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Abstract 

 
High-quality image reconstruction techniques allow the generation of high pixel 
density images from a set of low-resolution micrographs. In general, these 
techniques consist of two main steps, namely, accurate registration, and 
formulation of an appropriate forward image model via some restoration 
method. There exist a wide variety of algorithms to cope with both stages and 
depending on their practical applications, some methods can outperform others, 
since they can be sensitive to the assumed data model, noise, drift, etc. When 
dealing with images generated by Z-contrast scanning transmission electron 
microscopes, a current trend is based on non-rigid approximations in the 
registration stage. In our work we aimed at reaching similar accuracy but 
addressing the most complex calculations in the reconstruction stage, instead of 
in the registration stage (as the non-rigid approaches do), but using a much 
smaller number of images. We review some of the most significant methods 
and address their shortcomings when they are applied to the field of 
microscopy. Simulated images with known targets will be used to evaluate and 
compare the main approaches in terms of quality enhancement and computing 
time. In addition, a procedure to determine the reference image will be 
proposed to minimise the global drift on the series. The best registration and 
restoration strategies will be applied to experimental images in order to point up 
the enhanced capability of this high quality image reconstruction methodology 
in this field. 
 
Keywords: High quality image reconstruction, registration, restoration, Z-
contrast images 

1. Introduction 
 
High-resolution Z-contrast Scanning Transmission Electron Microscopy 
(HRSTEM) provides images of crystals at atomic resolution, where the location 



of atom column positions is greatly simplified [1]. In particular, when using a 
High Angle Annular Dark Field (HAADF) detector, the intensity of atom columns 
approximately reflects their mean square atomic number (Z) [2]. Although 
transmission electron microscopy has reached unprecedented resolution, with 
values that are ranging from 65 thousand pixels per image (256x256) to 64 
million (8192x8192), some artefacts and distortions can appear in the final 
image. Mainly they are caused by different perturbations such as airflow, 
acoustic noise, floor vibrations or fluctuations in AC and DC magnetic fields and 
temperature during the image acquisition process. Thus, not only the resolution 
limit of the microscope but also this presence of noise, drift and distortions can 
compromise the level of detail. 
The process of taking a sequence of under-sampled Low Resolution (LR) 
images of a particular scene and generating a High Resolution (HR) image, 
providing far more detail and quality than any individual LR image is known as 
Super-Resolution (SR) image reconstruction in standard Image Processing [3], 
[4]. However in the Microscopy context Super-Resolution is a form of light 
microscopy that allows images to be taken with a higher resolution than the 
diffraction limit [5], then we have renamed the Image Processing concept of SR 
as High Quality Image Reconstruction (HQIR). Regardless of the name used, 
this technique can provide a final more detailed image overcoming the inherent 
resolution limitation of the microscope. 
In general, HQIR methodology comprises two stages: registration and 
reconstruction. In the registration process LR images need to be mapped into a 
common reference frame and that can be made in two ways. Some authors, as 
Yankovich [6] or Berkels [7],[8] use non-rigid registration with a variational 
approach that transforms two frames into a common coordinate system with a 
nonparametric transformation, in order to reduce the displacements of the 
imaged atoms that are produced by the serial acquisition process in STEM 
imaging. Our goal is to reach the same objective but using rigid alignment and 
fixing the displacements in the reconstruction stage, where information from 
different images is combined into a single high-resolution micrograph with more 
definition and quality [4]. Furthermore, we use a number of images considerably 
smaller than non-rigid proposals. Nowadays, there exist a wide variety of HQIR 
methods to cope with the registration and restoration stages; however, the 
development of an ultimate methodology for HQIR can be driven by the use to 
which the super-resolved image is put. 
Thus, sections 2 and 3 have been devoted to review the algorithms for 
registration and reconstruction that have been used in this comparative study. 
Section 4 describes the simulation procedure to obtain the target images and 
different sets of shifted and rotated images degraded by noise from these 
targets. Metrics to compare these strategies have also been detailed. Section 5 
presents the results of the different rigid alignment and restoration methods and 
the most suitable algorithms are selected. In section 6, they are applied to an 



experimental image where we illustrate how HQIR techniques can be used to 
enhance HAADF images. 
 

2. Image Registration Algorithms 
 
Image registration involves the geometrical (rotation, translation, shearing, 
scale, …) alignment of images where one of them is used as reference. Image 
registration is a crucial step in all image analysis tasks in which the final 
information is gained from the combination of various data sources [9].  
Image registration methods can be classified into Non-rigid and Rigid 
approaches. Currently, some authors use non-rigid alignment in order to 
determine possible irregularities in the atomic structure achieving sub-picometre 
precision [6]–[8],[10]. In contrast, here we use a small number of images and 
we focus on the assessment of rigid alignment methods, together with a more 
complex restoration stage. 
Because the number of rigid registration algorithms is too high, in this paper 
different techniques have been selected based on their potential applications on 
the field of microscopy. Three of the selected methods (Marcel’s [11], 
Lucchese’s [12], Vandewalle’s [13]), fall into the frequency domain category 
while Keren’s approach [14] belongs to the spatial domain. In addition, we 
propose a variant of Vandewalle’s approach to improve the accuracy of the 
registration using normalized cross-correlation. 
Frequency domain HQIR methods provide the advantages of theoretical 
simplicity and low computational complexity, as well as they are highly 
amenable to parallel implementation due to the decoupling of the frequency 
domain equations[15]. Most approaches are based on the Fourier Shift 
Theorem: a shift in the spatial domain corresponds to a phase shift in the 
frequency domain, such as the widely used method presented by Marcel et al. 
[11] to estimate the translation between two images. These authors also 
proposed the use of log-polar coordinate changes to estimate rotation and scale 
changes. Lucchese and Cortelazzo [12] modified this proposal using a three-
stage coarsest to finest procedure for rotation angle estimation with a wide 
range of accuracy degree, while the shift is estimated using a standard phase 
correlation calculation. Vandewalle et al. [13] presented another frequency 
domain technique to register a set of aliased images using low-frequency 
information: this part of the signal corresponds to the aliasing-free part of the 
images, having the highest signal-to-noise ratio (SNR). The phase difference 
between the compared images is computed, the corresponding system of linear 
equations for the aliasing-free frequencies is formed and the optimal shift 
parameters result from its least squares solution.		
The original Vandewalle approach uses the differences of amplitudes in the 
Fourier transform seeking the maximum correlation for the calculation of the 
rotation angle. To do this, it defines the precision in degrees that will have the 
rotation angle between the images by converting the Fourier transform to polar 



form. Subsequently the low frequency values are discarded and rectangular 
windows are traced over the Fourier transform being the window size equal to 
the precision angle. The profile from the average of the amplitude values is 
correlated to the reference image. This correlation determines the rotation angle 
between both images with high accuracy and it is very noise resistant. In this 
work, we also introduce a variant of this registration approach by combining 
Vandewalle’s rotation angle calculations together with a similar procedure 
based on normalized cross correlation (NCC) to calculate the shift. The NCC of 
a series of images A regarding the reference image B is defined as:  
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being Ai,j (Bi,j) their intensity values at the position i,j where N and M are the 
number of rows and columns of the image A (B). Aഥ (Bഥ) is the average and σA 
(σB) the standard deviation of all the intensity values in A (B). 

On the other hand, spatial domain methods allow for more general motion 
models. Some typical criteria for intensity-based registration are the 
minimization of the squared error between the compared images, the 
correlation maximization [13] and the maximization of mutual information [16]. 
The accuracy of these methods depends highly on the performance of the 
interpolation algorithms. In this work, the proposal of Keren et al. will be 
compared against frequency domain methods. This spatial domain approach 
uses a Taylor’s series expansion to represent shifts and global rotations 
between two images, and then they applied a Gaussian pyramidal scheme to 
increase the precision for large motion parameters.  

2.1. Selecting the reference image 

Even in the best cases, a certain drift effect (shift, shear or rotational) can occur 
that influences the overall image acquisition process. If the sample moves in the 
xy plane perpendicular to the optical axis, the image of the series undergoes a 
corresponding positional displacement on the image sensor. Additionally, each 
image of the series could suffer of non-linear displacements, such as flags (the 
pixel rows are shifted horizontally) and/or skips (the pixel rows are convoluted to 
neighbouring rows). While most of the registration applications use as reference 
the first image from the raw series, we hold that the reference image should be 
carefully selected in order to minimise i) the global drift on the series and ii) the 
presence of skips and flags. If an image of the series were randomly taken as 
reference, there would exist a high risk i) to loose information in the opposite 
direction to the drift, resulting in a final image after the registration process with 
less useful pixels in that direction or ii) to select an image with a high density of 
scanning errors.  



Thus, we propose the following algorithm to select the best reference image (to 
minimise the drift effect) working with a low-pass filtered series of low-resolution 
images (see table 1). The application of a low-pass filtering permits that the shift 
can be easily calculated overcoming the presence of (partial) aliasing [13]. The 
resulting motion parameters obtained with respect to this reference image are 
applied to the original series, without filtering. In the following, for the different 
image registration methodologies, this algorithm will be used to select the 
reference image. 

Table. 1. Algorithm to obtain the reference image and the motion parameters 
 
1. Generate a low-pass filtered series from the set of the original LR n images 
2. Take at random an image from the series of n low-pass filtered images to be the 

first reference  
3. Repeat the following process: 

3.1. The reference image is located at first position in the series of images. 
3.2. Calculate shift and rotation parameters between two adjacent images. For i=2 

to n, we calculate si, as the shift and rotation between image i and the previous 
one, i-1, (we use our proposal based on normalized cross-correlation and the 
application Vandewalle algorithm): 

si= shift & rotation(si, si-1) 

3.3. Calculate total shift and rotation of a given image i,  Tsi, be defined as the sum 
of the shifts and rotations between two adjacent images calculated in step 2, for 
all the images from first to i-th position: 

Tsi=s1+…+si 

3.4. Calculate the mean of the total shift and rotation values: 

mTs= mean (Tsi)  (i=1..n) 

3.5. Calculate the Euclidean distances from each total shift and rotation to the mean 
value: 

Di=EuclideanDistance(TSi, mTs) 

3.6. Calculate Dmin, as the minimum Euclidean distance, and keep the index i.     

Dmin=Min (Di) 

3.7. if Dmin is lower than its previous value, go back to step 3 taking image i as the 
new reference image. 

4. Calculate shift and rotation parameters for each image from the low-pass filtered 
series with respect to the resulting reference image. 

5. Finally, these motion parameters are applied to the series of images without 
filtering. 



 

3. Restoration algorithms 
 
In all HQIF restoration methods, an improved resolution image is generated 
from several low-resolution aligned images. Generally, HQIR restoration 
approaches in frequency domain have developed slowly since they lack ability 
to take the information in time-domain to frequency-domain [17]. To overcome 
these limitations many spatial domain approaches have been proposed. 
At the simplest level, the value of a function between known samples could be 
estimated by taking the value of the nearest sample (nearest neighbour) or by 
using a weighted average of two/four translated neighbour pixels, so in our 
experiments we have been applied linear (LI) and bicubic (BI) interpolations 
[18]. Another approach proposed by Stark and Oskoui [19] used a projection 
onto convex set (POCS) algorithm to reconstruct the high-resolution image. 
This method was later extended by Tekalp et al. [20] to include noise. POCS 
defines a set of restrictions to limit the space of possible solutions for the 
inexistent pixels in the reconstruction. These limitations are defined as a convex 
set containing all the potential solutions. The goal of POCS approach is to find a 
vector that is in the intersection of convex sets. In each step of the iterative 
algorithm, an orthogonal projection is performed onto one of the convex sets. 
Bregman [21] showed that successive orthogonal projections converge to a 
vector that is in the intersection of all the convex sets. As a special case of 
POCS technique, Papoulis-Gerchberg method (PG) [22], [23] assumed that in 
the high-resolution image some of the pixel values are known and that the high 
frequency components are zero. The method tries to interpolate the unknown 
values and correct the aliasing for low frequency components. Furthermore, it 
does predict some of the high frequency values by forcing the known values.  
Iterated Back Projection (IBP) [24] procedure is another method that updates 
the estimate of the HQIR reconstruction by backprojecting the error between the 
images obtained in the j-th iteration and the reference. A faster algorithm than 
IBP is Robust Super Resolution (RSR) suggested by Farsiu [18]. This algorithm 
first scale up the LR images and then, fuses all these LR images by a median 
filter to obtain the HR image. Finally, an optional deblurring kernel may be 
applied. 
Non-Local Means (NLM) denoising algorithm was proposed by Buades et al. 
[25] and Protter et al. [26] adapted the method for HQIR purposes showing a 
very robust behaviour against inaccuracies in registration and motion tracking. 
NLM assumes that image content is likely to repeat itself within some 
neighbourhood; therefore, the algorithm calculates a weighted averaging on 
those pixels in the same patch (search window) whose intensity distributions 
are close to each other, in terms of the Euclidean distance. This algorithm is 
governed by three parameters, namely the weight-decay control parameter to 
manage the amount of noise to be taken into account in the final image, the 



radius of the neighbourhood to find the similarity between two pixels and the 
radius of a search window, which is centred at the current pixel being 
computed. Binev et al. [27] proposed an alternative strategy more robust 
against outliers using the NLM-median but in this version, the target value is 
calculated by computing medians of source pixel values.  
Anyway, reconstruction methods can be addressed either by maintaining the 
same number of pixels or by increasing the number of pixels per unit area. First 
approaches fall into the category of typical restoration algorithms while HQIR 
algorithms are specifically focused on increasing this number of pixels per unit 
area [28]. This paper deals with this last approach. 
 
4. Materials & Methods 
 
Simulated images of monocrystalline InP are generated and used as initial 
targets. On these images, we first apply different noise levels, followed by some 
other degradations as shifts and rotations and finally downsampled to obtain 
various series of LR frames. The aim is to apply the HQIR methodology to these 
series of LR frames. The resulting HQIR images will be compared against the 
initial targets in order to assess the performance of the above registration and 
restoration approaches when they are applied to HAADF-STEM images at 
different noise levels. 
A supercell of InP containing all the information about atom position, 
composition, site occupancy and Debye-Waller factors is generated. This model 
together with the microscope parameters constitute the input to the SICSTEM 
program [29]. This parallel software can afford HAADF-STEM image 
simulations of nanostructures composed of several hundred thousand atoms 
following a multislice schema. Considering a 100 kV dedicated VG Microscope 
HB501UX STEM, an image of 1024 x 1024 pixels and oriented along the [110] 
direction is generated (fig. 1).  

 

Fig.1. Simulated image generated by SICSTEM software from an InP supercell 



 
Poisson noise, inherent in experimental micrographs, is modelled by a Normal 
distribution, and added to this simulated image. In this work, we have made 3 
high resolution target images using different Gaussian distributions, namely 
σ=0.005, 0.01 and 0.02, (where σ is the standard deviation) in order to compare 
the effect of the noise in the HQIR methodologies (fig. 2). 
 

 

Fig.2. A 256x256 downsampled LR image obtained from the original simulation (fig. 1.) by 
adding noise (σ=0.02) and applying a downsampling by a factor of 4. 

From these three high-resolution target images, three sequences of 10 LR 
images were generated through degradation procedures. These procedures 
involve the application of different displacements and rotations as well as a 
downsampling by a factor of 4. Gaussian zero-mean random variables are used 
for the shift (pixels) and rotation (degrees) parameters. For the shifts, a 
standard deviation of 4 pixels is used, while the rotation angles have a standard 
deviation of 0.0625 degrees. The sum of the displacements applied in the 
image series will be less than lattice/2, in the growth direction and less than 
 in the x direction. In this way, we can guarantee that a dumbbell 	2√2/݁ܿ݅ݐݐ݈ܽ
is aligned with its corresponding dumbbell from the other image and so we 
prevent an incorrect alignment with other dumbbell from the same row or 
column. Once the series of simulated LR images have been obtained, the 
experiment will focus on applying different registration and restoration methods 
in order to obtain a HQIR image that can be compared with the target high-
resolution image. 
The execution time and two quantitative/empirical measurements are used to 
assess the effects of these image enhancement algorithms on image quality. 
Indeed, Mean Absolute Error (MAE) can be used to assess the accuracy of the 
motion estimates (shift and rotation) and to evaluate detail accuracy and border 



distortion. Secondly, Peak Signal to Noise Ratio (PSNR) will be applied to 
compare the original and the reconstructed image in terms of noise reduction. 
MAE measures the amount by which the values of the original image differ from 
the HQIR image. It is calculated as the average of the absolute errors between 
the estimates, ei, and the true values, yi, used as reference: 
 

ܧܣܯ ൌ
1
݊
|݁ିݕ| (2) 

 
PSNR, usually expressed in terms of the logarithmic decibel scale, is defined as 
the quotient between the maximum possible value of a signal (power) and the 
power of distorting noise that affects the quality of the representation[30]. The 
higher value of PSNR the higher quality of the image:   
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where  
 MAXf is the maximum signal value that exists in the original image 
 MSE is the Mean Squared Error: 
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where  

 f  represents the matrix data of the original image 
 g represents the matrix data of the degraded image in question 
 m represents the numbers of rows of pixels of the images and i 

represents the index of that row 
 n represents the number of columns of pixels of the image  
 and j represents the index of that column 

 
5. Results 
 
5.1. Alignment  
 
Five selected registration algorithms will be assessed: (1) Keren from the spatial 
domain, and (2) Marcel, (3) Lucchese, (4) Vandewalle and finally, (5) our 
proposal, Vandewalle variant using cross-correlation (Vandewalle_NCC), from 
the frequency domain approach. Table 2 summarizes the absolute errors 
estimates and computational time calculations. First and second columns refer 
to the particular registration approach for the three noise levels considered. 
Third and fourth columns show means and standard deviations of the rotation 
estimates, fifth and sixth columns show means and standard deviations (σ) of 
the motion estimates and last column refers to the computational time in 
seconds under the same hardware conditions. 



In terms of rotation estimates, all the methods show very similar results for the 
three noise levels considered, with very low mean and standard deviation, 
except Lucchese approach, whose absolute error values are too high. However, 
when focusing on shift and time measurements there exist significant 
differences among the different approaches. The low computational time 
employed by Marcel and Lucchese methods does not compensate the poor 
results obtained by the shift estimate. For this reason, Lucchese and Marcel 
methods can be discarded to align HAADF images. 
From the three remaining methods, the most accurate results are reached by 
our proposal, but at the cost of the highest computational time. Classical 
Vandewalle and Keren approaches show very similar results in terms of rotation 
and motion estimates, although the real-space based algorithm of Keren has 
the best results in terms of computational time. 
Keren is a very good alternative when a trade-off between accuracy and 
computational time is required. However, our proposal of using 
Vandewalle_NCC clearly surpassed the accuracy of the rest of the algorithms, 
spending around thirty seven seconds, which results in a very insignificant 
awaiting time. Thus Vandewalle variant using cross-correlation is selected as 
the alignment approach to be applied hereafter.  
  
5.2. Reconstruction  
In this restoration stage, first, our procedure to choose the reference image has 
been implemented in order to reduce drift and border effects in the final HQIR 
image, and then the LR series have been registered applying 
Vandewalle_NCC. Then, 8 different reconstruction techniques from section 3 
have been applied.  
Figures 3 and 4 show as a scatter diagram of MAE/PSNR for each series 
degraded by noise using sigma values of 0.005, 0.001 and 0.02 against 
computational time values. LI and BI methods are simpler and the most 
computationally efficient. However, these approaches together with POCS, PG 
and IBP, have yielded to worse results in MAE as well as in PSNR in 
comparison to NLM approaches. HQIR images obtained by the application of 
both NLM methods show the less differences between the original and the 
HQIR intensity values (MAE) and have better quality, with the greatest PSNR 
values. 
On the other hand, all the methods have the same behaviour against noise, 
showing worst MAE and PSNR results as the noise level increases. PG could 
be considered the most robust method against noise, since the differences 
between the 3 levels of noise are very low. At the highest noise level (0.02), 
results from PG and NLM tend to be more similar, although always NLM shows 
better accuracy and quality. Finally, in terms of the computational time, while LI 
or BI restoration only spends around 8 seconds, a NLM restoration uses 13 
hours and NLM-median almost 24 hours. This awaiting time is compensated by 
the very accurate results that are achieved, namely, the lowest MAE and the 
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to the sum of 2, two-dimensional (2D) Gaussian functions to find the series-
averaged atomic column positions on a zone in the substrate area (blue line).  

 

 

Fig. 5. (a) An experimental HAADF frame from the series of images of an InAs/GaAs QD and a 
subplot of a zoomed-in area. (b) HQIR images using PG algorithm. (c) HQIR images using NLM 
algorithm. (d) FFT of (c) with a red box that corresponds with the profile traced on the FFTs. (e) 
profiles using (green) experimental image, (red) PG algorithm and (blue) NLM algorithm. The 
spots are tagged as FF - Fundamental frequency, 1st H - First harmonic, 2nd H - Second 
harmonic, 3rd H - Third harmonic and 4th H - Fourth harmonic.    

The results are shown in Table 3. Certainly, these results show how the 
precision has been improved in three to four times with regard to the low-
resolution image, obtaining similar results to non-rigid approximations regarding 



the standard deviation of the anion-cation distance and using only 7 images in 
the process.  
Nevertheless, better results are obtained using NLM algorithm at the expense of 
a high computational time against PG approach. The NLM image can be used 
when high precision is needed, as in [32] where we demonstrate how HQIR can 
be used also to quantitative analysis, in particular how the precision of strain 
measurements can be enhanced in experimental images. Otherwise, PG 
methodology is appropriate to do the first evaluation of different experimental 
series in order to select the best series for a NLM restoration. 

Table 3. Image precision using the standard deviation of anion vs cation and anion vs anion 
column separations proposed by Bals et al. The HQIR images improve the precision in 
three/four times with regard to the low resolution image using a zone in the substrate. 

Reconstruction algorithms anion-cation anion-anion 

Low resolution image 12,8 pm 7,8 pm 

HQIR using PG algorithm 3,4 pm 1,9 pm 

HQIR using NLM algorithm 3,4 pm 1,7 pm 

 
7. Conclusions 
 
In this paper, different frequency and spatial domains HQIR methods have been 
evaluated in the HAADF-STEM imaging field, differentiating between 
registration and restoration stages. For this comparison, simulated images have 
been used adding different distortions such noise, rotation and drift and finally 
this degraded images have been downsampled. In the case of the registration 
stage, a novel procedure to select the reference image has been implemented. 
This procedure guarantees the reduction of the global drift in the resulting HQIR 
image. Absolute error mean and standard deviation were used to assess 5 
different alignment approaches. Among them, our proposal, a variant of the 
Vandewalle’s approach using normalized cross-correlation, has obtained the 
best alignment results. MAE, PSNR and computational time have been used to 
compare the performance of eight restoration procedures. Papoulis-Gerchberg 
algorithm could be considered a good restoration method, since reasonable 
results can be obtained with little computational time. In contrast, the 
computational time in NLM is the highest, spending around half a day to get the 
final image. However, NLM has been selected as the best restoration approach 
to be applied to Z-contrast images because more accurate images, and with 
better quality, are achieved. To reduce this time, a parallel version could be 
implemented and run the software in supercomputers.  
The HQIR methodology proposed in this work uses a simple rigid registration 
and addresses the most complex calculations in the reconstruction stage with 



NLM. We have demonstrated that with a small number of experimental images 
resolution can be enhanced while distortions can be minimized, providing a 
more detailed and realistic HQIR image than any individual image from the 
series. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. (a) Line profiles of 450 pixels from the experimental image. (b) Line profile of 900 pixels 
from the HQIR image using PG restoration and (c) using NLM restoration. Each profile is 
decomposed into: background (black), noise (red), and the signal after subtraction of both, 
background and noise (green). 
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