natural logarithm of the variable ln (Z (t)) is normally

distributed.

2.3 Monthly series and some stylized facts

In this subsection, I present some stylized facts for U.S. monthly excess returns using a long

time series of data spanning from 1871:1 to 2010:12. First, I describe the data and provide

some descriptive statistics. Then, I seek if a Normal distribution fits the empirical den-

sity distribution of excess returns and I quantify the difference between these distributions.

Finally, I present some formal normality tests.

2.3.1 Data

I use Robert Shiller’s data (Shiller, 1989). These data are available for download in Shiller’s

website and consist of monthly averages of stock prices, dividends and interest rates, all

starting in January 1871.

The stock price index is the Standard and Poor’s Composite Index. The data source was

Standard and Poor’s Statistical Service Security Price Index Record, various issues, from

Tables entitled ”Monthly Stock Price Indexes - Long Term”.

The dividend series is the total dividends per share for the period adjusted to the index.

Monthly dividend data are computed from the S&P four-quarter tools since 1926, with linear

interpolation to monthly figures. Dividend data before 1926 are from Cowles and associates

(Common Stock Indexes, 2nd ed. [Bloomington, Ind.: Principia Press, 1939]), interpolated

from annual data.

The interest rate series is the 10-year Treasury Bonds after 1953 published by the Federal

Reserve. Before 1953, it is Government Bond yields from Sidney Homer ”A History of Interest

Rates”, with linear interpolation to monthly figures.
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Figure 1: Time series of U.S. monthly excess returns
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2.3.2 Moments

Figure 1 plots the time series of U.S. monthly excess returns from 1871:01 to 2010:12.

Excess returns have been highly volatile. Figure 1 displays the well-documented high

volatility period around 1930, including the highest decline of 30% in October 1929, and the

greatest increase of 41% in July 1932. Although to a lower extent, the post-war period has

been also a period of high volatility. In particular, U.S. monthly excess returns decreased

almost 23% in September 2008, which coincides with the start of the so-called Second Great

Depression (Reinhart and Rogoff, 2008).

Table 1: Descriptive statistics

S&P 500 Risk-free Excess returns

Mean 0.0071 0.0039 0.0032
Std. Dev. 0.0407 0.0019 0.0408
Skewness -0.36 1.84 -0.34
Kurtosis 14.43 6.75 14.39

Table 1 presents some descriptive statistics for the log-returns of the S&P500 stock index,

the log-returns of the long-term U.S. Government Bonds and the U.S. monthly excess returns.
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Figure 2: Empirical density of excess returns and the Normal PDF

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

14

Excess returns (percentage)

D
en

si
ty

(p
er

ce
n
ta

ge
)

The figures reveal that stocks have consistently outperformed the risk-free security yielding

a monthly expected excess return (i.e., a equity premium) of 0.32%. However, stocks have

been riskier and this caused a high variability in U.S. excess returns over the same period,

with a monthly standard deviation of 4.08%.

In addition, Table 1 displays the statistics for the skewness and kurtosis - the third and

fourth standardized moments. Skewness and kurtosis are used to summarize the extent of

asymmetry and the tail thickness in a given empirical density distribution. For a Normal

distribution, these statistics correspond to 0 and 3, respectively. Therefore, it seems that the

Normal distribution does not hold for U.S. excess returns. Instead, the empirical distribution

of excess returns is leptokurtic, exhibiting a higher value of kurtosis (more than 14), and

asymmetric, with a negative skewness of −0.344. This conclusion holds true also for the

S&P500 index and the long-term U.S. Government Bonds.

Figure 2 plots an empirical density histogram against a theoretical Normal distribution.

The empirical density distribution of U.S. excess returns is more peaked in the center and

has fatter tails when compared to a Normal distribution. Overall, the Normal distribution

4The value for skewness is statistically different from 0 at a standard significance level.
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exhibits a very poor fit through all range of the data: at the center, frequencies are sub-

stantially underestimated; at a medium range from the center, the empirical frequencies

approach zero faster than the Normal alternative, i.e., they are overestimated; and, finally,

at the tails, empirical frequencies become again underestimated.

But how large is the error made if we assume a Normal distribution as a theoretical

model for U.S. excess returns? To quantify deviations from normality I build an empirical

frequency distribution of excess returns and compare it with what would be expected if the

same frequencies were calculated with a Normal distribution. The frequencies correspond

to the empirical proportions of excess returns within a given number of standard deviations

from the mean. I split the frequencies into three groups: Center, Medium and Tails. These

groups were chosen accordingly to the number of excess returns in the range of (µ± kσ), for

k ∈ R and µ, σ are the sample mean and the sample standard deviation of excess returns.

Table 2: Excess returns: empirical frequencies vis-à-vis Normal distribution

Position Range Observed Normal Difference

Center 0 to 1 79.05 68.27 10.78
Medium 1 to 3 19.40 31.46 -12.06
Tails 3+ 1.55 0.27 1.28

Left Tail 1.31 0.13 1.17

Right Tail 0.24 0.13 0.10

Empirical frequencies of excess returns and theoretical Normal frequencies. Range refers
to the number of standard deviations beyond the mean. Column ”Difference” refers to the
difference, in percentage, of empirical relative frequencies given in column ”Observed”, and
the expected normal frequencies represented in column ”Normal”.

The magnitude of the deviations can be seen in Table 2. The first row of this Table

shows that the empirical distribution of excess returns contains 10.78% more observations

in the center than it would be expected if the distribution was Normal. The fact that a

large proportion of excess returns remains near its sample mean explains the higher peaked

center in the empirical distribution. On the other hand, at a medium range, the empirical
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frequencies are overestimated which, in Table 2, corresponds to the negative difference of

12.06%. However, the most important characteristic of empirical frequencies is the evidence

of two significant tails. A general observation about these extreme events is that 1.55% of

total excess returns correspond to more than three standard deviations from the mean. This

is about six times the value of the Normal distribution. Furthermore, the probability of

occurring extreme downward and upward movements in excess returns is not the same. In

Table 2, the left tail has a relatively higher density frequency which means that crashes are

more likely than booms. The Normal distribution, being a symmetric distribution, cannot

capture this feature.

2.3.3 Normality tests

In order to formally examining the normality assumption, I ran several classes of tests for

monthly excess returns. These tests have been widely used to study normality hypothesis

in empirical financial studies and they can be implemented in almost all standard statistical

packages. I carried out these tests using Eviews and Matlab.

The first test used is the Jarque-Bera test (Bera and Jarque,1987). This test uses infor-

mation on the third and fourth moments of a distribution and is based upon the fact that

for a Gaussian distribution, whatever its parameters, the skewness is 0 and kurtosis is 3.

The second test applied is the Shapiro-Wilk test (Shapiro and Wilk, 1965). This test

assumes that, under the null hypothesis, the data are coming from a Normal population with

unspecified mean and variance. This test is generally considered relatively more powerful

against a variety of alternatives. Shapiro-Wilk test is used, instead of Shapiro-Francia,

because it has a relatively better performance for leptokurtic samples.

Finally, I conducted three additional tests to get a more precise picture of normality: the

Anderson-Darling test (Stephens, 1974), the Lilliefors test (Lilliefors, 1967) and the Cramér-

von-Mises test (Cramér, 1928 and Anderson, 1962). These goodness-of-fit tests, which are

extensions of the Kolmogorov Smirnov test, find the discrepancy between the empirical
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distribution and the Normal distribution using the sample estimated mean and variance.

Then, they assess whether that discrepancy is large enough to be statistically significant,

thus, requiring rejection of the Normal distribution under the null hypothesis.

Table 3: Normality tests in excess returns

Normality test Statistic value P-value

Jarque-Bera 9051.1 0.0000
Shapiro-Wilk 0.9030 0.0000
Anderson-Darling 20.696 0.0000
Lilliefors 0.0707 0.0000
Cramér-von-Mises 3.1279 0.0000

Table 3 gathers the results of the normality tests performed in excess returns. All the

results point into the outright rejection of the normality assumption for U.S. monthly excess

returns.

According to the empirical literature, it is a “stylised fact” that distributions of stock

returns are poorly described by the Normal distribution (see Mandelbrot, 1963 and Campbell

et al., 1997). This empirical regularity was first reported by Mandelbrot (1963) when he

discovered fundamental deviations from normality in empirical distributions of daily returns.

More recently, Campbell et al. (1997) found contradictory evidence indicating that monthly

U.S. stock returns are reasonably well described by a Normal distribution. My results seem

to be closely related with Kim, Morley and Nelson (2005). They found that a Normal

assumption fails at capturing the distribution of monthly excess returns on a value weighted

NYSE portfolio during a smaller sample period (1926–1999). In particular, they found that

historical excess returns are characterized by higher statistical moments with a negative

sample skewness (−0.49) and an excess kurtosis (10.3).
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3 Characterizing deviations from normality

So far I have found that normality does not hold for U.S. monthly excess returns. In par-

ticular, the empirical distribution of excess returns has long tails caused by a large kurtosis.

Now, I attempt to assess under which circunstances normality may be statistically acceptable

for U.S. excess returns.

When testing normality in the previous section I assumed - as many other financial

researchers did - independent and identically distributed (i.i.d.) excess returns and, therefore,

that the estimated parameters - mean and variance - remain constant for the entire sample

period. However, especially when long histories are being used, the stationarity hypothesis

may not hold: for the sample period under investigation, the parameters of the probability

distribution can be changing over time, experiencing shifts known as ”structural breaks”, or

switching among a finite set of values, that is, they are ”regime-switching”.

In this section, I explore those sources of deviations: structural breaks (subsection 3.1)

and regime switching (subsection 3.2) in monthly excess returns data. The existence of

structural breaks or regime switching may provide a solution to achieve normality for excess

returns conditional on subperiods or regimes, respectively.

3.1 Structural breaks

Structural breaks are low frequency shocks with a permanent - long run - effect which tend

to be related with significant economic and political events (Bai and Perron 1998, 2003).

In general, ignoring the presence of structural breaks may lead to misleading results.

First, structural breaks might cause unit root tests to loose their power. In such case,

one may, for instance, wrongly fail to accept stationarity for a given sample. In addition,

structural breaks can be seen as extreme events which are shown to contribution to the

leptokurtosis of financial returns. The degree of leptokurtosis, however, tends to disappear

or to decrease substantially when structural breaks are taken into account by, for instance,
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simply estimating empirical models over subperiods. Finally, when structural breaks are

ignored, making inference about ordinary descriptive statistics, such as the mean or the

variance, may prove to be inaccurate. As referred by McConnel and Perez-Quiros (2000),

taking theory to the data by confronting the moments generated from a calibrated Normal

model with the moments of real data over a period with a structural break will lead to

misleading conclusions. Therefore, even if the normality assumption for excess returns is not

acceptable over the entire period, it could be so for subperiods between the breaks. That is,

the normality theory may still be valid conditional to those subperiods.

This subsection starts with a description of the methodology undertaken to test and date

structural breaks in monthly excess returns. Then, results are presented and normality is

tested again for excess returns using smaller periods.

3.1.1 Methodology

I follow a flexible approach that is capable of simultaneously test and date structural breaks.

It consists in a two-step procedure. In the first step, I use a generalized fluctuation framework

to test for the presence of breaks in the conditional mean and in the conditional variance

of excess returns. If there is evidence of breaks in the data, then, in the second step, I use

an algorithm from Bai and Perron (1998, 2003) for dating the potential breakpoints and

select the optimal number of breaks according to the Bayesian Information Criterion (BIC)

(Schwarz, 1978). Such approach was suggested by Hornik et al. (2003) and may be easily

implemented in their strucchange package for R software5.

A. Generalized fluctuation tests - first step

Structural breaks are permanent shifts that occur in the parameters of a data generating

process. Although structural breaks are detected by finding changes in the parameters of

a conditional model, they imply shifts in the unconditional moments. Following Hornik et

5I would like to thank Professor Achim Zeileis for his useful suggestions on this subject.
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al. (2003), I consider the following standard linear regression model for testing parameter

stability,

yt = x
⊺

tβt + ut (t = 1, ..., T ) (3.1)

where yt is the observation of the dependent variable at time t, xt = (1, xt2, ..., xtk)
⊺ is a k×1

vector of observations of the independent variables, ut is iid (0, σ
2) and βt is a k × 1 vector

of regression coefficients which may vary over time.

Under this set up we are concerned with testing the null hypothesis of ”no structural

change”

H0 : βt = β0 (t = 1, ..., T ) (3.2)

against the alternative that at least one coefficient vector varies over time.

To test this null hypothesis (are the parameters stable?), I use generalized fluctuation

tests. Generalized fluctuation tests fit a parametric model (3.1) to the data via ordinary least

squares (OLS) and derive an empirical fluctuation process which captures the fluctuation in

the residuals or in the coefficient estimates. The null hypothesis of parameter stability is

rejected if the fluctuation is considered improbably large.

I use two empirical fluctuation processes which are based in the estimates of regression

coefficients β: the recursive estimate (RE) process in the spirit of Ploberger et al. (1989) and

the moving estimate (ME) process introduced by Chu et al. (1995). From this point of view,

the k × 1-vector β is either estimated recursively with a growing number of observations,

or using a moving data window of constant bandwidth h. For both RE and ME empirical

fluctuation processes, fluctuations are determined in terms of their deviations from the full-

sample estimate of the regression coefficient β.

These empirical fluctuation processes can capture departures from the null hypothesis

of parameter stability (3.2). In particular, the null hypothesis of ”no structural change”

should be rejected when the fluctuation of the empirical process becomes improbably large

compared to the fluctuation of its limiting process. Under the null hypothesis, the corre-
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sponding limiting processes are known (see Kuan and Hornik, 1995) and, from these limiting

processes, boundaries can be found, whose crossing probability (under the null hypothesis)

is a prescribed significance critical rejection level α.

It should be noted, however, that generalized fluctuation tests are not a dating procedure

and a more general framework is needed to this purpose.

B. Dating multiple breakpoints - second step

Multiple breaks are likely to occur in long time series data. In such case, we may need

to consider a more general framework than the one considered in (3.1). According to Bai

and Perron (1998, 2003), it is assumed that there are m breakpoints and m + 1 segments

(in which the regression coefficients are constant) and that the following multiple linear

regression model is given:

yt = x
⊺

t β1 + ut (t = 1, ..., T1) ,

yt = x
⊺

tβ2 + ut (t = T1 + 1, ..., T2) ,

...

yt = x
⊺

tβm+1 + ut (t = Tm + 1, ..., T ) ,

where the breakdates indexed by (T1, ..., Tm) are explicitly treated as unknown.

The main goal here is to determine the number and location of the breakpoints. That is,

we need to determine the estimates for the m breakpoints and the m+ 1 segment - specific

regression coefficients βj+1, when T observations for (yt, xt) are available.

I estimate the breakpoints by applying the algorithm of Bai and Perron (2003) which was

recently implemented in R software by Hornik et al. (2003). The algorithm is based on the

principle of dynamic programming and it is considered, among others, one efficient method

to estimate breakpoints in an OLS regression context.
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The algorithm proceeds as follows. Given a fixed number of breakpoints, the algorithm

starts by calculating the sum of squared residuals for every possible segment in the regression

model. Some restrictions may be imposed to the number of segments to be calculated, such as

the minimum distance between each break. From all these possible segments, the algorithm

evaluates which partition - combination of segments - achieves a global minimization of the

overall sum of squared residuals. It is an iterative process solving a recursive problem and

from which the breakpoints, or equivalently the optimal partition, correspond to the global

minimisers.

For initialization, the algorithm requires a fixed number of breakpoints. In many ap-

plications, however, m is unknown and it must be chosen based on the observed data as

well. One solution to this problem is to compute the optimal segmentation for a sequence of

breakpoints m = 1, 2, 3, ...mmax and to choose m by optimizing some information criterion

(Bai and Perron, 2003). Model selection for the number of breakpoints m is based on the

minimization of BIC criteria. Further details on this algorithm can be found in Bai and

Perron (2003) and Hornik et al. (2003).

3.1.2 Tests results

A. Detecting evidence of structural breaks

This part reports the results for the structural break tests undertaken to the conditional

mean and the conditional variance of U.S. monthly excess returns. For each conditional

model two fluctuation tests have been carried out: the recursive estimates (RE) and the

moving estimates (ME). In the ME fluctuation tests, the moving date window of constant

bandwidth h was set up to 5%6.

Let the conditional mean of excess returns follow an autoregressive model of order 2 -

AR(2). This model specification turns out to be necessary in order to remove autocorrelation

6Other values of h were used; however, the results appear to be qualitatively similar to the one obtained
for the baseline value for h.
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Figure 3: Stability tests in the conditional mean of excess returns
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Monthly, from 1871:01 to 2010:12. The empirical fluctuation process with the coefficient
estimates are plotted together with its boundaries at an (asymptotic) 5% significance level.
Time refers to the fraction of the sample T .

from the residuals. Alternatively, we could assume a random walk model for the mean

of excess returns. Or we could use more sophisticated models with a higher number of

integration (e.g., AR(p) with p > 2). However, the empirical results remain qualitatively

the same. Thus, the standard linear regression model upon which the structural break tests

were based is,

yt = α + β1yt−1 + β2yt−2 + ǫt, ǫt ˜ i.i.d N(0, σ2) (3.3)

with yt the excess return in month t. Model (3.3) is a pure change model (Bai and Perron

1998, 2003) since all its regression coefficients - level α and persistence β - are allowed to

change.

Figure 3 reports the structural break tests for the conditional mean of U.S. monthly

excess returns. Clearly, the mean of excess returns did not vary much over the period. This

is confirmed by both fluctuation tests; neither the RE nor the ME empirical processes cross
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the boundary line of critical rejection of 5% and, hence, one may conclude that there are no

evidence of structural breaks in the mean of excess returns over the period from 1871:01 to

2010:12.

In order to run structural break tests in the variance, squared errors (ǫ2t ) taken from

equation (3.3) are considered as a proxy for the conditional variance of U.S. monthly excess

returns. Other proxies of volatility may be considered instead. One alternative is to estimate

a GARCH(1,1) model and work directly with the equation of conditional volatility. Or we

may simply calculate the sample volatility using a moving data windows.

Let the conditional variance of excess returns follow an autoregressive model of order

1 - AR(1). Again, this model specification turns out to be necessary in order to remove

autocorrelation from the residuals. Alternatively, we could assume a random walk model for

the mean of excess returns. Or we could use more sophisticated models with a higher number

of integration (e.g., AR(p) with p ≥ 2). However, the empirical results remain qualitatively

the same. Thus, the standard linear regression model upon which the structural break tests

were based is,

ǫ2t = δ + ηǫ2t−1 + ζt with ζt ˜ i.i.d N(0, σ2). (3.4)

The results, displayed in Figure 4, appear to be rather different for the conditional vari-

ance of U.S. monthly excess returns. At a 5% (asymptotic) significance level, both empirical

fluctuation processes show significant departures from the null hypothesis of parameter sta-

bility, suggesting the existence of a structural break for the variance of excess returns.

Yet the number of breaks seems to be different across the tests: whereas the RE test

points to one peak, the ME test depicts two - or possibly three - peaks where the fluctuation

of the empirical process is improbably large compared to the fluctuation of the limiting

process under the null hypothesis. Therefore, it seems that there is more than one structural

break in the conditional variance for the 1871-2010 period.
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Figure 4: Stability tests in the conditional variance of excess returns
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Monthly, from 1871:01 to 2010:12. The empirical fluctuation process with the coefficient
estimates are plotted together with its boundaries at an (asymptotic) 5% significance level.
Time refers to the fraction of the sample T .

B. Dating the breakpoints

After having found evidence of structural changes in the variance of excess returns, now

I attempt to answer the question of when they have occurred. For dating the breakpoints

an algorithm from Bai and Perron (1998, 2003) has been applied to the conditional variance

model (3.4).

However, there are two important practical issues that we should take into account when

applying the algorithm. One is related to the number of breaks to be considered in the

dating procedure. I assume a maximum of m = 5 potential structural breaks and then select

m according to a model selection which is based on the BIC criteria. Furthermore, I set

up a minimum segment size of 96 months, corresponding to 5% of the 1871-2010 sample.

According to Kim et al. (2005), this procedure turns out to be necessary to avoid any

irregularities in the likelihood function resulting from a small subsample. Moreover, under

this particular methodology, I am looking for permanent – rather than temporary – shifts in

excess returns; that is, I have no particular interest in shocks that last for a short period of
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Figure 5: BIC (and RSS) values for different number of breakpoints.
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Figure 5 displays the BIC criteria for models estimated up to m = 5 structural breaks.

The BIC criterion selects two breakpoints for the variance of U.S. monthly excess returns.

Looking at Figure 5, we may conclude that the value for which BIC is minimised is at m = 2.

The Residual Sum of Squares (RSS) may be considered as an alternative information criterion

for model selection. RSS, however, is monotonically decreasing suggesting a model with a

higher number of breakpoints. Even though, I maintain my prior methodology to select

structural breaks according to BIC criterion.

Table 4: Breakdates found in the conditional variance of excess returns

Breakdates estimates

m
(

T̂1

)

1929:06

m
(

T̂2

)

1938:07

7Single or multiple outliers may be detected in algorithm Bai and Perron (2003) by using h=1 as the
minimal length of a segment or by defining a large number for m, respectively.
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Table 4 reports the corresponding breakdates for the model with m = 2 structural breaks.

Breakdates for the variance of U.S. monthly excess returns were found at 1929:06 and 1938:07.

These dates are related with the Great Depression in the late 1920s and the beginning of

World War II.

These findings are somehow related with previous literature. Kim et al. (2005) found

evidence of a structural break in U.S. monthly excess returns around the WWII period.

In particular, this structural break is found to be associated with a permanent reduction

in the general level of stock market volatility. My methodology finds support of breaks in

the variance but not in the mean of excess returns. However, I found one additional break

around the Great Depression period. Since Kim et al. (2005) studied a shorter sample period

1926-1999 and have set a wider length for each segment (10%), this may explain, in part,

why they only found one – instead of two – structural break(s).

Pástor and Stambaugh (2001) reported a larger number of structural breaks for expected

U.S. monthly excess returns (15 in total) over a longer sample period (1834-1999). The most

significant break, however, was found to be in the late 1990s. In my procedure, I specify

only 5 potential breaks. I also tried higher values for the maximum number of breaks to be

considered but the findings were similar. Moreover, my model selection procedure is based

on BIC criterion which rules out complex models (with a high number of segments), thus,

favouring parsimony.

3.1.3 Normality in different subperiods

Breakdates for the variance of U.S. monthly excess returns were found at 1929:06 and 1938:07.

This implies a model for the variance of excess returns with three subperiods. In this part, I

assess normality for monthly excess returns over three subperiods: the first covering the time

period until 1929:06, the second including the Great Depression period, starting in 1929:07

up to 1938:07, and finally, the remaining period 1938:08 - 2010:12.
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Table 5: Descriptive statistics for excess returns over different periods

Time Period Mean Std. Dev Skewness Kurtosis

1871:01− 2010:12 0.0032 0.0408 −0.34 14.39
1871:01− 1929:06 0.0037 0.0324 −0.25 3.49
1929:07− 1938:07 −0.0055 0.0916 0.34 7.52
1938:08− 2010:12 0.0038 0.0363 −0.97 6.61

Table 5 reports the descriptive statistics for monthly excess returns for the whole sample

period as well as for three different subperiods. There are several important findings in Table

5. First, excess returns during the Great Depression (second subperiod) were negative and

extremely volatile. The average of excess returns during this subperiod was −0.55% with a

standard deviation of more than 9.16%, which is almost three times higher than that for the

other subperiods.

Second, normality in excess returns depends on the sample period over which data is

observed. The subperiod before the Great Depression seems to be consistent with normality.

For this subperiod, excess returns reveal a kurtosis of 3.49 and a slightly negative skewness

of −0.25. On the other hand, normality is still not a reasonable assumption for the other

two subperiods. The statistics for these two time spans reveal that the second subperiod

exhibits the highest kurtosis (7.52) while the latter subperiod has the lowest value of skewness

(−0.97).

Third, deviations from normality in excess returns for the three subperiods are smaller

than those for the whole sample period. Looking at Table 5, the degree of leptokurtosis,

in particular, is far less evident for the three subperiods when compared to the full-sample

period. Therefore, it seems that the presence of structural breaks can, in part, explain the

excess kurtosis for excess returns.

3.2 Regime Switching

The stationarity hypothesis may not hold due to the existence of structural breaks but also

due to regime switching. Structural breaks are defined as irreversible (once and for all)
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changes as opposed to changes of a recurring nature which can be rather captured by regime

switching models. In the latter, the parameters move and then revert from one regime to

the other.

There are two different approaches for modelling regime switching. One approach uses

Markov switching models, which define a probability transition matrix governing the shifts

between regimes in a conditional regression model. A rather different approach uses a discrete

mixture of distributions to fit the unconditional empirical distribution. Typically, two or

three (or a finite number of) density distributions are defined, representing quiet and more

turbulent regimes.

The purpose of this section is to find for market regimes in U.S. monthly excess returns.

This is accomplished by estimating Normal mixture models up to G = 5 regimes for the

excess returns data. Overall, it has been argued that the true distribution of stock returns

may be Normal, although its parameters are ”regime-switching” (Kon, 1984). In this sense,

normality for excess returns may hold conditionally whether the data is arising from different

market regimes.

I start this section by presenting the Gaussian mixture model and explaining the Expectation-

Maximization (EM) algorithm (Dempster et al. 1977) used for the estimation of such model.

Then, I report the estimation results for the excess returns in the sample period spanning

from 1871:01 to 2010:12. Finally, using post WWII data, I assess if the Gaussian mixture

model provides a reasonable model for the empirical distribution of monthly excess returns.

3.2.1 Gaussian mixture model

The Gaussian mixture distribution has been widely used as a suitable alternative for mod-

elling distributions of financial returns. Gaussian mixture models as models for distributions

of returns were first suggested by Kon (1984). This author proved that discrete mixture

of Normal distributions can in fact explain both significant kurtosis (fat tails) and positive

skewness (asymmetry) observed in the distributions of daily stock returns. In addition,
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mixtures of Normal distributions have the advantage of maintaining the tractability of a

Normal distribution: the unconditional mean and variance are simply expressed as a linear

combination of means and variances of different regimes.

Let g = 1, ..., G be the components, or equivalently the regimes, of the mixture model

and consider that each component has a Normal density φ
(

x;µg, σ
2
g

)

with unknown means

µ1, ..., µG and unknown variances σ2
1 , ..., σ

2
G. Under these circumstances, excess returns xt

are said to have density described by a finite mixture of Normal distributions,

f (x; Ψ) =
G
∑

g=1

πgφ
(

x;µg, σ
2
g

)

(3.5)

where πg is the (a priori) probability of an observation xt belonging to the g − th regime

and Ψ includes θ = (µ1, ..., µG, σ
2
1, ..., σ

2
G) and the probabilities π1, ..., πG for G regimes.

The two main goals are: (i) to estimate the vector Ψ of unknown parameters and (ii) to

select the number of regimes G. To do so, I apply a flexible two-step approach. In the first

step, I estimate the parameters of Normal mixture models with a fixed number of regimes G

using the Expectation-Maximization (EM) algorithm (Dempster et al. 1977). In the second

step, I select the number of regimes G according to the Bayesian Information Criterion

(Schwartz, 1977). Such approach has been shown to achieve a good performance to select

the number of regimes in several applications (see Dasgupta and Raftery 1998) and it may

be easily implemented in the MCLUST package for R software (Dasgupta and Raftery, 1998

and Fraley and Raftery, 1999 and 2002).

3.2.2 Expectation-maximization

Maximum-likelihood (ML) estimates for the parameters of Normal mixtures cannot be

written down in a closed form (Titterington, 1996); instead, these ML estimates have to

be computed iteratively. I estimate the parameters of Normal mixture models using the

Expectation-Maximization (EM) algorithm (Dempster et al. 1977).

The EM algorithm is an iterative procedure for maximizing likelihoods in statistical
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estimation problems involving incomplete data, or in problems which can be posed in a

similar form, such as the estimation of finite mixtures distributions. In particular, for

the purpose of the application of the EM algorithm, the observed-data vector of excess

returns x = (x1, ..., xn) is regarded as being incomplete; that is, we do not know which

mixture component underlies each particular observation. Therefore, any information that

permits classifying observations to components should be included in the mixture model.

The component-label variables zt = (zt1, ..., ztG) are consequently introduced, where ztG is

defined to be one or zero according to if xt did or did not arise from the G− th component

of the mixture model, respectively. Moreover, if zt is i.i.d. with a multinomial distribu-

tion of one draw from G categories with probabilities π1, ..., πG, we may represent the new

complete-data loglikelihood for excess returns as

l (θg, πg, ztg|x) =
∑n

t=1

∑G

g=1 ztg log [πgf (xt|θg)],

where the values of ztg are unknown and treated by the EM as missing information on

to be estimated along with the parameters θ and π of the mixture model.

The EM algorithm starts with some initial guess for the parameters in the mixture

Ψ̂ (component means µ̂g, component variances σ̂2
g and mixing proportions π̂g). Based on

such guessed values, the algorithm finds the ML estimates by applying iteratively until

convergence the expectation step (E-step) and the maximization step (M-step).

The E-step consists, at iteration h, in computing the expectation of the complete data

loglikelihood over the unobservable component-label variables z, conditional on the observed

data xt and using the current estimates on the parameters Ψ̂(h),

τ̂
(h)
tg = E

[

ztg|xt; Ψ̂
(h)

]

=
π̂
(h)
g φ

(

xt; θ̂
(h)
g

)

∑G

g=1 π̂
(h)
g φ

(

xt; θ̂
(h)
g

) ,

for g = 1, ..., G and t = 1, ..., n. Note that τ̂
(h)
tg is the estimated posterior probability (at

iteration h) that the t− th observation belongs to the g − th component.
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In the M-step, new parameters Ψ̂(h+1) are obtained by maximizing the expected complete

data loglikelihood. These new parameters are estimated from the data given the conditional

probabilities τ̂tg that were calculated from the E-step. Estimates of πg and θg have simple

closed-form expressions involving the data and ẑtg from the E-step.

Once we have a new generation of parameter values Ψ̂(h+1), we can repeat the E-step

and another M-step. The E and M-steps are alternated repeatedly until the likelihood (or

the parameter estimates) change by an arbitrarly small amount in the case of convergence.

The EM algorithm increases the likelihood function of the data at each iteration, and under

suitable regularity conditions converges to a stationarity parameter vector.

3.2.3 Number of regimes

When Normal mixture models and its corresponding parameters have been estimated, the

number of regimes to consider in excess returns has to be decided. I assume a standard

statistical problem in which the number of regimes G is known, but mixture models with

different G should be compared based on some type of information criterion.

I select the number of regimes G according to the Bayesian Information Criterion (BIC)

(Schwarz, 1978). The BIC chooses G to minimize the negative loglikelihood function aug-

mented by some penalty function which rules out complex models with a large number of

parameters. Overall, parsimony-based approaches have been proposed for choosing the op-

timal number of regimes in a given mixture model. In particular, Bayesian Information

Criterion (BIC) has been shown to achieve a good performance to select the number of

regimes in several applications (see Dasgupta and Raftery 1998). Medeiros and Veiga (2002)

proposed a rather different approach to select the number of regimes in financial volatility.

In such approach, the problem of selecting the number of regimes is solved by applying

Lagrange multiplier type tests.
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3.2.4 Parameter estimates

In summary, the following strategy for model selection has been performed: (i) a maximum

number of regimes, Gmax is considered; (ii) then, the parameters are estimated via EM for

each model with a number of regimes up to Gmax; (iii) BIC is compared for each model; and

(iv) finally, the number of regimes is selected such as to minimise BIC8.

A. Full sample period

This part reports the results from the application of MCLUST package to monthly excess

returns data from 1871:01 to 2010:12. Mixtures up to G = 5 Normal distributions were

estimated via EM algorithm for monthly excess returns over the period 1871:01 to 2010:12.

Table 6: BIC values for different numbers of regimes in excess returns

Regimes BIC value

G=1 −5, 969.69
G=2 −6, 322.74
G=3 −6, 311.64
G=4 −6, 285.11
G=5 −6, 270.58

Table 6 presents the corresponding BIC value calculated for each Normal mixture model.

There are two regimes in U.S. monthly excess returns. Looking at Table 6, the mixture model

for which the BIC value is minimised is at G = 2. Furthermore, the stationary Normal model

with G = 1 has the worst performance among all the models. Hence, it seems that excess

returns over the period from 1871:01 to 2010:12 may be described by a combination of G = 2

Normal distributions. The corresponding maximum likelihood estimators for the parameters

are

8Concerning the problem of how to select suitable starting values for the EM algorithm, MCLUST
provides a suitable solution. For initialization, the data is divided into quantiles equal to the number of
regimes considered.

28



fGM (x; π̂1, π̂2, µ̂1, µ̂2, σ̂1, σ̂2) = 0.9021 · φ (x; 0.0066, 0.0009)+

+ 0.0979 · φ (x;−0.0286, 0.0078) (3.6)

The density model for excess returns in (3.6) reflects the existence of two market regimes:

the first density, occurring with a probability of 90%, may be interpreted as a bull market

regime - corresponding to months where excess returns have a relatively higher mean and a

smaller variance - whereas the second density, occurring with a probability of 10%, may be

interpreted as a bear market regime - corresponding to months where excess returns have a

lower expected return and a greater variance.

One attractive property of mixture models compared to a stationary Gaussian model is

that they can capture the leptokurtic and skewed characteristics of empirical data (Kon,

1984). To illustrate this flexibility, consider the probability density function of U.S. monthly

excess returns in (3.6). Leptokurtosis arises from a relatively larger variance in regime 2

occurring with probability 10% which enables the mixture to put more mass at the tails.

However, the majority of excess returns (90%) are coming from regime 1. Since this regime

contains data which is expected to be closer to the (unconditional) sample mean this, there-

fore, explains the high peak observed in the empirical distribution of excess returns. On the

other hand, skewness arises when means are different between regimes. In particular, there

is a negative asymmetry in the density model (3.6) since the high–variance regime has both

a smaller mean and a smaller mixing weight.

B. Post-WWII data

I have already found deviations from normality in U.S. monthly excess returns over the

subperiod from 1938:08 to 2010:12. Now, I investigate if those deviations arise from regimes

changes. That is, I test the viability of Normal mixture models as a descriptive model for

U.S. monthly excess returns for this specific subperiod.
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Figure 6: Empirical density of excess returns and the PDF mixture of two Normal distribu-
tions
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Table 7: BIC values for different number of regimes in excess returns over post-WWII data

Regimes BIC value

G=1 −3, 286.63
G=2 −3, 375.42
G=3 −3, 359.05
G=4 −3, 344.23
G=5 −3, 330.53

Table 7 reports the BIC value for mixtures up to G = 5 Normal distributions estimated

via EM algorithm for U.S. monthly excess returns over the period 1938:08 to 2010:12. Again,

there are two regimes in U.S. monthly excess returns. The BIC criterion selects a model

with G = 2 and, therefore, a mixture of two Normal distributions may be considered as a

relatively good descriptive model to explain U.S. monthly excess returns over the subperiod

from 1938:07 to 2010:12. In contrast, the stationary Normal model with G = 1 has the worst

performance among all the models.

Figure 6 plots empirical density histograms for U.S. monthly excess returns together

with a density of a mixture of two Normal distributions over the subperiod from 1938:07 to

2010:12. Overall, the Normal mixture model may be considered as a good descriptive model
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for U.S. monthly excess returns. Looking at Figure 6, it is particularly evident that the

combination of two Normal distributions can capture the larger peakness and the heavier

tails revealed in the empirical distribution of excess returns.

In this section, I found evidence of two regimes with different means and variances for U.S.

monthly excess returns and, at least for the last 70 years, these regimes can explain, in part,

deviations from normality for this particular subperiod. These findings may be somehow

related with the previous literature. Kim et al. (2005) compared four univariate models of

monthly excess returns over the period 1926-1999 and they found that the three models that

incorporate Markov switching volatility are preferred over the simple i.i.d. model.

There is a wide empirical evidence, in the literature, for the existence of regimes in stock

returns. Kon (1984) examined daily returns of 30 stocks of the Dow Jones and estimated

mixtures of Gaussian distributions with two up to four regimes which were found to fit ap-

propriately. Aparicio and Estrada (1995) found partial support for a mixture of two Normal

distributions to explain the distributions of stock returns of 13 European securities markets

during 1990-1995 period. Using monthly S&P 500 stock index returns (1871–2005), Behr

and Pötter (2009) investigate the viability of three alternative parametric families to repre-

sent both the stylised and empirical facts and they have concluded that the two component

Gaussian mixture has the smallest (maximal absolute) difference between empirical and es-

timated distribution. They have suggested that, given its flexibility and the comfortable

estimation using the EM algorithm, Gaussian mixture models should be considered more

frequently in empirical financial analysis.

4 Time aggregation and Normality

I found consistent deviations from normality in monthly excess returns for the post-WWII

data. These deviations were associated with regime switching. Since normality is a key

assumption in finance and macrofinance and it allows for almost all the results in theoret-
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ical asset pricing, should we consider most of finance theory as unrealistic, and, therefore,

irrelevant? That is, should we abandon normality for this particular subperiod? In this final

section, I assess under which circumstances normality of excess returns may be reconsidered

for the post-WWII data.

My main emphasis here is to see whether Gaussianity for excess returns depends or

not on the frequency of the data. This is equivalent to test for aggregational Gaussianity.

Aggregational Gaussianity means that as one increases the time interval over which returns

are calculated, their distribution looks more and more like a Normal distribution. Therefore,

normality in excess returns may not hold for high frequency data - up to monthly data - but

it may hold for higher aggregate data.

In order to test aggregational Gaussianity for U.S. excess returns, I use post-WWII data

measured at different time intervals. Ultimately, I try to determine the level of aggregation

for which excess returns converge to a Normal distribution.

This section starts with a brief description of the data. Then, I test for the aggregational

Gaussianity for U.S. excess returns. This section ends with some formal normality tests.

4.1 Data

I use excess returns data measured over daily, weekly, monthly, quarterly, semi-annual and

annual frequencies for the sample period starting at 01/08/1938 until 31/12/2010. I use end-

of-period data for all frequencies. From end-of-day figures, I calculate end-of-week excess

returns when 7 calendar days are available. Similarly, using the last day of each month, I

compute monthly excess returns. For quarterly excess returns, I assume, for each year, the

end-of-month observation in March, June, September and December. Semi-annual observa-

tions are the end-of-month figure in June and December and, finally, annual observations

correspond to the last day of each year.

The data sources are as follows. For stock prices, I use daily quotes from Bloomberg for

the S&P 500 stock index. Monthly dividends are from Shiller’s data. However, to obtain daily
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Figure 7: Empirical density of excess returns and the Normal PDF for different levels of
aggregation
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(a) Daily Frequency
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(b) Weekly Frequency
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(c) Monthly Frequency
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(d) Quarterly Frequency
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(e) Semi-annual Frequency

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

10

20

30

40

50

Excess Returns (percentage)

D
en

si
ty

(p
er

ce
n
ta

g
e)

(f) Annual Frequency

and weekly observations, I apply linear interpolation to monthly data. For the risk-free asset,

I use yields from the 3-month Treasury Bills published by Federal Reserve. In particular:

(i) for daily and weekly frequencies and up to 04-01-1954, I use monthly observations which

are linear interpolated to obtain daily and weekly observations (ii) for the remaining period,

I use daily observations of the 3-month Treasury Bill secondary market rate (yield).

4.2 Aggregational Gaussianity

A simple way to check normality is to plot the empirical density histogram against the

theoretical Normal distribution with the same empirical moments - mean and variance.

Figure 7 reports empirical distributions of excess returns recorded over time intervals

of one day, one week, one month, three months, six months and one year. Also plotted in
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Figure 7 is the fit of a Normal distribution with a mean and variance given by the respectively

empirical moments.

There is evidence of aggregational Gaussianity in U.S. excess returns. Visual inspection of

the empirical distributions suggests that these distributions are high-peaked and leptokurtic

for lower levels of aggregation (up to quarterly data). However, the peak sharpness and

the extent of leptokurtosis in the empirical distributions seem to decrease substantially and

become more Gaussian-like as we move for higher levels of aggregation. Overall, normality

seems to be a reasonable assumption for excess returns for frequencies starting at semi-annual

data. At this level of aggregation, the shape of the empirical distribution of excess returns

is closer to the bell-shape of the Gaussian distribution. In particular, the corresponding

empirical distribution is characterized by thinner tails and a less peaked center compared to

the empirical distributions for the lower levels of aggregation and, thus, it is more similar to

the Gaussian benchmark.

Table 8: Descriptive statistics for excess returns over different time levels of aggregation

Time frequency Mean Std. Dev. Skewness Kurtosis

daily 0.0002 0.0117 -0.34 22.29
weekly 0.0012 0.0212 -0.66 9.03
monthly 0.0051 0.0440 -0.83 6.37
quarterly 0.0155 0.0806 -0.90 4.65
semi-annual 0.0308 0.1171 -0.46 3.28

annual 0.0624 0.1711 -0.77 3.82

The most evident fact about excess returns data is that as the level of aggregation

increases so the kurtosis falls. Looking at the Table 1, the kurtosis coefficient is widely

above 3 for daily frequencies, it slowly decreases up to the quarterly frequency and, finally, it

reaches convergence to normality at semi-annual and annual frequencies. Skewness statistics

do not yield a consistent pattern. These statistics suggest that excess returns are negatively

skewed but this is not a major feature for these data. In addition, the higher the level

of aggregation, the higher the value for the mean and for the standard deviation of excess
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returns.

Finally, it is worth mentioning that there are two particular forces working simultaneously.

The first force stems from the fact that excess returns seem to belong to the domain of

attraction of the Normal law, which is reflected in the tendency for the estimates of the

kurtosis to approach the value of 3. The second one stems from the fact that, when lower

frequencies are aggregated, the number of observations decreases and, so, the amount of

precision9. Despite this lower precision, normality is obtained for semi-annual and for annual

data.

4.3 Normality tests

To complement the visual evidence for aggregational Gaussianity presented in the previous

subsection, I now take a more formal statistical analysis based on six normality tests.

Table 9: Normality tests in excess returns over different time levels of aggregation.

Frequency JB SW AD L CvM
daily 0.0000 0.0000 0.0000 0.0000 0.0000
weekly 0.0000 0.0000 0.0000 0.0000 0.0000
monthly 0.0000 0.0000 0.0000 0.0000 0.0000
quarterly 0.0000 0.0000 0.0000 0.0017 0.0000
semi-annual 0.0729 0.2037 0.0907 0.0191 0.0590

annual 0.0170 0.0407 0.0339 0.0804 0.0348

Table 9 reports the normality tests performed to excess returns for different time levels

of aggregation. A Normal distribution is statistically acceptable for semi-annual and, to a

lower extent, for annual excess returns data. For lower levels of aggregation, from daily to

quarterly frequencies, a Normal distribution is not acceptable according with all the tests.

However, for semi-annual data and considering a p-value of 5%, the normality hypothesis is

rejected only for the Lilliefors test.

9For example, for the time period 01/08/1938 to 31/12/2010, I have 20,099 daily observations but only
144 semi-annual and 72 annual observations.
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Previous empirical research also indicates that the shape of the distribution of stock

returns is not the same over different time intervals. (Cont, 2001 and Eberlein and Keller,

1995). For instance, it has been established that daily returns depart more from normality

than monthly returns do (see, e.g., Blattberg and Gonedes (1974); Eberlein and Keller,1995;

and Campbell et al.,1997). Campbell et al. (1997) compared the distributions of daily and

monthly stock returns for two indices and ten stocks from the U.S. for the period 1962–94.

They found that the non-Gaussian character (the skewness and kurtosis) displayed by the

distributions of monthly data is significantly lower than that displayed by the distributions

of daily data. Diebold (1986, 1988) referred that the convergence to normality in exchange

rate and other financial returns is attained when the aggregation period tends to infinity; I

find normality for excess returns data being the point of convergence around six months.

5 Conclusion

I presented evidence that the empirical density distribution of monthly U.S excess returns

tends to be non-Gaussian, sharp peaked and heavy tailed for the period spanning from

1871:01 to 2010:12. This was my starting point. The purpose of this dissertation was to

assess under which circumstances normality may still be acceptable as a descriptive model for

the U.S. excess returns. In particular, I explored two sources of deviations from normality: (i)

structural breaks and regime switching using a long time series and (ii) temporal aggregation

for a shorter time series.

My main findings may be summarized as follows. First, I found two structural breaks in

monthly excess returns. The breakdates are at 1929:6 and 1938:7. These breaks are mainly

associated with two permanent shifts in the conditional variance of monthly excess returns.

The volatility of excess returns is relatively low before the start of the Great Depression,

increases sharply until the late 1930s and then returns to its prior levels. Second, the

assessment of normality in excess returns seems to depend on the subperiods considered.
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More specifically, normality may be acceptable for the subperiod before the start of the

First Great Depression, i.e. 1871-1929, but not acceptable for the other two subperiods:

the subperiod including the Great Depression period starting in 1929:7 up to 1938:7 and the

remaining subperiod 1938:8-2010:12. Third, for the post-WWII data, I found that normality

for excess returns may be recovered using mixtures of two Normal distributions. In particular,

I provided evidence of switching regimes in monthly excess returns for this period. Those

regimes may be seen as describing bull and bear market conditions. Finally, for the post-

WWII data, I found that normality for excess returns depends on the frequency of the data.

In particular, I tested for aggregational Gaussianity from daily to annual data, and concluded

that normality for excess returns may also be recovered considering higher aggregated data,

starting from semi-annual to annual data.

These findings may have possible implications for finance and macrofinance literature.

First, if we accept normality only for frequencies starting at semi-annual up to annual,

this means that calculations with VaR and other risk-based models, which rely on such

assumption, could be misleading. In particular, for time horizons up to six months, investors,

under a Gaussian alternative, would underestimate potential losses, since in reality empirical

distributions are fat-tailed. In such case, investors must apply non-Gaussian probability

tools to quantify their risks (relying, for instance, on extreme value theory and rare event

analysis). On contrary, for time horizons starting at six months, investors face Gaussian

risks and conventional risk management may hold. Second, they may also have possible

implications for the equity premium puzzle. Using a general equilibrium asset pricing model,

Mehra and Prescott (1985) proved that the magnitude of U.S. historical equity premium (the

expected excess return) is greater than the one rationalized in the context of the standard

neoclassical paradigm of financial economics. Their benchmark model assumes normality for

asset returns. According to my findings, if the puzzle is tested for data frequencies starting

at semi-annual up to annual, then the Normal distribution assumption cannot be pointed as

a potential cause of this puzzle, since it tends to be a suitable assumption.
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Yet these findings and its corresponding implications should be confirmed by further in-

vestigation. Possible directions for future research may include using other sources of data

(end of month data, other financial assets) or testing the existence of structural breaks and

regime switching for data frequencies other than monthly. In addition, the differentiation be-

tween structural breaks and regime switching is not always straightforward: whereas regime

switching models may include a non-recurring state, which is well suited to model structural

breaks, tests of structural breaks are capable of detecting regime shifts of a recurring na-

ture. Future research may explore more powerful tests to identify the specific nature of the

shocks underlying financial time series. Finally, it should be noted that structural breaks

and more sophisticated models, such as GARCH and ARFIMA, tend to be interrelated.

That is, they are very easy to confuse. When either GARCH or long memory are present,

structural breaks may be spuriously detected; on the other hand, when structural breaks are

ignored the degree of persistance and the long memory parameter may be overestimated.

Hence, other possible direction for future research may be to explore this inter-relation for

excess-returns.
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