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ABSTRACT 

 

Protein haze formation is a recurrent problem in white and rosé wines. Formation of his 

type of haze is dependent on only for the protein content of the wine, but is strictly 

related to one or more non-proteinaceous wine components termed as X factor. A 

selected wine from the variety Moscatel of Alexandria was fractionated using a 

preparative RP-18 chromatography column in eight methanolic fractions that were 

subsequently subjected to heat stability test with wine isolated protein in model wine 

solution. The results obtained indicate that the X factor is not a single compound, but 

rather an interaction of several compounds with wine proteins. A heat stability test 

involving the combination of four of these fractions with an isomer of the major 

compound identified in the water soluble fraction, the erythritol, presented the higher 

haze formation. Nuclear magnetic resonance (NMR) and mass spectrometer (GCT) 

analysis allowed the identification of two compounds present in the methanolic 

fractions. As a whole, this work constitutes a step forward in the difficult process of 

purification and identification of the wine non-proteinaceous components that modulate 

the wine protein haze formation.  

Keywords: protein haze, wine, X factor 
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RESUMO 

 

A casse proteica é, ainda hoje, um problema recorrente em vinhos brancos e rosés. 

Esta casse é causada não só pelo teor em proteína existente nos vinhos mas está, 

também, estritamente relacionada com um ou vários compostos não-proteicos 

genericamente designadas por factor X. Foi seleccionado um vinho monovarietal da 

casta Moscatel de Alexandria, que foi posteriormente fraccionado numa coluna de 

cromatografia preparativa RP-18 em oito fracções metanólicas. Após testar a 

estabilidade ao calor destas fracções, conclui-se que o factor X não é um composto, 

mas sim uma interacção de vários compostos com a proteína existente no vinho. A 

fracção que apresentou maior turvação foi a combinação de cada uma das quatro 

fracções isoladas na fracção solúvel em metanol, com um isómero do composto 

maioritário isolado na fracção solúvel em água, o erythritol. Análises às fracções 

metanólicas que provocam turvação proteica por ressonância magnética nuclear 

(RMN) e espectrometria de massa (GCT) permitiram identificar dois compostos 

maioritários. Os resultados obtidos no presente trabalho representam um avanço na 

purificação e identificação dos compostos não-proteicos que modulam a formação de 

casse proteica nos vinhos.  

Palavras-chave: casse proteica, factor X, vinho  
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RESUMO ALARGADO 

 

A casse proteica é, ainda hoje, um problema recorrente em vinhos brancos e rosés. 

Esta casse é causada não só pelo teor em proteína existente nos vinhos mas está 

também estritamente relacionada com um ou vários compostos não-proteicos 

genericamente designados por factor X. Apesar das evidências do envolvimento estrito 

de um factor não-proteico na modelação desta casse, nenhum componente específico 

ou condição foi identificada como sendo a principal causa deste fenómeno.  

Com o objectivo de isolar os compostos que interactuam na casse proteica, foi 

seleccionado um vinho monovarietal, da casta Moscatel de Alexandria, com elevado 

teor em proteína sendo posteriormente fraccionado. A fracção <3 kDa do vinho, 

reconhecida como tendo na sua constituição os compostos que interactuam na casse 

proteica (Batista et al., 2009), foi separada em dois extractos, um solúvel em metanol e 

outro em água. O extracto metanólico foi posteriormente fraccionado numa coluna de 

cromatografia RP-18 preparativa obtendo-se uma fracção solúvel em água e uma 

fracção solúvel em metanol. Após análise por NMR, identificou-se o composto 

maioritário da fracção aquosa como sendo o composto erythritol. Após novos testes de 

estabilidade ao calor, registou-se que, por si, o composto L-threitol, isómero do 

composto erythritol, em solução modelo (12% v/v etanol, 4 g/L ácido tartárico) com 

proteína isolada de vinho (250 mg/L proteína isolada de vinho branco) não provocava 

um aumento da turvação.  

A segunda extracção de metanol foi então eluida uma vez mais numa coluna de 

cromatografia RP-18 preparativa desta vez com um gradiente de metanol entre 10 e 

100% (v/v) de metanol, onde se obteve a separação de oito diferentes fracções. Após 

testar a estabilidade ao calor destas oito fracções em solução modelo com proteína 

isolada de vinho, concluiu-se que o factor X não é um composto, mas sim uma 

interacção de vários compostos com a proteína existente no vinho. O teste que 

apresentou maior turvação foi a combinação de cada uma das quatro fracções mais 

polares isoladas da fracção solúvel em metanol, com o isómero do composto 

maioritário isolado na fracção solúvel em água, o L-threitol. Análises de RMN e GTC 

permitiram a identificação de dois compostos maioritários presentes em duas das 

fracções do extracto metanólico que interage com a turvação proteica e que ainda não 

estão descritos na bibliografia.  

Os resultados obtidos no presente trabalho representam um avanço na purificação e 

identificação dos compostos não-proteicos que modulam a formação de casse proteica 

nos vinhos.  
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LITERATURE REVIEW 

Introduction  

Wine has a history of more than 7500 years of existence. The first evidence of wine 

production appears in the representations of wine presses from the reign of Udimo, 5000 

years ago (Petrie, 1923). Nowadays, wine is a beverage with great importance in the human 

diet, with an annual consumption of around 240 ML of liters (OIV, 2006).   

The wine, like all fermented beverages, has a significant nutritional value. This 

nutritional value is directly proportional to the content in carbohydrates and alcohol produced 

in the alcoholic fermentation of the fruit or cereal. In wines, carbohydrates and alcohol are 

the major components, followed by organic acids, mineral matter, phenolic compounds and 

nitrogen compounds (Ribéreau-Gayon et al., 2006a). The identification of wine complex 

matrix has only been possible thanks to the evolution of technologies but there are some 

molecules, mainly minority compounds, whose structure has not been elucidated. 

The nitrogen compounds supply the required building blocks for yeast protein 

biosynthesis. In addition, they directly contribute to the flavour of food and are precursors for 

aroma and compounds formed during thermal or enzymatic reactions in production, 

processing and storage of food (Belitz et al., 2004).   

The wine nitrogen compounds, mainly proteins, are not directly related to the 

nutritional value of the beverage because of its low content, about 15 to 300 mg/L (Ferreira 

et al., 2002; Waters et al., 2005). However, they assume great importance in terms of 

technology, economy and sensorial evaluation of the wine. The nitrogenous components 

play an important role in the vinification process, since nitrogen is an essential nutrient for 

yeast in winemaking. Lack of nitrogen is one of the main factors limiting yeast growth and 

sugar attenuation (Nernández-Orte et al., 2006). These compounds also influence 

clarification and microbial instability. They may affect the development of wine aroma, flavor 

(Bell et al., 2005) and foam characteristics in sparkling wines (Moreno-Arribas et al., 2000; 

Marchal et al., 2006). From the degradation of these nitrogen compounds, some metabolic 

byproducts may be produced which are considered detrimental to human health, e.g. ethyl 

carbamate, biogenic amines (Zoecklein et al., 1999; Bell et al., 2005). 

The effect of a low level of nitrogen-containing compounds in grape juice on slow and 

stuck fermentation is perhaps the most widely studied (Siler & Morris, 1996; Mendes-Ferreira 

et al., 2007a, 2007b). Nitrogen-containing compounds in grape juice and wine are made up 
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of an ammonia component and a more complex amino-acid based component, e.g. free 

amino acids, oligopeptides, polypeptides, proteins, amide nitrogen, bioamines, nucleic acids, 

amino sugars, pyrazines, vitamins and nitrate (Henschke et al., 1991; Ough et al., 1991; 

Zoecklein et al., 1999)  

Proteins in must and wine may have different origins, such as grape berry, yeasts, 

bacteria, and fungi (Dambrouck et al., 2003). Such proteins are of great interest, not only 

because they are the major nitrogen compounds in wines but also due to the fact that they 

are involved in a technological turbidity problem, usually called protein casse.  

The protein casse is a problem that occurs in white wines, mainly due to temperature 

abuse, which consists in the flocculation of hydrophobic colloids. The denatured proteins can 

precipitate forming amorphous sediments, or flocculate producing foam and visible haze in 

bottled white wines (Waters et al., 1991; Ferreira et al., 2002). Red wines hardly contain any 

free proteins, as they are precipitated by tannins. White and rose wines, on the other hand, 

may have variable protein concentrations of up to a few hundred mg/L (Ribéreau-Gayon et 

al., 2006a).  

Post-bottling haze formation in white wines is a prevailing problem that affects ,many 

wines from different regions. Some of these hazes, like protein haze, are not well understood 

and, in most cases, is associated with a decrease in the quality of wine or microbiological 

modification (Waters et al., 1999). According to the standard ISO 9000, the quality of a 

product is “the degree to which a set of inherent characteristics fulfills requirements”. Being 

the clarity of the product an inherent characteristic, protein haze in wine can decrease the 

quality of the product and consequently lead to a rejection of the product by the consumer. 

Consumers usually reject wines that are cloudy or show any type of material in suspension, 

regardless of the flavor that the wine can have. This happens because this haze gives the 

impression of microbiological problems in the wine (Waters et al., 1999). As such, wines 

ready for dispatch, must remain clean and stable, irrespective of the storage conditions 

(Ferreira et al., 2002).  

Being a natural component of wines, proteins have been known, for many years, to 

cause haze in wine. The first documented studies about protein haze in wines are dated 

back to 1896, by G. Colby (Colby, 1896). However, the first studies on the nature of the 

compounds that cause haze in wines appeared later (Moretti et al., 1965; Feuillat 1974), 

based on the quantification of the total nitrogen compounds found in the wine using the 

Kjeldahl method. The protein content was estimated using a conversion factor, to exclude the 

nitrogen present in other non-proteinaceous nitrogen-based compounds.  
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Nowadays, it is not yet fully established the protein limits to which wines are 

considered stable to protein haze formation. Moreover, the nature of haze-responsible 

proteins is still controversial. Increasing evidence suggests that non-proteinaceous factors 

play a fundamental interaction in the formation of protein haze in wines. 

The protein content of a wine, in particular a sparkling wine, has a significant 

importance in the quality of the produced foam. Wine proteins are hydrophobic and, thanks 

to their isoelectric point and molecular weight, they have the potential to form foams 

(Brissonnet et al., 1993).  This has a significant importance in the production of sparkling 

wines, e.g. Cava, Champagne, because of the positive relation between wine protein content 

and foam quality of the wine (Feuillat et al., 1988; Silva et al., 1990; Brissonnet et al., 1991; 

Malvy et al., 1994). 

 

Grape proteins 

 Comparing to other fruits, the total soluble protein profile of grapes is relatively 

simple. After analysis by 1-D electrophoresis, a majority of proteins with low molecular weight 

is revealed (Yokotsuka et al., 1983; Hsu et al., 1987; Murphey et al., 1989; Pueyo et al., 

1993). Great difficulty has been demonstrated for the extraction of grape proteins at several 

maturation stages. Nevertheless, a significant increase in protein content of grapes after 

veraison has been shown, due to a small synthesized in significant quantities (Tattershall et 

al., 1997). These proteins, synthesized during grape maturation, are mainly PR 

(“Pathogenesis-Related”) proteins, including chitinases and thaumatine-like proteins 

(Tattershall et al., 1997), which have molecular weights of 32 and 24 kDa, respectively 

(Robinson & Davies, 2000). These are the major proteins synthesized during all maturation 

stages of the grape following veraison (Pocock et al., 2000) and act as a defense mechanism 

for the plant against pathogen agents (Van Loon, 1985; Somssich et al., 1998; Odjakova et 

al., 2001). However, other authors, using N-terminal sequencing analysis, identified the 

principal proteins present in ripen grapes from Moscatel of Alexandria (Vitis vinifera) as 

thaumatin-like and osmotin, failing in finding any chitinase in the samples analysed(Monteiro 

et al., 2003). The expression and accumulation of these protein families are determined by 

the environmental and pathological conditions at which the grapes are exposed during the 

maturation period (Monteiro et al., 2003).  

 The group of grape PR-like proteins is very similar to the classic PR proteins, but they 

include some homologue proteins that are synthesized constitutively in a specific plant tissue 

during its development (Van Loon, 1999). These proteins are mainly basic and are located 
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inside the vacuole of the cell (Linthorst, 1991). Their location, as well as their differential 

induction by both endogenous and exogenous compounds and other stimuli, suggests that 

this type of proteins can play an important role in the plant, besides the protection effect 

against pathogen attacks (Van Loon, 1999).  

 Some of the 17 groups of known PR proteins were found in grapevine, each one with 

different composition and function (Van Loon, 1999; Ferreira et al., 2007). The groups found 

in vines comprise PR-5 proteins, including thaumatine-like proteins and osmotines, PR-2 (β-

1,3-glucanases), PR-3 and PR-4, that are the group of chitinases. The PR-5 group is known 

for creating transmembranar pores, the PR-2 degrade β-1,3-glucans and the PR-4 group 

degrade chitin (Ferreira et al., 2004). Such kind of activities is what gives these proteins their 

antifungal properties, since they act upon fungal structural features. 

 Several studies were made to elucidate the induction mechanisms of the PR proteins 

in grapevine and, consequently, their accumulation during the maturation process (Tattersall 

et al., 2001). PR proteins are the predominant proteins during all maturation stages after 

veraison (Pocock et al., 2000), with their concentration gradually increasing until harvest. 

This fact can indicate that the haze potential of the wine made with these grapes may 

increase along the maturation period. 

 PR proteins can be induced in grapes and leaves during their development, acting as 

part of the defense mechanism of the plant against factors that normally induce their 

synthesis: lesions, chemical elicitors, pathogen attacks or abiotic tensions (Jacobs et al., 

1999; Robinson et al., 2000). One example of this is provided by the fungus Eryshiphe 

necator, the casual agent of powdery mildew, which induced an increase in thaumatin-like 

proteins in infected grape berries, when compared to healthy grapes (Monteiro et al., 2003). 

The work of Monteiro et al. (2003) also showed that PR proteins present in grape berries 

exhibit antifungal in vitro activity against some fungus that normally attack vines. These 

results corroborate the principal function of this type of proteins in vivo, i.e. the protection of 

the plant against fungal invaders.  

 The type of grape harvest (i.e. manual or mechanical) can influence the final content 

of protein that will be present in the must. The mechanical harvest originates typically musts 

that possess higher content of proteins compared to handpicked clusters (Paetzold et al., 

1990). This happens due to the presence of grape stems during the pressing operation with 

the handpicked clusters, unlike the mechanical harvest, in which grape stems are not 

present. Grape stems contain a high content in phenolic compounds, which are going to 

enrich the must with this type of compounds (Ribéreau-Gayon et al., 2006a). The higher 

content of phenolic compounds in must leads to a higher complexation and precipitation of 
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the proteins present in the must (Paetzold et al., 1990). However, the mechanical harvest 

associated with delays in the transportation of grapes from the vine to the winery can lead to 

musts with even PR proteins content (Pocock et al., 1998). This phenomenon occurs thanks 

to high temperatures in the transportation bins, coupled with skin maceration from broken 

berries. This causes nitrogenated substances to dissolve more readily from the skins and 

seeds (Ribéreau-Gayon et al., 2006). These musts lead to wines that had to be fined with 

higher doses of bentonite (almost two times more) in order to assure protein stability, 

compared to wines made with grapes from the same vine but handpicked.  

 

Wine proteins 

 Determination of total soluble protein composition of wines is an actual investigation 

area where the development of new analytic techniques is directly associated with its better 

characterization. Initially, denaturing electrophoresis was used to separate the proteins on 

basis of their molecular weight. Four distinct bands were initially observed indicating four 

different proteins, varying in concentration among them according to the different varieties 

studied (Moretti et al., 1965; Bayly et al., 1967). Newer techniques enabled a better 

characterization of proteins, like ion-exchange chromatography using FPLC (Waters et al., 

1992; Waters et al., 1993; Dorrestein et al., 1995); FPLC with chromatofocusing (Dawes et 

al., 1994); molecular exclusion chromatography (Pellerin et al., 1993); affinity 

chromatography (Pellerin et al., 1993; Waters et al., 1993; Dizy et al., 1999); HPLC (Tyson et 

al., 1981; Santoro, 1995); and isoelectric focusing  (Hsu, et al., 1987). The purification, 

separation and characterization of proteins present in musts and wines are a complex work, 

due to their low concentrations and their interaction with wine non-proteinous compounds like 

phenolic compounds. Hsu et al. (1987) used polyvinylpirrolydone (PVPP) and Amberlite 

XAD-4 to remove the phenolic compounds present in a sample wine in order to study the 

wine proteins. In this way, several fractions were found with molecular weighs between 11.2 

ans 65 kDa.  However, the predominant proteins in wine have low molecular weight 

(between 20 and 30 kDa), low isoelectric points (4,1< pI < 5,8) and are positively charged at 

the pH that normally occurs in this type of beverages (Hsu et al., 1987; Brissonnet et al., 

1993; Ferreira et al., 2000). Other studies, involving Australian wines, revealed that the 

isoelectric point of the principal proteins present in wines had values between 4.8 and 5.7 

(Lee, 1986).  

Protein content of wines is usually lower than protein content present in musts. This 

difference is related to the proteolytic activity manifested during the vinification process, 
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precipitation due to polyphenols and to unfavorable wine conditions, such as the low pH and 

alcohol content (Sauvage et al., 2010). However, the major proteins remaining in wines are 

PR proteins thanks to their stability at low pH and high resistance to proteolysis (Linthorst 

1991). During the vinification process, vacuolar acids and hydrolytic enzymes are released to 

the must precipitating and/or degrading many proteins present in grapes, thus favoring the 

predominance of PR proteins (Ferreira et al., 2002). The combination of all these factors 

ensures that only the resistant proteins, in this particular case PR proteins, resist to the 

vinification process, making them the principal precursory for protein haze formation in white 

wines (Waters et al., 1996; Waters et al., 1999; Ferreira et al., 2002).  

The proteolytic activity during the vinification process is intensified during 

fermentation, thanks to secreted proteolytic enzymes from non-Saccharomyces yeasts 

(Lagace et al., 1990) present in the early stages of fermentation. 

 

Non-proteinaceous factors that interact with wine protein to form 

haze 

 As summarized in previous sections, the proteins responsible for wine protein haze 

are known as PR proteins. These proteins have their origin in grapes, have the ability to 

resist to all vinification process and, if not removed, can precipitate after bottling. Although 

PR proteins are the major compounds of the precipitate when haze occurs, some authors 

suggest that other non-proteic compounds may be involved in the wine protein haze 

mechanism (Pocock et al., 2007).  This thesis corroborates the results obtained by some 

authors (Moretti et al., 1965; Bayly et al., 1967) which suggested that the total protein 

content, by itself, failed to correlate with wine heat instability. 

  

Despite the present evidence for the absolutely required involvement of a non-proteic 

wine component in the protein haze formation, no particular component or condition has yet 

been identified. Nevertheless, the ability of such components and factors to modulate the 

intensity of heat-induced haze is widely described in the recent bibliography. 

Phenolic compounds 

 Of all non-proteinaceous factors that may be involved in wine protein haze, phenolic 

compounds are the most studied and substantial evidence exists to propose that their 

interactions with proteins are significant (Waters et al., 2005). Koch & Sajak (1959) were 

among the first investigators to determine that isolated grape proteins were associated with 
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tannins. Sieber et al. (1998) showed that protein haze formation in beer and apple juice could 

decrease using PVPP (a fining agent used to remove polyphenols) to remove haze active 

polyphenol. Pocock et al. (2007) added PVPP to white wines and observed that the removal 

of phenolic compounds from the wine turned it more stable when submitted to heat stability 

test, confirming previous tests performed by other authors (Yokotsuka et al., 1983; Waters et 

al., 1995). In fact, Pocock et al. (2007) concluded that all the wines fined with PVPP 

presented lower haze formation after heat stability test, when compared to unfined wines.  

Yokotsuka et al. (1983) tested high doses of isolated white wine tannins with isolated 

must proteins, showing that protein-polyphenol interaction can cause haze formation. The 

same authors also found that the monomeric phenolic fraction did not interfere in the haze 

formation. Despite these results, the tannin content used in the tests do not reflect the normal 

content of tannins present in white wines, an observation which questions some of the work 

conclusions.  

Marangon et al. (2010) showed that haze formation in wines seems to be related to 

hydrophobic interactions occurring between proteins and tannins. These interactions should 

occur on hydrophobic tannin-binding sites, whose exposition on the proteins can depend on 

both protein heating and reduction. They also hypothesized that, during the time after 

bottling, the decrease of the wine redox potential together with temperature fluctuations 

during storage, could cause the exposition of hydrophobic binding sites on wine proteins 

available for tannin complexation, resulting in haze formation during storage of white wines.   

Polysaccharides  

 Polysaccharides are polymers containing more than ten monosaccharide units linked 

by glycosidic bonds, which may be linear or branched structures (Murray et al., 2003). 

Pellerin et al. (1994) tested 15 different polysaccharides of different origins, concluding that 

they either did not affect or increased haze during heat test.  Mesquita et al. (2001) showed 

that a particular fraction containing polysaccharides as major compounds increased the 

protein instability in wine, in particular, at a range of temperatures between 40 and 50 ºC. A 

multifactorial study revealed a particular kind of polysaccharide, pectin, to be important in 

haze formation (Fenchak et al., 2002). Pectin represents from 0.02 to 0.6% of the fresh 

grape weight but, due to the recurrent use of commercial enzymes, a large number of these 

polymers are hydrolyzed.  These enzymes, with principal origin on grape or those added by 

the winemaker, are mainly pectinases, polygalacturonases, cellulases and hemicellulases, 

which main function is on the colloidal structure of the juice, facilitating natural settling 

(Ribéreau-Gayon et al., 2006).  Despite its importance in haze formation in musts, pectin 
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also is active as a protective colloid, inhibiting the growth of nuclei and crystallization of 

potassium bitartrate (Ribéreau-Gayon et al., 2006).  

 Yeast-derived mannoproteins are other polysaccharides that have an effect in protein 

haze formation. Waters et al. (1993) described the effect of this “haze protective factor” as an 

exciting prospect for preventing protein haze formation in white wines. Quirós et al. (2010) 

showed that wines produced with three transgenic wine yeast strains, deleted for genes 

involved in cell-wall biogenesis causing them to release increased amounts of 

mannoproteins, required 20 to 40% less bentonite to assure protein stabilitazion than those 

made with their wild-type counterparts.  

Metal ions 

 Metal ions, in particular copper and iron, are known to be a non-proteic haze origin.  

However, their role in protein haze formation is poorly understood. Besse et al. (2000) 

reported that the concentration of copper in wine decreased after heat treatment and protein 

haze removal, suggesting that copper is part of the protein precipitate. In view of the 

involvement of a protein support in the colloid flocculation occurring in copper casse in white 

wine, bentonite may be used to treat this problem. However, ferric casse has no proteins 

involved, so bentonite is ineffective (Ribéreau-Gayon et al., 2006).  

pH 

 The effect of pH on protein haze formation is incompletely studied and the existing 

published work focuses mainly in other beverages like beer. Siebert et al. (1996) studied the 

effect of pH on the formation of protein-polyphenol complexes in wine, but the use of white 

wines non-characteristic proteins and polyphenols (i.e. gelatin and catechin respectively), 

turned out questionable the significance of these results. Mesquita et al. (2001), using wine 

samples instead of wine model solutions, showed that white wine became increasingly heat 

stable as the pH rose from 2.5 to 7.5. This demonstrated that wine proteins gradually 

became more stable to heat with increasing pH, suggesting that pH does play an important 

role in protein haze formation. However, Batista et al. (2009) indicated the existence of at 

least two different mechanisms responsible for the heat-induced precipitation of the white 

wine proteins: one occurring at higher pH values, that appears to result mainly from the 

isoelectric precipitation of the wine proteins and the other, at lower pH values (but possibly 

operating also at other pH values), that depends on the presence of a non-proteinaceous 

factor, known as the X factor.  

Ethanol 

 The alcohol content of white wines can present a significant variability. This is an 

important factor since, due to climate change, the alcohol levels in wines from regions like 
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Alsace, Australia or Napa are increasing (Jones, 2007). Mesquita et al. (2001) studied the 

interaction between alcohol content and protein haze formation, demonstrating that the 

addition of extra alcohol to white wine samples (0.5, 1 and 2% v/v), had no influence on it. 

These results corroborate the data presented by Siebert & Lynn (2003) which showed, in the 

particular case of beer, that alcohol concentration had little influence in haze formation at the 

normal pH of the beverage.  

Organic acids 

 Organic acids constitute another factor with great interest in what concerns protein 

instability. Batista et al. (2010) tested five different organic acids (L(+)-tartaric, L(-)-malic, 

citric, succinic and gluconic acids) and analyzed their effect on wine protein haze potential. 

The results indicate that these acids induce a stabilizing effect upon the haze potential of 

wine proteins at all pH values tested from 2.8 to 3.8. The same work raised the hypothesis 

that organic acids, carrying a net negative electric charge at wine pH, interact 

electrostatically with the wine proteins, positively charged at the wine pH, from pH 2.8 

through to pH 3.8, preventing the interaction of the X factor with the wine protein. The tartaric 

acid is also capable of interacting directly with the X factor, either in the presence or absence 

of protein, removing it from solution in the form of a tartrate crystal precipitate and, 

consequently, stabilizing the wine.  

 Based on these results, organic acids are another factor that needs to be considered 

as involved in wine protein haze formation, supporting at the same time the existence of the 

X factor. 

  

Oenological practices to prevent turbidity due to protein 

precipitation in white wines 

Clarity is an important aspect of a consumer first contact with a wine. If the wine 

presents some kind of haze, probably, that bottle will be rejected, leading to prejudice to the 

winery that produced that beverage. To avoid turbidity in white wines due to protein 

precipitation, the oenologist needs to test the wine haze potential and treat the wine if 

necessary.  
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Testing the wine for protein haze 

To understand the haze potential of a wine there are some tests and commercial kits 

available. Among all the kits, the most used one is Bentotest, followed by Proteotest, Prostab 

and, recently, Immuno Test π.  

Bentotest is a commercial test kit developed by Jakob (1962), which uses a solution 

of phosphomolybdic acid prepared in hydrochloric acid to denature and precipitate wine 

proteins. The precipitation obtained with this test is proportional to the protein content of the 

wine, and it can be used to determine the bentonite addition levels required for protein 

stabilization (Zoecklein, 1991). 

Proteotest is a test that involves the addition of highly reactive tannins to the wine. 

The over excess tannin content forces the protein in the wine to precipitate, ensuring the 

formation of haze. The propensity of the wine to produce haze is measured in a 

nephelometer, comparing the initial haze and the haze after addition of the tannins 

(Lankhorst et al., 2009). 

Prostab (Martin Vialatte OEnologie, Epernay, France) is other commercial kit 

available, but there is no information about its mechanism of action.  

The Immuno Test π is the most recent commercial kit, developed in 2005. This kit 

differs from the previous thanks to its selectiveness to the haze responsible proteins using an 

immunological assay (Sofralab, 2008). 

Under laboratory conditions, there are some possible assays to foresee the protein 

haze potential in wine with chemicals. These include precipitation of protein using ethanol, 

ammonium sulfate, trichloroacetic acid, phosphomolybdic acid, phosphotungstic acid and 

tannic acid (Zoecklein, 1991).  Most of these precipitation tests are much more severe than 

heat tests, causing a denaturation and precipitation of all protein fractions (Zoecklein, 1991). 

Esteruelas et al. (2009) made some research comparing several of these methods 

(including Bentotest, Prostab, slow heat test, fast heat test, ammonium sulfate, TCA, tannins 

and ethanol) and concleded that the generated precipitates obtained with the kits  are very 

different from the natural precipitate of the wine.   

The fast heat test (40 mL wine subjected to a temperature of 90 °C for 1 h in a 

thermostatic water bath, followed by a incubation of 4 °C for 6 h in a refrigerator (Sarmento et 

al., 2000)) appears to be the most similar to the natural precipitate in terms of chemical 

composition, indicating that this test may be the most appropriate stability test (Esteruelas et 

al., 2009).  
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Treating the wine to avoid protein haze 

One of the most effective ways to treat a wine in order to avoid protein haze formation 

is fining. Fining consists in the addition of a substance to the wine that captures the particles 

responsible for turbidity or instability in the wine, thus clarifying and stabilizing it (Ribéreau-

Gayon et al., 2006a). The principal way to eliminate protein from white wines is to perform a 

fining with bentonite, along with immobilized tannic acid, cross-flow membrane ultrafiltration 

and ion-exchange resin adsoption (Sun et al., 2007).  

Bentonite is mainly composed of montemorillonite and is negatively charged thanks to 

some of the Al3+ ions present in the octahedral positions being displaced by Mg2+, Fe2+ and 

Fe3+, leading to charge imbalances (Brindley, 1984). This clay interacts electrostatically with 

positive charged wine proteins because of its net negative charge at wine pH, which 

produces flocculation (Hsu et al., 1987). Due to its non-selectiveness for proteins, fining with 

bentonite interferes negatively with the organoleptic characteristics of the wine since it 

adsorves other molecules with positive electric charge (Miller et al., 1985; Rankine 1989; 

Voilley et al., 1990). Besides its effectiveness to remove protein from wine, it has been 

demonstrated that bentonite treatment negatively affects the flavor (Lubbers et al. 1996) and 

texture (Guillou et al. 1998) of wine. However, recent studies indicate that the effect of 

bentonite treatments on aroma substances in white wine depends on the chemical nature 

and initial concentration of the volatile compounds and on the abundance and nature of 

proteins in the wine (Lambri et al., 2010). 

Hydrating the bentonite before fining the wine increases its efficiency due to the 

separation of its layers and, consequently, increments its specific area (Weiss et al., 2001), 

but it may be that the polypeptides are primarily absorbed near the edges of the bentonite 

sheets rather than within the interlayer spaces between the sheets (Gougeon et al., 2003).  

Another problem arising from the application of bentonite is the volume of formed lees 

and, consequently, the volume of wine that is lost after fining. Between 5 and 20% of the 

wine may stay occluded in the lees after a fining treatment (Lagace et al., 1990; Tattersall et 

al., 2001) and, after a possible rotary vacuum drying systems (RDV) filtration, this occluded 

wine may be downgraded in quality comparing to the fined wine mainly thanks to oxidation 

phenomena (Waters et al., 2005). The handling and disposal of used bentonite continues to 

be a great problem due to high labour input, associated costs, safety issues and ambient 

impact, given the high content of ethanol and phenolic compounds present in the lees 

(Waters et al., 2005; Musee et al., 2006).  

There has been several attempts to stabilize white wine using continuous processes. 

Studies using immobilized tannic acid were effective in removing proteins and tannins 
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without affecting the level of peptides and the acidity of the wine. On the other hand the high 

cost of the method could make it not viable (Weetall et al., 1984). 

Other options for continuous process stabilization were tested, like packed columns 

or percolated beds (Sarmento et al., 2000). Studies of packed columns with ion-exchange 

resins (Sarmento et al., 2001) showed that the level of polyphenols and proteins decreased, 

but the color and aroma of the wine were affected.  

Metal-oxides (Fukuzaki et al., 1996; Pachova et al., 2002) and zirconia (Pashova et 

al., 2004) were tested as well with model wine solutions. There was some organoleptic 

impact on the wine treated with the metal-oxides, and no information about the zirconia 

treated wine. After analysis, neither treatment significantly affected the physicochemical 

properties of the final product. 

 The removal of specific proteins from the wine may be one of the ways of stabilizing 

it, but several factors in its matrix may derail some technologies. One example is immobilized 

antibodies. They can be specific to remove certain proteins from the wine, but due to the low 

wine pH, the interaction antibody-antigen is compromised (Ferreira et al., 2002).  The 

immune test π described in the previous section uses antibodies for specific proteins but the 

test solution raises the pH of the wine to usable values where the antibody-antigen 

interaction is assured.  

Using molecular biology techniques it may be possible to silence the protein PR 

expression genes in the vines, leading to wines without protein but turning the vine 

susceptible to fungus and other tensions (Ferreira et al., 2004). 

 Pre-fermentative clarification is other technique used in winemaking that promotes the 

production of higher quality wine. The most used clarification method is natural settling that 

consists in the natural settling of the suspended solids followed by careful racking (Ribéreau-

Gayon et al., 2006b). Clarification has been known to improve the fermentation aromas of 

white wines (Crowell et al., 1963; Bertrand,1968; Ribéreau-Gayon et al., 1975), removing 

suspended solids that have heavy, green aromas and biter tastes (Ribéreau-Gayon et al., 

2006b). About 2.6% of the lees removed in the clarification operation consists of nitrogen 

compounds (Alexandre et al., 1994), indicating that some proteins can be removed from 

must in this operation. To increase the yield in the clarification, some adjuvants may be 

added sush as bentonite, enzymatic preparations, or activated charcoal. The most effective 

of these adjuvants for removing protein in the clarification is bentonite, but it can damage the 

organoleptic quality of the wine if the wine is maintained in contact with its lees for several 

months (Ribéreau-Gayon et al., 2006a). 



 
 

13 
 

 Enzymatic preparations, mainly pectinases, can be added to the must during the 

clarification operation. The objective is to reduce the content in pectic substances of the must 

that difficult the settling of the suspended solids. These pectic substances are complex 

heteropolysaccharides with origin in the plant cell walls (O'Neill, 1990), which represent from 

0.02 to 0.6% of fresh grape weight (Ribéreau-Gayon et al., 2006a). These substances are 

present in colloidal form, protecting the must proteins and difficulting their removal. In 

general, pectic substances increase the haziness and viscosity of the must (Grassin, 1992), 

causing clarification and stabilization problems (Feuillat, 1987). The commercial pectolytic 

enzyme preparations may contain some proteases in their composition, but they are not the 

majority and their action is not selective. The musts treated with this type of commercial 

enzymes show greater clarity (Lao, et al., 1996) and in some barrel fermented wines the 

addiction of these enzymes lead to the production of superior wines with higher levels of 

alcohols, esters and terpenic compounds (Aleixandre, et al., 2003). Regarding the eventual 

degradation of wine proteins that interact in the protein haze formation by these commercial 

enzymes, there are no positive effects described in the literature.  

 Protease activity has been reported in grape berries (Cordonnier & Dugal, 1968), 

wine yeast (Charoenchai et al., 1997; Dizy et al., 2000) and in malolactic transformation 

bacteria Oenococcus oeni (Leitão et al., 2000), but because of their low specifity, they have 

low activity towards haze-forming proteins. A heat treatment combined with the addition of 

proteases can reduce the incidence of haze formation but, once more, because of the low 

specifity of the commercially available proteases, the possibilities offered by this method are 

compromised (Pocock et al., 2003).  

A number of different proteolytic enzymes are produced by yeasts (Klar et al., 1975; 

Barrett et al., 2004). Saccharomyces cerevisiae is the principal yeast responsible for the 

alcoholic fermentation of grape must (Ribéreau-Gayon et al., 2006a), and its secreted 

proteolytic system is quite complex, consisting of carboxypeptidases, aminopeptidases, 

proteinases and several specific inhibitors (Béhalová et al., 1979). Some studies revealed 

the presence of extracellular acid protease production among various species of 

Saccharomyces  (Bilinski et al., 1987; Rosi et al., 1987; Conterno et al., 1994; Moreno-

Arribas et al., 1996; Iranzo et al., 1998), but the main part of the yeast proteases, in particular 

of S. cerevisiae, are intracellular and located in various compartments (cytosol, vacuole, 

mitochondria, endoplasmic reticulum, and Golgi complex) and cellular membranes of the cell 

(Klar et al., 1975; Barrett et al., 2004). After cell lysis and death, these proteases can be 

released to the surrounding medium where they may retain activity.   Of the many cellular 

proteases present in yeasts, the vacuolar acid protease (endoproteinase A) was studied 

widely since it has been considered to play a significant role in enology (Moreno-Arribas et 
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al., 1996; Alexandre et al., 2001).  This protease A is classified to be an aspartic protease 

and as endoproteinase; pepstatin is its inhibitor (Beynon et al., 1990). This vacuolar acid 

protease appears to be very active in degradation of grape proteins once released from the 

cells and its activity is detected for long periods of time during aging on the yeast lees 

(Carnevillier et al., 2000). However, PR proteins, the principal precursors for protein haze 

formation in white wines (Waters et al., 1996; Waters et al., 1999; Ferreira et al., 2002) have 

high resistance to proteolysis (Linthorst 1991; Waters et al., 1996; Pocock et al., 2003), 

remaining in the wine even after the vinification process.  

A number of studies allowed the identification of some components described to be 

haze protective factors, in the wine colloidal fraction. As presented above, some 

polysaccharides apparently protect the wine proteins against heat-induced haze formation 

(Waters et al., 1991). Mannoproteins are considered to be a haze-protective factor, and 

represent the majority (80%) of all exocellular polysaccharides released by yeast during 

fermentation and aging on the lees, containing 90% of mannose and 10% of protein. 

However, the purified heat-stabilizing product is a 31.8 kDa mannoprotein (known as MP32), 

consisting of 27% protein and 62% mannose (Ribéreau-Gayon et al., 2006a). This 

glycoprotein was isolated from a wine of the variety Moscatel and showed protective effect 

on wine proteins, even if the wine suffers heat test (Waters et al., 1999).  

The active component of the mannoproteins was identified as being an invertase 

fragment from the yeast, with a molecular mass of around 32 kDa (Moine-Ledoux & 

Dubourdieu, 1999). This invertase fragment, identified as compound MP32, is not the same 

active component of the mannoproteins that inhibit tartrate crystallization (Ribéreau-Gayon et 

al., 2006a). Another mannoprotein, analogue to the Moscatel isolated one, was purified from 

600 L of a wine from the variety Carignan Noir, in mg amounts and is referred to as Hpf1p. A 

second haze protective mannoprotein (Hpf2p) has also been isolated by ethanol precipitation 

of a chemically defined grape juice medium fermented by the winemaking strain of S. 

cerevisiae, Maurivin PDM (Dupin et al., 2000b). The haze-protective effect of mannoproteins 

was independently confirmed by Ledoux et al. (1992) but the exact mechanism by which 

mannoproteins afford haze protection remains unclear (Waters et al., 2005). Nevertheless, it 

was described that these compounds do not inhibit proteins from precipitate but decrease the 

size of the suspended particles, making them invisible (or hard to detect) to the naked eye 

(Waters et al., 1993).  

Dupin et al. (2000a) showed that the extraction methods for mannoproteins from S. 

cerevisiae are not very efficient and estimated that in order to decrease 20% of the haze, 500 

mg of mannoproteins need to be applied to one litter of wine. However, Dubourdieu et al. 
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(1994) after applying 250 mg/L of mannoproteins extracted by enzymes (MPEE) from yeast 

cell walls (purified by ultrafiltration and dried), demonstrated that they were capable of 

halving the dose of bentonite required for protein stabilization of extremely heat-sensitive 

wines.  

Dupin et al. (2000a) also showed that the invertase fragment from S. cerevisiae was 

present in the wine after heating and removal of the haze. Since the majority of the haze-

protective factor was in the supernatant, it was suggested that these factors act by 

competing with other wine proteins for other non-proteinaceous wine components (X Factor), 

required for the formation of large insoluble aggregations of protein.  

 

Trade names are used in this review for information purposes only. Neither the 

Instituto Superior de Agronomia nor the Universidade Técnica de Lisboa warrant those 

mentioned nor do they intend or imply discrimination against those not mentioned. 

 As previously stated, despite the present evidence for the required involvement of a 

non-proteic wine component in the protein haze formation, no particular component or 

condition has yet been identified. In this work it was sought to purify, analyze and 

characterize different fractions in the <3 kDa wine fraction and study their role in the protein 

haze formation in wines.    
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MATERIALS AND METHODS 

Preparation of wine 

 Seven wines from the varieties Viosinho, Alvarinho, Arinto, Moscatel of Alexandria, 

Macabeu and Encruzado were tested. All wines were from the 2009 vintage, one from the 

Terras do Sado region (of the variety Moscatel of Alexandria) and six from the Lisbon region. 

The wines from Lisbon where produced at Instituto Superior de Agronomia, as a result of 

vinification trials. The winery Bacalhôa kindly offered a sample of its Moscatel of Alexandria 

varietal wine, from the Terras do Sado region, Portugal. 

The traditional white wine vinification method was used for all grape varieties. The 

musts were fermented without skin maceration under controlled temperature. Bentonite was 

not added during clarification or fermentation processes.  

After protein quantification, the selected wines were divided in 80 mL aliquots and 

stored at -20 ºC until used. To avoid repeated thawing and freezing, a different aliquot was 

used for each experiment.  

 

 

Protein quantification 

There are several methods for protein quantification but, some of them, are 

imprecise. This lack of precision is mainly due to interference caused by the presence of 

non-proteic factors, e.g. the content of phenolic compounds in the sample.  

The chosen procedure for this work was a modification of the Lowry method, as 

proposed by Bensadoun and Weinstein (1976). This method is widely used in the literature, 

easy to apply and provide high sensitivity results.  In this method, the protein reacts with 

cupric sulphate and tartrate in alkaline solution, which results in formation of a tetradentate 

copper-protein complex, reducing the Folin-Ciocalteu reagent. The blue colored, water-

soluble product can be quantified at 750 nm. 

 

Procedure  

The calibration curve was constructed with bovine serum albumin (BSA), with a 

protein gradient between 1 and 25 µg, in a final volume of 250 µL (0.004 – 0.1 g/L). Five 



 
 

17 
 

different concentrations of BSA were prepared, in triplicate, starting from a BSA 0.5 g/L 

solution (stored at -20 ºC). To this preparation, 50 µL of a 1% (w/v) solution of sodium 

desoxycholate and 1 mL of trichloroacetic acid 10% (w/v) were added, leaving to incubate for 

10 min. After incubation, the samples were centrifuged at 10000 g for 5 min, rejecting the 

supernatant and dissolving the pellet in 1 mL of solution C.  

Solution C has to be freshly prepared, combining 1 part of solution B to 100 parts of 

solution A.  The solutions A and B are composed by:  

Solution A: sodium carbonate deca-hydrate 2% (w/v), sodium hydroxide 0.4% (w/v), 

sodium tartrate dihydrate 0.1% (w/v) and Sodium Dodecyl Sulphate (SDS) 1% (w/v). 

Solution B: copper sulphate pentahydrate 4% (w/v) 

After preparation, solution C was be agitated and incubated at 25 ºC, since the SDS 

can precipitate at low temperatures. Finally, 100 µL of Folin-Ciocalteau reagent (Sigma), 

diluted in a ratio of 1:1 with MilliQ water, was added.  The final mixture was agitated in a 

vortex and placed in the dark, at room temperature, during 45 min.  

The absorbance values were measured at 750 nm in a spectrophotometer (Shimadzu 

UV-2100) in plastic cuvettes of 1 cm path length, against a blank where the volume of the 

protein solution is substituted by MilliQ water.  

Determination of the protein content of the samples was performed analogously, 

diluting the sample with Milli Q water until a final volume of 250 µL. This dilution is critical 

since the absorbance values measured have to be within the calibration curve limit values.  

The absorbance is a linear function of the protein concentration between 5 and 50 µg 

of BSA. Under these conditions, the extrapolation of the protein content was performed 

based on the tendency line, acquired by the least squares method, from the average value of 

absorbance relative to the each BSA concentration (Bensadoun, 1976).  

 

Isolation of the total protein wine fraction using FPLC 

To isolate the total protein of the wine, the wine sample (Moscatel Bacalhôa 09) has to 

be previously desalted. Desalinization was performed by gel filtration using PD-10 prepacked 

Sephadex G-25M columns (GE Helthcare), previously equilibrated with 25 mL of Milli Q 

water. The eluate was homogenized and lyophilized. This procedure ensures the removal of 

about 90% of the <5 kDa molecules.  
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To isolate the total protein from the desalted wine, ion-exchange chromatography 

technique using a “Fast Protein, Peptid and Polynucleotid Liquid Chromatography” (FPLC) 

system was applied. A Resource S column (Pharmacia) was used.  This column has an 

hydrophilic resin constituted by particles of 10 µm with great physical and chemical 

resistance. It can operate under several different conditions, with a pH range from 2 to 12, 

temperature range from 4 to 40 ºC and it is stable to pressures as high as 10 MPa.  The 

charged group on the gel is –CH2–SO3, or sulphonyl group. 

A sample (2 mL) containing the desalted wine was subjected to FPLC cation 

exchange chromatography on the Resource S column, previously equilibrated in 20 mM 

citrate-NaOH buffer, pH 2.5. The flow rate was 1.5 mL/min and the bound proteins were 

eluted with 1 M of NaCl in 20 mM citrate-NaOH buffer, pH 2.5. The fraction containing the 

wine total soluble protein was collected, subsequently desalted into water in PD-10 columns 

and lyophilized. The protein content of the sample was quantified using the modified Lowry 

method (Bensadoun, 1976). 

 

Heat stability test 

The wine protein haze can be induced in order to evaluate the susceptibility of a wine 

to form protein haze. There are several haze potential assessing tests described in the 

literature, differing in the presence/absence of tannins or in the time/temperature ratio. In this 

work the procedure described by Pocock and Rankine (1973) was selected.   

Wine aliquots were thawed and centrifuged at 10 ºC and 10000 g for 15 min. Heat 

stability of the wines was subsequently determined. All measurements were made in 

triplicate. Five mL samples of the wines in study were saturated with nitrogen and sealed in 

test tubes with screw caps. The tubes were posteriorly heated at 80 ºC for 6 h in a water 

bath, held at 4 ºC for 16 h in a refrigerator and then, allowed to warm to room temperature. 

The increase in turbidity was detected spectrophotometrically at 540 nm and 25 ºC in 1 mL 

plastic cuvettes.  
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Wine fractionation 

 

Fractionation of the wine in <3 kDa and >3 kDa compounds 

 The wine was fractionated in <3 kDa and >3 kDa compounds using ultrafiltration. 

Ultrafiltration filters Centriplus (YM-3, Millipore) with a molecular exclusion limit of 3 kDa were 

used. To the separation, the samples were centrifuged at 2500 g during 1 h. In all 

experiments only the <3 kDa fraction was used, corresponding to the fraction that pass 

through the 3 kDa cut-off membrane.  

 

Thin layer chromatography (TLC) 

 Thin layer chromatography is a technique used to separate compounds present in a 

mixture. This separation is possible due to the differential adhesion strengths of the 

molecules present in the mixture to a mobile phase and to a stationary phase. The mobile 

phase is normally a solvent, and the stationary phase, in this case, is the thin layer sheet. 

This difference in the adhesion force translates into more or less movement along the sheet 

of each component, allowing its separation.  

 The stationary phases used were: alumina, silica gel and silica gel RP-18 TLC sheets 

(EMD Merck Precoated Aluminum Back TLC Sheets). The samples were applied in the TLC 

plate using a Pasteur pipette. Chromatography took place after inserting the plate inside a 

glass container with the respective eluent.  

 For the alumina and silica gel sheets, a solution of dicloromethane with 10% (v/v) of 

methanol was used as mobile phase. The silica gel RP-18 sheet was activated with 

methanol, and the elution was made with a solution of water and 70% (v/v) methanol.   

 

Reverse phase chromatography 

In thin layer chromatography, the stationary phase is a thin layer of silica gel or 

alumina on a glass, metal or plastic plate. Column chromatography works on a much larger 

scale by packing the same materials into vertical glass columns. In this work, two glass 

columns with different sizes were used. The size of the column was chosen based on the 

mass of the sample to fractionate.  
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Analogously to the TLC experiments, the column was packed with silica gel RP-18. In 

this work, methanol and water were used as eluents, with different concentrations depending 

on the experiment.  

 

High-performance liquid chromatography (HPLC) 

Some fractions were analyzed by HPLC after fractionation by reverse phase 

chromatograhy.  The HPLC system used included an L-7100 pump, a Rheodyne type 

injector, a D-7000 interface and a L7450A diode array spectrometric detector. The column 

was a reverse-phase C18 Lichrospere 100 (250 mm x 4.6 mm, 5 µm) (Merck, Darmstadt, 

Germany), and the separation was performed at room temperature. The elution conditions 

were as follows: 1.0 mL/min flow rate; solvent A: water (100%); solvent B: methanol (100%), 

0-100% B linear from 0 to 25 min, 100-0% B linear from 25 to 40 min, followed by washing 

(100% solvent B) and reconditioning of the column in methanol.  

 

NMR spectroscopic analysis of wine fractions 

The sample fractions were dried in a Buchi Rotavapor inside appropriate vials. The 

samples were then dissolved with 0.5 mL of methanol D4 99.95% (v/v) (CD3OD) and 

transferred to 5 mm NMR tubes. The deuterated methanol provided a chemical shift 

reference (1H,  3.31 ppm). Proton and carbon nuclear magnetic resonance spectra (1H and 

13C NMR) were recorded on a Bruker ARX (400 MHz) spectrometer. Chemical shifts are 

expressed in ppm, downfield from TMS; J-Values are given in Hz. The exact attribution of 

NMR signals was performed using two dimensional NMR experiments. Mass spectra were 

taken in a Micromass GC-TOF (GCT) mass spectrometer. 

Compound 1 - 1H NMR (400MHz, MeOD, ): 7.01 (d, 2H, J=8.2, H2/6), 6.68 (d, 2H, 

J=8.3, H3/5), 3.67 (t, 2H, J=7.2 H2’), 2.70 (t, 2H, J=7.2, H1’); 13C NMR (90MHz, MeOH, ): 

156.8 (Ar4), 130.9 (Ar2/6), 116.1 (Ar3/5), 64.6 (C2’), 39.4 (C1’); EIMS m/z 138 (M+). 

Compound 2 - 1H NMR (400MHz, MeOD, ): 7.52 (d, 1H, J=7.8, H1), 7.31 (d, 1H, 

J=8.0, H6), 7.06 (m, 2H, H2/4), 6.98 (t, 1H, J=7.4, H5), 3.80 (t, 2H, J=7.3 H2’), 2.96 (t, 2H, 

J=7.2, H1’); 13C NMR (90MHz, MeOH, ): 138.1 (Ar6a), 128.9(Ar2a), 123.5 (Ar4), 122.2, 

119.5, 119.2,  (Ar1/2/5), 112.7 (Ar3), 112.2 (Ar6), 63.7 (C2’), 29.8 (C1’); EIMS  m/z m/z 162 

(M+). 



 
 

21 
 

 

Statistical analysis 

The data is presented as the mean ± standard deviation. The comparison of treated 

means (Tukey test, 5% level) was performed using ANOVA analysis using Statistica 

Software 7.0 (StarSoft, Inc). 
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RESULTS AND DISCUSSION 

Wine selection 

To be able to induce protein haze in a white wine, it is desirable a non-fined wine with 

high content in protein.  To the assays to be undertaken in the present work, nine wines from 

Lisboa and Terras do Sado regions, Portugal, all from the 2009 vintage, were chosen. Eight 

wines from vinification assays of Instituto Superior de Agronomia (ISA), from the varieties 

Viosinho, Alvarinho, Arinto, Moscatel de Alexandria, Macabeu and Encruzado were selected. 

The 9th wine was from the company Bacalhôa, of the variety Moscatel of Alexandria.  

From the ISA wines, six where produced using musts obtained with low-pressure 

extraction, and two using high-pressure extraction. The wine from Bacalhôa was a mixture of 

low and high-pressure extraction must, in an unknown ratio.  

 The difference between low-pressure extraction and high-pressure extraction focuses 

on the equipment used to press, and the extraction pressure. In the Bacalhôa wine was used 

a pneumatic press was used, but there is no information about the working pressure. On the 

other hand, the ISA wines where elaborated using an immediate continuous extraction 

procedure.  

Immediate continuous extraction is a process that has speed and volume of work as 

its mains advantages. In this process (Fig. 1), the grape clusters are crushed in a roller 

crusher and fall by gravity into a continuous inclined dejuicer, also called dynamic drainer. 

 

Fig. 1- Continuous juice extraction process (Ribéreau-Gayon et al., 2006) 
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The dejuicer contains a helicoidal screw that transfers the crushed grapes into a 

continuous press placed below. Continuous-type presses have the advantage of running 

uninterruptedly but the resulting juice or wine have a poorer quality when compared to the 

result of a pneumatic or vertical press (Jackson, 2008).   

For this work, the must obtained in the dejuicer was considered the low-pressure 

must, also called free-run juice. This free-run fraction, when compared to the press-run juice,   

is clearer and possess lower levels of suspended solids, phenolic compounds and flavorants 

derived from skin maceration. On the other hand, the press-run juice contains increasing 

amounts of suspended solids, tannins and skin flavorants. Press-run fractions are also more 

likely to suffer oxidation (containing a higher concentration of polyphenol oxidase), posssess 

lower acidity (higher potassium contents), and higher concentration of polysaccharides, 

gums and soluble proteins (Jackson, 2008). 

After protein quantification in all studied wines, using the modified Lawry method (Fig. 

2), the variety with higher protein content, is the Moscatel of Alexandria. Similar results were 

described by Mesquita et al. (2002). 

 

 

Fig. 2 - Protein concentration of the studied wines from Instituto Superior de Agronomia and Bacalhôa, 
2009 vintage. LP for low-pressure extraction, HP for high-pressure extraction 

 

Other predictable result is that high-pressure extraction wines contain more protein 

than low-pressure extraction wines, a phenomenon also described by other authors 

(Ribéreau-Gayon et al., 2006; Jackson, 2008).  
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The four wines that contained higher content in protein, were submitted to a haze 

potential test (Fig. 3). The tested wines were from the varieties Moscatel de Alexandria (LP), 

Macabeu (HP), Arinto (HP) and also Moscatel from Bacalhôa. The method used for 

measuring the haze potential was the classic heat test (Pocock & Rankine, 1973) described 

in the materials and methods section.  

 

Fig. 3 - Changes in turbidity (detecting by measuring the absorvance at 540nm) observed after Heat Test 
of the wines from Moscatel Bacalhôa (      ), Moscatel ISA (      ), Arinto ISA HP (      ), Macabeu ISA HP (      ) 

The wine that expressed higher haze potential was the Moscatel de Alexandria from 

Bacalhôa, mainly at pH 3.2 (Fig. 3). This wine was not the richest in protein (Fig. 2); 

however, it showed the higher haze potential after the heat test. These results corroborate 

some studies which indicate that the haze formed in white wine is not proportional to its total 

protein content (Moretti et al., 1965; Bayky et al., 1967; Dawes et al., 1994).  

The haze potential of the high-pressure extraction and low-pressure extraction wines 

showed a significant difference. High-pressure wines had no significant difference in the 

protein content relatively to the low-pressure extraction ones, but demonstrated a significant 

difference in the haze potential test at all pH values analysed. Can this result be related to 

the quantity of the factor X present in the press-run wines? High-pressure extraction wines, 

or press-run wines, have higher concentration of many compounds, including phenolic 

compounds (Ribéreau-Gayon et al., 2006a) which are known to be one of the strongest 

candidates as responsible in the protein haze (Waters et al., 2005).However, these results 

indicate the opposite. Indeed it may be that lower molecular weight tannins play an inducible 

role in protein haze formation, unlike higher molecular weight tannins which may remove 

wine proteins from solution by precipitation. Therefore, it would be important to determine if 

high-pressure extraction wines contain higher levels of lower or higher molecular weight 
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tannins than lower-pressure extraction wines. The phenolic compounds present in these 

wines could have precipitated some of the responsible proteins for protein haze, but that 

should have been reflected in the overall protein content of the wine. In the other hand, 

press-wines have higher content in polysaccharides that can act as protective colloids. 

Protein haze in white wines can occur because of tannins and proteins form aggregates, but 

the formation of these aggregates may be inhibited by the presence of polysaccharides (De 

Freitas et al., 2003; Riou et al., 2003). 

The diagram illustrated in Fig. 4 represents a proposed mechanism for the formation 

of tannin-protein aggregates and the putative role of polysaccharides as haze protective 

factors. 

 

Fig. 4- Model of the colloidal properties of flavanols (tannins) (Saucier, 1997) 

    However, another study showed that polysaccharides might increase protein 

instability, particularly at moderate to high temperatures (Mesquita et al., 2001). The type of 

polysaccharides considered may explain the apparent discrepant observations. 

These results may have been punctual, an observation that indicates that more 

assays are needed to validate this observation.   

For the subsequent tests, a single pH value, the pH of 3.2, was selected. The main 

reasons for the choice of this pH are the normal occurrence of this pH value in bottled white 

wines and the significant results in the haze potential tests using sample wines at this pH. 

Moreover, at higher pH, the haze formation tends to increase thanks to the proximity to the 

isoelectric point of the proteins present in wine. The protein fractions that contribute to 
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protein instability in white wines are known to have molecular weights from 10 to 32 kDa, and 

isoelectric points of 4.1 to 5.8 (Hsu et al., 1987). 

 

Fining assay  

Fining consists in the addition of a substance to the wine, producing flocculation and 

precipitation of some compounds that cause turbidity or colloidal instability (Ribéreau-Gayon, 

2006). The fining agents may have several objectives, depending of the constitution of the 

agent. There are fining agents to help decanting suspended solids, to remove protein, to 

remove phenolic compounds or to stabilize some components of the wine like the action of 

arabic gum on iron. To better understand the roll of phenolic compounds on protein haze 

formation, a wine sample was fined and the difference of haze potential between the fined 

and the non-fined wine measured.  

Phenolic compounds are non-proteinous factors that are potentially involved in white 

wine protein haze formation, with substantial evidence that their interactions with proteins are 

significant (Waters et al., 2005). In order to remove phenolic compounds from the wine 

sample, a fining agent specific to these compounds was selected. The chosen fining agent 

was casein. Casein is a protein that is extracted from cow milk. Addition of sodium or 

potassium bicarbonate increases its solubility. This protein is used as a fining agent, 

reducing preferentially the wine content in highly polymerized proanthocyanidins and also 

those esterified with gallic acid (Ricardo-Da-Silva et al., 1991).  

Some authors using different finig agents performed similar assays. Waters et al. 

(2007) reported that wines fined with PVPP formed less protein haze after heat test, when 

compared to unfined controls.  

Using inappropriate amounts of fining agents, in this case casein, can lead to an over-

fining. This phenomenon rarely occurs in red wine but, in white wines, it may cause the 

suspension of residual protein and therefore haze formation. A concentration of 50 g 

casein/hL wine was used in this assay, described as the maximum recommended dose of 

casein (Cardoso, 2007). 

The protein quantification was performed on both fined and non-fined wine using the 

modified Lowry method (Bensadoun, 1976). There was no significant difference on the 

protein content of the fined wine, indicating that there was no over-fining with the 

concentration of 50 g/hL of casein (Fig. 4).   
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Fig. 5 - Protein content of the wines Moscatel Bacalhôa 09 and Moscatel Bacalhôa 09 fined with 50 g 
casein /hL wine. 

 

After protein quantification, both wines were subjected to a heat test to evaluate their 

haze potential. The difference between the fined wine and the non-fined wine is significant 

(Fig. 5). The fined wine presents much less haziness, showing that some of the phenolic 

compounds that were removed by the casein treatment interact with the protein forming haze 

in white wines, corroborating the results of Waters et al. (2005) with PVPP. The Casein fining 

experiment confirmed previous results (Yokotsuka et al., 1983; Waters et al., 2005) which 

suggested that phenolic compounds are involved in protein haze formation. 

 

Fig. 6 - Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after heat 
stability test of the wine Moscatel Bacalhôa 09 and the wine Moscatel Bacalhôa 09 fined with 50 g/hL of 

casein. 
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Therefore, the effect of casein in the treatment of haze formation can result from the 

removal phenolic compounds, mainly nonflavonoid compounds has suggested by Cosme et 

al.(2007). Hereupon, it would be of great interest to understand what compounds were 

removed and to what fraction do they belong. 

 

Wine fractionation 

Baptista et al. (2009) reported that at low pH, protein haze formation in white wine 

exhibits an absolute requirement for a low molecular mass (<3 kDa) wine component, that 

sensitize proteins for heat-induced denaturation at low wine pH. With the aim of identifying 

this or these compounds, the wine was subjected to ultrafiltration using a 3 kDa cut-off 

Amicon Ultrafilter. A heat stability test was performed to the <3 kDa wine fraction, and 

compared to the pattern of turbidity of the Moscatel Bacalhôa 09 wine (Fig. 7). 

 

Fig. 7- Changes in turbidity (detecting by measuring the absorbance at 540 nm) as a function of pH 
observed after heat test of the wine Moscatel Bacalhôa 09 (      ) and the <3 kDa fraction of the wine 

Moscatel Bacalhôa 09 back-added with isolated wine protein (      ). 

 

 The <3 kDa fraction back-added with isolated wine protein (250 mg/L) presented a 

gradual increase in turbidity from pH 2.8 to 3.6 (Fig. 7). The wine Moscatel Bacalhôa 09 had 

the maximum turbidity at pH 3.2, and did not follow the same pattern of turbidity for higher pH 

values than the <3 kDa fraction with the isolated protein. This difference may be tentatively 

explained by the presence of large molecular weight haze-protective factors (e.g. 
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polysaccharides) which are present in the wine but not in the back-added isolated protein 

(Waters et al., 1993; 1994).  

 The different turbidity values observed at pH 3.2 (selected value for this work; Fig. 7) 

can be also explained by the tartaric stabilization of the MBA09 wine that was ultrafiltered. In 

order to protect the sample wine Moscatel Bacalhôa 09, it was store frozen at -20 ºC, 

temperature which leads to tartrate precipitation. Using the slow cold stabilization treatment 

equation (Ribéreau-Gayon et al., 2006b; Fig. 8), the temperature at which tartrate 

precipitation occurs for the Moscatel Bacalhôa 09 wine is -5º C, confirming that the storage 

temperature used may have contributed to wine stabilization.  

 

Fig. 8 - Slow cold stabilization treatment equation (Ribéreau-Gayon et al., 2006) 

 

 A new heat stability test was performed with the Moscatel Bacalhôa 09 wine after 

tartrate precipitation. The results presented a significant difference with or without tartaric 

stabilization (Fig. 9).  

 

Fig. 9 - Changes in turbidity (detecting by measuring the absorbance at 540 nm) as a function of pH 
observed after heat test of the wine Moscatel Bacalhôa 09 without tartaric stabilization at 5 October 2009  

(      ) and the wine Moscatel Bacalhôa 09 with tartaric stabilization at 20 October 2009 (      ). 
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There was a decrease in the absorbance values for the Moscatel Bacalhôa 09 wine 

after 15 days at -20 ºC. This difference can be explained by the precipitation of some wine 

components with potassium hydrogen tartrate crystals. Vernhet et al. (1999) reported that 

there were tartrate esters of phenolic acids and polysaccharides on potassium hydrogen 

tartrate. Other molecules like tannins, proteins and pectic polysaccharides are also known to 

bind with organic acids present in wine (Correa-Gospore et al., 1991; Vernhet et al., 1999).  

Batista et al. (2010) suggested the hypothesis that some organic acids, in particular 

tartaric acid, can bind with other molecules preventing them to bind with proteins. The same 

authors measured the absorption spectral curve of the tartrate precipitate of white wine and 

compared to the absorption spectral curve of the precipitate resulting from the addition of 

tartaric acid to the <3 kDa fraction of white wine. In the same work it was proposed that 

tartaric acid reacted with the same type of molecules in both fractions tested, corroborating 

the presence of a protein instabilization factor present in the <3 kDa fraction.   

To evaluate what compounds interact with the protein to form haze, fractionation of 

the wine was performed. The goal was to isolate a compound, or family of compounds, that 

are considered the X factor, acting as a precursor for protein haze formation.  

 

1st experiment 

The Moscatel Bacalhôa 09 wine was prepared for fractionation, following the 

methodology described in the Materials and Methods section. The dried wine sample was 

dissolved in 10 mL of methanol (100% v/v), decanted and filtered. The precipitate, formed 

after dissolving in methanol, is the water-soluble fraction (WF1), whereas the supernatant 

contains the methanol-soluble fraction (MF1).  

To understand the structural differences between fractions, NMR analysis was 

employed, as described in the Methods section. After confirming the differences between the 

fractions (NMR spectra), a heat stability test was performed. 

The haze potential of the methanolic extract is significantly higher than the water 

fraction (Fig. 10). These results indicate that the methanolic extract contain compounds that 

increase the protein haze potential. The methanol-soluble fraction was compared to the wine 

sample in what concerns heat stability test, to evaluate the difference in haze formation (Fig. 

11). 

 



 
 

31 
 

 

Fig. 10 - Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after heat test 
of the wine Moscatel Bacalhôa water-soluble fraction (WF) and methanol-soluble fraction (MF) in a wine 

model solution (WMS; 12% ethanol 4 g/L tartaric acid) with isolated wine protein (IWP; 250 mg/L) 

 

 

Fig. 11 - Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after heat 
stability test performed in the following samples: water with wine isolated protein (water + WIP), wine 

model solution with isolated wine protein (WMS + IWP), wine model solution with water-soluble fraction of 
the Moscatel Bacalhôa 09 wine (MWS + WF1), wine model solution with methanol-soluble fraction of the 

Moscatel Bacalhôa 09 wine (MWS + MF1) and the Moscatel Bacalhôa 09 wine. 

 

The haze formed in the methanol-soluble fraction was only slightly lower than that 

obtained for the sample wine, suggesting that the major compounds involved in the protein 

haze formation are present in that fraction.  
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Previous work developed in our lab identified a major component of the methanolic 

extract as a meso-erythritol, or one of its two stereoisomeric tetritols, D-threitol and L-threitol. 

These compounds were individually subjected to heat stability test, revealing no direct 

involvement in the protein haze formation (unpublished data).  

The methanolic extract (MF1) was separated in two fractions by reverse phase 

chromatography using a RP18 column and, as solvents, water (100% v/v) for the first elution 

and methanol (100% v/v) for the second elution. Both methanolic (MF2) and water (WF2) 

fractions were subjected to heat stability test and NMR analysis (Fig. 12).  

 

Fig. 12 - Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after heat 
stability test performed to the methanol fraction (MF2) and water fraction (WF2) obtained after the 

fractionation of the methanolic extract in a RP18 chromatography column. Both fractions were back-
added with isolated wine protein (250 mg/L). 

 

The MFM fraction had a significantly higher haze potential, indicating that the factor 

that contributes more intensely to the haze formation is present in that fraction.  

After the analysis of the NMR spectrum obtained for both fractions, it was concluded 

that the major compound of the methanolic extract (MF), the meso-erythritol, was completely 

washed-out to the WF2 fraction. 
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As a resume, the 1st experiment is schematically represented in Fig.13.    

 

 

Fig. 13 - 1
st 

experiment scheme 
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2nd experiment 

 To better understand the complexity of each experiment, the following experiment 

schemes will be presented at the beginning of the chapters.  

 As a resume, the 2nd experiment is schematically represented in Fig.14. 

 

 

Fig. 14 - 2
nd

 experiment scheme 

 

One hundred mL of MBA09 wine were performed for fractionation by the method 

described in the Materials and Methods section. Analogously to the 1st experiment, the dried 

wine sample was diluted in 10 mL methanol and decanted, separating the wine in to a 

methanolic-soluble fraction (MF1) and a water-soluble fraction (WF1).  

The methanolic-soluble fraction (MF1) was further separated in two fractions by 

reverse phase chromatography using a RP18 Column and, as solvents, 50 mL of water 

(100% v/v) for the first elution and 50 mL of methanol (100% v/v) for the second elution. 
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Once more, NMR analysis was performed to both fractions to guarantee that all the meso-

erythritol was washed-out into the water-soluble fraction (WF2).  

To understand the complexity of the methanolic fraction (MF2) composition, thin-layer 

chromatography (TLC) of the sample was performed, testing several TLC sheets and 

concentrations of eluents.  

Initially a silica sheet was tested with dichloromethane (5% v/v) and methanol (95% 

v/v) as eluents (Fig.15A). The sample stayed in the application point, meaning that the 

polarity was not enough to fractionate the sample components. The same result occurred 

with the silica sheet with dichloromethane (10% v/v) in methanol (90% v/v) (Fig. 15B), and to 

the alumina sheet with dichloromethane (10% v/v) in methanol (90% v/v) (Fig. 15C). 

 

 

Fig. 15 - TLC of the methanolic extract (MF2) using different sheets.  A - Precoated silica TLC sheet using 
dichloromethane (5% v/v) and methanol (95% v/v) as eluent  B - Precoated silica TLC sheet, using 

dichloromethane (10% v/v) and methanol (90% v/v) as eluent.  C - Precoated alumina TLC sheet, using 
dichloromethane (10% v/v) and methanol (90% v/v) as eluent. 

 

A RP18 TLC sheet was tested with methanol (70% v/v) has the eluent. After elution, 

the methanolic fraction (MF2) was separated in two bands, differing in their polarity (Fig. 16).  



 
 

36 
 

 

Fig. 16 - Thin-layer chromatography of the methanolic fraction (MF2) from the Moscatel Bacalhôa 09 wine 
using a RP18 TLC sheet with methanol (70% v/v) as the eluent. 

 

 This type of chromatography sheets allow the separation of the sample by using 

hydrophobic interactions of the stationary phase with wine compounds of appropriate 

molecular structure. In this particular case, it was used a RP18 medium was used, which 

means reversed phase with an organofunctional octadecyl group.  Reversed phase means 

that the relative polarities of the stationary and mobile phases are reversed, compared with 

unmodified sorbents like silica gel or alumina (Fredric, 2003).  

 
This result prompted the use of preparative layer chromatography. PLC, or 

preparative layer chromatography, is used to isolate 10 to 500 mg or more of material on 

layers thicker than those used for analytical TLC (Fredric, 2003). With the purpose of 

separating both fractions obtained previously in the analytical TLC, a preparative RP18 layer 

(Fig. 17) was pre-activated with methanol and methanol (70% v/v) in water was used as the 

eluent. Thirty mg of sample were applied, containing the methanolic fraction (MF2) from the 

methanolic extract (MF1). 
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Fig. 17 - Preparative layer chromatography of the MF2 fraction from the Moscatel Bacalhôa 09 methanolic 
extract (MF1). 

 

The preparative chromatography step allowed the separation of fractions A and B 

(Fig. 17), previously identified in the analytical TLC (Fig. 16). Being a reversed phase layer, 

the A fraction is the most polar and the B fraction the less polar. 

 Both bands A and B, present in the silica, were individually scraped from the glass, 

dissolved in methanol (100% v/v) and decanted. After isolating both fractions, a haze stability 

test was performed (Fig. 18).  

 

Fig. 18 - Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after heat 
stability test performed to fractions A and B obtained by the fractionation of the MF2 fraction using 

preparative RP18 chromatography.  

0,0

0,1

0,2

A B

A
b

so
rb

an
ce

 a
t 

5
4

0
 n

m



 
 

38 
 

  Considering the standard deviations, there is no significant difference between both 

samples in the haze potential test. This indicates that the compounds involved in the protein 

haze formation are present in both fractions.  
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3rd experiment 

As a resume, the 3rd experiment is schematically represented in Fig.19. 

 

Fig. 19 – 3
rd

 experiment scheme 

 

To isolate the compounds involved in haze formation present in both fractions 

obtained in the 2nd experiment TLC (Fig. 17), another experiment was attempted with the 

objective of achieving a finer fractionation of the MF2 fraction. With a greater number of 

fractions, there is a higher probability of separating the reactive compounds from the non-

reactive. 

Moscatel Bacalhoa 09 wine 

Centriguged 15 min at 10000 g in Millipore 3 kDa cut-off 
ultrafilters

>3 kDa fraction <3 kDa fraction

Evaporated sample

Water soluble 
fraction (WF1)

MeOH soluble fraction (MF1)

RP 18 Column (100% (v/v) water - 100% (v/v) MeOH)

Water soluble fraction (WF2) MeOH soluble fraction (MF2)

RP 18 Column (step gradient from 10 to 100% (v/v) MeOH)

Fraction MF2a

RP18 Column (step gradient from 10 to 
100% MeOH)

Fraction 
MF2aa

Fraction 
MF2ab

Fraction MF2b Fraction MF2c
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The fractionation procedure of the Moscatel Bacalhôa 09 wine, as described in the 

Materials and Methods section, was repeated. The methanolic extract (MF2) was 

fractionated, once more, in the same chromatography RP18 Column but with a gradient of 

methanol from 10 to 100% (v/v). Ten sub-fractions were collected into test tubes, which were 

subsequently subjected to TLC analysis in an analytical RP18 chromatography sheet with 

methanol (70% v/v) as the eluent (Fig. 20).  

 

Fig. 20 - TLC analysis using an analytical RP18 sheet with methanol (70% v/v) as eluent of the ten sub-
fractions from the fractionation of the methanolic extract (MF1) of the Moscatel Bacalhôa 09 wine with 

step gradient from 10 to 100% (v/v) methanol.  At the right, the A band from the PLC of the 2
nd

 trial. 

 

TLC analysis using UV light, allowed the selection of three different fractions taking 

their differential retention factor (Rf) as reference (Figs. 20 and 21). The first fraction selected 

results from the combination of the fractions 40, 50, 60 and 70 (MF2a), with an Rf of 0.93. 

The fractions 80 (MF2b) and 90 (MF2c) had a different Rf, 0.82 and 0.72 respectively.  

 

Fig. 21- Retention factor equation (Fredric, 2003) 
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At the same time, a sample of the A band from the 2nd experiment was applied to the 

TLC sheet. Because of the excessive concentration of the applied sample, the revealed TLC 

was blurry, with no focused spots. Nevertheless, the A band can be considered the 

combination of the different fractions that composed the methanolic extract (MF2), as 

evidenced by comparing the Rf values of the individual fractions with the Rf values of band A 

components. 

NMR analysis was applied to the fraction MF2a. Among other compounds, it stood 

out a probable phenolic acid ester bound to a sugar, presumably a rhamnose.  

Fraction MF2a was passed through a chromatography RP18 column; elution took 

place with a gradient of methanol between 10 and 100% (v/v). These fractions were 

subjected to analytical TLC analysis, revealing different bands in the 50 and 60% (v/v) 

methanol fractions (Fig. 22).  

 

Fig. 22 – Analysis of the MF2a fraction using an analytical RP18 TLC sheet with methanol 70% (v/v) as the 
eluent. The scale represents the methanol concentration used in the RP18 chromatography column 

during the fractionation of the MF2a fraction. TLC revealed with potassium permanganate. 

 

The TLC was revealed with potassium permanganate, oxidizing the compounds 

present in the bands. The  bands were marked, appearing one more band with a different Rf 

in the 50 fraction (MF2aa) comparing to the 60 fraction (MF2ab). 
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Table 1 - Rf values of the different compounds present in the MF2aa and MF2ab sub-fractions. 

Band Rf 

A 

B 

C 

0.93 

0.84 

0.73 

   

The TLC shown in Fig. 22 turned light brown with time, hiding the bands but, at the 

moment of application, it was purple and the stains appeared yellow. This visualization 

reagent reacts mainly with alkenes and alkynes, but alcohols, amines, sulfides and 

mercaptans can be also oxidized. The remaining fractions did not present any bands or 

stains. 

NMR analysis revealed that the sugar present in the MF2a fraction was washed-out in 

the MF2aa fraction and the aromatic compound went to the MF2ab fraction.  

Both samples MF2aa and MF2ab (Fig.22), along with the fractions MF2b and MF2c 

(Fig.20), were subjected to heat stability test (Fig. 23).  

 

Fig. 23 - Heat Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after 
heat stability test performed to fractions MF2aa, MF2ab, MF2b and MF2c. All fractions were back-added 

with isolated wine protein (250 mg/L). 

 

Fraction MF2ab proved to be the fraction with higher haze potential (Fig. 23). The 

NMR analysis of fraction MF2ab revealed mainly a compound containing aromatic protons, 

together with other minor compounds.  
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4th experiment 

As a resume, the 4th experiment is schematically represented in Fig.24. 

 

Fig. 24 - 4th experiment scheme 

 

Due to the impurities present in the MF2ab fraction, observed in the NMR spectra, 

and due to the small amount of the sample, another experiment was performed to isolate 

these compounds to a higher purity level.  

Analogously to the other experiments, the wine was fractionated until the separation 

of the WF2 fraction (containing the erythritol) from the MF1 fraction (containing the factor X, 

among other compounds).   
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The WF1 fraction was passed through a RP18 chromatography column with a 

gradient of methanol from 10 to 100% (v/v), collecting every 5 mL of eluent. After 

fractionation, 40 fractions of 5 mL were obtained. A sample of each collected aliquot was 

subsequently applied in a RP18 TLC chromatography sheet, using methanol (70% v/v) as 

eluent, in order to understand the complexity of each aliquot (Fig. 25).   

 

Fig. 25 – Analysis of the 40 aliquots collected in the RP18 column, using a RP18 TLC sheet with methanol 
(10 to 100% v/v) as the eluent. The TLC sheet was revealed with phosphomolybdic acid. 

 

The 5 mL fractions pooled according to band similarity and, at the end, eight distinct 

fractions were obtained, designated A to H. All eight fractions were dried and weighed.  

The eight fractions were subsequently injected in the HPLC using the methodology 

described in the Materials and Methods section. To prepare the samples, the fractions were 

dissolved in 0.5 mL of gradient-grade methanol for HPLC (CHROMASOLV - Sigma). An 

analytical C18 HPLC column was used and a volume of 10 µL of each sample was injected.  

The analysis revealed inconclusive. 

After TLC analysis of the eight fractions, the two fractions that presented higher 

concentration of compounds were fraction B and fraction F (Fig. 25). The bands that 

correspond to their main compounds are the dark green bands clearly visible in the TLC. 

A B C D 

E 

F G 
H 

10% (v/v) MeOH  

 100% (v/v) MeOH 
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 Both fractions, B and F, were once more passed through a RP18 chromatography 

column with a gradient of methanol between 10 and 100% (v/v). Five mL fractions were 

collected. After fractionation, TLC analysis was applied to each aliquot from both fractions 

using TLC RP18 chromatography, with methanol 70% (v/v) as eluent (Fig. 26). 

 

Fig. 26 – Analysis of the fractions B and F by TLC after fractionation using a RP18 chromatography 
column with a step gradient between 10 and 100% (v/v) methanol. The scale in the TLC sheets represent 

the methanol concentration used in the RP18 column during the fractionation. 

 

After TLC analysis, the aliquots 26 to 29 from the F fraction, and aliquots 22 to 24 

from the B fraction were pooled (Fig. 26). This selection was made based on band similarity 

and Rf values, which were respectively 0.57 for the F fraction compounds and 0.67 for the B 

fraction compounds. Both mixtures were analyzed by NMR in order to identify the major 

compounds present. 

Structural determination on these two fractions was based on the two dimensional 

NMR experiments that allowed the clear attribution of all protons. The 1H-NMR aromatic 

pattern for the aliquots 22 to 24 from B fraction and 26 to 29 from F fraction  (respectively 

compounds 1 and 2) shows aromatic patterns with an 1,4 substitution (two doublets with the 

coupling constants near 8Hz) for compound 1 and a more complicated one (with 5 aromatic 

hydrogen atoms) for compound 2. Both compounds show two triplets for two hydrogen atoms 

each compatible with an ethanolic side chain. Mass spectrometry analysis agrees in both 

cases with the proposed structures (Fig. 27).  
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Fig. 27 – Proposed structure of compounds 1 and 2. 

 

The eight fractions identified in the TLC sheet presented in Fig. 25, including the 

purified F and B fractions, were subjected to heat stability test (Fig. 28).  

 

Fig. 28 - Heat Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after 
heat stability test performed to the fractions A to H back-added with isolated wine protein, isolated wine 

protein in water (IWP + water) and isolated wine protein with the <3 kDa fraction of the Moscatel Bacalhoa 
09 wine (IWP + <3 kDa fraction).   

  

After heat stability test, none of the fractions analyzed presented a similar haze 

formation potential compared to the wine isolated protein with the <3 kDa Moscatel Bacalhôa 

wine fraction.  

These results demonstrate that neither fraction have, by itself, a significant role in the 

wine protein haze formation when isolated from each other. However, the first four fractions 

(fractions A, B, C and D) and fraction G showed higher formation after heat stability test (Fig. 

28).  
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5th experiment 

 

 The fractions individually obtained in the 4th experiment had to be tested using 

combinations of the different fractions, in order to understand if the interaction of the distinct 

compounds present increases the protein haze formation potential. To perform the heat 

stability test with such fraction combinations, the same protocol used in the 4th experiment 

(Fig. 24) was repeated.  

 Analogously to the 4th experiment, the MF2 fraction obtained, which contained the 

compounds that interact in the wine protein haze, was passed through an RP18 

chromatography column with a gradient of methanol between 10 and 100% (v/v) as eluent. 

Five mL fractions were collected. Sixty individual aliquots were obtained, and tested in a 

RP18 TLC sheet with methanol 70% (v/v) as eluent (Fig. 26).  

 

Fig. 29 - Analysis of the 40 aliquots collected in the RP18 column, using a RP18 TLC sheet with methanol 
(10 to 100% v/v) as the eluent. The TLC sheet was revealed with phosphomolybdic acid. 

 

 The obtained TLC (Fig. 29) has a very similar pattern when compared to the TLC in 

the 4th experiment (Fig. 25), confirming that the same compounds are present in these 

fractions. The fractions were pooled to obtain fractions similar to those obtained in the 4th 

experiment. Two pooled fractions were prepared, one resulting from the combination of 

fractions A, B, C and D, the other from the combination of fractions E, F, G and H.  
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Due to lack of wine isolated protein, two heat stability tests were chosen: one 

involving the fraction ABCD with isolated wine protein in model solution and other involving 

the fraction ABCD with L-threitol (Sigma-Aldrich, 99%), isolated wine protein and wine model 

solution (Fig. 30). Based on the weight of the water-soluble fraction (WF2) from the 1st 

experiment, it was considered that, being the erythritol the main compound of the WF2 

fraction, it would be added the same mass of L-threitol to fraction ABCD, i.e. 10 g/L. 

  

 

Fig. 30 - Heat Changes in turbidity (detecting by measuring the absorbance at 540 nm) observed after 
heat stability test performed to fractions ABCD, ABCD + L-threitol, <3 kDa Moscatel Bacalhôa 09 wine 
compounds and Moscatel Bacalhôa 09 wine. All fractions were back-added with isolated wine protein 

(250 mg/L) apart from the Moscatel Bacalhôa 09 wine. 

 

 Analyzing the data there is no significant difference between the fraction ABCD + L-

threitol and the Moscatel Bacalhôa 09 wine. The fraction ABCD without the L-threitol showed 

much less haze formation when compared to the other fractions.  These results indicate that 

the L-threitol may be involved in protein haze formation when added to the fraction ABCD. 

 There is a significant difference between the ABCD + L-threitol fraction and the <3 

kDa Moscatel Bacalhôa 09 wine compounds. The two main reasons for this phenomenon are 

the possible excess of L-threitol in the ABCD + L-threitol fraction when compared to the wine 

and the concentration of extract used in the experiment. Due to sample loss during the 

fractionation process, the final extracts are five times concentrated, which can influence the 

haze formation after heat stability test.  
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FINAL CONSIDERATIONS 

 

The presence of proteins in wine, in particular PR proteins, is a requirement for 

protein haze formation (Ferreira et al., 2002). As observed in the first experiments of this 

work, wines prepared from different grape varieties with different protein contents, exhibited 

distinct patterns of haze formation. The varieties with higher protein content presented higher 

haze formation potential, in particular the variety Moscatel of Alexandria. However, two 

Moscatel of Alexandria wines with no significant differences in protein content presented 

differential protein haze formation potentials, corroborating the results previously obtained by 

some authors (Moretti et al., 1965; Bayly et al., 1967; Pocock et al., 2007), suggesting that 

the total protein content, by itself, failed to correlate with wine heat stability. These results 

support the hypothesis that other non-proteic compounds may be involved in the wine protein 

haze mechanism besides the protein content of the wine. Among the reported factors that 

can interact with protein haze formation are the pH, the ethanol, polysaccharides, phenolic 

compounds, metal ions and organic acids (Waters et al., 2005; Batista et al., 2010), but none 

was sufficiently studied yet to understand its precise role in protein haze formation.  

In the wine selection chapter several varietal wines were tested including two wines 

prepared using high-pressure extraction musts. These wines were designated by high-

pressure extraction wines and showed a very different protein haze formation behavior. After 

heat stability test, these wines showed almost no turbidity, revealing to be more stable to 

temperature than the corresponding low-pressure wines. It was hypothesized that this 

phenomenon occurs because of the higher content in polysaccharides present in the high-

pressure extraction wines, which may act as protective colloids. High-pressure extraction 

wines, or press-run wines, contain higher concentration of many compounds, including 

phenolic compounds and polysaccharides (Ribéreau-Gayon et al., 2006b) that can interact 

with protein haze formation. However, more studies have to be performed in order to 

evaluate if these results are reproducible and what was the reason for the higher stability of 

such wines.  

 At the fining assay experiment, a selected wine was fined with casein to evaluate the 

role of phenolic compounds in protein haze formation. A similar experiment was performed 

by Pocock et al. (2007) with PVPP, revealing an increase in the wine stability after fining the 

wine. Unlike the same authors, in the experiment conducted in this work the protein content 

of the wine was evaluated after casein fining to confirm that over-fining did not occur. The 

heat stability test revealed that the fined wine was more stable to protein haze formation 

when compared to the non-fined wine, corroborating previous results from other authors 
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(Yokotsuka et al., 1983; Water et al., 1995; Pocock et al., 2007). These results suggest that 

phenolic compounds, or any other compound that is also affected by the casein treatment, 

may modulate protein haze formation. It would be of great interest to understand which 

family of compounds were removed with the casein fining and to which wine fraction do they 

belong to.  

  
 In the first experiments of wine fractionation a heat stability test was performed to 

compare the haze formation pH-dependent pattern of the selected wine MBA09 to the <3 

kDa fraction of the same wine. Both samples exhibited similar patterns of haze formation at 

pH 3.2, showing significant difference at higher pH values. Comparing the absorbance 

values of both samples at pH 3.2, there is a significant difference that can be explained by 

the tartaric precipitation occurred during the storage of the <3 kDa fraction at -20 ºC. With 

tartaric stabilization, some wine components that may interfere in wine protein haze can 

precipitate with potassium hydrogen tartrate crystals, explaining the difference witnessed in 

Fig. 9. However, Batista et al. (2009) suggested the hypothesis that some organic acids, 

particularly tartaric acid, can have some protective effect in protein haze formation, binding to 

other molecules so as to prevent their interaction with proteins.  

 Batista et al. (2009) provided evidence that at low pH, protein haze formation in white 

wine exhibits an absolute requirement for a low molecular mass (<3 kDa) wine component, 

that sensitize proteins for heat-induced denaturation. On this basis, the sample wine was 

fractionated in order to isolate the compounds that interact with protein haze formation. The 

fraction that demonstrated to be the most reactive with protein was the methanol soluble 

fraction from the <3 kDa compounds of the wine. After NMR analysis of the methanol soluble 

fraction, it was concluded that the major compound of this fraction is erythritol.  In a previous 

work developed in our lab was concluded that this compound, by itself, revealed no direct 

participation in protein haze formation. 

 To isolate the different wine fractions, several solvents and chromatography 

techniques were tested. The first step was to isolate the erythritol from the rest of the wine 

components. The adopted procedure was to submit the sample (methanol soluble fraction 

from the <3 kDa wine compounds) to a silica gel RP-18 chromatography column with water 

(100% v/v) and methanol (100% v/v) as solvents. All L-threitol was washed-out in the water 

soluble fraction. The methanol soluble fraction presented a higher haze formation when the 

isolated wine protein was back-added and subjected to the heat stability test. Nevertheless, 

the haze obtained with the methanol soluble fraction was always lower than that obtained 

with the <3 kDa wine fraction, demonstrating that some compounds present in the water 
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soluble fraction interact with compounds present in the methanol fraction to modulate protein 

haze formation.  

Different fractionations to obtain increasingly pure wine fractions were performed. 

Such fractionations allowed the separation of eight major fractions (designated by A to H) 

from the methanolic extract previously isolated from the silica gel RP-18 chromatography 

column, as shown in Fig. 25. Two of these fractions showed major compounds that were 

subsequently analyzed using NMR and GCT techniques. The results revealed two different 

compounds showing aromatic patterns with an 1,4 substitution (two doublets with the 

coupling constants near 8 Hz) for the compound identified as compound 1 and a more 

complicated one (with 5 aromatic hydrogen atoms) for the compound identified as compound 

2 (Fig. 27). Both compounds show two triplets for two hydrogen atoms each compatible with 

an ethanol side chain. After structure identification it was concluded that compound 1 is the 

tyrosol and compound 2 the tryptophol.  Individually, these compounds did not interact with 

wine proteins to form haze but they are part of the fraction that modulates that same haze 

formation.  

 After submitting, individually, all eight isolated fractions to a heat stability test, it was 

concluded that none of them protrudes.  These results may indicate that the isolated 

compounds do not have a strict interaction with wine proteins, raising the hypothesis of an 

interaction of several compounds present in the methanol soluble fraction to modulate the 

haze formation. To test this hypothesis, a new heat stability test with a mixture of fractions A, 

B, C and D was performed. The difference was significantly higher for the mixture of the 

fractions ABCD.  

 As previously mentioned, the major compound isolated from the <3 kDa water soluble 

fraction, identified as L-threitol, did not present any detectable interaction with isolated wine 

protein in a heat stability test. However, in this work, after combining L-threitol with fractions 

A+B+C+D, the haze formation assumed a completely different behavior, showing significant 

higher haze when compared to the fraction ABCD by itself. As observed in Fig. 30, the haze 

formation revealed to be higher than the <3 kDa sample itself. These results can be 

explained by the concentration of the extracts and the presence of L-threitol. To compensate 

for sample losses during the fractionation process, the fractions were concentrated five times 

before heat stability test. The quantity of L-threitol used in the heat stability test was 

calculated based on the quantity present in the water-soluble fraction eluted from the silica 

gel RP-18 chromatography column during the experiments. In conclusion, it can be 

hypothesized that L-threitol has a significant effect in modulating wine protein haze when in 

the presence of some wine <3 kDa methanol soluble compounds.  
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Further work needs to be developed in order to qualify/quantify the exact role of each 

fraction/compound in the wine matrix, along with the precise quantification of L-threitol, which 

can lead to the identification of the X factor. Crossing this information with other factors 

previously identified, like the wine pH, may contribute to the development of an indispensable 

tool for winemakers to assess more precisely the amounts of bentonite that they have to 

apply to wines in order to achieve their protein stabilization. After validating the effect of the X 

factor in several wines, the next step will be the development of a kit, suitable to be used 

under cellar conditions, capable of accurately predict the risk of protein haze formation, 

identifying the situations in which bentonite fining is mandatory. 

As previously described, the addition of bentonite to wine, removing the protein present, 

is currently the most effective way to stabilize it for protein haze formation. However, due to 

its non-selectiveness for proteins, fining with bentonite interferes negatively with the 

organoleptic characteristics of the wine since it adsorves other molecules with positive 

electric charge (Miller et al., 1985; Rankine 1989; Voilley et al., 1990). Consequently, it is 

necessary to develop a new methodology, suitable to use under cellar conditions, capable of 

removing, in a way as specific as possible, the X factor from wines, thus avoiding the use of 

bentonite.  

The identification of the X factor may also open new investigation lines such as the 

characterization of the factors leading the presence / accumulation of the X factor in wines, 

including factors of biochemical (e.g. gene expression), physiological / pathological (e.g. 

weather conditions and dominant pathogenic agents during the growing season), genetic 

(e.g. grape variety) and technological nature (e.g. technology used in winemaking). After 

characterization of these factors, it will be of great interest to describe the conditions that will 

minimize the X factor content in wines.  
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