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Abstract
This thesis examines the stability and accuracy of three di¤erent methods to estimate

Risk-Neutral Density functions (RNDs) using European options. These methods are the

Double-Lognormal Function (DLN), the Smoothed Implied Volatility Smile (SML) and

the Density Functional Based on Con�uent Hypergeometric function (DFCH).

These methodologies were used to obtain the RNDs from the option prices with

the underlying USDBRL (price of US dollars in terms of Brazilian reals) for di¤erent

maturities (1, 3 and 6 months), and then tested in order to analyze which method best

�ts a simulated "true" world as estimated through the Heston model (accuracy measure)

and which model has a better performance in terms of stability.

We observed that in the majority of the cases the SML outperformed the DLN and

DFCH in capturing the "true" implied skewness. The DFCH and DLN methods were

better than the SML model at estimating the "true" Kurtosis. However, due to the

higher sensitivity of the skewness and kurtosis measures to the tails of the distribution

(all the information outside the available strike prices is extrapolated and the probability

masses outside this range can have in�nite forms) we also compared the tested models

using the root mean integrated squared error (RMISE) which is less sensitive to the tails

of the distribution. We observed that using the RMISE criteria, the DFCH outperformed

the other methods as a better estimator of the "true" RND.

Besides testing which model best captured the "true" world�s expectations, we an-

alyzed the historical summary statistics of the RNDs obtained from the FX options on

the USDBRL for the period between June 2006 (before the start of the subprime crisis)

and February 2010 (seven months before the Brazilian general election).
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Chapter 1

Introduction

It is accepted by market participants that the prices of �nancial derivatives provide in-

formation about future expectations of the underlying asset prices, especially forwards,

futures and options. Forwards and futures only give us the expected value for the un-

derlying asset under the assumptions of risk neutrality, which makes using cross-sections

of observed option prices more attractive because they allow estimation of an implied

probability density function.

For market agents, the attractiveness of using an implied probability density function

relies on being able to attribute probabilities to a range of future events, using market

perceptions at a certain time. Several decision makers and analysts use this informa-

tion source when analyzing market sentiment, uncertainty and extreme event scenarios,

especially for interest rates and exchange rates.

It is known that the Black and Scholes model has several limitations, because it as-

sumes that the price of the underlying asset evolves according to the geometric Brownian

Motion (GBM) with a constant expected return and a constant volatility. The volatility

is constant until maturity and also across all quoted strikes, which ignores phenomena like

volatility smile and as such distorts probabilities for extreme scenarios. To tackle these

problems, various methods have been suggested to extract Risk-Neutral Density Func-

tions (RNDs) from option prices and several studies have been carried out to examine
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the robustness of these estimates and their information power.

In this thesis we compare three methods of extracting RNDs from USDBRL Euro-

pean type exchange rate options. These methods are the Double-Lognormal Function,

the Smoothed Implied Volatility Smile and the Density Functional Based on Con�uent

Hypergeometric function. We test the stability of the estimated RNDs and their robust-

ness as regards small errors by randomly perturbing option prices by half of the quotation

of the tick size as in Bliss and Panigirtzoglou (2002) before re-estimating the RNDs and

their accuracy by experimenting their capacity to recover the "true" RNDs. The "true"

probability density function (pdf) was estimated using the method developed in Cooper

(1999), who generated pseudo prices from Heston�s stochastic volatility model, and then

compared the performance of the di¤erent methods using Monte Carlo simulations in or-

der to obtain RNDs, whereby the input was the option prices calculated by these pseudo

prices.

The remainder of this thesis is organized into seven chapters. Chapter Two gives a

brief explanation of option pricing and a presentation of the Black and Scholes model and

its theoretical background. We also describe the limitations of this model and its failure

to capture the volatility smile contributions, due to the di¤erence between the lognormal

distribution mapped by the model and the real distribution of the underlying asset prices

of the market (the di¤erence between the theoretical B&S prices and the market prices).

In this chapter, we also describe how option prices can provide information about implied

probabilities given by market participants to future events and its use as an instrument

to extract probability density functions of future prices using the formula proposed in

Breeden and Litzenberger (1978).

Chapter Three describes some alternative option pricing methods that try to mitigate

the limitations and restrictions of the B&S model, including the four models used in this

thesis (DLN, SML, DFCH and Heston). Jondeau et al. (2006) divide the alternative

methods into two categories: structural and non-structural. A structural model assumes

a speci�c dynamic for the price or volatility process. A non-structural method allows the

2



estimation of a RND without describing any evolving process for the price or volatility

of the underlying asset. The non-structural approaches can be divided into three subcat-

egories: parametric (propose a form for the RND without assuming any price dynamics

for the underlying asset), semi-parametric (suggest an approximation of the true RND)

and non-parametric models (do not propose an explicit form for the RND).

Chapter Four explains the technical details of the strategies used in this thesis in

order to estimate the RNDs and describe the measures used to evaluate the performance

of the three models tested (MLN, SML and DFCH) in terms of accuracy and stability.

The results of the Monte Carlo simulation experiments and the comparisons of the

models tested are presented and discussed in Chapter Five and Six. In Chapter Five we

analyze the accuracy and stability performance using the "true" RNDs generated by the

Heston parameters proposed in Cooper (1999). In Chapter Six, a similar analysis was

carried out. However, the "true" RNDs were obtained through the previously calibrated

Heston parameters. The Heston parameters were calibrated taking into account the

observed quotes for the USDBRL European options between June 2006 and February

2010. The historical RND summary statistics obtained for the USDBRL in the time

period described above are discussed in Chapter Seven. Finally, Chapter Eight presents

the conclusions and discusses some research perspectives.
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Chapter 2

Standard option pricing and

extraction of RND

2.1 Option pricing and Black & Scholes model

Let us begin by introducing two elementary types of options. A European call option

gives the buyer the right to buy the underlying asset for a certain price (strike price) at

a certain date (maturity), whereas a European put option gives the buyer the right to

sell the underlying asset for a certain price at a certain date. American options can be

exercised at any time until expiration. In this thesis we will focus on European options.

At maturity, the holder of the option only exercises it if he has a positive payo¤ (if the

price of the underlying asset is above the exercise price for the call option or if the price

of the underlying asset is below the exercise price for the put option).

Assuming that there are no transaction costs, we can represent the payo¤ of an

European option at maturity through the following formulas (call option and put option),

where X is the exercise price of the option, ST is the price of the underlying asset at

expiration date and T is the expiration date:
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C(ST ; T;X) = max(ST �X; 0) (2.1)

P (ST ; T;X) = max(X � ST ; 0) (2.2)

Intuitively, it can be inferred that the price of a call option re�ects the ability to

exercise the option when it brings a pro�t. This depends on the probability of the price

of the underlying asset being greater than the strike price.

The widely used Black and Scholes model [Black and Scholes (1973)] for option

pricing assumes that the underlying asset price has a lognormal distribution and evolves

until reaching maturity in line with a geometric Brownian motion (GBM) stochastic

process, with a constant expected return and a constant volatility:

dSt = St�dt+ St�dWt (2.3)

where St is the price of the underlying asset at time t, dSt denotes instantaneous price

change, � is the expected return, � is the standard deviation of the price process and dW

are increments from a Brownian motion process. The parameters � and � are assumed

to be constant.

Besides constant volatility during the term of the option, the B&S model also assumes

the same volatility across the whole range of strike prices.

Itô�s Lemma states that an asset whose value depends on St and t has dynamics

de�ned by the following stochastic di¤erential equation:

df(St; t) =

�
1

2

d2f

dS2t
�2t +

df

dSt
�t +

df

dt

�
dt+

df

dSt
�tdWt (2.4)

Considering Itô�s Lemma (see appendix A) and applying it to equation (2.3) results in

St having a lognormal distribution and log(St) � N(�; �) where � = log(S0)+(�� 1
2
�2)t

and � = �2t, which means that the underlying asset price has a lognormal distribution

and the underlying returns are normally distributed.

If we consider a portfolio comprising one unit of a derivative asset and a short position

5



of� units ( df
dS
) of the underlying asset, we can apply the partial di¤erential equation (2.4)

to this portfolio getting the Black and Scholes partial di¤erential equation (see Jondeau

et al. (2006)):
1

2

d2f

dS2t
S2t �

2 +
df

dSt
Str +

df

dt
� rf = 0 (2.5)

The value of the option depends on r (risk free rate), � and the boundary condition

of the option contract in equations (2.1) and (2.2), respectively for calls and puts.

Solving the PDE in equation (2.5), in accordance with the boundary conditions,

results in the Black and Scholes Pricing formula (call and put price):

C(S; t) = SN(d1)-Xe�r(T�t)N(d2) ; S > 0 ; t 2 [0;T ] (2.6)

P (S; t) = Xe�r(T�t)N(�d2)� SN(�d1) ; S > 0 ; t 2 [0;T ] (2.7)

with

d1 =
ln( S

X
) + (r + 1

2
�2)(T � t)

�
p
(T � t)

(2.8)

and

d2 =
ln( S

X
) + (r � 1

2
�2)(T � t)

�
p
(T � t)

(2.9)

We can observe that the parameter � is not in equation (2.5), which means that the

expected return does not appear in the B&S formula and consequently the value of the

option does not depend on the investors�risk preferences (the solution of the equation

is the same regardless of the risk premium required by each investor). In fact, instead

of �, equation (2.5) has r, which is the risk free rate (assumption that investors are risk

neutral). In a world in which prices are lognormally distributed with constant volatility

and expected returns, this theory allows option pricing and the creation of a risk free

portfolio using delta hedging. The return of this hedged portfolio becomes certain and

6



does not depend on the change of the stock price.

2.2 Implied Volatility and limitations of the Black &

Scholes model

The Black & Scholes model assumes that the price of the underlying asset follows a

stochastic model with constant expected return and constant volatility. The �nal as-

sumptions made by Black and Scholes�argument rely on the fact that if the future prices

of the underlying asset are lognormally distributed, an option can be dynamically hedged

using the underlying asset in order to build a portfolio that depends exclusively on the

risk free rate.

However, in the real world we do not know the distribution of the prices in the

future (traders do not have full knowledge of probabilities for future events) and dynamic

hedging implies continuous trading (transaction cost problem, liquidity restrictions and

not possible in practice).

The parameter regarding the instantaneous volatility in the underlying asset�s return

(�) is not known. However, it can be estimated inverting Black and Scholes�formula in

terms of � (implied volatility) and then using market prices of options as inputs. The

investors observe that the implied volatility calculated for each strike price is di¤erent,

and that the implied volatilities are di¤erent across maturities (a volatility curve changes

with maturity), which is not consistent with the Black and Scholes lognormal assumptions

that de�ne volatility as being constant across the whole range of strike prices and matu-

rities. Implied volatilities observed in the market are a convex function of strike prices

(usually out-of-the money and in-the-money options have higher volatility compared with

at-the-money options), which creates the well known phenomenon called volatility smile.

The volatility smile indicates that traders make more complex assumptions about the

path of the underlying asset price until maturity than the ones assumed by the GBM,

7
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Figure 2-1: Volatility Smile curve at 29/08/2008 calculated using USDBRL options prices
that expire in one month

which results in fatter tails of the true probability density function (pdf) when compared

with a lognormal pdf. This indicates that the investors attribute higher probabilities to

extreme events and that there is a gap between the true market RND and the Black

and Scholes lognormal RND. In fact, higher volatilities for strike prices deep out-of-the-

money make it more likely that future prices will be very di¤erent from current market

values. This in turn increases the probability of these option prices being in-the-money

in the future and leads to more expensive prices for deep out-of-the-money options, when

compared to prices calculated through the B&S model.

2.3 Relation between option prices and the extrac-

tion of RNDs

It is possible to combine call options that have the same time to maturity but di¤erent

exercise prices, in order to obtain a payo¤ at expiration that is dependent on the state of

the economy at a particular time. The price of these combined securities (state-contingent

securities) also re�ects the probabilities that investors attribute to those particular states

in the future.
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This relation between probabilities and the price of a contingent claim1 was initially

proposed in Arrow (1964) 2 who applied a contingent claim model to the securities

market. It was shown that the prices of an elementary claim (Arrow-Debreu security)3

are proportional to the risk-neutral probabilities attached to each of the states.

This Arrow-Debreu security has an important information value and can be replicated

with a combination of European call options, called butter�y spread, which consists of a

long position in two calls with strikes (X ��M) and (X +�M) and a short position in

two calls with strike (X) , where �M > 0.

Breeden and Litzenberger (1978) applied the developments by Arrow and Debreu and

used a state contingent claim in the form of a butter�y spread to show that the second

partial derivative of a call option pricing function with respect to the strike prices yields

the discounted RND (f(ST )� e�rT ).

In fact, a butter�y spread centered on X implies a payo¤ of �M if the price of the

underlying asset at maturity T is equal to X (see Example 1).

Example 1 (Breeden and Litzenberger (1978))

Portfolio composed by [c(0; T )� c(1; T )]� [c(1; T )� c(2; T )] with T =Maturity will

pay 1 unit if the state M(T ) = 1 (butter�y spread centered in 1)

1a claim that can be made when a speci�c outcome occurs.
2who introduced uncertainty into the notion of competitive equilibrium and Pareto Optimality
(Pareto equilibrium refers to a situation in economy where it�s impossible to bene�t an economic agent

without harming another agent).
3a security paying one unit if a state s occurs and zero otherwise.
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Aggregate Wealth c(0; T ) c(1; T ) c(2; T )

M(T ) = 0 0 0 0

M(T ) = 1 1 0 0

M(T ) = 2 2 1 0

M(T ) = 3 3 2 1

. . . .

M(T ) = N N N � 1 N � 2

Aggregate Wealth c(X ��M;T ) c(X;T ) c(X +�M;T ) Payo¤ of Butter�y Spread

M(T ) = X ��M 0 0 0 0

M(T ) = X �M 0 0 �M

M(T ) = X +�M 2�M � 0 0

M(T ) = X + 2�M 3�M 2� � 0

. . . . 0

M(T ) = X +N�M (N + 1)�M N�M (N � 1)�M 0

These authors also show that this relation can be generalized in the following formula

(portfolio that pays 1 if scenario M(T ) = X occurs in T periods):

P (M;T ; �M) =
[c(M ��; T )� c(M;T )]� [c(M;T )� c(M +�; T )]

�M
(2.10)

with the P (M;T ; �M) being the price of the elementary claim security in the discrete

case (to have a payo¤ of 1 in the state M(T ) = X we have to buy 1=�M units of the

butter�y spread). For continuousM (step size � tends to zero) the price of the butter�y

spread at state M = X is the second partial derivative of the portfolio of calls with

respect to X (Strike Price):

lim
�M!0

P (M;T ; �M)

�M
=
d2C(X;T )

dX2
jX=M (2.11)
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The price of an Arrow-Debreu security is equal to its expected payo¤, which is calcu-

lated by multiplying the present value of 1 by the risk-neutral probability corresponding

to its state (discounted using risk free rate). Applying this relation to a range of con-

tinuum possible future values for the underlying asset, leads to the estimation of the

discounted Risk-Neutral Density:

d2C(X;T )

dX2
= e�rTf(ST ) (2.12)

This condition only holds if C(X;T ) is monotonic decreasing and convex in the exercise

price, otherwise there are arbitrage opportunities and the RND could be negative [Bahra

(1997)].
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Chapter 3

RND estimation - Alternative

methods

Despite being widely used, the B&S model has several limitations because the log normal

assumption does not hold in practice and calculates prices that are di¤erent from market

values, which creates the need to analyze and study di¤erent methods in order to �nd a

model that is more e¢ cient at capturing market expectations and prices.

There are many alternative models to estimate the Risk-Neutral Density (RND).

According to Jondeau et al. (2006), the models can be divided into two categories:

structural and non-structural. A model is structural if it takes on a speci�c price dynamic

and proposes a certain volatility process. A non-structural model yields a RND without

describing the dynamics for the price or volatility.

In this chapter we give an overview of some methods developed in order to obtain

estimates which closely re�ect the expectations of the option market.
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3.1 Structural Models

3.1.1 Jump Di¤usion Model

In the structural category we can �nd stochastic models like the one developed in Malz

(1996) which consists of assuming a stochastic process for the underlying asset, where

St (log normal jump di¤usion) corresponds to the sum of a Geometric Brownian Motion

(GBM) and a Poisson jump process. The price process is

dSt = �Stdt+ �StdWt + kStdqt (3.1)

where qt represents a variable with a Poisson distribution with the parameters k being

the jump dimension and � the average rate of jump occurrence.

For simplicity, Malz assumed that until the maturity of the option it will be at most

one jump of constant size (referred to as Bernoulli version of jump di¤usion), which

results in the following prices for calls and puts:

C =(1� �T )CBS(St; T;K; �; r; r� + �k) (3.2)

+ (�T )CBS(St(1 + k); T;K; �; r; r
� + �k)

P = (1� �T )PBS(St; T;K; �; r; r� + �k) (3.3)

+ (�T )CBS(St(1 + k); T;K; �; r; r
� + �k);

where (1� �T ) represents the probability of no jump before maturity, CBS and PBS are

the Black and Scholes pricing formulas for call and put options. After estimating the

model�s parameters, they are inserted into a pdf function in order to obtain the RND.

This kind of methods can be used when analyzing markets without option prices or

with scarce liquidity of this kind of derivatives.
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3.1.2 RND estimation using a model based on stochastic volatil-

ity - Heston Model

The Heston Model was developed in Heston (1993) and represents the classical stochastic

volatility pricing model. It is used in this thesis to estimate the density corresponding

to the �true�world. This method adds a second Wiener Process to the price dynamics

(volatility modeling), which leads to the dynamics of the underlying asset price (St) based

on the geometric Brownian Motion with time varying volatility,

dSt = �Stdt+ St
p
vtdZ1;t (3.4)

dvt = �(� � vt)dt+ �v
p
vtdZ2;t

where
p
vt denotes current volatility of the underlying asset price, Z1;t and Z2;t represents

the correlated Brownian motion processes with correlation parameter �, vt is the volatility

of the underlying asset, � is the long run volatility, �v is the volatility of the volatility

process and � is the speed at which the volatility returns to its long run average.

These parameters guide the trajectory of the square root process, which means that

along its path, vt goes around �, crossing the long run volatility more frequently when k

is higher and the trajectory of vt is more volatile when � is higher.

The parameter � de�nes the correlation between returns and volatility and can change

the form of the RND, generating skewness in asset returns. For example, if � > 0 the

volatility of the asset price increases when the asset price increases, and in this way the

weight of the right tail of RND will increase. In contrast, when � < 0 the decrease in

price leads to an increase in volatility and the weight of the left tail of RND will increase.

The derivation of the Heston option pricing formula also uses Itô�s lemma. Like in

the Black & Scholes model, in order to obtain a risk-neutral portfolio, Heston�s model

also considers a portfolio of assets. Nevertheless, the volatility needs to be hedged due

to its stochastic nature, so a second derivative is added. For example, a short position of
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one unit of a call option is covered by a long position of � units of the underlying asset

and 
 units of a second derivative on the same underlying asset:

d�t = r(C � �St � 
C1)dt; (3.5)

where �t is the portfolio at time t, C is the covered call option, St is the underlying asset

and C1 is the second option on the same underlying asset.

Heston introduced the following closed formula for the European call option price:

C(St; vt; X; T ) = Ste
�r�(T�t)P1 �Xe�r(T�t)P2 ; S > 0 ; t 2 [0;T ]; (3.6)

Pj =
1

2
+
1

�

Z 1

0

Re[
e�i� ln(k)fj(ln(St); v0; T � t; �)

i�
]d�;

fj(ln(St); v0; T � t; �) = eC(T�t;�)+D(T�t;�)vt+i� ln(St);

C(T � t; �) = (r � r�)�i(T � t) + a

�2v
f(bj � ��v�i+ d)(T � t)

� 2 ln[1� ge
d(T�t)

1� g ]g;

D(T � t; �) = bj � ��v�i+ d
�2v

[
1� ed(T�t)
1� ged(T�t) ];

g =
bj � ��v�i+ d
bj � ��v�i� d

;

d =
q
(��v�i� bj)2 � �2v(2uj�i� �2);

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �+ �� ��v; b2 = �+ �; i =

p
�1

3.2 Non-Structural Models

3.2.1 Parametric models

A model is considered parametric if it proposes a RND without assuming a speci�c price

or volatility dynamic and proposes a form for the RND without assuming any price
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dynamics for the underlying asset.

Mixture of lognormal distribution

The mixture of lognormals (MLN) was proposed by Bahra (1997) andMelick and Thomas

(1997) and assumes a functional form for the risk-neutral density (RND) that accomo-

dates various stochastic processes for the underlying asset price. Instead of specifying

a dynamic for the underlying asset price (which leads to a unique terminal value), it is

possible to make assumptions about the functional form of the RND function itself and

then obtain the parameters of the distribution by minimizing the distance between the

observed option prices and those that are generated by the assumed parametric form.

According to the authors, this makes this model more �exible than the Black and Sc-

holes model and increases its ability to capture the main contributions to the smile curve,

namely the skewness and the kurtosis of the underlying distribution.

It is known that the prices of European call and put options can be expressed as the

discounted sum of all expected future payo¤s:

C0(X;T ) = e
�rT

Z 1

X

q(St)(St �X)dSt (3.7)

P0(X;T ) = e
�rT

Z 1

X

q(St)(X � St)dSt

According to Bahra (1997), any functional form for the RND q(St) can be assumed

because the parameters would be estimated through optimization (minimizing the dif-

ference between the prices obtained through the MLN model and market prices). Never-

theless, the author assumed that the asset price distributions are closer to the lognormal

distribution and consequently it would be plausible to use a weighted sum of lognormal

density functions,
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q(St; �) =

kX
i=1

[wiL(�i; �i; St)] (3.8)

where L(�i; �i; St) is the ith lognormal distribution with parameters �i and �i . It has

the following expression:

L(�i; �i; St) =
1

St�i
p
2�
e[�(ln(St)��i)

2=2�2i ]; (3.9)

�i = ln(St) + (�i �
1

2
�2i )(T � t);

�i = �i
p
(T � t):

The term � represents the vector of unknown parameters �i, �i, �i for i = 1; :::; k, and

k de�nes the number of mixtures describing the RND. In order to guarantee that q is

a probability density, wi > 0 for i = 1; :::k, and
Pk

i=1wi = 1. In this way q will be a

combination of the lognormal densities.

While Melick and Thomas applied this method on the extraction of RNDs from the

prices of American options on crude oil futures using a mixture of three independent

lognormals, Bahra obtained the RNDs using European options on LIFFE equity index,

LIFFE interest rate options and Philadelphia Stock Exchange currency options using a

mixture of two independent lognormals. The choice of a mixture of two lognormals is

based on the lower number of parameters to be estimated (5 parameters). In fact, options

are traded across a relatively small range of exercise prices, hence there are limits on the

number of parameters that can be estimated from the data.

Extending the mixture of lognormals to the European call option prices given by

equation (3.7) we have the following option prices for each strike price (Xi) and with

time to maturity � = (T � t):
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c(Xi; �) = e
�r�
Z 1

X

(St �X)
kX
i=1

wiL(�i; �i; ST )dSt; (3.10)

c(Xi; �) = e
�r�

kX
i=1

wi

Z 1

X

(St �X)L(�i; �i; ST )dSt:

The integral in equation (3.10) can be rewritten as (see Jondeau et al. (2006)):

c(Xi; �) = e�r�
kX
i=1

wie
�i+

1
2
�2iN(

� ln(X) + �i + �2i
�i

) (3.11)

�e�r�X
kX
i=1

N(
� ln(X)� �i

�i
]:

Applying the mixture of two lognormals used by Bahra, we get the following closed

formula for a European call option,

c(X; �) = e�r�fw[e�1+ 1
2
�21N(d1)�XN(d2)] (3.12)

+(1� w)[e�2+ 1
2
�22N(d3)�XN(d4)]g

where

d1 =
� ln(X) + �1 + �21

�1
; (3.13)

d2 = d1 � �1;

d3 =
� ln(X) + �2 + �22

�2
;

d4 = d3 � �2:
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For the European put option, Bahra presented the following pricing formula,

p(X; �) = e�r�fw[�e�1+ 1
2
�21N(�d1)�XN(�d2)] (3.14)

+(1� w)[�e�2+ 1
2
�22N(�d3)�XN(�d4)]g:

In order to �nd the parameters of the implied RND (vector �) we have to solve the

minimization problem,

min
�1;�2;�1;�2;wi

nX
i=1

[c(X; �)� bc]2 + nX
i=1

[p(X; �)� bp]2 (3.15)

+[we�1+
1
2
�21 + (1� w)e�2+ 1

2
�22 � er�S]

where the �rst two terms refer to the sum of the squared deviation between option prices

estimated through MLN and the observed market prices. Call and put prices can be

considered in equation (3.15) because both refer to the same underlying distribution.

The third term of the equation states that the expected value of the RND must be equal

to the forward price of the underlying asset in order to avoid the violation of the arbitrage

condition (martingale condition). After estimating parameters �1; �2; �1; �2; w, we insert

them into equation (3.8) and then the implied RND is obtained.

The optimization problem (3.15) can be a¤ected by a problem related to the symmetry

between the densities because in an optimization program, various parameter vectors

can be associated to the same density, which in turn can result in numerically unstable

programs where the optimizer goes round in an in�nite loop. In Jondeau et al. (2006),

the authors recommended the imposition of �1 > �2 (�rst density will have a larger

standard deviation than the second one) in order to avoid this symmetry problem.

This model was tested in this thesis for the extraction of the RND from the currency

option USDBRL. The details of the method applied are explained in section 4.4.1.
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Mixture of hypergeometric functions

This method allows the estimation of a probability density function (pdf) without assum-

ing a speci�c functional form for it. It consists of the use of a formula that encompasses

various densities, such as normal, gamma, inverse gamma, weibull, pareto and mixtures

of these probability densities.

In Abadir and Rockinger (2003), the authors developed a function based on the

con�uent hypergeometric function (1F1), also known as the function for the case of double

integrals of densities. These authors believe the usefulness of 1F1 relies on the fact that it

includes special cases of incomplete gamma, normal distributions and mixtures of the two.

In fact, this function has the advantage of being more e¢ cient than fully nonparametric

estimation for small samples and more �exible than parametric methods because it does

not restrict functional forms.

The Kummer function 1F1 can be de�ned by:

1F1 �
1X
j=0

(�)j
�j

zj

j!
� 1 + �

�
z +

�(�+ 1)

�(� + 1)

z2

2
+
�(�+ 1)

�(� + 1)

z2

2
+ :::, (3.16)

(�)j � (�)(�+ 1):::(�+ j � 1) �
�(a+ j)

�(a)

with �(v), for v 2 R being the gamma function and � 2 N.

The function considered for option pricing is called DFCH (density function based on

con�uent hypergeometric functions) and speci�es the European call price as a mixture

of two con�uent hypergeometric functions:

C(X) = c1 + c2X + lX>m1a1((X �m1)
b1)1F1(a2; a3; b2(X �m1)

b3) (3.17)

+ (a4)1F1(a5; a6; b4(X �m2)
2);

where a3;a6 2 N , b2; b4 2 R� and a1 ; a2; a4; a5; b1; b3 2 R. The indicator function l
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represents a component of the density with bounded support.

The �rst 1F1 function can represent a gamma or other asymmetric generalizations,

whereas the second 1F1 covers symmetric quadratic exponentials, such as the normal.

To get the implied probability density function, the formula stated in equation (2.12)

is applied to C(X):

e�rTf(X) =
d2C(X)

dX2
= lX>m1a1(X �m1)

b1�2[b1(b1 � 1)1F1(a2; a3; b2(X �m1)
b3)

(3.18)

+
a2
a3
b2b3(2b1 + b3 � 1)(X �m1)

b3

�1 F1(a2 + 1; a3 + 1; b2(X �m1)
b3) +

a2(a2 + 1)

a3(a3 + 1)
b22b

2
3(X �m1)

2b3

�1 F1(a2 + 2; a3 + 2; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4[1F1(a5 + 1; a6 + 1; b4(X �m2)

2)

+ 2
a5 + 1

a6 + 1
b4(X �m2)

2
1F1(a5 + 2; a6 + 2; b4(X �m2)

2)]:

The integral of the density is given by:

dC(X)

dX
= c2 + lX>m1a1(X �m1)

b1�1[(b1)1F1(a2; a3; b2(X �m1)
b3) (3.19)

+
a2
a3
b2b3((X �m1)

b3)1F1(a2 + 1; a3 + 1; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4(X �m2)1F1(a5 + 1; a6 + 1; b4(X �m2)

2):

As stated above, some restrictions must be set in order to guarantee that f(X) inte-

grates to 1 between Xl and Xu,

Z Xu

Xl

f(X)dX = 1: (3.20)
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Through these restrictions, we obtained the following expressions for c2 and a4 (the details

are presented in the Appendix).

c2 = �1 + a4
p
�b4�; (3.21)

a4 =
1

2
p
�b4�

�
1� a1(�b2)�a2

�(a3)

�(a3 � a2)

�
:

As X tends to1, the value of the call option price will be approximately 0 (C(1) =

0), which is the obvious conclusion for call options very nearly out of the money (the

probability to become in the money is near 0). The option value in equation (3.17) will

pay a minimum of c1, which leads to the following simpli�cation:

c1 = �c2m2

Using assumptions b1 = 1 + a2b3; a5 = �1
2
; a6 =

1
2
; formula (3.17) can be further

simpli�ed (see Abadir and Rockinger (2003)).

The �nal reduction was based on the no-arbitrage condition St = exp�r(T�t)E(ST ),

with r being the risk free rate and E(X) the expected value of the underlying price at

maturity,

E(X) = a1
�(a3)

�(a3 � a2)
(�b2)�a2(m1 �m2) +m2: (3.22)

With the restrictions de�ned above, the number of parameters to estimate in the

calculation of the theoretical price in equation (3.17) is reduced to seven.

In order to obtain the implicit RND we have to proceed with the following minimiza-

tion problem:

min
a2;�3;b2;b3;b4;m1;m2

nX
i=1

[c(Xi; �)� bci]2 (3.23a)

where a2, a3, b2, b3, b4, m1 and m2 are the parameters to be estimated. Given the
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restrictions above, c(X; �) is the theoretical price given in equation (3.17), bc are the
option prices observed in the market and n is the number of strike prices. The RND is

obtained by inserting the parameters into equation (3.18).

The details about the extraction process of the implied RNDs using this method are

described in section 4.4.2.

3.2.2 Non-parametric models

A model is considered non-parametric if it does not propose an explicit form for the

RND.

Spline methods

This method consists of the derivation of the RND using the results of Breeden and

Litzenberger (1978), but with a preliminary process of smoothing the volatility smile. The

�rst approach using this method was made by Shimko (1993), who proposed smoothing

the volatility smile via a low order polynomial (using a quadratic polynomial) that �tted

the implied volatilities (on the y-axis) and the associated strike prices (on the x-axis),

�i = a0 + a1Ki + a2K
2
i , for i = 1; :::; N; (3.24)

withN as the number of observed strike prices. The continuous implied volatility function

obtained (on strike prices space) is then inserted back into Black and Scholes formula

(2.6) and the probability density function is obtained through dC2

dS2
. The option currency

markets are quoted in terms of implied volatility for a speci�c delta (� = dC
dS
), which

makes it necessary to convert the deltas into strike prices via the Black and Scholes

model.

Malz (1996) applied smoothing of the volatility smile using the delta as the x-axis in-

stead of the strike price. Using delta rather than strike, away-from-the-money groups im-

plied volatilities closer than near-the-money implied volatilities, which gives more weight
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to the centre of the distribution where the data is more reliable (more frequently traded).

Campa et al. (1997) used the spline method instead of the quadratic polynomial to

smooth the smile curve. A natural cubic spline was applied using the strike prices as the

X-axis. This method allows the smoothness of the �tted curve to be controlled and is

less restrictive about the shape of the �tted function.

Bliss and Panigirtzoglou (2002) applied a natural cubic spline in the volatility/delta

space.

The cubic spline interpolation consists of connecting the adjacent points (�i; �i),

(�i+1; �i+1), using the cubic functions �̂i; i = 0; :::; n � 1 in order to piece together a

curve with continuous �rst and second order derivatives.

�̂i =

8>>>>>>>>><>>>>>>>>>:

�̂0(�) if � < �1

�̂1(�) if �1 < � < �2

...

�̂n�1(�) if �n�1 < � < �n

�̂n(�) if � > �n

(3.25)

where �̂i is a third order polynomial de�ned by:

�̂i(�) = di + ci(���i) + bi(���i)
2 + ai(���i)

3 (3.26)

with � being in the interval [�i;�i+1]. At �i the value of the function is di.

The �rst and second derivatives of equation (3.26) are:

�̂0i(�) = ci + 2bi(���i) + 3ai(���i)
2; (3.27)

�̂00i (�) = 2bi + 6ai(���i); (3.28)
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which means that the second-order derivative (�̂00i ) is given as a linear interpolation

between knot points.

The condition that the cubic functions �̂i and �̂i�1 must meet at the point (�i; yi) is

expressed as:

�̂i�1(�i) = �̂i(�i) = yi (3.29)

yi = di = ai�1(�i ��i�1)
3 + bi�1(�i ��i�1)

2 + ci�1(�i ��i�1) + di�1

The conditions regarding the continuous nature of the �rst and second derivatives in

the knot points are:

�̂0i�1(�i) = �̂
0
i(�i) (3.30)

3ai�1(�i ��i�1)
2 + 2bi�1(�i ��i�1) + ci�1 = ci

�̂00i�1(�i) = �̂
00
i (�i) (3.31)

6ai�1(�i ��i�1)
2 + 2bi�1(�i ��i�1) = 2bi

In Bliss and Panigirtzoglou (2002) the authors used a natural smoothing spline,

whereby the second order derivatives in the extreme knot points were 0, S 00(x0) = 0

and S 00(xn) = 0 (leading to a spline function that is linear outside the range of avail-
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able data). This condition can result in negative values when extrapolating outside the

extreme points, which can yield a negative �tted fdp in the extrapolated points (in this

thesis we did not have this problem). In a natural spline, the smoothness of the interpo-

lating polynomial is controlled by a smoothness parameter �, which weights the degree of

curvature of the spline function. According to Bliss and Panigirtzoglou (2002), the cubic

interpolating spline has the disadvantage of following the same random �uctuations as

the data points, which distorts the nature of the underlying function, which explains why

they used a cubic smoothing spline.

The natural spline minimizes the following objective function:

min
�
(1� �)

NX
i=1

wj(�i � �̂i(�i; �))
2 + �

Z 1

�1
(�00(�; �))2d�; (3.32)

where N is the number of quoted deltas (� = dC
dS
), �̂i(�i; �) is the implied volatility

corresponding to the spline parameters represented by vector � and wi represents the

weight attributed to each observation. The �rst term measure the goodness of �t and

the second term measures the smoothness of the spline. If � = 0 the cubic spline has an

exact �t to the data (the closeness of the spline to the data is the only concern). If � = 1

the interpolating function will be a straight line (smoothness is all that matters).
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Chapter 4

Accuracy and Stability analysis of

the tested PDF estimation methods

4.1 Data

The RNDs analyzed in this thesis were extracted from currency OTC options with the

underlying USDBRL (price of US dollars in terms of Brazilian reals).

The quotes used as inputs were taken from the daily settlement bid prices in Bloomberg

for O¤shore USDBRL FX Options 1 . The data collected covers the period from June

2006 (half a year before the problems regarding the subprime crisis started to worsen)

to February 2010 (seven months after the Brazilian general election) and comprises the

monthly quotes (end of month prices).

This four-year period witnessed economic growth in Brazil, despite the �nancial crisis.

In fact, the worst global recession since the 1930s left Brazil relatively unscathed (it was

one of the last countries that experienced a downturn and one of the �rst to recover; the

economy shrank for only two quarters as can be seen in �gure (11-10). The Brazilian

1Information provided by Bloomberg for the OTC Market. The USDBRL is quoted in volatility
in terms of delta according to international conventions (does not use the speci�c maturity of BM&F
calendar and a day count of business days/252 just like other �nancial instruments traded in BM&F)
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Real was introduced in December 1993 and succeeded the Cruzeiro Real as the Brazilian

currency in order to solve chronic problems at that time like hyperin�ation 2 and unstable

exchange rates (these two problems were caused mainly by in�ationary expectations).

Within a year, the Real plan had managed to control price rises and after 1999 the

exchange-rate peg was abandoned and the currency was allowed to �oat. As such, the

data included was obtained in an environment of free-�oating currency market.

The calls and puts used are of the European type and are priced in volatility as a

function of delta. As shown in the screen below, the grid of quoted deltas is 0.05, 0.1, 0.15,

0.25, 0.35 and 0.5 deltas. This means that we only considered out-of-the money options

(calls and puts) and at-the-money options3, which con�rms the general understanding

that out-the-money options tend to be more liquid than in-the-money options. In this

thesis, we estimate the RNDs using 1, 3 and 6 months to maturity options.

2 for example, according to the o¢ cial numbers of Instituto Brasileiro de Geogra�a e Estatística, the
Brazilian CPI (Consumer Price Index) was always above 25% from January 1993 to June 1994.

3The delta value varies from 0 for very out-the-money options to 1 for deeply in-the-money options.
At the money options have a delta close to 0.5.
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OTC USDBRL European options quotes

4.2 Testing PDF estimation techniques using Monte

Carlo approach

This section describes the method used to test the performance of the three estimation

techniques applied in this work and explained in Chapter 3: the Double-Lognormal Func-

tion (DLN), the Smoothed Implied Volatility Smile (SML) and the Density Functional

Based on Con�uent Hypergeometric Functions (DFCH).

To test the accuracy of these methods at capturing the risk-neutral density functions,

we have to see how closely they �t the true risk-neutral density. Unfortunately, the true

RND is unobservable, so we use the method proposed in Cooper (1999).

In the absence of the true RND, Cooper suggested the use of simulated option prices

data that correspond to a given risk-neutral density function, and then, using these
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simulated prices as input, test what methods produce a better performance in recovering

the given RND.

To generate the "true" risk-neutral density functions, Cooper applied the Heston

stochastic volatility model because it is an interesting technique able to generate a wide

range of di¤erent shapes re�ecting di¤erent market conditions: high or low volatility,

positive or negative skewness and it is also able to generate data for a full range of

maturities.

As explained previously, under the Heston model the underlying asset price dynamics

is described by equation (4.1):

dSt = �Stdt+ St
p
vtdZ1;t (4.1)

dvt = �(� � vt)dt+ �
p
vtdZ2;t ,

where � is the volatility of volatility and � is the long run volatility. The correlation

between Z1 and Z2 is measured by � (correlation between returns and volatility) and can

change the form of the RND generating skewness in asset returns. For example, if � is

negative, there is a negative correlation between shocks to asset price and volatility, which

means that a negative shock to the price will increase the volatility and consequently

increase the likelihood of getting further big downward movements. A positive correlation

between asset price and volatility has the opposite e¤ect. The �gure 4-1 shows the e¤ect

of changing � on the RND.

Heston (1993) shows that under stochastic volatility assumptions, the European call

options have the closed form given in equation (3.6).

In order to obtain the true density and its associated summary statistics, we apply

the second partial derivative of equation C(St; vt; X; T ) with respect to the strike price

(d2C=dX2) Breeden and Litzenberger (1978).
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Figure 4-1: Implied RND under aternative values for the correlation parameter

In order to test the ability of the estimation methods tested to capture a wide range

of possible shapes of the "true" RNDs, we establish a set of six scenarios divided into low

and high volatility and which have three levels of skewness (strong negative skewness,

weak positive skewness and strong positive skewness) as in Cooper (1999).

Table 4-1: Parameters used in Heston model under each scenario

Strong negative Skew Weak positive skew Strong positive skew

Low volatility

Scenario 1

� = 2;
p
� = 0:1

� = 0:1; � = �0:9

Scenario 2

� = 2;
p
� = 0:1

� = 0:1; � = 0

Scenario 3

� = 2;
p
� = 0:1

� = 0:1; � = 0:9

High volatility

Scenario 4

� = 2;
p
� = 0:3

� = 0:4; � = �0:9

Scenario 5

� = 2;
p
� = 0:3

� = 0:4; � = 0

Scenario 6

� = 2;
p
� = 0:3

� = 0:4; � = 0:9

In generating these scenarios we try to replicate the environment from USDBRL FX

Options. Therefore, as input we considered a grid of strike prices which results from the
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average of historical strike prices between January 1996 and February 2010 (end of month

prices) for each delta, in order to obtain the average interval between strike prices for this

period. Because the quotes are given in volatility in terms of delta, at each considered

date, we converted the deltas into strike prices using the formulas

Xcall = Ste
�N�1(�calle

rusdT )�
p
T+(rbrl�rusd+�2=2)T (4.2)

Xput = Ste
N�1(��puterusdT )�

p
T+(rbrl�rusd+�2=2)T ,

where St is the USDBRL exchange rate (the price of one unit of the US dollar, which is the

foreign currency, expressed in BRL real, the domestic currency), rbrl is the domestic risk-

free interest rate (Brazilian interest rate) and rusd the foreign interest rate (US interest

rate) Espen (2007). As with strike prices, in the Heston model we also used the average

and the volatility of the spot USDBRL FX rate for the period starting on June 2006

and �nishing on February 2010 for S0 (USDBRL price at t = 0) and v0 (volatility of the

USDBRL price at t = 0). The interest rates rbrl and rusd are also an average from the

money market rates (US Libor and SICOR for Brazil) for the same period and have a

maturity of 1, 3 or 6 months, depending on the maturity of the "true" RND.

In total, we generate six scenarios for each maturity which results in eighteen di¤erent

RNDs. The other parameters used for producing the di¤erent scenarios are the same as

in Bu and Hadri (2007) and Cooper (1999). The authors chose the long-run volatility

based on the levels of implied volatility typically observed within equity markets and for

the low volatility scenarios chose the long run volatility typically observed in stock index,

currency and interest rate markets.

Our goal using this method was to produce risk-neutral densities that incorporate the

di¤erent shapes and scenarios discussed above (di¤erent levels of skewness and kurtosis)

in order to test the capacity of the MLN, SML and DFCH methods to recover these

RNDs. Doing this does not assume that equation (3.4) explains the asset price dynamics
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in the real world.

Figure 4-2: Summary statistics of the "true" RND obtained through the Heston model

The summary statistics for the eighteen RNDs obtained through the Heston model

are presented in �gure 4-2. The wide range of di¤erent shapes that the di¤erent RNDs

can assume can be seen. For example, the skewness range between -0.1651 and 1.8839

and the kurtosis between 2.8316 (thin tails) and 7.5411 (fat tails) in the high volatility

scenario for the 6-month horizon. We can also see that the variance increases with the

maturity, as it should be expected.

To test the robustness of the MLN, SML and DFCH models in recovering the "true"

RNDs, we �rst derive the call option prices using equation (3.6) in section 3.1.2 for each

combination of scenario and maturity. We then add a uniformly distributed random noise

perturbation in prices of size between minus half and half of the tick size (according to

BM&FBOVESPA, the minimum tick size is 0.001) as in Bliss and Panigirtzoglou (2002).

Given these shocked option prices, we use the MLN, SML and DFCH methods (the

details of the optimization process are described in section 4.4) to estimate the RNDs.

This process of �rst shocking prices and then �tting the RND is repeated 500 times for

the eighteen combinations of maturities and scenarios (Monte Carlo Simulation).

In order to approximate the methodology described above to the characteristics of
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the USDBRL option market, we proceed with the calibration of the Heston model for the

end of month USDBRL option quotes between June 2006 and February 2010 (the results

are presented in �gure 11-9 in Appendix B) and we also produced the tests described

above for 12 dates (6 low volatility dates and 6 high volatility dates). For the low

volatility dates we select the period between October 2006 and March 2007 (before the

increased problems regarding the subprime crisis). For the high volatility dates we select

the period between September 2008 and February 2009 (peak of the subprime crisis).

For these periods, we generate the "true" RNDs using the calibration parameters and

the strike prices obtained for each tested date.

The di¤erent methods are then compared using some statistical measures that will

be described below.

4.3 Statistics used in comparison of di¤erent tech-

niques

In this thesis the di¤erent methods were compared using di¤erent approaches adopted

by di¤erent authors.

In Cooper (1999) and Bliss and Panigirtzoglou (2002) the mean, standard devia-

tion, skewness and kurtosis of the estimated RNDs were analyzed. However, Bliss and

Panigirtzolou focused on stability analysis.

In Cooper the robustness of the MLN and SML methods was studied by comparing

the mean of the summary statistics obtained from the Monte Carlo simulations with the

summary statistics of the "true" RNDs. The process of shocking the prices 4 and then

�tting the RNDs was repeated 100 times. The author also tested the stability of these

models by analyzing the standard deviation of the summary statistics, arguing that the

model with the best performance in terms of stability has a lower standard deviation for

4each price was shocked by a random number uniformly distributed from -1/2 to +1/2 a tick size
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the di¤erent descriptive statistics. He concluded that the SML method performed better

than the MLN method in terms of accuracy and stability.

Bliss and Panigirtzolou tested the stability of the MLN and SMLmethods, but instead

of shocking the �tted prices obtained from the Heston model, they introduced a noise

in market prices. The authors believed a good estimation method would have better

behavior in the convergence results of the processed simulations. These authors did not

adopt the methods followed by Cooper, arguing that goodness-of-�t results outside the

range of available strike prices (tails of the distribution) can be unreliable, in the sense

that there is an in�nite variety of probability masses in the tails of the RNDs obtained.

In fact, the summary statistics with higher moments like skewness and kurtosis are very

sensitive to the tails of the distribution, and the data outside the set examined is heavily

dependent on the estimation method used. For example, when the assumed PFD has a

double-lognormal functional form, the MLN estimation method may do better than the

other methods. We agree with these arguments and hence we give more importance to

the RMISE analysis (root mean integrated analysis) as in Bu and Hadri (2007).

Bu and Hadri (2007) tested the accuracy and stability of the DFCH and SMLmethods

using the root mean integrated squared error (RMISE), which has the advantage of being

less sensitive to the tails of the distribution. Another advantage of RMISE is that it can

be broken down into RISB (root integrate square bias) that measures the accuracy and

RIV (root integrated variance) which indicates the stability of the distribution. As in

Cooper (1999), Bu and Hadri also compared the performance of the methods in terms of

a "true" PDF produced from an assumed Heston stochastic volatility price and using the

pseudo-prices generated from the PDFs as input. For each combination of maturity and

scenario, the authors carry out 500 simulations and �nd that in the majority of the cases

the DFCH method performs better than the SML method in terms of accuracy (RISB)

and stability (RIV).

In this thesis we tested both accuracy and stability of the DFCH, MLN and SML

methods using the RMISE as in Bu and Hadri (2007), in Bondarenko (2003) and in

35



Lee (2008), and using the mean, standard deviation, skewness and kurtosis summary

statistics as in Cooper (1999) and Bliss and Panigirtzoglou (2002).

A de�nition of these statistics is provided below:

i. mean: expected value of the implied PDF.

ii. standard deviation: square root of the variance of the implied PDF.

iii. skewness: the third central moment of the implied pdf standardized by the third

power of the standard deviation.

Skewness =
E[X � �X]3

�3
(4.3)

It provides a measure of asymmetry, measuring the relative probabilities above and be-

low the mean. By weighting the relative probabilities through the cubic distances, the

weighting of the relative probabilities above the mean becomes positive and the weighting

of the relative probabilities below the mean becomes negative.

iv. kurtosis: the fourth central moment of the implied pdf standardized by the fourth

power of the standard deviation. Provides a measure of the degree of "fatness" of the

tails of the implied pdf. The kurtosis of the normal distribution is equal to three. A

higher kurtosis usually implies a greater probability for extreme changes. This means

that a distribution with a higher kurtosis when compared with the normal distribution

has fatter tails than the normal distribution (normally associated with a greater degree

of "peakedness" in the centre of the PDF).

Kurtosis =
E[X � �X]4

�4
(4.4)

v. RMISE : the root mean integrated squared error. By considering f̂(St) as the

estimator of the true RND, then the RMISE is de�ned as

RMISE(f̂) =

s
E[

Z 1

�1
(f̂(St)� f(St))2dSt] (4.5)

representing a measure of the average integral of the squared error over the support of
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the RND. It is a measure of the quality of the estimator and is not as sensitive to the

tails of the distribution as the skewness and kurtosis.

The squared of RMISE can also be broken down into the sum of the squared RISB

(root integrated squared bias) and squared RIV (root integrated variance):

RMISE2(f̂) = RISB2(f̂) +RIV 2(f̂) (4.6)

RISB(f̂) =

sZ 1

�1
(E[f̂(St)]� f(St))2dSt] (4.7)

RIV (f̂) =

sZ 1

�1
E[(f̂(St)� E[f̂(St)])2]dSt (4.8)

In the thesis we tested all the statistics explained above. However, because of the

limitations of skewness and kurtosis in evaluating PDFs, we give more importance to

RMISE as a measure of the overall quality of the estimator, whereby RISB is the measure

of the accuracy and RIV is the measure of the stability.

4.4 Numerical aspects of estimating option prices

using MLN, SML and DFCH

The optimizations we have performed for the calculus of the theoretical option prices

and estimation of the risk-neutral densities using Double-Lognormal Function (DLN), the

Smoothed Implied Volatility Smile (SML) and the Density Functional Based on Con�uent

Hypergeometric Function (DFCH) were produced using the MATLAB software.

4.4.1 Double-Lognormal Function

As explained in section 3.2.1, the mixture of lognormals (MLN) was proposed in Bahra

(1997) and Melick and Thomas (1997) and assumes a functional form for the risk-neutral
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density (RND) that is consistent with various stochastic processes for the underlying as-

set (instead of specifying underlying asset price dynamics as in Black and Scholes�model,

which leads to a unique terminal RND). Using the MLN method, the RND is a weighted

sum of lognormal density functions because according to Bahra the asset price distrib-

utions are closer to the lognormal distribution. For our purposes, we follow Bahra and

adopt a Mixture of two lognormals in the estimation of the risk-neutral densities from the

pseudo-option prices calculated through the Heston model (as described in section 4.2).

The �ve parameters (�1; �2; �1; �2; w) are estimated through the minimization problem

de�ned in equation (3.15). The part of the minimization problem that corresponds to

the non-arbitrage condition, restricting the expected value of the RND to be equal to

the forward price of the underlying asset, is de�ned in our algorithm as the price of the

underlying asset minus the theoretical price of a call option (using MLN model) with

a strike price of 0, which has the same meaning as equation (3.15) but in a di¤erent

form. In fact, this martingale condition means that for a strike price of 0, the option will

always be exercised and at maturity it will be worth the value of the underlying asset.

Therefore, we must solve the minimization problem:

min
�1;�2;�1;�2;w

nX
i=1

[c(X; �)� bc]2 + [S � c(0; �)] (4.9a)

Due to the symmetry problems discussed in section 3.2.1, we impose �1 > �2 (the �rst

density will have a larger standard deviation than the second one). The optimization was

carried out using MATLAB with a non-linear least squares optimization algorithm and

we follow the optimization steps proposed in Jondeau et al. (2006). We start by de�ning

a vector of values for the weight parameter w in the interval [0; 1]. The points in this

vector are equally spaced at intervals of 0.1. We then proceed to the optimization along

the grid of w values and obtain the values for �1; �2; �1; �2; w that minimize our problem.

These parameters are inserted into the MLN�s RND equation (3.8) in order to obtain

the risk-neutral density. This procedure was repeated 500 times for each combination of

maturity and scenario as described in section 4.2.
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4.4.2 Density Functional Based on Con�uent Hypergeometric

Function

This method, described in section 3.2.1, was developed in Abadir and Rockinger (2003)

and consists of the use of a formula that encompasses various densities, like normal,

gamma, inverse gamma, weibull, pareto and mixtures of these statistical densities.

As explained in section 3.2.1, the number of parameters to be estimated using this

model was reduced to seven, due to the restrictions:

c2 = �1 + a4
p
�b4�; (4.10)

a4 =
1

2
p
�b4�

�
1� a1(�b2)�a2

�(a3)

�(a3 � a2)

�
; (4.11)

c1 = �c2m2; (4.12)

b1 = 1 + a2b3; (4.13)

a5 = �
1

2
; (4.14)

a6 =
1

2
; (4.15)

E(X) = a1
�(a3)

�(a3 � a2)
(�b2)�a2(m1 �m2) +m2: (4.16)

The minimization de�ned in equation (3.23a) (regardless of the method used, the

objective is to minimize some function of the squared distance between the observed

option prices and the �tted prices derived from the estimated PDF) was performed in

Matlab using non-linear least square optimization.

As described in section 4.2, the estimation of the risk-neutral densities used the

pseudo-option prices calculated through the Heston model as input.

Given the high number of parameters to be estimated, the choice of initial points

to be used in the optimization plays an important role. We opted for the values used

in Abadir and Rockinger (2003) since these authors proved that they worked well.
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These parameters coincide with the parameters of a Gaussian RND for the third term of

equation (3.17):

a5 = �
1

2
; a6 =

1

2
; b4 = �

1

2 � �2(K) ; m2 = mean(K): (4.17)

Moreover, for the second-term of equation (3.17) the starting parameters correspond to

the parameters of a restricted gamma RND:

b1 = 1 + a2b3; b3 = 1; a3 = a2 + 2; a2 = 4; m1 = m2 (4.18)

Owing to the highly non-linear nature of the function, it was also important to state lower

and upper bounds to the parameters of the function during the optimization processes

in order to achieve better stability and �t for the results obtained.

4.4.3 Smoothed Implied Volatility Smile

In the estimation of the RNDs through the SML model we used the method proposed

in Bliss and Panigirtzoglou (2002) which consists of an interpolation of volatility/delta

space using a natural smoothing cubic spline, whereby the second-order derivatives in

the extreme knot points were 0 (spline function is linear outside the range of available

data). This method is explained in detail in section 3.2.1.

The variable regarding the weight parameter w in equation (3.32) is described by Bliss

and Panigirtzoglou as a source of price error. It is known that in the context of the Black

and Scholes formula, the only unobservable parameter is volatility (�), which means that

the uncertainty regarding the PDF lies in �. The greek vega (v) measures the relationship

between volatility � and option price (v = dC
d�
) and re�ects the uncertainty concerning

the volatility. The value of v is approximately 0 for far deep-out-the-money options and

reaches its maximum for at-the-money options 5. The authors use this v weighting when

5The value of out-the-money and in-the-money options relies mainly in the intrinsic value. The part
that depends of the time value, (which depends on �) is smaller.
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�tting the volatility smile because this weighting scheme places more weight on near-the-

money options and less weight on away-from-the-money options. However, the authors

admitted that it was di¢ cult to choose a good weighting scheme that takes into account

all the sources of price error. In this thesis we tested the SML model using both vega

weighting (wi = vi) and equal weighting (wi = 1) and observed that the performance is

similar for both (with a slight improvement for the vega weighting).

The smoothed parameter in function (3.32) , �, multiplies a measure of curvature in

function (3.32) and allows the smoothness of the spline and its shape to be controlled. In

this thesis we tested this method using the value that minimizes the RMISE (root mean

integrated squared error) as the smoothed parameter. Nevertheless, because in the real

world we don�t know the "true" RND, we are unable to get the � that minimizes RMISE.

As such, we also performed the SML technique using a speci�c value for the smoothing

parameter (� = 0:9).

In conclusion, we tested this method using di¤erent schemes for the weighting para-

meter (wi = vi and wi = 1) and for the smoothness of the spline (� that minimizes the

RMISE and � = 0:9). We observed that the performance is very similar for the di¤erent

schemes (see �gures 11-2 and 11-4 in Appendix B).
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Chapter 5

Comparison of di¤erent methods

using the Cooper scenarios

The di¤erent methods tested in this thesis, the Double-Lognormal Function (DLN), the

Smoothed Implied Volatility Smile (SML) and the Density Functional Based on Con�uent

Hypergeometric Function (DFCH) were compared in terms of accuracy and stability. The

performance of the three techniques was measured based on two di¤erent approaches:

analysis using the summary statistics (mean, standard deviation, skewness and kurtosis)

and analysis using the RMISE (root mean integrated squared error) as explained in

section 4.3.

The approach that measured accuracy based on the summary statistics was analysed

as in Cooper (1999). We obtained the mean, standard deviation, skewness and kurtosis

for the 500 simulations performed for each combination of scenario and maturity, and

then compared the mean of these summary statistics with the values obtained in the

"true" RND estimated through the Heston stochastic volatility model. In this approach,

the stability is measured as in Cooper (1999) and Bliss and Panigirtzoglou (2002),

which takes into account the standard deviation of the higher moments of summary

statistics (variance, skewness and kurtosis), in order to measure how much the estimates

are likely to be a¤ected by data imperfections or computational problems. In line with
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this approach, the model with better accuracy would present mean values of summary

statistics closer to the "true" RND and the model with more stability would have a lower

standard deviation of summary statistics.

However, as explained in section 4.3, skewness and kurtosis are very sensitive to the

tails of the distribution and the data outside the examined set is heavily dependent on

the estimation method used. That is why we also follow the approach used in Bu and

Hadri (2007), who tested the accuracy and stability of the DFCH and SML methods

using the root mean integrated squared error (RMISE), which is a more reliable measure

of the robustness of the RND estimators.

5.1 Analysis using mean, standard deviation, skew-

ness and kurtosis

5.1.1 Accuracy

The accuracy using this approach was analyzed by comparing the average values of

the mean, standard deviation, skewness and kurtosis estimated from the 500 Monte-

Carlo simulations, which were applied to each combination of scenario and maturity (the

scenarios are de�ned in table 4-1). The method with the best performance has an average

value of the summary statistics that is close to the "true" ones (�gures 5-1 and 5-2).

To understand the unbiasedness of the MLN, DFCH and SMLmodels we have to focus

on the di¤erence between these mean statistics and the "true" ones, so we present �gure

5-3, which calculates the di¤erence between the true and the mean summary statistics

as a percentage of the "true" summary statistics: (true-mean)/true.
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Scenarios Expected Value Volatility Skewness Kurtosis RISB RMISE
low volatility and negative skewness SPLINE SPLINE SPLINE HYPERGEOM HYPERGEOM HYPERGEOM
low volatility SPLINE MLN SPLINE HYPERGEOM SPLINE MLN
low volatility and positive skewness SPLINE SPLINE SPLINE SPLINE HYPERGEOM HYPERGEOM
high volatility and negative skewness MLN HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM
high volatility MLN MLN MLN MLN MLN MLN
high volatility and positive skewness SPLINE HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

low volatility and negative skewness SPLINE SPLINE SPLINE HYPERGEOM HYPERGEOM HYPERGEOM
low volatility SPLINE MLN SPLINE SPLINE SPLINE SPLINE
low volatility and positive skewness SPLINE SPLINE SPLINE HYPERGEOM MLN MLN
high volatility and negative skewness MLN SPLINE MLN HYPERGEOM HYPERGEOM HYPERGEOM
high volatility MLN MLN MLN MLN MLN MLN
high volatility and positive skewness MLN SPLINE SPLINE MLN HYPERGEOM HYPERGEOM

low volatility and negative skewness SPLINE SPLINE SPLINE HYPERGEOM HYPERGEOM HYPERGEOM
low volatility SPLINE SPLINE SPLINE SPLINE SPLINE SPLINE
low volatility and positive skewness SPLINE SPLINE SPLINE HYPERGEOM MLN MLN
high volatility and negative skewness MLN SPLINE MLN SPLINE HYPERGEOM HYPERGEOM
high volatility MLN MLN MLN MLN MLN MLN
high volatility and positive skewness SPLINE MLN MLN HYPERGEOM MLN MLN
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Figure 5-1: Best method in terms of accuracy for each combination of scenario and
maturity
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Figure 5-2: Summary statistics obtained for Heston model (true density) and mean of
summary statistics obtained for DFCH, MLN and SML methods. The results estimated
for the SML method were processed with v weighting and with the smoothing parameter
� that minimizes RMISE.
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Figure 5-3: Di¤erence between the "true" and the mean summary statistics in per-
centange of the "true" statistics.The results estimated for the SML method were
processed with v weighting and with the smoothing parameter � that minimizes RMISE.
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Expected Value

If we look at the expected value, we see that the SML method has a better performance

than the MLN method, with the exception of scenarios 4 and 5 (for all the maturities),

where the MLN model is slightly closer to the "true" RND. The DFCH method has a

biased expected value for almost all scenarios and maturities.

Standard Deviation

Analyzing the volatility, we see that for "one month to maturity" the SML outperforms

the DFCH and the MLN methods in scenarios 1, 2 and 3. The DFCH method almost

always has the worst performance, with the exception of scenarios 4 and 6, where it has

the less biased implied volatility.

In the "three months to maturity" the SML technique has a better �t in scenarios 1,

3, 4 and 6. The DFCH has the least �tted implied volatility.

Considering the six-month term, we notice that the SML and MLN methods outper-

form the DFCH one, with the SML method showing better results for the low volatility

scenarios and the MLN one the best in the high volatility scenarios.

In general terms, we see that the SML method has a better performance in capturing

the volatility of the "true" density. The volatility of all tested RNDs increases in line

with longer time to maturity, which con�rms the higher uncertainty attached to longer

maturities.

Skewness

Considering all the maturities, the SML and MLN methods have skewness values that

have a close �t to the "true" skewness when compared to the DFCH model. We also

observe a slightly better performance using the SML method (if we consider an equal

weighting scheme, these results improve slightly). If we look carefully, we see that for 3

and 6-month terms the SML method usually has an unbiased skewness in lower volatility

scenarios and the MLN has better results in higher volatility scenarios. All the models
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tested were able to capture the di¤erent levels of skewness corresponding to each scenario,

which demonstrates their ability to incorporate the changes in skewness observed in the

real world.

Kurtosis

Analyzing the 1-month kurtosis, it can be noticed that the DFCH method has a close �t

to the "true" RND in a bigger proportion of scenarios, having the best �t in scenarios 1,

2 and 4. The MLN underperforms in relation to the other methods in the estimation of

the "true" kurtosis, except in scenarios 5 and 6.

For the �3 months to maturity�, the less biased estimator for kurtosis is obtained

more times through the DFCH model (in scenarios 1, 3 and 4). The MLN and the SML

methods have a similar performance, with the MLN having a closer �t to the "true" RND

in scenarios 5 and 6 and the SML outperforming the other methods in scenario 2.

In the 6-month term the observed results were similar to the �3 months to maturity�,

with the DFCHmethod outperforming the SML andMLNmethods by a large proportion.

The SML and the MLN methods have very similar behavior (MLN does better in higher

volatility scenarios and the SML does better in lower volatility scenarios).

Analyzing all the maturities, it can be seen that the DFCH method has a close �t in

the majority of the scenarios. We also observed that the MLN does better than the SML

when the uncertainty is higher and worse than the SML in low volatility scenarios.

5.1.2 Stability

In this thesis, the stability is measured in line with the approach proposed in Cooper

(1999) and Bliss and Panigirtzoglou (2002), which consists of slightly perturbing the

option prices and then re-estimating the RNDs as explained in section 4.2, in order to

measure how much estimates are likely to be a¤ected by data imperfections or computa-

tional problems. The most stable method would have a lower standard deviation for the

higher moments of summary statistics (variance, skewness and kurtosis).

48



The standard deviation values of the summary statistics are shown in �gure 5-5.

Scenarios Volatility Skewness Kurtosis RIV
low volatility and negative skewness HYPERGEOM SPLINE SPLINE SPLINE
low volatility MLN SPLINE SPLINE MLN
low volatility and positive skewness SPLINE SPLINE SPLINE MLN
high volatility and negative skewness SPLINE SPLINE SPLINE SPLINE
high volatility HYPERGEOM SPLINE SPLINE SPLINE
high volatility and positive skewness SPLINE SPLINE SPLINE SPLINE

low volatility and negative skewness SPLINE SPLINE SPLINE SPLINE
low volatility MLN SPLINE SPLINE MLN
low volatility and positive skewness SPLINE SPLINE SPLINE SPLINE
high volatility and negative skewness SPLINE SPLINE SPLINE SPLINE
high volatility MLN SPLINE SPLINE SPLINE
high volatility and positive skewness SPLINE SPLINE SPLINE SPLINE

low volatility and negative skewness SPLINE SPLINE SPLINE SPLINE
low volatility MLN SPLINE SPLINE MLN
low volatility and positive skewness SPLINE SPLINE SPLINE SPLINE
high volatility and negative skewness SPLINE SPLINE SPLINE SPLINE
high volatility SPLINE SPLINE SPLINE SPLINE
high volatility and positive skewness MLN SPLINE SPLINE MLN
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Figure 5-4: The most stable method for each combination of scenario and maturity
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Figure 5-5: Standard Deviation of the summary statistics for the SML, MLN and DFCH
methods

Variance

For all the maturities considered, the SML method returns the lowest standard deviation

of the variance, which indicates that this method is the most stable one for the volatility

estimates.

It should be mentioned that the stability of the SML method increases when the v

weighting scheme is applied (see �gure 11-6 in Appendix B).

Skewness

The SML method has the most stable skewness estimates across all the combinations of

scenarios and maturities.
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We observe a stability improvement for the SML method if we consider a v weighting

scheme (see �gure 11-6 in Appendix B).

Kurtosis

The SML method has the highest degree of stability for all the tested maturities. We also

observed the same phenomenon as in the standard deviation of variance and skewness,

with the performance of the SML method again improving upon the adoption of a v

weighting scheme. The MLN method is the worst performer for 1-month and 3-month

terms and the DFCH has the lowest stability for the 6-month term.

5.2 Analysis using RMISE

As explained in section 3.3, the summary statistics skewness and kurtosis are highly

sensitive to the tails of the distributions, which can lead to unreliable results outside the

range of available strike prices.

In view of these limitations, in the statistical analysis we test the accuracy and sta-

bility of the DFCH, MLN and SML methods using the RMISE which is a measure of the

average of the integral of the squared deviation over the support of the distribution and

is less sensitive to the tails of the distribution. The RMISE can be broken down into

RISB (measure of accuracy) and RIV (measure of stability). The best model will have a

lower RMISE (lower RISB if it is more accurate and lower RIV if it is more stable).

The values obtained for the eighteen combinations of scenarios and maturities are

presented in �gure 5-6.
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Figure 5-6: Values for RMISE, RISB and RIV. The results shown for the SML method
were processed with v weighting and the smoothing parameter � that minimizes RMISE

5.2.1 SML with v weighting or with equal weighting

As in the analysis of the summary statistics, we examined the results considering the

impact on the SML method of using both the v weighting scheme and the equal weighting

scheme and the optirmal � (minimizes RMISE) as the smoothing parameter and � = 0:9.

In terms of the overall quality of the estimator which is measured by RMISE, we observe

a better performance of the SML method when it applies a v weighting approach. These

results are in accordance with those observed in the previous section, where the skewness

and kurtosis estimated by the SML model were closer to the "true" skewness and kurtosis

when the v weighting was applied. The decrease of RMISE when using the v weighting

is due mainly to the increase in stability, which is measured through RIV. The accuracy,
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which is measured using RISB, is almost the same if we use equal weighting in the RND

estimation. The impact of using an optimal � was insigni�cant.

5.2.2 Best Performance of the DFCH and MLN as the estima-

tors of the "true"RND

Examining the results for the di¤erent maturities, we observe that the RNDs estimated

with the DFCH and MLN methods perform better than the distributions obtained with

the SML in terms of the overall quality of the RND estimator. In fact, the lower RMISE

of the DFCH and MLN methods is observed in the majority of the eighteen combinations

of scenarios and maturities (the DFCH method has the best RND estimator 9 times and

the MLN method 7 times). This higher quality of the DFCH and MLN estimators is

due to the better accuracy of these methods, which translates into a lower RISB. The

DFCH method has a higher �exibility and was superior in capturing the di¤erent shapes

of the "true" distributions under the various scenarios, only showing fragilities in the

estimation of the lower skewness scenarios and in terms of stability.

5.2.3 Comparing DFCH with MLN accuracy

The DFCH method performs less well in terms of accuracy in the central scenarios (lower

skewness) for the di¤erent maturities. For the central scenarios, the SML method has a

higher overall quality as an estimator (lower RMISE) and better accuracy in the lower

volatility scenarios (except for one-month term) and the MLN has a lower RMISE and

RISB in the higher volatility scenarios.

Comparing the accuracy of the DFCH and MLN models for the negative skewness

scenarios, we observe for all the maturities that the DFCH has an higher quality and

accuracy as an estimator of the "true" RND, with the accuracy of these methods almost

the same for the 6-month term.

In positive skewness scenarios, the DFCH method does better in terms of accuracy in
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"one month to maturity". However, for longer maturities the MLN has a lower RMISE

and RISB in the majority of these positive expectations scenarios.

5.2.4 Stability

Comparing the stability of the DFCH, MLN and SML methods and considering a v

weighting scheme for the SML model, because of the more stable performance using this

technique, we conclude that the SML method outperforms the other models across all

the maturities. In terms of stability, the DFCH method underperforms in relation to the

MLN and SML methods in the majority of the cases. Nevertheless, the impact of its

lower stability is insu¢ cient to o¤set its superiority as the estimator of the "true" RND.

5.3 Comparison of our results with other studies

In Cooper (1999), the MLN model was compared with the SML method in terms of

accuracy and stability using the summary statistics approach and in Bu and Hadri (2007)

the DFCH method was compared with the SML method in line with RMISE criteria. In

both studies, the accuracy was measured using the Cooper technique of generating the

"true" world through the Heston model and the SML was estimated interpolating across

the volatility smile in �delta-space�via a cubic smoothing spline (as in our study). In

Cooper, the SML method had a better stability performance and in terms of accuracy

neither technique outperformed the other in skewness and kurtosis estimates. In Bu and

Hadri (2007) the DFCH had a higher accuracy (lower RISB) and the SML method was

more stable in the majority of scenarios (lower RIV).

As in Cooper, it was di¢ cult to de�ne which method (MLN or SML) was better

in capturing the "true" skewness and the "true" kurtosis. Nevertheless, we notice that

the SML method marginally outperformed the MLN method in skewness and kurtosis

accuracy and was the best model at capturing the "true" expected value and the "true"

volatility. In terms of stability, we obtained the same results as in Cooper. In fact, the
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summary statistics estimates calculated through the SML method were the most stable.

According to the RMISE criterion, the DFCH was the most accurate model in the

majority of scenarios (lower RISB) and the SML model was the most stable (lower RIV),

as in Bu and Hadri�s study.
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Chapter 6

Comparison of di¤erent methods

using USDBRL Heston calibrated

parameters

In order to approximate the method proposed in Cooper (1999) to the characteristics

of the USDBRL option market, we calibrated the Heston model for the end of month

USDBRL option quotes between June 2006 and February 2010 (the results are presented

in �gure 11-9 in Appendix B) and produced the Monte Carlo simulations in order to re-

estimate the RNDs using the calibration parameters and the strike prices for 12 dates (6

low volatility dates and 6 high volatility dates). We selected the period between October

2006 and March 2007 (before the increase of the problems regarding the subprime crisis)

as the low volatility dates. The period between September 2008 and February 2009 (peak

of the 2007-2010 �nancial crisis) was selected as the high volatility dates.
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6.1 Analysis using mean, standard deviation, skew-

ness and kurtosis

6.1.1 Accuracy

Scenarios Expected Value Volatility Skewness Kurtosis RISB RMISE
Outubro 06 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Novembro 06 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
Dezembro 06 HYPERGEOM MLN SPLINE HYPERGEOM HYPERGEOM HYPERGEOM

Janeiro 07 MLN MLN MLN MLN HYPERGEOM HYPERGEOM
Fevereiro 07 MLN SPLINE SPLINE HYPERGEOM HYPERGEOM HYPERGEOM

Março 07 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Outubro 06 SPLINE MLN SPLINE MLN MLN MLN
Novembro 06 MLN MLN SPLINE MLN HYPERGEOM HYPERGEOM
Dezembro 06 SPLINE HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Janeiro 07 MLN MLN MLN MLN HYPERGEOM HYPERGEOM
Fevereiro 07 SPLINE MLN SPLINE MLN HYPERGEOM HYPERGEOM

Março 07 SPLINE MLN SPLINE MLN MLN MLN

Outubro 06 SPLINE MLN SPLINE MLN MLN MLN
Novembro 06 SPLINE MLN SPLINE MLN MLN MLN
Dezembro 06 SPLINE MLN SPLINE MLN HYPERGEOM HYPERGEOM

Janeiro 07 SPLINE MLN SPLINE MLN MLN MLN
Fevereiro 07 SPLINE MLN SPLINE MLN MLN MLN

Março 07 SPLINE MLN SPLINE MLN MLN MLN
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Figure 6-1: Best method in terms of accuracy for the low volatility dates
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Scenarios Expected Value Volatility Skewness Kurtosis RISB RMISE
Setembro 08 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
Outubro 08 HYPERGEOM HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Novembro 08 HYPERGEOM MLN SPLINE HYPERGEOM HYPERGEOM HYPERGEOM
Dezembro 08 HYPERGEOM HYPERGEOM SPLINE HYPERGEOM HYPERGEOM HYPERGEOM

Janeiro 09 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
Fevereiro 09 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Setembro 08 SPLINE MLN SPLINE MLN MLN MLN
Outubro 08 HYPERGEOM HYPERGEOM SPLINE HYPERGEOM HYPERGEOM HYPERGEOM

Novembro 08 SPLINE HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
Dezembro 08 SPLINE HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Janeiro 09 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
Fevereiro 09 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM

Setembro 08 SPLINE MLN SPLINE MLN MLN MLN
Outubro 08 MLN HYPERGEOM MLN HYPERGEOM MLN MLN

Novembro 08 MLN HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
Dezembro 08 MLN HYPERGEOM SPLINE MLN MLN MLN

Janeiro 09 SPLINE HYPERGEOM SPLINE MLN MLN MLN
Fevereiro 09 SPLINE HYPERGEOM SPLINE MLN HYPERGEOM HYPERGEOM
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Figure 6-2: Best method in terms of accuracy for the high volatility dates
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Figure 6-3: Low Volatility Dates: Di¤erence between the "true" and the mean summary
statistics in percentange of the "true" statistics: (true-mean)/true. The results for the
SML method were processed with v weighting and with the smoothing parameter � that
minimizes RMISE.
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Figure 6-4: High Volatility Dates: Di¤erence between the "true" and the mean summary
statistics in percentange of the "true" statistics: (true-mean)/true. The results for the
SML method were processed with v weighting and with the smoothing parameter � that
minimizes RMISE.
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Expected Value

Low volatility Dates The mean of the expected values estimated using the SML

method have a close �t to the "true" expected value in the 3 and 6-month terms. The

DFCH method has the biased expected value for the majority of dates and maturities

(see �gure 6-3).

High volatility Dates The MLNmethod outperforms the other models for most dates

and maturities. The DFCH model underperforms the other models for the 3 and 6-month

terms. The SML method has the best �t for the 3-month term and the worst �t for the

1-month term (see �gure 6-4).

Standard Deviation

Low volatility Dates The implied volatility estimated using the MLN method has

the closest �t to the "true" standard deviation for the majority of dates and maturities.

The SML method performs worse in terms of capturing the "true" volatility (see �gure

6-3).

High volatility Dates For the high volatility dates, the best volatility �t was es-

timated using the DFCH method. The SML method has the worst performance for

implied volatility in the 6-month term and the MLN has the worst performance in the 1

and 3-month terms (see �gure 6-4).

Skewness

Low volatility Dates The SML method outperformed the other models in capturing

the "true" skewness and the DFCH model has the worst performance for the majority of

dates and maturities (see �gure 6-3).

High volatility Dates For the high volatility dates, the best �t for skewness was

estimated using the SML method. The MLN method has the worst performance for
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implied volatility for the 1-month term and the DFCHmethod has the worst performance

in the 3 and 6-month terms (see �gure 6-4).

Kurtosis

Low volatility dates The implied kurtosis estimated using the MLN method was

closer to the "true" kurtosis for most dates and maturities. The SML method has the

highest biased implied volatility in the 1-month term and the DFCH has the worst per-

formance in the 3 and 6-month terms (see �gure 6-3).

High volatility dates For the high volatility dates, the MLN again outperformed the

other models. The SML method has the worst performance at capturing the "true"

kurtosis (see �gure 6-4).

6.1.2 Stability

Scenarios Volatility Skewness Kurtosis RIV
Outubro 06 SPLINE SPLINE SPLINE MLN

Novembro 06 SPLINE SPLINE SPLINE SPLINE
Dezembro 06 SPLINE SPLINE SPLINE SPLINE

Janeiro 07 HYPERGEOM SPLINE SPLINE SPLINE
Fevereiro 07 SPLINE SPLINE SPLINE SPLINE

Março 07 MLN SPLINE SPLINE MLN

Outubro 06 HYPERGEOM SPLINE SPLINE HYPERGEOM
Novembro 06 SPLINE SPLINE SPLINE SPLINE
Dezembro 06 SPLINE SPLINE HYPERGEOM HYPERGEOM

Janeiro 07 SPLINE SPLINE SPLINE HYPERGEOM
Fevereiro 07 HYPERGEOM SPLINE SPLINE HYPERGEOM

Março 07 SPLINE SPLINE SPLINE SPLINE

Outubro 06 HYPERGEOM SPLINE SPLINE HYPERGEOM
Novembro 06 SPLINE SPLINE SPLINE MLN
Dezembro 06 HYPERGEOM SPLINE SPLINE HYPERGEOM

Janeiro 07 HYPERGEOM SPLINE HYPERGEOM HYPERGEOM
Fevereiro 07 HYPERGEOM SPLINE SPLINE HYPERGEOM

Março 07 HYPERGEOM SPLINE SPLINE MLN
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Figure 6-5: The most stable method for the low volatility dates
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Scenarios Volatility Skewness Kurtosis RIV
Setembro 08 HYPERGEOM SPLINE SPLINE SPLINE
Outubro 08 HYPERGEOM SPLINE SPLINE MLN

Novembro 08 HYPERGEOM SPLINE MLN MLN
Dezembro 08 MLN SPLINE SPLINE MLN

Janeiro 09 SPLINE SPLINE SPLINE SPLINE
Fevereiro 09 SPLINE SPLINE SPLINE MLN

Setembro 08 SPLINE SPLINE SPLINE SPLINE
Outubro 08 HYPERGEOM MLN MLN HYPERGEOM

Novembro 08 HYPERGEOM SPLINE SPLINE MLN
Dezembro 08 HYPERGEOM MLN SPLINE HYPERGEOM

Janeiro 09 HYPERGEOM SPLINE SPLINE SPLINE
Fevereiro 09 HYPERGEOM SPLINE SPLINE MLN

Setembro 08 SPLINE SPLINE SPLINE HYPERGEOM
Outubro 08 HYPERGEOM MLN MLN MLN

Novembro 08 SPLINE SPLINE SPLINE SPLINE
Dezembro 08 MLN MLN SPLINE MLN

Janeiro 09 HYPERGEOM SPLINE SPLINE MLN
Fevereiro 09 HYPERGEOM SPLINE SPLINE HYPERGEOM
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Figure 6-6: The most stable method for the high volatility dates
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Figure 6-7: Low Volatility Dates: Standard Deviation of the summary statistics for the
SML, MLN and DFCH methods
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Figure 6-8: High Volatility Dates: Standard Deviation of the summary statistics for the
SML, MLN and DFCH methods
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Standard Deviation

For the low volatility dates, the SML method was the most stable model and for the high

volatility dates the DFCH method outperformed the other models. The MLN method

was the most unstable model for the majority of the dates tested (see �gures 6-7 and

6-8).

Skewness

The SML model was the most stable one for all dates. The MLN method was the most

unstable model for the majority of the low volatility dates and the DFCH was the least

stable model for most of the high volatility dates.

Kurtosis

As in the analysis using Cooper�s Scenarios (section 5.1.2), the SML method was the

most stable model for a bigger proportion of the low volatility and high volatility dates.

The MLN method performs the worst in terms of stability in the low volatility dates and

the DFCH was the least stable model for the high volatility dates.

6.2 Analysis using RMISE
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Figure 6-9: Low Volatility Dates: Values for RMISE, RISB and RIV. The SML results
were processed with v weighting and the smoothing parameter � that minimizes RMISE
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Figure 6-10: High Volatility Dates: Values for RMISE, RISB and RIV. The SML results
were processed with v weighting and the smoothing parameter � that minimizes RMISE
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6.2.1 Best Performance of the DFCH and MLN model

The DFCH model was the best estimator of the "true" RND for all the dates tested with

a maturity of 1 month and for almost all the dates with a maturity of 3 months. The

MLN method was the best estimator of the "true" 6-month RND. Overall, the DFCH

method returns the best performance at capturing the true RND (the DFCH method has

a lower RMISE 24 times and the MLN method 12 times). The SML method performed

worse than all the other methods in terms of accuracy (see �gures 6-9 and 6-10).

6.2.2 Stability

In the stability analysis, we obtain di¤erent results than in the analysis of the Cooper

scenarios (section 5.2.4), where the SML method outperforms all the other models. For

the lower volatility dates, the DFCH method has the lower RIV for the majority of 3

and 6-month RNDs. The SML method has a lower RIV for most 1-month RNDs. For

the high volatility dates there is no clear "winner" in terms of stability performance.
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Chapter 7

Information contained in the option

implied risk-neutral probability

density function

Besides analyzing the accuracy and stability of the MLN, SML and DFCH methods, we

also estimated the end of month RNDs extracted from the USDBRL option prices for the

period between June 2006 and February 2010 in order to compare the measures obtained

for the three models tested and to interpret the information provided by these implied

distributions.

7.1 Analyzing changes of implied pdf summary sta-

tistics over time

7.1.1 Comparing MLN, SML and DFCH

Before analyzing the information provided by the statistical measures, we compare the

summary statistics calculated for the MLN, SML and DFCH methods and see if the

results (regarding the mean, the uncertainty, the skewness and the probability of extreme
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moves) are similar for the methods considered, or if they show a similar trend.

The expected values of the estimated distributions evolve very closely to one another

for the three models tested (�gure 7-1), which shows that the reliability of the average

value of all possible outcomes has low dependence on the method used to estimate the

pdf. The advantage of using risk-neutral densities is that they provide information about

a range of possible events in the future and for the estimation of the expected value

there is no need to estimate implied distributions, because the prices of forward or future

contracts already give us the expected value for the underlying asset.

Figure 7-1: Evolution of one month to maturity expected value

The uncertainty around the mean, measured through the standard deviation of the es-

timated RNDs, has a strong correlation between the SML/DFCH pair. The MLN/DFCH

and MLN/SML pairs have lower correlations for the standard deviation estimates.

ρ SML DFCH ρ SML DFCH ρ SML DFCH
MLN 0,790 0,638 MLN 0,336 0,319 MLN 0,386 0,445
SML 0,944 SML 0,981 SML 0,987

1 month 3 months 6 month

Table 7-1: Correlations between the standard deviations calculated through MLN,

DFCH and MLN for the period between June 2006 and February 2010
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Figure 7-2: Evolution of one month to maturity standard deviation

Skewness is an indicator of the probability mass around the mean. If the implied

distribution is positively skewed, the right tail is greater than the left tail and it suggests

that market participants are positive about the future prices. However, a positively

skewed distribution has an unweighted probability above the mean smaller than that

below the mean (expected value is above the median and the mode), because the positive

expectations lead to an upward revision of the expected price. Looking at �gure 7-3,

it is clear that for the period under consideration it is easier to �nd a trend for the

implied skewness calculated for the DFCH and SML methods than for the MLN method

(maintained a level close to 0.2 after December 2007 for "one month to maturity" term).

The correlation level between the MLN method and the other methods is almost null

and the correlation between the SML and DFCH methods is much lower when compared

to the estimated values for the expected value and standard deviation (between 0.4 and

0.54).

ρ SML DFCH ρ SML DFCH ρ SML DFCH
MLN 0,135 ­0,044 MLN 0,159 ­0,075 MLN 0,046 0,140
SML 0,409 SML 0,537 SML 0,436

1 month 3 months 6 month

Table 7-2: Correlations between the skewness calculated through MLN, DFCH and

MLN for the period between June 2006 and February 2010
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Figure 7-3: Evolution of one month to maturity skewness

Figure 7-4: Evolution of six months to maturity skewness
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As mentioned earlier in this thesis, the skewness is very sensitive to the tails of

the distribution, which decreases the reliability of this measure. We therefore calculated

the values for Pearson�s skewness coe¢ cients which are less sensitive to the tails of the

distribution.

Pearson median skewness =
E[X]�median

�
(7.1)

Pearson mode skewness =
E[X]�mode

�
(7.2)

For both Pearson measures we saw almost no positive correlation between the ob-

served values, which is shown in tables 6-3 and 6-4.

Figure 7-5: Evolution of one month to maturity Pearson mode

ρ SML DFCH ρ SML DFCH ρ SML DFCH
MLN ­0,696 0,411 MLN ­0,721 0,049 MLN ­0,446 ­0,105
SML ­0,468 SML ­0,362 SML ­0,325

1 month 3 months 6 month

Table 7-3: Correlations between the Pearson median skewness calculated through MLN,

DFCH and MLN for the period between June 2006 and February 2010

ρ SML DFCH ρ SML DFCH ρ SML DFCH
MLN ­0,707 0,507 MLN ­0,641 0,295 MLN ­0,397 0,344
SML ­0,758 SML ­0,726 SML ­0,526

1 month 3 months 6 month
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Figure 7-6: Evolution of one month to maturity Pearson median

Table 7-4: Correlations between the Pearson mode skewness calculated through MLN,

DFCH and MLN for the period between June 2006 and February 2010

We applied the kurtosis as a measure of the probability for extreme changes (it also

indicates how peaked a distribution is). However, as written earlier in this thesis, this

measure is highly sensitive to the tails of the distribution, whose shape can have in�nite

forms and is heavily dependent on the method used to estimate the implied RNDs. As

such, the reliability of the kurtosis measure is poor and should be interpreted with care.

Like in the skewness analysis, the MLN method shows almost no changes after December

2007. In fact, the estimated MLN implied kurtosis for the one-month term was less able

to capture the increase in kurtosis during the peak of the subprime crisis (August and

September 2008). Once more, the correlation between the di¤erent methods was low.

This correlation was higher between the DFCH and SML methods for the one month

and three-month terms.

ρ SML DFCH ρ SML DFCH ρ SML DFCH
MLN ­0,080 ­0,062 MLN ­0,183 0,041 MLN ­0,010 0,232
SML 0,370 SML 0,469 SML ­0,023

1 month 3 months 6 month

Table 7-5: Correlations between the kurtosis calculated through MLN, DFCH and MLN

for the period between June 2006 and February 2010
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Figure 7-7: Evolution of one month to maturity Kurtosis

Figure 7-8: Evolution of 6 months to maturity Kurtosis
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In conclusion, a higher correlation between the DFCH and SML methods was ob-

served for the expected values and standard deviations of the implied RNDs. However,

the statistical measures which correspond to the asymmetry and probability of extreme

movements show di¤erent results depending on the method used. The correlation was

higher between the SML and DFCH models. The historical values between June 2006

and February 2010 show the low reliability of the skewness and kurtosis measures that

arises from the higher uncertainty of the estimated tails of the RNDs which are heavily

dependent on the estimation method chosen. This increases the need to use a RND

estimation method that is better able to capture the market expectations from the real

world because the estimated statistical measures can be di¤erent depending on the model

used. The RNDs estimated through the tested methods are shown in �gure 7-9.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 months RNDs

STRIKE PRICES

DFCH method
MLN method
SML method

Figure 7-9: 3 months RNDs at 28th November 2008 estimated through DFCH, MLN and
SML methods using USDBRL FX options

In Chapters 5 and 6 we concluded that the DFCH method was better at capturing

the real world expectations when compared to the SML and MLN methods according

to RMISE criterion. Therefore, we will analyze the information provided by the end

of the month implied RNDs, between June 2006 and February 2010, using the implied

distributions calculated through the DFCH method.
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7.1.2 Historical behavior of implied summary statistics

The second half of 2006 and �rst half of 2007 was a period of BRL appreciation and

a slight decrease in volatility (from 0.12 to 0.08 between June 2006 and July 2007 for

"one month to maturity" RND). This decrease in volatility can be seen in �gure 7-

11 and in �gures 7-15, 7-16 and 7-17 with the tightening of the gap between the 25th

and 75th percentiles (Interquartile Range). During these two semesters, the expected

values for the cross USDBRL were always above the spot USDBRL (see �gure 7-10),

which indicates the weakening expectations for the BRL. During this period the levels of

skewness were positive (BRL depreciation) which goes in line with the higher expected

values for USDBRL. This positive skewness can also be perceived if we compare the mean

value, the mode and the median. Usually, if the mean value is above the mode and the

median, there is a positive skewness (positive expectations lead to an upward revision

of the expected price). However, by the end of the �rst semester of 2007 the distance

between the mean and the mode narrowed a little, which could be a sign of downward

revisions regarding an increase in USDBRL. During this period, there were consecutive

SEDIC (overnight reference rate of the Brazilian inter-bank money market) rate cuts by

COPOM (Brazil Monetary Policy Committee) which could be partially motivated by the

need to force the BRL to depreciate (�gure 11-13 in Appendix B). Nevertheless, these

expectations of a depreciation in BRL did not materialize due to the healthier Brazilian

macroeconomic conditions when compared with US data and the increasing credit and

mortgage issues (the subprime crisis).

The trend described in the previous paragraph was temporarily interrupted between

July and September 2007, with a peak in volatility, skewness and an increase in USDBRL.

This increase in volatility and skewness along with a peak in Kurtosis (in �gure 7-18

we see an increase in kurtosis in August 2007 for the 3 and 6-month terms) indicates

that there was an increase of the probability of an extreme devaluation of BRL. This

BRL weakening was related to heightened fears that the subprime and credit crisis in

US would potentially reduce the global risk appetite for the emerging markets. It was
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the �rst shock concerning the subprime crisis, with shortages and lack of liquidity in

the money market. During these months, there were also rumors about some �nancial

institutions experiencing liquidity di¢ culties, such as Northern Rock, a British Bank (at

that time the biggest British mortgage lender) that was asking the Bank of England for

emergency funding due to liquidity problems (in February 2008 Northern Rock Bank was

nationalized).

Between September 2007 and July 2008 we continued to see a BRL appreciation, but

this time, this movement was also supported by a COPOM tightening policy (in April

2008 it started a series of four consecutive rate rises) which increased the rate�s di¤eren-

tial between the Brazilian and US interest rates (at June 2006 the FED started a cycle of

Federal Funds rate lowering) and augmented the pressure on the BRL strength (�gures

11-13 and 11-12 in Appendix B). During this period the volatility was relatively constant

with the implied standard deviation ranging between 0.21 and 0.26 for a maturity of six

months (a higher range than in the �rst semester of 2007) and the central expectations

measured by the interquartile range were concentrated in a lower range, which indicates

a downward revision of the expectations concerning the USDBRL expected value (BRL

appreciation). Despite increasing expectations for BRL appreciation, we noticed an in-

crease in the asymmetry of the expectations in favor of a BRL depreciation, that could be

related to the fact that the market attributed increasing likelihood for a correction of the

BRL strengthening movement (the higher skewness can be seen through the increase of

the Pearson mode and Person median, and through the increase of the di¤erence between

the mean and mode for the 3 and 6-month maturities, with the mean higher than the

75th percentile between March and August 2008 in �gure 7-17).

In August 2008 the BRL appreciation came to an end after reaching a minimum of

1.558 (USDBRL). In August 2008 the markets pointed to two main reasons for the end of

the Dollar depreciation: the end of the rises in oil prices (historically there is a negative

correlation between oil prices and the dollar) and commodity prices (as a commodity

exporter Brazil�s trade surplus would be negatively a¤ected), and the improvement in
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the US Balance of Payments. There was also a huge increase in uncertainty, which could

be seen in �gure 7-11 and in the widening gap between the 25th and 75th percentiles

(�gures 7-15, 7-16 and 7-17). The growth in volatility could be due to the doubts in

the �nancial markets about the extent of this dollar rally. There was also an increase

in skewness and kurtosis caused by an increase in the probability of an extreme dollar

appreciation. This upward movement in volatility (along with a rise in the expected

value) reached its maximum in November 2008 after a sequence of negative events (in

September 2008 Government-sponsored enterprises Fannie Mae and Freddie Mac which

owned or guaranteed about half (56.8%) of the U.S mortgage market were being placed

into conservatorship of the FHFA1, Lehman Brothers �led for bankruptcy and the Bank

of America purchased Merril Lynch, in October 2008 the US government bailed out

Goldman Sachs and Morgan Stanley) that increased the risk aversion and the fears that

the capital in�ows for the emerging economies such as Brazil would be reduced, which

would depreciate its exchange rate.

After December 2008 the USD stopped its rally and the volatility started to decrease,

despite fears regarding the decrease of capital in�ows into emerging markets. This new

trend was partially caused by the increase in the US quantitative easing 2 and by the

decrease of the Fed Reserve Target Rate to 0.25% in December 2008.

The decrease in volatility and BRL appreciation were more pronounced until May

2009, which can be seen through the decreasing of the USDBRL expected value and by

the narrowing of the Interquartile Range. The skewness also dropped from the maximum

values reached between August and December 2008 which could be provoked by the

pressures as regards the dollar devaluation (increase in money supply due to quantitative

1The Federal Housing Finance Agency is an independent federal agency created on July 30, 2008,
when the President George Bush signed into law the Housing and Economic Recovery Act of 2008. The
Act objective was to create a world-class, empowered regulator with all of the authorities necessary
to oversee vital components of US�s secondary mortgage markets �Fannie Mae, Freddie Mac, and the
Federal Home Loan Banks.

2Quantitative easing was used by the FED to increase the supply of money by increasing the excess
reserves of the banking system, through buying not only government bonds, but also troubled assets in
order to improve the liquidity of these assets.
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easing).

After June 2009, the uncertainty came back to a range closer to the volatility levels

prior to the turbulent period that started in August 2008 (nevertheless, until February

2010 it remained at higher levels than before the peak of the crisis), which could be

related to the perception in the �nancial markets that the worst of the global recession

was over.

In January and February 2010, we observed an increase in USDBRL (BRL depreci-

ation) that was accompanied by an increase in the level of skewness (implied skewness

with "one month to maturity" increased as well as the Pearson mode and Pearson median

for all the considered maturities).

Figure 7-10: Evolution of implied expected value estimated through DFCH method
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Figure 7-11: Evolution of implied standard deviation estimated through DFCH method

Figure 7-12: Evolution of implied skewness estimated through DFCH method
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Figure 7-13: Evolution of implied Pearson mode estimated through DFCH method

Figure 7-14: Evolution of implied Pearson median estimated through DFCH method
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Figure 7-15: Evolution IQR 1 month

Figure 7-16: Evolution IQR 3 months
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Figure 7-17: Evolution IQR 6 months

Figure 7-18: Evolution of implied kurtosis estimated through DFCH method
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Chapter 8

Conclusion

This work compared the DFCH method with the widely known SML and MLN methods

in the estimation of the Risk-Neutral Densities through option prices. The methodology

adopted consisted of re-estimating the RNDs after adding a uniformly distributed random

noise perturbation in theoretical option prices generated by Heston�s stochastic volatility

model for a set of di¤erent scenarios in order to test the ability of the di¤erent methods

to recover the "true" RNDs under di¤erent market conditions. The "true" Heston model

RNDs were produced using two approaches: in Chapter 5 we used the Heston parameters

proposed in Cooper (1999) and in Chapter 6 we considered the Heston parameters that

resulted from the calibration of this model for 6 low volatility dates (between October

2006 and March 2007) and 6 high volatility dates (between September 2008 and February

2009).

The three models tested were compared using two di¤erent approaches: analysis

using the RMISE criteria which is a measure of the average distance between the "true"

RND and the estimated ones and analysis using the summary statistics: mean, variance,

skewness and kurtosis.

With the RMISE criteria we observed a higher performance of the DFCH method,

especially for the low volatility dates (between October 2006 and March 2007) and high

volatility dates (between September 2008 and February 2009). However, we noticed that
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the MLN method was superior in capturing the "true" 6-month RNDs. In the stability

analysis, we see the worst performance of the DFCH (higher RIV) in the Cooper scenarios,

with the v weighting SML method showing the best results. For the high volatility dates

and low volatility dates, the MLNmodel was the most unstable according to all statistical

criteria. Despite its lower stability, the DFCH method showed a higher overall quality

as the "true" RND estimator in accordance with its estimated implied RNDs which

recovered the true RNDs more closely in the majority of the cases. We also found that

the v weighting scheme applied to the SML method only generates improvements in terms

of stability, with the overall quality of the SML being una¤ected. For the SML model

we also tested a theoretically optimal � (minimizes RMISE) and � equal to 0.9 (because

in the real world we do not know the optimal �) as the smoothing parameter (�). We

found that the comparative analysis of the methods tested was not sensitive to these two

choices of the smoothing parameter.

The comparisons using the summary statistics were carried out in terms of accuracy

(comparing the mean values of the summary statistics estimated from the Monte Carlo

simulations and the "true" ones) and stability (standard deviation of the summary statis-

tics). The results regarding the mean of the distributions were better for the SMLmethod,

with the DFCH method showing an expected value that is far from the "true" values

in the majority of the cases. In terms of implied volatility, the SML method performed

better in the majority of scenarios proposed in Cooper (1999). The results regarding

the implied volatility for the period of low volatility were favorable to the MLN method

and the results for the high volatility dates were better for the DFCH method. This

indicates that no method clearly outperforms others in capturing the implied volatility.

Concerning the skewness, the SML model was better than the MLN one and the DFCH

method returned the worst results in the majority of scenarios (Cooper, low volatility

and high volatility dates). The implied kurtosis obtained through the DFCH method was

closer to the "true" kurtosis in the majority of the Cooper scenarios tested. The implied

kurtosis for the periods of low and high volatility was favorable to the MLN method. We
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also found for the skewness and kurtosis that the SML had a slight improvement when

we adopted the v weighting scheme. In the stability analysis we conclude that the SML

model signi�cantly increases its stability when the v weighting is adopted. The SML

method was the most stable for the variance, Skewness and kurtosis estimates.

Despite also analyzing the summary statistics, we focused our analysis on the RMISE

criteria because of the higher sensitivity of skewness and kurtosis to the tails of the

distribution (RNDs can have an in�nite variety of probability masses outside the range

of available strike prices and those shapes are very dependent on the estimation methods

used).

To sum up, we conclude that the DFCH method is the best estimator of the "true"

RND according to the RMISE criterion. It outperforms the widely used SML and MLN

methods. It was also interesting to observe that the SML method did not outperform

the MLN as an estimator of the "true" distribution according to the RMISE criterion (in

Cooper (1999) the SML model was considered marginally better than the MLN model

in terms of accuracy of summary statistics). In fact, despite being less stable than the

SML method, the MLNmethod showed greater accuracy, having a lower RMISE than the

SML model in most of the scenarios (Cooper, low volatility and high volatility dates).

The SML was the most stable model, and its performance was enhanced when the v

weighting was adopted.

In this thesis, we also obtained the USDBRL implied RNDs for the period between

June 2006 and February 2010 in order to analyze the di¤erence in the summary statistics

estimated using DFCH, MLN and SML methods. We observed a higher correlation

between the models tested for the expected value and volatility and found almost no

relation between the methods for the skewness, kurtosis, Pearson mode and Pearson

median values. From this low correlation arises the need to use a RND estimation method

that has a higher capacity to capture the market expectations from the real world. The

estimated RNDs and the alternative measures of uncertainty, asymmetry and extreme

movement tendency were also used to analyze market expectations. We found that the
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probability density functions estimated using the DFCH method were able to incorporate

the changes that arise from the major USDBRL market events for this sample period.
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Chapter 9

Further research

In the last section we concluded that the RNDs are a powerful tool for analyzing the e¤ect

of information in market expectations. Nevertheless, we noticed that the estimated RNDs

failed to predict the Brazilian real appreciation between June 2006 and February 2010. In

the future, in-depth investigations about the capacity of the estimated RNDs to predict

the direction and volatility of future price movements can be made.

The accuracy and stability tests used in this thesis can be applied to other currencies

from emerging markets and to currencies from markets with higher liquidity (EURUSD,

GBPUSD, etc), stock index options, interest rate options and other markets in order to

compare the returned results.

This study can be completed testing the accuracy and stability of semi-parametric

models as Hermite Polynomials and Edgeworth expansions. The key idea of the Hermite

Polynomials is that the RND can be obtained through a multiplicative perturbation to

the normal distribution (reference density). These perturbations incorporate deviations

to the normal densities. In the Edgeworth expansions the RND is approximated by

an expansion around a lognormal distribution in order to generate more complicated

functions that capture the higher moments with higher accuracy.

Further analysis can be made using the Lévy processes to generate the �true�RNDs

and to price options due to their interesting theoretical architecture, which appears to
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describe the observed reality of �nancial markets (asset price processes have jumps or

spikes) in a more accurate way than models based on Brownian motion.

It would also be interesting to analyze the usefulness of the studied models in the

estimation of risk measures used in �nancial risk management, namely value-at-risk (Var)

calculations and for stress testing purposes. The empirical relevance of these models in

this �eld could then be tested through backtesting methodology. The importance of these

alternative option�s pricing models as tools for hedging can be analyzed, comparing the

e¢ ciency and the cost of the hedging methods using the Black and Scholes model versus

alternative methods as pricing tools.
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Chapter 10

Appendix A

10.1 Geometric Brownian motion

Let us assume that the dynamics of the underlying asset is in the form of a stochastic

di¤erential equation (SDE) which evolves according to the following di¤usion process:

dSt = �dt+ �dWt (10.1)

where dSt is the instantaneous price change, � is the expected return, � is the constant

volatility of the price process and dWt is an in�nitesimal increment from aWiener process

with dWt s N(0; dt). The parameters � and � are assumed to be constant over time.

The Wiener process is a particular type of Markov stochastic process, with mean

change of 0 and variance rate of 1 per year.

dWt = "
p
dt; " s N(0; 1) (10.2)

dWt s N(0;
p
dt) (10.3)
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A variance rate of 1 means that the variance in Wt in a time interval with length t

equals t.

Nevertheless, these conditions do not guarantee the non-negativity of the stock price

and implies that the expected return and volatility are constant, independently of the

level of the stock price.

In order to face this problem, the expected return and the variability of the change

should be proportional to the stock price, which gives:

dSt = �Sdt+ �StdWt (10.4)

The discrete version of this model is

�St = �S�t+ �S�Wt (10.5)

�St
St

= ��t+ ��Wt (10.6)

dSt
St

s N(��t; �
p
�t) (10.7)

Through this model, known as geometric Brownian motion, we can infer the dynamics

of the underlying asset.

10.2 Itô�s Lemma

After analyzing the dynamics of St we are interested in the dynamics of the price of the

derivative asset, which we denote as f(St; t).

If f admits a derivative we have the following discrete step for f :

�f(x) = f(x+�)� f(x) = f 0(x)� +O(�) (10.8)

lim
�!0

O(�)

�
= 0 (10.9)
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Let us assume an SDE (stochastic di¤erential equation) dXt = �tdt+ �tdWt, which

has the discrete form Xt+� = Xt + �t�+ �t(Wt+� �Wt):

We are now interested in the dynamics of f(Xt; t). For this purpose we get (using

second order Taylor expansion):

f(Xt+�; t+�) = f(Xt; t) +
df

dX
(Xt+� �Xt) +

df

dt
(t+�� t) (10.10)

+
1

2

�
d2f

dX2
(Xt+� �Xt)

2 + 2
df

dXdt
(Xt+� �Xt)(t+�� t) +

d2f

dt2
(t+�� t)2

�
(10.11)

If we keep the terms that are of the same order of magnitude as � and (Wt+� �Wt)

and drop all the other terms that are smaller, we obtain (see the details in Jondeau et

al. (2006)):

Xt+� �Xt = �t�+ �t(Wt+� �Wt) (10.12)

(Xt+� �Xt)
2 = �2t�

2 + �2t (Wt+� �Wt)
2 + 2�t�t(Wt+� �Wt)� � �2� (10.13)

(Xt+� �Xt)� = �t�
2 + �t(Wt+� �Wt)� � 0 (10.14)

If we replace the terms in the Taylor expansion with the equations (10.12), (10.13)

and (10.14) and taking the limit � ! 0, we have the Itô�s lemma (see the details in

Jondeau et al. (2006)):

df =

�
1

2

d2f

dX2
�2t +

df

dX
�t +

df

dt

�
dt+

df

dX
�tdWt (10.15)

If we de�ne St = f(Xt; t) = exp(Xt), Itô�s lemma gives:

dSt = (
1

2
St�

2 + St�)dt+ �StdWt (10.16a)
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De�ning �S = �+
1
2
�2, we have the following dynamics for St:

dSt = �SStdt+ �StdWt (10.17a)

This is the geometric Brownian motion discussed previously.

We can see that St has some nice properties in describing the behavior of the asset

price: St cannot be negative and the returns de�ned in this way have a constant variance,

independently from the level:

St � St�1
St�1

= �Sdt+ �dWt � N(�S ; �
2) (10.18a)

Applying d log(St) = �dt + �dWt, with � = (�S � 1
2
�2) and then integrating, we

have:

log(St)� log(S0) = (�S �
1

2
�2)t+ �(Wt �W0) (10.19)

If we consider (Wt � W0) s N(0; t), it follows that log(St) s N(log(S0) + (�S �
1
2
�2)t; �2t).

Thus, the price has a log-normal distribution and the returns are normally distributed.

Applying Ito�s lemma in equation (10.17a) results in the pricing process:

df =

�
1

2

d2f

dS2
S2t �

2 +
df

dS
St�+

df

dt

�
dt+

df

dS
St�dWt (10.20)

If we create a portfolio composed by 1 unit of the derivative asset and a short position

with a delta quantity (� = df
dS
) of the underlying asset, it can be shown that the dynamic

of this portfolio does not have risk. In fact, the portfolio value is Vt = f � df
dS
St, with the

price evolving according to:

dVt = df �
df

dS
dSt (10.21)

Substituting df and dSt we obtain the formula:
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dVt =

�
1

2

d2f

dS2
S2t �

2 +
df

dS
St�+

df

dt

�
dt+

df

dS
St�dWt �

df

dS
(St�dt+ St�dWt) (10.22a)

=

�
1

2

d2f

dS2
S2t �

2 +
df

dS
St�+

df

dt
� df

dS
St�

�
dt+

df

dS
St�dWt �

df

dS
St�dWt

=

�
1

2

d2f

dS2
S2t �

2 +
df

dS
St�+

df

dt
� df

dS
St�

�
dt

Since there is no (dWt) term, the instantaneous return of this portfolio equal to the

risk free rate (no arbitrage opportunities).

In fact, imposing the equality between equation (10.22a) and r(f � df
dS
St)dt , results

in the following equation:

1

2

d2f

dS2
S2t �

2 +
df

dS
Str +

df

dt
= rf (10.23)

This is the Black and Scholes fundamental partial di¤erential equation (PDE). It

governs the prices of all derivatives, considering that St has the price dynamics de�ned

by equation (10.17a). This equation establishes the conditions that must be satis�ed by

the price of a derivative written on St.

The solution for this PDE depends on the boundary conditions, which means that the

options prices depend on the future price of the underlying asset and time to maturity:

C(ST ; T;X) = max(ST �X; 0) if it is call (10.24)

P (ST ; T;X) = max(X � ST ; 0) if it is put

10.3 Stochastic Volatility

In the Heston model we have the following two Wiener processes:
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dSt = �Stdt+ St
p
vtdZ1;t (10.25)

dvt = �(� � vt)dt+ �
p
vtdZ2;t; (10.26)

where Z1;t and Z2;t are correlated Wiener processes (Corr[dZ1;tjdZ2;t] = �dt), vt is the

the volatility of the underlying asset, � is the long run volatility, � is the volatility of the

volatility process and � is the speed by which volatility returns to its long run average.

If we rewrite equations (10.25) and (10.26) in the shorter form:

dSt = �Sdt+ �SdZ1;t (10.27)

dvt = �vdt+ �vdZ2;t (10.28)

and apply the Heston Model bivariate Itô�s lemma, the dynamics for the option price is

(see the details in Jondeau et al. (2006)):

dC =

�
1

2

d2C

dS2t
�2S + ��S�v

d2C

dStdvt
+
1

2

d2C

dv2t
�2v + �S

dC

dSt
+ �v

dC

dvt
+
dC

dt

�
dt (10.29)

+�S
dC

dSt
dZ1;t + �v

dC

dvt
dZ2;t (10.30)

The risk free portfolio �t obtained by selling one unit of a call option (C), purchasing

� units of the underlying asset and 
 units of a second derivative (C2) on the same

underlying, can be represented by:
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d�t = dC � �dSt � 
dC1 (10.31)

=

�
1

2

d2C

dS2t
�2S + ��S�v

d2C

dStdvt
+
1

2

d2C

dv2t
�2v + �S

dC

dSt
+ �v

dC

dvt
+
dC

dt
� ��S

�
dt

�
�
1

2

d2C1
dS2t

�2S + ��S�v
d2C1
dStdvt

+
1

2

d2C1
dv2t

�2v + �S
dC1
dSt

+ �v
dC1
dvt

+
dC1
dt

�
dt

+

�
�S
dC

dSt
� ��S � 
�S

dC1
dSt

�
dZ1;t +

�
�v
dC

dvt
� 
�v

dC1
dvt

�
dZ2;t

The terms in dZ1;t and dZ2;t must be zero in order to obtain a portfolio without risk.

This fact results in

dC

dSt
= � + 


dC1
dSt

(10.32)

dC

dvt
= 


dC1
dvt

(10.33)

The instantaneous return for this portfolio must be the risk-free rate to avoid arbi-

trage:

d�t = r(C � �St � 
C1)dt (10.34a)

If equation (10.34a) is used on equation (10.31) and we replace � and 
 using the

results in equations (10.32) and (10.33), then we get the same dynamics for derivative C

and derivative C1:

�
1

2

d2C

dS2t
�2S + ��S�v

d2C

dStdvt
+
1

2

d2C

dv2t
�2v + rSt

dC

dSt
+ �v

dC

dvt
+
dC

dt
� rc

�
=
dC

dvt
(10.35a)

=

�
1

2

d2C1
dS2t

�2S + ��S�v
d2C1
dStdvt

+
1

2

d2C1
dv2t

�2v + rSt
dC1
dSt

+ �v
dC1
dvt

+
dC1
dt

� rC1
�
=
dC1
dvt

We observe that both sides of the equation are equal and do not depend on the type
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of the option. Both terms only depend on St, vt and t and can be expressed as a function

�(St; vt; t) which is the volatility risk premium.

The Heston PDE is

1

2

d2C

dS2t
S2t vt + �St�vt

d2C

dStdvt
+
1

2

d2C

dv2t
�2vt + [�(�� vt)� �(St; vt; t)]

dC

dvt
+ rSt

dC

dSt
+
dC

dt
= 0

(10.36a)

Considering x = log(St) and C(ex; t), the PDE can be rewritten as:

1

2

d2C

dx2t
vt+��vt

d2C

dxdvt
+
1

2

d2C

dv2t
�2vt+[�(��vt)��(xt; vt; t)]

dC

dvt
+r
dC

dx
+
dC

dt
= 0 (10.37a)

For an European call option, the following boundary conditions must be satis�ed:

C(ST ; vt; r;X; T; t) = max(ST �X; 0) (10.38)

C(0; vt; r;X; T; t) = 0 (10.39)

dC

dSt
(1; vt; r;X; T; t) = 1 (10.40)

10.4 Mixture of hypergeometric functions

The function DFCH (density function based on con�uent hypergeometric functions), that

speci�es European call pricing as a mixture of two con�uent hypergeometric functions,

is given by (see the details in Abadir and Rockinger (2003)):

C(X) = c1 + c2X + lX>m1a1((X �m1)
b1)1F1(a2; a3; b2(X �m1)

b3) (10.41)

+ (a4)1F1(a5; a6; b4(X �m2)
2);
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where a3;a6 2 N and b2; b4 2 R�. The indicator function l represent a component of the

density with bounded support.

The Kummer�s function 1F1 was de�ned in equation (3.16):

1F1(�; �; z) �
1X
j=0

(�)j
�j

zj

j!
� 1 + �

�
z +

�(�+ 1)

�(� + 1)

z2

2!
+
�(�+ 1)(�+ 2)

�(� + 1)(� + 2)

z3

3!
+ ::: (10.42)

The �rst derivative of 1F1(�; �; z) is

1F1(�; �; z)
0 � �

�
+
�(�+ 1)

�(� + 1)
z +

�(�+ 1)(�+ 2)

�(� + 1)(� + 2)

z2

2!
+
�(�+ 1)(�+ 2)(�+ 3)

�(� + 1)(� + 2)(� + 3)

z3

3!
+ :::

(10.43)

=
�

�
[1 +

(�+ 1)

(� + 1)
z +

(�+ 1)(�+ 2)

(� + 1)(� + 2)

z2

2!
+ :::]

=
�

�
[1F1(�+ 1; � + 1; z)].

The Kummer�s function has the following asymptotic representation for X 2 R (see the

details in Abadir (1999)),

1F1(�; �; z) =

8<:
�(�)
�(��a) jzj

�a (1 +O
��

1
2

��
; as z �! �1

�(�)
�(a)

jzja�c expz(1 +O
��

1
2

��
; as z �!1

(10.44)

With the formula (10.43) we can obtain the implied probability density function which

is given by the second derivative of C(X) with respect to the strike price X.
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d2C(X)

dX2
= e�r�f(X) = lX>m1a1(X �m1)

b1�2[b1(b1 � 1)1F1(a2; a3; b2(X �m1)
b3)

(10.45)

+
a2
a3
b2b3(2b1 + b3 � 1)(X �m1)

b3

�1 F1(a2 + 1; a3 + 1; b2(X �m1)
b3) +

a2(a2 + 1)

a3(a3 + 1)
b22b

2
3(X �m1)

2b3

�1 F1(a2 + 2; a3 + 2; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4[1F1(a5 + 1; a6 + 1; b4(X �m2)

2)

+ 2
a5 + 1

a6 + 1
b4(X �m2)

2
1F1(a5 + 2; a6 + 2; b4(X �m2)

2)]

The pdf (probability density function) derived from DFCH must be integrate to 1. To

restrict the integral of f(X) we derive

f(X) =
dC(X)

dX
= � exp�r� (1�G(X)) = c2 + a1b1(X �m1)

b1�1
1F1(a2; a3; b2(X �m1)

b3)

(10.46)

+
a2
a3

1F1(a2 + 1; a3 + 1; b2(X �m1)
b3)b2b3(X �m1)

b3

� a1(X �m1)
b1�1

+ a4 1F1(a5 + 1; a6 + 1; b4(X �m2)
2)2b4(X �m2)

a5
a6

= c2 + lX>m1a1(X �m1)
b1�1[(b1)1F1(a2; a3; b2(X �m1)

b3) (10.47)

+
a2
a3
b2b3((X �m1)

b3)1F1(a2 + 1; a3 + 1; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4(X �m2)1F1(a5 + 1; a6 + 1; b4(X �m2)

2)

In order to guarantee that f(X) integrates to 1 between Xl and Xu we set,
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Z Xu

Xl

f(X)dX = 1; (10.48)

which is equivalent to

dC(Xl)

dX
= G(Xl)� 1 = �1; (10.49)

dC(Xu)

dX
= G(Xu)� 1 = 0: (10.50)

Solving the restrictions on equations (10.49) and (10.50), we obtain explicit formulas for

the parameters c2 and a4. If we assume that Xl < m1 , from the constrain set in equation

(10.49), we conclude that c2 is de�ned as

c2 = �1� 2a4
a5
a6
b4(Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)

2) (10.51)

Applying the restriction on Xu de�ned in equation (10.50), we get c2 plus the other terms

of (10.46) which give the following explicit formula for c2

c2 = �a1(Xu �m1)
b1�1[(b1)1F1(a2; a3; b2(Xu �m1)

b3) (10.52)

+
a2
a3
b2b3((Xu �m1)

b3)1F1(a2 + 1; a3 + 1; b2(Xu �m1)
b3)]

� 2a4
a5
a6
b4(Xu �m2)1F1(a5 + 1; a6 + 1; b4(Xu �m2)

2):

If we compare equations (10.51) and (10.52), we get an explicit formula for a4;
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a4 =

8<: 1� a1(Xu �m1)
b1�1[(b1)1F1(a2; a3; b2(Xu �m1)

b3)

+a2
a3
b2b3((Xu �m1)

b3)1F1(a2 + 1; a3 + 1; b2(Xu �m1)
b3)]

9=; (10.53)

�

8<: 2a5
a6
b4[(Xu �m2)1F1(a5 + 1; a6 + 1; b4(Xu �m2)

2)

�(Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)
2)]

9=;
In Abadir and Rockinger (2003), the assumptions b1 = 1 + a2b3; a5 = �1

2
and a6 = 1

2

were applied in equations (10.51) and (10.53). Using the asymptotic representation of

Kummer�s function in equation (10.44), equation (10.51) simpli�es to

c2 = �1� 2a4
a5
a6
b4(Xl �m2)

�(a6 + 1)

�(a6 � a5)
��b4(Xl �m2)

2
���a5�1 (10.54)

= �1 + a4
p
�b4 � �

and equation (10.53) simpli�es to

a4 =
1

2
p
�b4�

�
1� a1(�b2)�a2

�(a3)

�(a3 � a2)

�
: (10.55)

This formula was deduced by simplifying the two terms of equation (10.53) separately.

The �rst term is

1� a1(Xu �m1)
b1�1[(b1)1F1(a2; a3; b2(Xu �m1)

b3) (10.56)

+
a2
a3
b2b3((Xu �m1)

b3)1F1(a2 + 1; a3 + 1; b2(Xu �m1)
b3)]

applying the relation 1F1(�; �; z) = expz 1F1(���; �;�z) 1 we continue the simpli�cation

of the �rst term

1This transformation is shown by Karim Abadir (1999) in "An introduction to hypergeometric func-
tions for economiste"
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1� a1(Xu �m1)
b1�1[b1(exp

b2(Xu�m1)b3 )1F1(a3 � a2; a3;�b2(Xu �m1)
b3) (10.57)

+
a2
a3
b2b3((Xu �m1)

b3)(expb2(Xu�m1)b3 )1F1(a3 � a2; a3 + 1;�b2(Xu �m1)
b3)]

= 1� a1(Xu �m1)
b1�1[b1 exp

b2(Xu�m1)b3
�(a3)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2 exp�b2(Xu�m1)b3

+
a2
a3
b2b3(Xu �m1)

b3 expb2(Xu�m1)b3
�(a3 + 1)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2�1 exp�b2(Xu�m1)b3 ]

= 1� a1(Xu �m1)
b1�1b1

�(a3)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2

� a1(Xu �m1)
b1�1a2

a3
b2b3(Xu �m1)

b3
�(a3 + 1)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2�1.

Taking into account that �(a3 + 1) = a3! we transform the �(a3 + 1) into �(a3) � a3,

which gives

1� a1(Xu �m1)
b1�1b1

�(a3)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2 (10.58)

� a1(Xu �m1)
b1�1a2

a3
b2b3(Xu �m1)

b3
�(a3)

�(a3 � a2)
a3(�b2(Xu �m1)

b3)�a2�1

= 1� a1(Xu �m1)
b1�a2b3�1b1

�(a3)

�(a3 � a2)
(�b2)�a2

� a1(Xu �m1)
b1�a2b3�1a2b3

�(a3)

�(a3 � a2)
(�b2)�a2b2(�b2)�1

= 1� a1(�b2)�a2
�(a3)

�(a3 � a2)
:

Applying the same transformation set in the �rst term 1F1(�; �; z) = e
z
1F1(���; �;�z),

the second term of equation (10.53) is
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2
a5
a6
b4[(Xu �m2)1F1(a5 + 1; a6 + 1; b4(Xu �m2)

2) (10.59)

� (Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)
2)]

= �2b4[(Xu �m2)1F1(a5 + 1; a6 + 1; b4(Xu �m2)
2)

� (Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)
2)]

= �2b4[(Xu �m2) exp
b4(Xu�m2)2

1F1(a6 � a5; a6 + 1;�b4(Xu �m2)
2)

� (Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)
2]

= �2b4[(Xu �m2) exp
b4(Xu�m2)2

�(a6 + 1)

�(a6 � a5)
(�(b4(Xu �m2)

2))�a5�1 exp�b4(Xu�m2)2

� (Xl �m2)
�(a6 + 1)

�(a6 � a5)
��b4(Xl �m2)

2
���a5�1]

= �2b4(Xu �m2)(Xu �m2)
�2a5�2(�b4)�a5�1

�(a6 + 1)

�(a6 � a5)

+ 2b4(Xl �m2)(�(Xl �m2))
�2a5�2(�b4)�a5�1

�(a6 + 1)

�(a6 � a5)

= �2b4(�b4)�
1
2
�(a6 + 1)

�(a6 � a5)
+ 2b4(�b4)�

1
2
(Xl �m2)

�(Xl �m2)

�(a6 + 1)

�(a6 � a5)

= �2b4(�b4)�
1
2
�(a6 + 1)

�(a6 � a5)
� 2b4(�b4)�

1
2
�(a6 + 1)

�(a6 � a5)

= �4(�b4)
1
2
�(a6 + 1)

�(a6 � a5)
= �4

p
�b4

�(3
2
)

�(1)
= 2

r
b4(�(

3

2
)2)22 = 2

p
b4�

Taking into account that (�(3
2
)2)22 = �, we have that

4
p
�b4�(

3

2
) = 2

r
�b4(�(

3

2
)2)22 = 2

p
�b4�: (10.60)
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Chapter 11

Appendix B

DFCH MLN
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 1,9761 2,0193 2,0899 1 1,9651 1,9887 2,0346
2 1,9733 2,0173 2,0900 2 1,9630 1,9900 2,0312
3 1,9721 2,0174 2,0878 3 1,9610 1,9858 2,0345
4 1,9914 2,1090 2,1306 4 1,9766 2,0286 2,1194
5 1,9806 2,0323 2,1135 5 1,9686 2,0105 2,0823
6 1,9703 2,0260 2,1014 6 1,9608 1,9938 2,0810
1 0,1233 0,2105 0,2985 1 0,1220 0,2068 0,2798
2 0,1237 0,2142 0,3151 2 0,1216 0,2012 0,2680
3 0,1277 0,2216 0,3233 3 0,1254 0,2117 0,2842
4 0,1255 0,2700 0,3822 4 0,1216 0,2109 0,3106
5 0,1311 0,2508 0,4019 5 0,1293 0,2393 0,3625
6 0,1349 0,2775 0,4465 6 0,1441 0,2714 0,4152
1 ­0,3423 ­0,5169 ­0,7718 1 0,0717 ­0,0774 ­0,2323
2 ­0,1521 ­0,2884 ­0,1880 2 0,1999 0,3246 0,4426
3 0,0355 ­0,0111 0,0882 3 0,3043 0,5148 0,7774
4 ­0,3663 ­2,4656 ­1,0055 4 ­0,0595 ­0,1786 ­0,1362
5 ­0,2466 ­0,4104 ­0,3136 5 0,2369 0,4630 0,7684
6 ­0,0105 0,5078 0,7908 6 0,4149 0,7813 1,3350
1 2,9457 2,9032 2,8680 1 3,2627 4,3885 5,6363
2 3,0714 3,0209 4,1051 2 3,1160 3,2180 3,4002
3 3,4633 3,6068 4,2312 3 3,4862 3,9632 4,1651
4 3,0189 3,1169 3,0826 4 3,6043 2,6091 2,5644
5 2,9991 3,0450 3,1784 5 3,3568 3,8580 4,4296
6 3,0467 4,5411 5,6989 6 4,0123 4,5432 5,6260
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Figure 11-1: Summary Statistics obtained for DFCH and MLN methods
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SML (λ=0,9) SML (λ that minimizes RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 1,9569 1,9708 1,9932 1 1,9570 1,9708 1,9932
2 1,9586 1,9755 2,0001 2 1,9586 1,9755 2,0000
3 1,9591 1,9765 2,0005 3 1,9591 1,9765 2,0005
4 1,9341 1,9102 1,8892 4 1,9340 1,9099 1,8879
5 1,9547 1,9626 1,9712 5 1,9546 1,9621 1,9697
6 1,9596 1,9813 2,0118 6 1,9594 1,9786 2,0106
1 0,1208 0,1976 0,2595 1 0,1208 0,1975 0,2595
2 0,1216 0,2011 0,2682 2 0,1216 0,2011 0,2683
3 0,1224 0,2054 0,2792 3 0,1225 0,2055 0,2793
4 0,1335 0,2456 0,3681 4 0,1335 0,2456 0,3677
5 0,1354 0,2559 0,3952 5 0,1353 0,2556 0,3946
6 0,1383 0,2678 0,4254 6 0,1383 0,2668 0,4251
1 0,1532 0,2677 0,3872 1 0,1533 0,2675 0,3873
2 0,3059 0,5355 0,7602 2 0,3061 0,5357 0,7609
3 0,4878 0,8409 1,1640 3 0,4882 0,8411 1,1640
4 ­0,1182 ­0,1199 ­0,0540 4 ­0,1164 ­0,1165 ­0,0448
5 0,1147 0,2249 0,3744 5 0,1165 0,2305 0,3846
6 0,6767 0,9600 1,1544 6 0,6791 1,0243 1,1614
1 3,0172 3,0366 3,1005 1 3,0172 3,0367 3,1006
2 3,0841 3,2709 3,4996 2 3,0841 3,2708 3,5000
3 3,2101 3,6004 4,0741 3 3,2104 3,6007 4,0741
4 2,8935 2,7388 2,6008 4 2,8929 2,7378 2,5988
5 2,9884 3,0320 3,1177 5 2,9886 3,0329 3,1208
6 3,3975 3,9203 4,5497 6 3,3988 3,9628 4,5556

SML (λ=0,9=0,9) SML (min RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 1,9559 1,9679 1,9773 1 1,9566 1,9695 1,9848
2 1,9586 1,9759 2,0011 2 1,9586 1,9759 1,9999
3 1,9596 1,9771 2,0015 3 1,9592 1,9765 2,0005
4 1,9316 1,9088 1,8957 4 1,9316 1,9072 1,8919
5 1,9610 1,9727 1,9836 5 1,9574 1,9648 1,9745
6 1,9645 1,9881 2,0190 6 1,9612 1,9820 2,0116
1 0,1207 0,1964 0,2532 1 0,1206 0,1964 0,2537
2 0,1215 0,2013 0,2691 2 0,1216 0,2012 0,2690
3 0,1227 0,2060 0,2813 3 0,1226 0,2060 0,2812
4 0,1337 0,2465 0,3724 4 0,1337 0,2462 0,3713
5 0,1374 0,2609 0,4048 5 0,1367 0,2593 0,4017
6 0,1395 0,2714 0,4321 6 0,1395 0,2706 0,4300
1 0,1575 0,2573 0,3573 1 0,1368 0,2295 0,2766
2 0,3051 0,5312 0,7562 2 0,3050 0,5304 0,7686
3 0,4913 0,8541 1,2007 3 0,4992 0,8625 1,2080
4 ­0,1237 ­0,1445 ­0,0814 4 ­0,1183 ­0,1172 ­0,0444
5 0,0150 0,1853 0,3752 5 0,0949 0,2808 0,4436
6 0,6038 0,9149 1,1291 6 0,6751 0,9788 1,1750
1 3,0130 3,0204 2,9966 1 3,0112 3,0161 3,0191
2 3,0831 3,2493 3,4834 2 3,0837 3,2486 3,4898
3 3,2162 3,6011 4,1656 3 3,2189 3,6059 4,1693
4 2,9011 2,7375 2,6161 4 2,9018 2,7308 2,6122
5 2,9969 3,0414 3,1673 5 3,0075 3,0697 3,1981
6 3,3753 3,9049 4,5538 6 3,4131 3,9554 4,5957
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Figure 11-2: Summary Statistics obtained for SML method under 4 scenes: with or
without v weighting and for each weighting approach using a smoothing parameter �
that minimizes RMISE or a smoothing parameter � with a value of 0,9.
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DFCH MLN
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 ­0,0090 ­0,0221 ­0,0448 1 ­0,0034 ­0,0066 ­0,0172
2 ­0,0079 ­0,0210 ­0,0449 2 ­0,0026 ­0,0072 ­0,0155
3 ­0,0070 ­0,0218 ­0,0439 3 ­0,0013 ­0,0058 ­0,0173
4 ­0,0146 ­0,0591 ­0,0476 4 ­0,0070 ­0,0187 ­0,0421
5 ­0,0088 ­0,0213 ­0,0405 5 ­0,0026 ­0,0103 ­0,0251
6 ­0,0058 ­0,0200 ­0,0357 6 ­0,0009 ­0,0038 ­0,0257
1 ­0,0173 ­0,0563 ­0,1307 1 ­0,0063 ­0,0378 ­0,0597
2 ­0,0202 ­0,0646 ­0,1728 2 ­0,0031 0,0004 0,0026
3 ­0,0459 ­0,0957 ­0,1836 3 ­0,0273 ­0,0466 ­0,0406
4 0,0170 ­0,1630 ­0,0979 4 0,0479 0,0915 0,1079
5 ­0,0118 ­0,0459 ­0,0962 5 0,0027 0,0019 0,0112
6 ­0,0439 ­0,1386 ­0,1634 6 ­0,1149 ­0,1134 ­0,0818
1 3,3804 3,1564 3,1309 1 0,5014 1,3230 1,6414
2 1,4884 1,5347 1,2441 2 0,3580 0,3983 0,4254
3 0,9261 1,0135 0,9253 3 0,3663 0,3746 0,3410
4 ­0,4491 ­7,1751 ­5,0902 4 0,7648 0,4080 0,1749
5 1,7555 1,7001 1,3709 5 0,2743 0,2101 0,0912
6 1,0113 0,6429 0,5802 6 0,5517 0,4506 0,2914
1 0,0030 0,0132 0,0139 1 ­0,1043 ­0,4916 ­0,9379
2 ­0,0078 0,0896 ­0,1441 2 ­0,0225 0,0302 0,0524
3 ­0,0675 0,0213 0,0742 3 ­0,0745 ­0,0754 0,0887
4 ­0,0185 ­0,0448 ­0,0886 4 ­0,2160 0,1254 0,0943
5 0,0869 0,1720 0,2377 5 ­0,0220 ­0,0491 ­0,0624
6 0,1947 0,1483 0,2443 6 ­0,0605 0,1479 0,2540
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Figure 11-3: Di¤erence between the "true" and mean summary statistics in percentage
of the "true" statistics for the DFCH and MLN methods.
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SML (λ=0,9) SML (λ that minimizes RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0008 0,0025 0,0035 1 0,0008 0,0025 0,0035
2 ­0,0003 0,0001 0,0001 2 ­0,0003 0,0002 0,0001
3 ­0,0004 ­0,0011 ­0,0003 3 ­0,0004 ­0,0011 ­0,0003
4 0,0146 0,0407 0,0711 4 0,0147 0,0409 0,0717
5 0,0044 0,0138 0,0295 5 0,0045 0,0140 0,0303
6 ­0,0003 0,0024 0,0084 6 ­0,0002 0,0038 0,0090
1 0,0037 0,0084 0,0169 1 0,0034 0,0088 0,0172
2 ­0,0028 0,0006 0,0017 2 ­0,0030 0,0010 0,0016
3 ­0,0031 ­0,0156 ­0,0224 3 ­0,0039 ­0,0159 ­0,0226
4 ­0,0453 ­0,0578 ­0,0573 4 ­0,0458 ­0,0578 ­0,0561
5 ­0,0445 ­0,0670 ­0,0779 5 ­0,0442 ­0,0659 ­0,0763
6 ­0,0698 ­0,0987 ­0,1084 6 ­0,0699 ­0,0945 ­0,1077
1 ­0,0656 ­0,1170 ­0,0689 1 ­0,0660 ­0,1162 ­0,0693
2 0,0178 0,0072 0,0130 2 0,0172 0,0069 0,0121
3 ­0,0156 ­0,0215 0,0133 3 ­0,0164 ­0,0217 0,0132
4 0,5326 0,6024 0,6730 4 0,5396 0,6136 0,7289
5 0,6486 0,6164 0,5572 5 0,6431 0,6068 0,5451
6 0,2688 0,3249 0,3872 6 0,2662 0,2797 0,3835
1 ­0,0212 ­0,0321 ­0,0660 1 ­0,0212 ­0,0321 ­0,0660
2 ­0,0120 0,0142 0,0247 2 ­0,0120 0,0143 0,0246
3 0,0106 0,0230 0,1086 3 0,0104 0,0229 0,1086
4 0,0238 0,0819 0,0815 4 0,0240 0,0823 0,0822
5 0,0901 0,1755 0,2522 5 0,0901 0,1753 0,2515
6 0,1020 0,2647 0,3967 6 0,1017 0,2567 0,3959

SML (λ=0,9) SML (λ that minimizes RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0013 0,0039 0,0114 1 0,0010 0,0031 0,0077
2 ­0,0003 ­0,0001 ­0,0005 2 ­0,0004 0,0000 0,0001
3 ­0,0006 ­0,0014 ­0,0008 3 ­0,0004 ­0,0011 ­0,0003
4 0,0159 0,0414 0,0679 4 0,0159 0,0422 0,0698
5 0,0012 0,0087 0,0234 5 0,0031 0,0126 0,0279
6 ­0,0028 ­0,0010 0,0049 6 ­0,0011 0,0021 0,0085
1 0,0044 0,0145 0,0409 1 0,0053 0,0143 0,0392
2 ­0,0025 ­0,0002 ­0,0014 2 ­0,0030 0,0002 ­0,0012
3 ­0,0052 ­0,0188 ­0,0298 3 ­0,0043 ­0,0188 ­0,0297
4 ­0,0470 ­0,0616 ­0,0696 4 ­0,0469 ­0,0603 ­0,0666
5 ­0,0598 ­0,0882 ­0,1043 5 ­0,0550 ­0,0814 ­0,0957
6 ­0,0798 ­0,1136 ­0,1258 6 ­0,0795 ­0,1104 ­0,1203
1 ­0,0952 ­0,0733 0,0136 1 0,0486 0,0427 0,2362
2 0,0204 0,0152 0,0181 2 0,0206 0,0166 0,0021
3 ­0,0229 ­0,0375 ­0,0179 3 ­0,0393 ­0,0477 ­0,0241
4 0,5108 0,5209 0,5070 4 0,5320 0,6115 0,7313
5 0,9541 0,6838 0,5562 5 0,7094 0,5209 0,4754
6 0,3476 0,3566 0,4007 6 0,2705 0,3116 0,3763
1 ­0,0198 ­0,0266 ­0,0303 1 ­0,0192 ­0,0251 ­0,0380
2 ­0,0117 0,0207 0,0292 2 ­0,0119 0,0209 0,0274
3 0,0086 0,0228 0,0886 3 0,0078 0,0215 0,0878
4 0,0213 0,0824 0,0761 4 0,0210 0,0846 0,0775
5 0,0875 0,1730 0,2404 5 0,0843 0,1653 0,2330
6 0,1079 0,2676 0,3961 6 0,0979 0,2581 0,3906
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Figure 11-4: Di¤erence between the "true" and mean summary statistics in percentage
of the "true" statistics for the SML method under 4 scenes: with or without v weighting
and for each weighting approach using a smoothing parameter � that minimizes RMISE
or a smoothing parameter � with a value of 0,9.
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DFCH MLN
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0002 0,0024 0,0014 1 0,0005 0,0027 0,0080
2 0,0002 0,0010 0,0033 2 0,0001 0,0001 0,0000
3 0,0003 0,0007 0,0021 3 0,0003 0,0005 0,0007
4 0,0008 0,0038 0,0015 4 0,0014 0,0011 0,0009
5 0,0002 0,0014 0,0060 5 0,0004 0,0002 0,0015
6 0,0006 0,0012 0,0066 6 0,0005 0,0008 0,0008
1 0,0292 0,0197 0,0100 1 0,1091 0,3167 0,5376
2 0,0223 0,0557 0,1451 2 0,0246 0,0168 0,0098
3 0,0723 0,0242 0,0694 3 0,0242 0,0417 0,0333
4 0,1039 0,0436 0,0143 4 0,2673 0,0155 0,0067
5 0,0316 0,0275 0,0959 5 0,0204 0,0465 0,0375
6 0,1208 0,0471 0,1018 6 0,0867 0,0279 0,0064
1 0,0107 0,0126 0,0032 1 0,2327 0,8198 1,5266
2 0,0539 0,1020 0,3953 2 0,0394 0,0260 0,0174
3 0,1899 0,0458 0,1775 3 0,1476 0,1251 0,0917
4 0,2406 0,0332 0,0193 4 0,6022 0,0483 0,0253
5 0,0101 0,0548 0,1949 5 0,1590 0,2073 0,0938
6 0,1400 0,1532 0,3518 6 0,1693 0,0689 0,0292
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Figure 11-5: Standard Deviation of the summary statistics for the DFCH and MLN

110



SML (λ=0,9) SML (λ that minimizes RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0002 0,0004 0,0005 1 0,0002 0,0004 0,0005
2 0,0002 0,0004 0,0005 2 0,0002 0,0004 0,0005
3 0,0002 0,0004 0,0006 3 0,0002 0,0004 0,0006
4 0,0002 0,0004 0,0006 4 0,0002 0,0004 0,0006
5 0,0002 0,0005 0,0008 5 0,0002 0,0005 0,0007
6 0,0003 0,0005 0,0009 6 0,0003 0,0005 0,0008
1 0,0032 0,0011 0,0004 1 0,0039 0,0014 0,0003
2 0,0035 0,0013 0,0001 2 0,0040 0,0018 0,0005
3 0,0031 0,0006 0,0006 3 0,0033 0,0010 0,0001
4 0,0009 0,0008 0,0010 4 0,0011 0,0009 0,0011
5 0,0059 0,0035 0,0026 5 0,0062 0,0036 0,0027
6 0,0034 0,0014 0,0011 6 0,0036 0,0028 0,0012
1 0,0008 0,0003 0,0003 1 0,0009 0,0003 0,0003
2 0,0013 0,0020 0,0014 2 0,0014 0,0022 0,0017
3 0,0031 0,0026 0,0014 3 0,0032 0,0029 0,0017
4 0,0015 0,0010 0,0001 4 0,0016 0,0011 0,0000
5 0,0013 0,0026 0,0029 5 0,0013 0,0026 0,0030
6 0,0052 0,0036 0,0042 6 0,0052 0,0048 0,0042

SML (smooth=0,9) SML (min RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0004 0,0008 0,0048 1 0,0003 0,0007 0,0048
2 0,0003 0,0006 0,0011 2 0,0003 0,0006 0,0011
3 0,0003 0,0006 0,0009 3 0,0003 0,0006 0,0009
4 0,0004 0,0010 0,0015 4 0,0004 0,0008 0,0014
5 0,0003 0,0006 0,0009 5 0,0003 0,0005 0,0008
6 0,0003 0,0006 0,0010 6 0,0003 0,0006 0,0009
1 0,0198 0,0007 0,0218 1 0,0251 0,0284 0,1362
2 0,0144 0,0003 0,0038 2 0,0018 0,0020 0,0168
3 0,0123 0,0034 0,0026 3 0,0140 0,0073 0,0047
4 0,0603 0,0196 0,0006 4 0,0147 0,0018 0,0051
5 0,0017 0,0039 0,0031 5 0,0091 0,0063 0,0035
6 0,0023 0,0010 0,0013 6 0,0056 0,0025 0,0016
1 0,0047 0,0104 0,1591 1 0,0089 0,0143 0,1058
2 0,0021 0,0069 0,0134 2 0,0049 0,0060 0,0201
3 0,0033 0,0043 0,0070 3 0,0133 0,0108 0,0119
4 0,0308 0,0141 0,0084 4 0,0150 0,0080 0,0079
5 0,0018 0,0035 0,0038 5 0,0045 0,0048 0,0043
6 0,0044 0,0038 0,0046 6 0,0091 0,0052 0,0051
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Figure 11-6: Standard deviation of the summary statistics for the SML method under 4
scenes: with or without v weighting and for each weighting approach using a smoothing
parameter � that minimizes RMISE or a smoothing parameter � with a value of 0,9.
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DFCH MLN
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0275 0,0535 0,0839 1 0,0468 0,0689 0,0854
2 0,0416 0,0511 0,0918 2 0,0079 0,0103 0,0182
3 0,0437 0,0612 0,0961 3 0,0438 0,0559 0,0397
4 0,1524 0,0827 0,1040 4 0,2090 0,1092 0,1077
5 0,1102 0,0541 0,0724 5 0,0156 0,0228 0,0420
6 0,1762 0,1854 0,1801 6 0,1860 0,1889 0,1270
1 0,0239 0,0466 0,0837 1 0,0446 0,0672 0,0844
2 0,0352 0,0489 0,0907 2 0,0068 0,0102 0,0182
3 0,0412 0,0601 0,0957 3 0,0428 0,0553 0,0393
4 0,1457 0,0813 0,1032 4 0,2067 0,1035 0,1075
5 0,0952 0,0506 0,0709 5 0,0127 0,0202 0,0411
6 0,1643 0,1852 0,1770 6 0,1843 0,1881 0,1270
1 0,0135 0,0264 0,0057 1 0,0142 0,0153 0,0127
2 0,0222 0,0148 0,0139 2 0,0040 0,0013 0,0005
3 0,0148 0,0118 0,0088 3 0,0089 0,0083 0,0054
4 0,0449 0,0151 0,0129 4 0,0310 0,0347 0,0069
5 0,0555 0,0191 0,0149 5 0,0090 0,0105 0,0089
6 0,0637 0,0091 0,0330 6 0,0252 0,0165 0,0010
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Figure 11-7: RMISE, RISB and RIV for DFCH and MLN methods.
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SML (λ=0,9) SML (λ that minimizes RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0613 0,0801 0,0957 1 0,0613 0,0802 0,0957
2 0,0102 0,0074 0,0085 2 0,0106 0,0072 0,0087
3 0,0578 0,0787 0,0957 3 0,0578 0,0787 0,0957
4 0,2641 0,3000 0,2947 4 0,2641 0,3001 0,2949
5 0,1185 0,1561 0,1761 5 0,1183 0,1556 0,1759
6 0,2007 0,2507 0,2698 6 0,2008 0,2506 0,2697
1 0,0605 0,0800 0,0957 1 0,0605 0,0800 0,0957
2 0,0032 0,0055 0,0079 2 0,0033 0,0052 0,0080
3 0,0570 0,0785 0,0957 3 0,0571 0,0785 0,0957
4 0,2640 0,3000 0,2947 4 0,2640 0,3000 0,2949
5 0,1182 0,1560 0,1761 5 0,1180 0,1556 0,1759
6 0,2005 0,2506 0,2698 6 0,2006 0,2506 0,2697
1 0,0142 0,0153 0,0127 1 0,0099 0,0048 0,0032
2 0,0040 0,0013 0,0005 2 0,0100 0,0049 0,0033
3 0,0089 0,0083 0,0054 3 0,0094 0,0048 0,0032
4 0,0310 0,0347 0,0069 4 0,0084 0,0036 0,0019
5 0,0090 0,0105 0,0089 5 0,0085 0,0032 0,0017
6 0,0252 0,0165 0,0010 6 0,0082 0,0030 0,0016

SML (smooth=0,9) SML (min RMISE)
Scenario 1 month 3 months 6 months Scenario 1 month 3 months 6 months

1 0,0631 0,0828 0,1255 1 0,0634 0,0831 0,1243
2 0,0137 0,0091 0,0112 2 0,0134 0,0088 0,0115
3 0,0587 0,0795 0,0967 3 0,0587 0,0796 0,0968
4 0,2696 0,3028 0,2932 4 0,2691 0,3024 0,2930
5 0,1240 0,1612 0,1813 5 0,1229 0,1610 0,1805
6 0,2035 0,2549 0,2750 6 0,2036 0,2542 0,2741
1 0,0613 0,0822 0,1126 1 0,0617 0,0824 0,1116
2 0,0029 0,0061 0,0097 2 0,0033 0,0058 0,0099
3 0,0574 0,0793 0,0966 3 0,0574 0,0793 0,0967
4 0,2688 0,3025 0,2931 4 0,2684 0,3021 0,2930
5 0,1236 0,1612 0,1813 5 0,1225 0,1610 0,1805
6 0,2033 0,2548 0,2750 6 0,2034 0,2541 0,2741
1 0,0149 0,0100 0,0554 1 0,0149 0,0103 0,0548
2 0,0134 0,0068 0,0056 2 0,0130 0,0067 0,0058
3 0,0121 0,0061 0,0044 3 0,0124 0,0064 0,0046
4 0,0204 0,0122 0,0057 4 0,0204 0,0116 0,0056
5 0,0101 0,0036 0,0018 5 0,0102 0,0036 0,0017
6 0,0090 0,0032 0,0017 6 0,0090 0,0033 0,0017
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Figure 11-8: RMISE, RISB and RIV for the SML method under 4 scenes: with or
without v weighting and for each weighting approach using a smoothing parameter �
that minimizes RMISE or a smoothing parameter � with a value of 0,9.
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Figure 11-9: Heston model parameters obtained through calibration between June 2006
and February 2010
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Figure 11-10: Brazil GDP
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Figure 11-11: USD GDP
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Figure 11-12: FED Funds target rate
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Figure 11-13: Brazil Selic Target Rate
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Chapter 12

Matlab Codes

12.1 Heston model Codes

12.1.1 Generate Cooper Scenarios

To generate the "true" RNDs from the Cooper Scenarios and the Heston theoretical

options pseudo-price we used as input the average strike prices, spot prices and interest

rates for the period between June 1996 and February 2010.

function Test_HestonSPD()

%PURPOSE: runs Heston�s formula yielding the risk neutral densities for

%the scenarios purpose in Cooper (1996) with the average strike prices for

%the period between June 2006 and February 2010

clc; clear;

%load the average strike prices, the average spot USDBRL, the average

%interest rates and the volatility for the period between June 2006 and

%February 2010

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_strike_1�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_strike_2�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_strike_3�);
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load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_strike_4�);

mean_strike = [mean_strike_1 mean_strike_2 mean_strike_3 mean_strike_4];

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_spot_1�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_spot_2�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_spot_3�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_spot_4�);

mean_spot = [mean_spot_1 mean_spot_2 mean_spot_3 mean_spot_4];

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�var_spot_1�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�var_spot_2�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�var_spot_3�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�var_spot_4�);

var_spot = [var_spot_1 var_spot_2 var_spot_3 var_spot_4];

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_rbrl_1�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_rbrl_2�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_rbrl_3�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_rbrl_4�);

mean_rbrl = [mean_rbrl_1 mean_rbrl_2 mean_rbrl_3 mean_rbrl_4];

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_r_1�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_r_2�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_r_3�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�mean_r_4�);

load (strcat(�STRIKE_MEDIO�,�.�,�mat�),�Tempo�);

mean_r = [mean_r_1 mean_r_2 mean_r_3 mean_r_4];

for j=1:1 % estimate the price density for 1 month term

rbrl= mean_rbrl(j); %SICOR brazilian interest rate

r = mean_r(j); %Libor USD interest

tau=Tempo(j); %time to maturity

St=mean_spot(j); %spot USDBRL
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vt=var_spot(j); % volatility at time 0

kap=2; %speed by which volatility returns to its long run average

SBTv= mean_strike(:,j); %grid with the selected strike prices

lda=0;

NSBTv=size(SBTv,1); %number of strike prices

for l=1:NSBTv

%Low volatility scenarios

%estimate call prices for a scenario with negative skewness

SBT=SBTv(l);

th=0.01; %long run volatility

sig=0.1; %standard deviation of the volatility

rho=-0.9; %correlation parameter

dens1_low_neg(l) = (1/(2.*pi)).*quadgk(@p3,0,200);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_low_neg (l) = St.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

%estimate call prices for a scenario with no skewness

rho=0;

dens2_low(l) = (1/(2.*pi)).*quadgk(@p3,0,200);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_low (l) = St.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

%estimate call prices for a scenario with positive skewness

rho=0.9;

dens3_low_pos(l) = (1/(2.*pi)).*quadgk(@p3,0,200);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);
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Call_heston_low_pos (l) = St.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

%High volatility

%estimate call prices for a scenario with negative skewness

SBT=SBTv(l);

th=0.09; %long run volatility

sig=0.4; %devio padrao da volatilidade

rho=-0.9;

dens1_high_neg(l) = (1/(2.*pi)).*quadgk(@p3,0,200);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_high_neg (l) = St.*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

%estimate call prices for a scenario with no skewness

rho=0;

dens2_high(l) = (1/(2.*pi)).*quadgk(@p3,0,200);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_high (l) = St.*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

%estimate call prices for a scenario with positive skewness

rho=0.9;

dens3_high_pos(l) = (1/(2.*pi)).*quadgk(@p3,0,200);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_high_pos (l) = St.*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

end

%estimate a RND for each scenario (creation of a grid with 5000 points)

SBTv= linspace(1.5,2.4,5000)�;

lda=0;

NSBTv=size(SBTv,1);
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for l=1:NSBTv

%Low volatility

%estimate RND for a scenario with negative skewness

SBT=SBTv(l);

th=0.01;

sig=0.1;

rho=-0.9;

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_low_neg1 (l) = St.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

second_low_neg(l) = ((Call_heston_low_neg1 (l)- 2*Call_heston_low_neg1 (l-1)

+ Call_heston_low_neg1 (l-2))./((SBTv(l)-SBTv(l-1))^2))*exp((rbrl-r)*tau);

end

%estimate call prices for a scenario with no skewness

rho=0;

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_low1 (l) = St.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

second_low(l) = ((Call_heston_low1 (l)- 2*Call_heston_low1 (l-1)

+ Call_heston_low1 (l-2))./((SBTv(l)-SBTv(l-1))^2))*exp((rbrl-r)*tau);

end

%estimate call prices for a scenario with positive skewness

rho=0.9;

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);
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P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_low_pos1 (l) = St.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

second_low_pos(l) = ((Call_heston_low_pos1 (l)- 2*Call_heston_low_pos1 (l-1)

+ Call_heston_low_pos1 (l-2))./((SBTv(l)-SBTv(l-1))^2))*exp((rbrl-r)*tau);

end

%High volatility

%estimate call prices for a scenario with negative skewness

SBT=SBTv(l);

th=0.09;

sig=0.4;

rho=-0.9;

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_high_neg1 (l) = St.*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

second_high_neg(l) = ((Call_heston_high_neg1 (l)- 2*Call_heston_high_neg1 (l-1)

+ Call_heston_high_neg1 (l-2))./((SBTv(l)-SBTv(l-1))^2))*exp((rbrl-r)*tau);

end

%estimate call prices for a scenario with no skewness

rho=0;

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_high1 (l) = St.*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

second_high(l) = ((Call_heston_high1 (l)- 2*Call_heston_high1 (l-1)

+ Call_heston_high1 (l-2))./((SBTv(l)-SBTv(l-1))^2))*exp((rbrl-r)*tau);

end
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%estimate call prices for a scenario with positive skewness

rho=0.9;

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,200);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,200);

Call_heston_high_pos1 (l) = St.*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

second_high_pos(l) = ((Call_heston_high_pos1 (l)- 2*Call_heston_high_pos1 (l-1)

+ Call_heston_high_pos1 (l-2))./((SBTv(l)-SBTv(l-1))^2))*exp((rbrl-r)*tau);

end

end

end

�gure(2)

plot(SBTv�,second_low_neg);

di¤erencial = di¤(SBTv);

%estimation of Expected Value

Em_heston_low_neg = sum(second_low_neg.*di¤erencial(1).*SBTv�);

Em_heston_low = sum(second_low.*di¤erencial(1).*SBTv�);

Em_heston_low_pos = sum(second_low_pos.*di¤erencial(1).*SBTv�);

Em_heston_high_neg=sum(second_high_neg.*di¤erencial(1).*SBTv�);

Em_heston_high =sum(second_high.*di¤erencial(1).*SBTv�);

Em_heston_high_pos=sum(second_high_pos.*di¤erencial(1).*SBTv�);

%estimation of implied variance

Var_heston_low_neg = real(sum(second_low_neg.*((SBTv�-Em_heston_low_neg).^2)

.*di¤erencial(1));

Var_heston_low = sum(second_low.*((SBTv�-Em_heston_low).^2)

.*di¤erencial(1));
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Var_heston_low_pos = sum(second_low_pos.*((SBTv�-Em_heston_low_pos).^2)

.*di¤erencial(1));

Var_heston_high_neg=sum(second_high_neg.*((SBTv�-Em_heston_high_neg).^2)

.*di¤erencial(1));

Var_heston_high =sum(second_high.*((SBTv�-Em_heston_high).^2)

.*di¤erencial(1));

Var_heston_high_pos=sum(second_high_pos.*((SBTv�-Em_heston_high_pos).^2)

.*di¤erencial(1));

%estimation of implied Skewness

Skew_heston_low_neg=(sum(second_low_neg.*((SBTv�-Em_heston_low_neg).^3)

.*di¤erencial(1)))./(Var_heston_low_neg.^(3/2));

Skew_heston_low =(sum(second_low.*((SBTv�-Em_heston_low).^3)

.*di¤erencial(1)))./(Var_heston_low.^(3/2);

Skew_heston_low_pos=(sum(second_low_pos.*((SBTv�-Em_heston_low_pos).^3)

.*di¤erencial(1)))./(Var_heston_low_pos.^(3/2));

Skew_heston_high_neg=(sum(second_high_neg.*((SBTv�-Em_heston_high_neg).^3)

.*di¤erencial(1)))./(Var_heston_high_neg.^(3/2));

Skew_heston_high =(sum(second_high.*((SBTv�-Em_heston_high).^3)

.*di¤erencial(1)))./(Var_heston_high.^(3/2));

Skew_heston_high_pos=(sum(second_high_pos.*((SBTv�-Em_heston_high_pos).^3)

.*di¤erencial(1)))./(Var_heston_high_pos.^(3/2));

%estimation of implied Kurtosis

Kurtosis_heston_low_neg=(sum(second_low_neg.*((SBTv�-Em_heston_low_neg).^4)

.*di¤erencial(1)))./(Var_heston_low_neg.^2);

Kurtosis_heston_low =(sum(second_low.*((SBTv�-Em_heston_low).^4)

.*di¤erencial(1)))./(Var_heston_low.^2;

Kurtosis_heston_low_pos=(sum(second_low_pos.*((SBTv�-Em_heston_low_pos).^4)

.*di¤erencial(1)))./(Var_heston_low_pos.^2);
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Kurtosis_heston_high_neg=(sum(second_high_neg.*((SBTv�-Em_heston_high_neg).^4)

.*di¤erencial(1)))./(Var_heston_high_neg.^2);

Kurtosis_heston_high =(sum(second_high.*((SBTv�-Em_heston_high).^4)

.*di¤erencial(1)))./(Var_heston_high.^2);

Kurtosis_heston_high_pos=(sum(second_high_pos.*((SBTv�-Em_heston_high_pos).^4)

.*di¤erencial(1)))./(Var_heston_high_pos.^2);

function y= p3(phi)

y= CF_SVj(log(St),vt,tau,(rbrl-r),kap*th,-0.5,kap+lda,rho,sig,phi,SBT);

end

function y= p1(phi)

y= CF_SVj_forcallprice(log(St),vt,tau,(rbrl-r),kap*th,0.5,kap+lda-rho.*sig,rho,sig,phi,SBT);

end

function y= p2(phi)

y= CF_SVj_forcallprice(log(St),vt,tau,(rbrl-r),kap*th,-0.5,kap+lda,rho,sig,phi,SBT);

end

save (strcat(�Heston_mat1�,�.mat�));

end

12.1.2 USDBRL Heston parameters

The Heston parameters estimated for the USDBRL options market for the end of month

dates between June 2006 and February 2010 were calculated through the code bellow:

function heston

% Calibrate the Heston model parameters for the end of the month call

% prices between June 2006 and February 2010
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clear; clc;

%open excel �le with the selected dates in the �rst column (in this case 45 dates)

D=xlsread(�data.xls�);

Dia = D(1:45,1);

Mes = D(1:45,2);

Ano = D(1:45,3);

% Open tables with market information for 45 dates

for w=1:45;

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�)

,�AllInfo�);

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�),�N�);

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�),�M�);

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�),

�NbMat�);

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�)

,�NbStrik�);

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�)

,�NbCall�);

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�)

,�NbPut�);

% Variables

NbStrik=N/2; %number of stikes

NbMat =M; %number of considered maturities

NbCall =NbMat*NbStrik; %number of calls with di¤erent strikes

NbPut =NbMat*NbStrik; %number of puts with di¤erent strikes

NbOpt = NbCall+NbPut; % number of calls and puts out-the money

Res=[]; %here store the densities

ParamM=[]; % parameters to store
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Skewness=[]; % skewness to store

Kurtosis =[]; % kurtosis to store

Mean =[]; % expected value to store

Std =[]; % standard deviation to store

for i=1:1 %RNDs with 1 month term

S0 = AllInfo(1,1); % spot USDBRL

KC = AllInfo(1+NbStrik*(i-1):NbStrik*i,9); %out the money strikes for call options

KP = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,9); %out the money strikes for

put options

K = [KC; KP];

CPi= AllInfo(1+NbStrik*(i-1):NbStrik*2*i,3);

rbrl = AllInfo(1+NbStrik*(i-1),8); % brazilian interest rate (domestic)

T = AllInfo(1+NbStrik*(i-1),5); %time to maturity

C = AllInfo(1+NbStrik*(i-1):NbStrik*i,10); %call option

P = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,10); %put option

r = AllInfo(1+NbStrik*(i-1),4); % Libor interest rate

Cs = P + S0*exp(-r*T) - KP.*exp(-rbrl*T); %convert put prices into call prices through

put-call parity

Call = [C; Cs];

b0=[0.04 0.6 0.5 2 0.03]; b0=b0�;

lb=[ 0.001; 0.001; -1; 0; 0.001]; % lower bounds for parameters

ub=[ 5; 10; 1; 10; 5]; %upper bounds for parameters

%nonlinear least-squares optimization
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options=optimset(�Algorithm�,�trust-region-re�ective�,�Diagnostics�,�on�,�Display�,�iter�,�TolX�,1e-

6,�TolFun�,

1e-6,�MaxFunEvals�,150,�MaxIter�,5000);

[beta,resnorm,residual,exit�ag,output] = lsqnonlin(@(b)MD_Obj1(b,S0,K,rbrl,T,Call,r),b0,

lb,ub,options);

ParamM=[ ParamM; beta�];

th = beta(1);

sig = beta(2);

rho = beta(3);

kap = beta(4);

vt = beta(5);

lda = 0;

tau= T;

z=linspace(1.6,2.8,5000); %grid de�nition for the RND

diferencial = di¤(z);

NSBTv = size(z,2);

for l=1:NSBTv

SBT=z(l);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,500);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,500);

Call(l) = S0.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

if l>=3

f(l) = ((Call(l)- 2*Call(l-1) + Call(l-2))./((z(l)-z(l-1))^2))*exp((rbrl-r)*tau);
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end

end

Em = sum(z.*f.*diferencial(1));

Var = sum((z-Em).^2.*f.*diferencial(1));

Skewness = sum(((z-Em).^3).*f.*diferencial(1))./(Var.^(3/2));

Kurtosis = sum(((z-Em).^4).*f.*diferencial(1))./(Var.^2);

SBTv = size(K,1);

for l=1:SBTv

SBT=K(l);

P1_K(l) = 0.5 + (1/pi).*quadgk(@p1,0,500);

P2_K(l) = 0.5 + (1/pi).*quadgk(@p2,0,500);

Call_K(l) = S0.*exp(-r.*tau).*P1_K(l) - SBT.*exp(-rbrl.*tau).*P2_K(l);

end

end

�gure(w)

plot(z,f)

title(�RND�)

xlabel(�STRIKE PRICES�)

disp(�The parameters are �);

ParamM

save (strcat(�Heston_mat1_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�));

end

%************************************************************

%Objective function
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function y=MD_Obj1(b,S0,K,rbrl,T,Call,r)

th = b(1);

sig = b(2);

rho = b(3);

kap = b(4);

vt = b(5);

lda = 0;

NbStrik=12;

tau=T;

Cemp=Call(1:NbStrik);

K=K(1:NbStrik);

S0=S0;

for l=1:NbStrik

SBT = K(l);

P1(l) = 0.5 + (1/pi).*quadgk(@p1,0,500);

P2(l) = 0.5 + (1/pi).*quadgk(@p2,0,500);

Cth(l) = S0.*exp(-r.*tau).*P1(l) - SBT.*exp(-rbrl.*tau).*P2(l);

end

y = Cemp - Cth�;

end

%************************************************************

function y= p3(phi)

y= CF_SVj(log(S0),vt,tau,(rbrl-r),kap*th,-0.5,kap+lda,rho,sig,phi,SBT);

end

function y= p1(phi)

y= CF_SVj_forcallprice(log(S0),vt,tau,(rbrl-r),kap*th,0.5,kap+lda-rho.*sig,rho,sig,phi,SBT);

end
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function y= p2(phi)

y= CF_SVj_forcallprice(log(S0),vt,tau,(rbrl-r),kap*th,-0.5,kap+lda,rho,sig,phi,SBT);

end

end

12.2 Hypergeometric model codes

12.2.1 DFCH Monte Carlo simulations for USDBRL Heston

Scenarios

To test the DFCH robustness in capturing the "true" RNDs generated by Heston model

representing USDBRL Low Volatility Dates (between October 2006 and March 2007)

and High Volatility Dates (between September 2008 and February 2009) we proceed the

Monte Carlo simulations through the following matlab code (To test the Cooper Scenarios

we change the input parameters):

function DFCH_CAL()

clc;clear;

%open excel �le with the selected dates in the �rst column (in this case

%45 dates)

D=xlsread(�data.xls�);

Dia = D(1:45,1);

Mes = D(1:45,2);

Ano = D(1:45,3);

% Open tables with market information for 45 dates

for w=16:16; %simulations for the DFCH model using the Heston PARAMETERS for 28-

11-2008 date

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�));
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load (strcat(�Heston_mat1_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�),�f�);

load (strcat(�Heston_mat1_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�),

�Call_K�);

load (strcat(�Heston_mat1_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�),�K�);

% Variables:

NbStrik=N/2; %number of stikes

NbMat =M; %number of considered maturities

NbCall =NbMat*NbStrik; %number of calls with di¤erent strikes

NbPut =NbMat*NbStrik; %number of puts with di¤erent strikes

NbOpt = NbCall+NbPut; % number of calls and puts out-the money

Res=[]; %here store the DFCH densities

REAL=[]; %here store the true density

ParamM=[]; % parameters to store

Skewness=[]; %skewness to store

Kurtosis =[];% kurtosis to store

Mean =[]; % expected value to store

Std =[]; % standard deviation to store

Ruido = [];

realdens = f�;

ruido = -0.001*0.5 + (0.001*0.5-(-0.001*0.5)).*rand(500,1);

Ruido = [Ruido; ruido];

for l=1:500

for j=1:1 %%RNDs with 1 month term

S0 = AllInfo(1,1); % spot USDBRL

CPi= AllInfo(1+NbStrik*(j-1):NbStrik*2*j,3);

rbrl = AllInfo(1+NbStrik*(j-1),8); % brazilian interest rate (domestic)

r = AllInfo(1+NbStrik*(j-1),4); %libor interest rate
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T = AllInfo(1+NbStrik*(j-1),5); %time to maturity

Call = Call_K�;

Call = [Call+Ruido(l), zeros(12,1)];

Call = max(Call,[],2);

av = linspace(-38,0,38); %optimization along a grid of possible values for b2

%as initial points

m= linspace(0.001,0.1,100); %optimization along a grid of possible values for m1

%as initial points

GridRes=[];

for j=1:size(av,2)

for g=1:size(m,2)

b= [4; 6; (-1/(2*var(K)))-av(j); 1; -1/(2*var(K)); mean(K)-m(g);mean(K)];

lb=[ 0; 0; -100; 0; -100; 0; 0]; % lower bounds for parameters

ub=[ 10; 10; -0.1; 5; -0.1; 3; 3]; %upper bounds for parameters

options=optimset(�Algorithm�,�trust-region-re�ective�,�Diagnostics�,�on�,�Display�,�iter�,�TolX�,1e-

6,�TolFun�,

1e-6,�MaxFunEvals�,150,�MaxIter�,5000);

[beta,resnorm,residual,exit�ag,output] = lsqnonlin(@(b)MD_Obj(b,S0,K,rbrl,T,Call,r),b,lb,ub,options);

GridRes=[GridRes; [av(j) m(g) beta�resnorm]];

end

end

[mi,miidx]=min(GridRes(:,end));

beta=GridRes(miidx,3:9);
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ParamM=[ ParamM; beta�];

Residual=[ Residual; residual ];

Resnorm = [Resnorm; resnorm];

Output = [Output; output];

z=linspace(1.5,3.3,5000); z=z�; % support for the RND (5000 points)

diferencial = di¤(z);

a2 = beta(1);

a3 = beta(2);

b2 = beta(3);

b3 = beta(4);

b4 = beta(5);

m1 = beta(6);

m2 = beta(7);

a5 = -1/2;

a6 = 1/2;

b1 = 1+a2*b3;

a1 = ((S0/exp(-(rbrl-r)*T))-m2)./(((gamma(a3))/(gamma(a3-a2))).*((-b2)^(-a2)).*(m1-m2));

a4 = (1/(2*sqrt(-b4*pi)))*(1-a1*((-b2)^(-a2))*((gamma(a3))/(gamma(a3-a2))));

c2 = -1 + a4 * sqrt(-b4*pi);

c1 = -c2*m2;

f = [];

for n=1:size(z,1)

l1 = z(n)>m1;
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f(n) = ((l1.*a1.*((z(n)-m1).^(b1-2)).*(b1*(b1-1)*chgm(a2,a3,b2*((z(n)-m1).^b3))+...

(a2/a3)*b2*b3*(2*b1+b3-1)*((z(n)-m1).^b3).*chgm(a2+1,a3+1,b2*((z(n)-m1).^b3))+...

+((a2*(a2+1))/((a3)*(a3+1)))*(b2^2)*(b3^2)*((z(n)-m1).^(2*b3)).*chgm(a2+2,a3+2,b2*((z(n)-

m1).^b3)))+...

+ 2*a4*(a5/a6)*b4.*(chgm(a5+1,a6+1,b4.*((z(n)-m2).^2))+2*((a5+1)/(a6+1))*b4.*((z(n)-

m2).^2)

.*chgm(a5+2,a6+2,b4*(((z(n)-m2).^2))))))*exp((rbrl-r)*T);

end

f = f�;

Res = [Res f];

REAL= [REAL realdens];

M1 = [M1 m1];

l= size(Res,2);

Em(l) = sum(z.*f.*diferencial(1));%expected value

Var(l) = sum((z-Em(l)).^2.*f.*diferencial(1)); %implied standard deviation

Skewness(l) = sum(((z-Em(l)).^3).*f.*diferencial(1))./(Var(l).^(3/2)); %implied skewness

Kurtosis(l) = sum(((z-Em(l)).^4).*f.*diferencial(1))./(Var(l).^2); %implied kurtosis

�gure(1)

plot(z,f)

hold on

end

end

end
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RIV = sqrt(sum((mean(((Res-kron(mean(Res,2),ones(1,size(Res,2)))).^2),2))

.*diferencial(1))); %implied RIV

RISB = sqrt(sum(((mean(Res,2)-realdens).^2).*diferencial(1))); %implied RISB

min_RMISE = sqrt(sum((mean(((Res-REAL).^2),2)).*diferencial(1))); %implied RMISE

mean_mean = mean(Em);

var_mean = mean(Var);

skew_mean = mean(Skewness);

kurt_mean = mean(Kurtosis);

var_stat_var = var(Var);

skew_stat_var = var(Skewness);

kurt_stat_var = var(Kurtosis);

�gure(2)

plot(z,Res)

title(�chgmETRIC�)

xlabel(�STRIKE PRICES�)

axis tight

MixRND=Res;

save (strcat(�HYPER_Nov08_mat1�,�.mat�));

%**********************************************************

function y=MD_Obj(b,S0,K,rbrl,T,Call,r)

%

a2 = b(1);

a3 = b(2);

b2 = b(3);

b3 = b(4);

b4 = b(5);

m1 = b(6);

m2 = b(7);
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a5 = -1/2;

a6 = 1/2;

a1 = ((S0/exp(-(rbrl-r)*T))-m2)./(((gamma(a3))/(gamma(a3-a2))).*((-b2)^(-a2)).*(m1-m2));

b1 = 1+a2*b3;

a4 = (1/(2*sqrt(-b4*pi)))*(1-a1*((-b2)^(-a2))*((gamma(a3))/(gamma(a3-a2))));

c2 = -1 + a4 * sqrt(-b4*pi);

c1 = -c2*m2;

NbStrik=6;

Cemp=Call(1:2*NbStrik);

K=K(1:2*NbStrik);

for x=1:size(K,1)

l1 = K(x)>m1;

Cth(x)= c1 + c2.*K(x) + l1.*a1.*((K(x)-m1).^b1).*chgm(a2,a3,b2*((K(x)-m1).^b3))

+ a4.*chgm(a5,a6,b4.*((K(x)-m2).^2));

end

Cth = Cth�;

y =Cemp - Cth ; %calls

12.2.2 DFCH USDBRL parameters

The Heston parameters estimated for the USDBRL options market for the end of month

dates between June 2006 and February 2010 were calculated through the code bellow:

function hypergeometric()

% Calibrate the DFCH model parameters for the end of the month call

% prices between June 2006 and February 2010

clc;clear;

%abrir tabela com as datas da amostra disponiveis (�nal do mês)
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D=xlsread(�data.xls�);

Dia = D(1:45,1);

Mes = D(1:45,2);

Ano = D(1:45,3);

for w=1:45;

% Open tables with market information for 45 dates

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�));

% Variables

NbStrik=N/2; %number of stikes

NbMat =M; %number of considered maturities

NbCall =NbMat*NbStrik; %number of calls with di¤erent strikes

NbPut =NbMat*NbStrik; %number of puts with di¤erent strikes

NbOpt = NbCall+NbPut; % number of calls and puts out-the money

Res=[]; %here store the DFCH densities

ParamM=[]; % parameters to store

Skewness=[]; %skewness to store

Kurtosis =[]; %kurtosis to store

Mean =[]; %expected value to store

Std =[]; %standard deviation to store

Residual =[];

Resnorm =[];

Output =[];

for i=1:1 %RNDs with 1 month term

S0 = AllInfo(1,1); % spot USDBRL

KC = AllInfo(1+NbStrik*(i-1):NbStrik*i,9); %Call Strike prices

KP = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,9); %Put Strike Prices

K = [KC; KP]; %Strike prices
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CPi= AllInfo(1+NbStrik*(i-1):NbStrik*2*i,3);

rbrl = AllInfo(1+NbStrik*(i-1),8); % brazilian interest rate (domestic)

r = AllInfo(1+NbStrik*(i-1),4); %libor interest rate

T = AllInfo(1+NbStrik*(i-1),5); %time to maturity

C = AllInfo(1+NbStrik*(i-1):NbStrik*i,10); %call option

P = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,10); %put option

Cs = P + S0*exp(-r*T) - KP.*exp(-rbrl*T); %convert puts prices (out-the money) into call

prices (in-the-money) through put-call parity

Call = [C; Cs]; % calls out-the-money and calls in the money

av = linspace(-38,0,38); %optimization along a grid of possible values for b2 as initial points

m= linspace(0.001,0.1,100); %optimization along a grid of possible values for m1 as initial

points

GridRes=[];

for j=1:size(av,2)

for g=1:size(m,2)

b= [4; 6; (-1/(2*var(K)))-av(j); 1; -1/(2*var(K)); mean(K)-m(g);mean(K)];

lb=[ 0; 0; -inf; 0; -inf; 0; 0]; %lower bounds for parameters

ub=[ inf; inf; -0.00001; inf; -0.00001; inf; inf]; %upper bounds for parameters

options=optimset(�Algorithm�,�trust-region-re�ective�,�Diagnostics�,�on�,�Display�,�iter�,�TolX�,1e-

6,�TolFun�,1e-6,�MaxFunEvals�,150,�MaxIter�,5000);

[beta,resnorm,residual,exit�ag,output] = lsqnonlin(@(b)MD_Obj(b,S0,K,rbrl,T,Call,r),b,lb,ub,options);

GridRes=[GridRes; [av(j) m(g) beta�resnorm]];

end

end
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[mi,miidx]=min(GridRes(:,end));

beta=GridRes(miidx,3:9);

ParamM=[ ParamM; beta�];

Residual=[ Residual; residual ];

Resnorm = [Resnorm; resnorm];

Output = [Output; output];

z=linspace(0.7,5.5,5000); z=z�; % support for the RND (5000 points)

diferencial = di¤(z);

a2 = beta(1);

a3 = beta(2);

b2 = beta(3);

b3 = beta(4);

b4 = beta(5);

m1 = beta(6);

m2 = beta(7);

a5 = -1/2;

a6 = 1/2;

b1 = 1+a2*b3;

a1 = ((S0/exp(-(rbrl-r)*T))-m2)./(((gamma(a3))/(gamma(a3-a2))).*((-b2)^(-a2)).*(m1-m2));

a4 = (1/(2*sqrt(-b4*pi)))*(1-a1*((-b2)^(-a2))*((gamma(a3))/(gamma(a3-a2))));

c2 = -1 + a4 * sqrt(-b4*pi);

c1 = -c2*m2;

f = [];
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for n=1:size(z,1)

l1 = z(n)>m1;

f(n) = ((l1.*a1.*((z(n)-m1).^(b1-2)).*(b1*(b1-1)*chgm(a2,a3,b2*((z(n)-m1).^b3))+...

(a2/a3)*b2*b3*(2*b1+b3-1)*((z(n)-m1).^b3).*chgm(a2+1,a3+1,b2*((z(n)-m1).^b3))+...

+((a2*(a2+1))/((a3)*(a3+1)))*(b2^2)*(b3^2)*((z(n)-m1).^(2*b3)).*chgm(a2+2,a3+2,b2*((z(n)-

m1).^b3)))+...

+ 2*a4*(a5/a6)*b4.*(chgm(a5+1,a6+1,b4.*((z(n)-m2).^2))+2*((a5+1)/(a6+1))*b4.*((z(n)-

m2).^2).*chgm(a5+2,a6+2,b4*(((z(n)-m2).^2))))))*exp((rbrl-r)*T);

end

f = f�;

Res = [ Res f ];

Em_f = sum(z.*f.*diferencial(1));

Var_f = sum((z-Em_f).^2.*f.*diferencial(1));

Skewness_f = sum(((z-Em_f).^3).*f.*diferencial(1))./(Var_f.^(3/2));

Kurtosis_f = sum(((z-Em_f).^4).*f.*diferencial(1))./(Var_f.^2);

Skewness = [Skewness_f Skewness ];

Kurtosis =[Kurtosis_f Kurtosis ];

Mean = [Em_f Mean];

Std = [sqrt(Var_f) Std];

end

�gure(w)

plot(z,Res)
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title(�hypergeomETRIC�)

xlabel(�STRIKE PRICES�)

axis tight

MixRND=Res;

disp(�The parameters are �);

ParamM

print (�-djpeg�,strcat(�HYPER�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w))))

Skew(w,:) = [Skewness];

Kurt(w,:) = [Kurtosis];

MEAN(w,:) = [Mean];

STD (w,:) = [Std];

save (strcat(�HYPER_mat3�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�));

end

�gure(100)

plot(1:45,Skew)

title(�SKEWNESS�)

xlabel(�Data�);

print (�-djpeg�,�SKEWNESS�)

�gure(101)

plot(1:45,Kurt)

title(�Kurtosis�)

xlabel(�Data�);

print (�-djpeg�,�Kurtosis�)

�gure(102)

plot(1:45,MEAN)

title(�Mean�)

xlabel(�Data�);

print (�-djpeg�,�MEAN�)
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�gure(103)

plot(1:45,STD)

title(�Stdv�)

xlabel(�Data�);

print (�-djpeg�,�STDV�)

%**********************************************************

function y=MD_Obj(b,S0,K,rbrl,T,Call,r)

%

a2 = b(1);

a3 = b(2);

b2 = b(3);

b3 = b(4);

b4 = b(5);

m1 = b(6);

m2 = b(7);

a5 = -1/2;

a6 = 1/2;

a1 = ((S0/exp(-(rbrl-r)*T))-m2)./(((gamma(a3))/(gamma(a3-a2))).*((-b2)^(-a2)).*(m1-m2));

b1 = 1+a2*b3;

a4 = (1/(2*sqrt(-b4*pi)))*(1-a1*((-b2)^(-a2))*((gamma(a3))/(gamma(a3-a2))));

c2 = -1 + a4 * sqrt(-b4*pi);

c1 = -c2*m2;

NbStrik=6;

Cemp=Call(1:2*NbStrik);

K=K(1:2*NbStrik);

for x=1:size(K,1)

l1 = K(x)>m1;
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Cth(x)= c1 + c2.*K(x) + l1.*a1.*((K(x)-m1).^b1).*chgm(a2,a3,b2*((K(x)-m1).^b3)) +

a4.*chgm(a5,a6,b4.*((K(x)-m2).^2));

end

Cth = Cth�;

y =Cemp - Cth ; %calls

12.3 Spline model codes

12.3.1 SML USDBRL parameters

The USDBRL RNDs estimated through SML method for the end of month dates between

June 2006 and February 2010 were calculated through the code bellow:

function Spline()

clc;clear;

%open an excel �le with the selected dates in the �rst column (in this case 45

%dates)

D=xlsread(�data.xls�);

Dia = D(1:45,1);

Mes = D(1:45,2);

Ano = D(1:45,3);

for w=1:45; % Open tables with market information for 45 dates

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�));

% Variables

NbStrik=N/2; %number of stikes

NbMat =M; %number of considered maturities

NbCall =NbMat*NbStrik; %number of calls with di¤erent strikes

NbPut =NbMat*NbStrik; %number of puts with di¤erent strikes

NbOpt = NbCall+NbPut; % number of calls and puts out-the money
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RND=[]; %store de densities

Skewness=[];

Kurtosis =[];

Mean =[];

Std =[];

for i=1:1 %RNDs with 1 month term

S0 = AllInfo(1,1); %SPOT USBRL

KC = AllInfo(1+NbStrik*(i-1):NbStrik*i,9); %Call Strike prices

KP = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,9); %Put Strike Prices

CPi= AllInfo(1+NbStrik*(i-1):NbStrik*i,3);

rbrl = AllInfo(1+NbStrik*(i-1),8); % brazilian interest rate (domestic)

T = AllInfo(1+NbStrik*(i-1),5); %time to maturity

C = AllInfo(1+NbStrik*(i-1):NbStrik*i,10); %call option

P = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,10); %put option

id = AllInfo(1+NbStrik*(i-1),7);

ivc=AllInfo(1+NbStrik*(i-1):NbStrik*i,6)/100; % implied volatilities Calls

ivp=AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,6)/100; % implied volatilities Puts

r = AllInfo(1+NbStrik*(i-1),4); %libor interest rate

DC = AllInfo(1+NbStrik*(i-1):NbStrik*i,2); %Call deltas

DP = -AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,2).*exp(-r.*T)+exp(-r.*T); %con-

vert out-the-money put deltas into out-the-money call deltas

dc=linspace(0,0.5,500); dc=dc�;

dp=linspace(0.5,1,500); dp=dp�;

d =[dc;dp];

y = [ivc; ivp]; %implied volatilities

Dl= [DC; DP]; %put deltas and call deltas

x = Dl�; y = y(:).�;

p=0.9; %smoothing parameter for the natural spline

147



spline1 = fnxtr(csaps(x,y,p),2); %natural spline curve giving the implied volatilities in terms

of deltas with vega weighting

sighC = fnval(spline1,d); %implied volatilies given by the natural spline curve

z = S0.*exp(-norminv(d.*exp((rbrl-r).*T)).*(sighC).*sqrt(T)+(r+((sighC).^2)./2).*T); %con-

vert the grid of deltas into strike prices

NaN=1-isnan(z); %detect NaN

f = �nd(NaN==0); %position of NaNs

z(f) = []; %delete NaN in strike vector

d(f) = []; %delete NaN in delta vector

Inf=1-isinf(z); %detect Inf

f = �nd(Inf==0); %position of Inf

z(f) = []; %delete Inf in strike vector

d(f) = []; %delete Inf in delta vector

sighC = fnval(spline1,d); %implied volatilies given by the natural spline curve after cleaning

the delta vector

%interpolation between delta and strike prices in order to obtain

%equidistant strike prices and this way use the Riemman Sum to estimate the

%summary statistics

q=1;

spline2 = fnxtr(csaps(z,d,q),2); %natural spline curve giving the deltas in terms of strike

prices

z = linspace(1.4,3.8,5000)�;

nz = size(z,1);

d = max(real(fnval(spline2,z)),0); %deltas from the equidistant strike prices

sighC = real(fnval(spline1,d)); %implied volatilies given by the natural spline curve after

obtaining deltas corresponding to equidistant deltas

BSCallDCUR(S0,z,rbrl,sighC,T,r); %insertion of the smile volatility curve into Black-Scholes

stau=sqrt(T);
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d1 = ((log(S0./z) + ( rbrl - r + 0.5.*(sighC.^2)) .* T)./(sighC.*stau));

d2 = (d1 - sighC.*stau);

dif = di¤(z);

f = ((BSCallDCUR(S0,z(3:nz),rbrl,sighC(2:(nz-1)),T,r)

- 2*BSCallDCUR(S0,z(2:(nz-1)),rbrl,sighC(2:(nz-1)),T,r)

+ BSCallDCUR(S0,z(1:(nz-2)),rbrl,sighC(2:(nz-1)),T,r))./(dif(1).^2))*exp((rbrl-r)*T);

diferencial = di¤(z);

Em = sum(z(2:(nz-1)).*f.*diferencial(1)); %Expected Value

Var = sum((z(2:(nz-1))-Em).^2.*f.*diferencial(1)); %implied variance

Skew = sum(((z(2:(nz-1))-Em).^3).*f.*diferencial(1))./(Var.^(3/2)); %implied skewness

Kurt = sum(((z(2:(nz-1))-Em).^4).*f.*diferencial(1))./(Var.^2); %implied kurtosis

RND = [f RND];

�gure(w)

plot(z(2:(nz-1)),RND)

title(�RND�)

xlabel(�STRIKE PRICES�)

axis tight

hold on

end

print (�-djpeg�,strcat(�SPLINE�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w))))

Skewness = [Skew Skewness];

Kurtosis = [Kurt Kurtosis];

Mean = [Em Mean];

Std = [sqrt(Var) Std];

save (strcat(�SPLINE_mat1_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�));

end
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12.4 MLN model codes

12.4.1 MLN USDBRL parameters

The USDBRL RNDs estimated through MLNmethod for the end of month dates between

June 2006 and February 2010 were calculated through the code bellow:

function MLN()

clc; clear;

%open an excel �le with the selected dates in the �rst column (in this case 45

%dates)

D=xlsread(�data.xls�);

Dia = D(1:45,1);

Mes = D(1:45,2);

Ano = D(1:45,3);

for w=1:45; %Open tables with market information for 45 dates

load (strcat(�USDBRL_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.�,�mat�));

% Variables

NbStrik=N/2; %number of stikes

NbMat =M; %number of considered maturities

NbCall =NbMat*NbStrik; %number of calls with di¤erent strikes

NbPut =NbMat*NbStrik; %number of puts with di¤erent strikes

NbOpt = NbCall+NbPut; % number of calls and puts out-the money

z=linspace(1,4,5000); z=z�; %RND support

Res=[]; %here store the densities

ParamM=[]; % parameters to store

Skewness=[];

Kurtosis =[];
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Mean =[];

Std =[];

for i=1:1 %RNDs with 1 month term

S0 = AllInfo(1,1); %SPOT USBRL

KC = AllInfo(1+NbStrik*(i-1):NbStrik*i,9); %Call Strike prices

KP = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,9); %Put Strike Prices

CPi= AllInfo(1+NbStrik*(i-1):NbStrik*2*i,3);

rbrl = AllInfo(1+NbStrik*(i-1),8); %brazilian interest rate (domestic)

T = AllInfo(1+NbStrik*(i-1),5); %time to maturity

C = AllInfo(1+NbStrik*(i-1):NbStrik*i,10); %call option

P = AllInfo(NbCall+1+NbStrik*(i-1):NbCall+NbStrik*i,10); %put option

r = AllInfo(1+NbStrik*(i-1),4); %libor interest rate

lb=[ -4; -4; 0.0001; 0.0001 ]; % lower bounds for parameters

ub=[ 4; 4; 0.8; 0.8]; %upper bounds for parameters

b0=[ 0.1; 0.1; 0.4; 0.01];

A=[0 0 -1 1];

b=0;

av=0.01:0.1:0.99; av=av�;

GridRes=[];

for j=1:size(av,1)

options=optimset(�Algorithm�,�trust-region-re�ective�,�Diagnostics�,�on�,�Display�,�iter�,�TolX�,1e-

6,�TolFun�,1e-6,�MaxFunEvals�,500,�MaxIter�,5000);
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[beta,Qmin,residual,exit�ag,output] = lsqnonlin(@(b)MD_Obj1(b,S0,[KC;KP],CPi,rbrl,T,[C;

P],r,av(j)),b0,lb,ub,options);

GridRes=[GridRes; [av(j) beta�Qmin]];

end

[mi,miidx]=min(GridRes(:,end));

b0=GridRes(miidx,1:5); b0=b0�;

lb=[ 0.0001; -3; -3; 0.0001; 0.0001 ]; % lower bounds for parameters

ub=[ 0.9999; 3; 3; 0.9; 0.9]; %upper bounds for parameters

options=optimset(�Algorithm�,�trust-region-re�ective�,�Diagnostics�,�on�,�Display�,�iter�,�TolX�,1e-

6,�TolFun�,1e-6,�MaxFunEvals�,150,�MaxIter�,5000);

[beta,Qmin,residual,exit�ag,output] = lsqnonlin(@(b)MD_Obj(b,S0,[KC;KP],CPi,rbrl,T,[C;

P],r),b0,lb,ub,options);

ParamM=[ ParamM; beta�];

a = beta(1);

mu1 = beta(2);

mu2 = beta(3);

sig1 = beta(4);

sig2 = beta(5);

f = a * get_LN_RND(z,S0,mu1,T,r,sig1) +...

(1-a) * get_LN_RND(z,S0,mu2,T,r,sig2);

diferencial = di¤(z);
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Em = sum(z.*f.*diferencial(1));

Var = sum((z-Em).^2.*f.*diferencial(1));

Skew = sum(((z-Em).^3).*f.*diferencial(1))./(Var.^(3/2));

Kurt = sum(((z-Em).^4).*f.*diferencial(1))./(Var.^2);

end

�gure(w)

plot(z,f)

title(�RND�)

xlabel(�STRIKE PRICES�)

MixRND=Res;

save MixRND;

fdp = �gure(w);

�lename = strcat(�Final_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�);

print(fdp, �-dpsc�, �lename)

Skewness = [Skew Skewness];

Kurtosis = [Kurt Kurtosis];

Mean = [Em Mean];

Std = [sqrt(Var) Std];

disp(�The parameters are �);

ParamM

save (strcat(�MLN_mat3_�,num2str(Dia(w)),�-�,num2str(Mes(w)),�-�,num2str(Ano(w)),�.mat�));

end

%**********************************************************

function y=MD_Obj(b,S0,K,CPi,rbrl,T,CP,r)

%

a = b(1);

piv = [a; 1-a];

153



muv = b(2:3); muv=muv�;

sigv = b(4:5); sigv=sigv�;

NbStrik=6;

Cemp=CP(1:NbStrik);

Pemp=CP(1+NbStrik:2*NbStrik);

KC=K(1:NbStrik);

KP=K(1+NbStrik:2*NbStrik);

Cth=a*BSCallDCUR(S0,KC,muv(1),sigv(1),T,r)+...

(1-a)*BSCallDCUR(S0,KC,muv(2),sigv(2),T,r);

Pth=a*BSPutDCUR(S0,KP,muv(1),sigv(1),T,r)+...

(1-a)*BSPutDCUR(S0,KP,muv(2),sigv(2),T,r);

y1 = Cemp - Cth; %calls

y2 = Pemp - Pth; %puts

e = S0>=K(1:NbStrik);

y = y1.*e + y2.*(1-e);

dist1=y;

mart= S0 - a * BSCallDCUR(S0,0.0001,sigv(1),muv(1),T,r)-...

(1-a) * BSCallDCUR(S0,0.0001,sigv(2),muv(2),T,r);

y = dist1 + mart^2;

%************************************************************

function y=MD_Obj1(b,S0,K,CPi,rbrl,T,CP,r,a)

y=MD_Obj([a;b],S0,K,CPi,rbrl,T,CP,r);

%************************************************************

function y=get_LN_RND(z,S0,rbrl,T,r,sig);

% the benchmark log-normal density

m = log(S0) + (rbrl-r-0.5*sig^2)*T;

s = sig*sqrt(T);
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x = ( log(z)-m )/s;

y=1/s*pdfn(x) ./ z;

function y=pdfn(x);

y=1/sqrt(2*pi)*exp(-0.5*x.^2);
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