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Diversity of seed mineral composition of Phaseolus vulgaris L. germplasm
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A B S T R A C T

A collection of 155 accessions of ancient Portuguese common beans (Phaseolus vulgaris L.) was evaluated

in relation to the content of 8 minerals (Zn, Cu, Fe, Mn, Ca, Mg, P and K) important for human nutrition. A

high degree of variability for P, Fe, Zn, Cu, Mn and Ca was observed in the collection. Total correlation

matrix analysis revealed the existence of two important sets of strong positive correlations (P � 0.0001),

one involving P, Fe, Zn, Cu and protein, and the other Ca and Mn. The principal component analysis

showed that Zn, Fe and Cu are highly correlated to the first component (27% of variability) and Mn and Ca

to the second component (22% of the variability). The high mineral variability observed in the seeds of

this common bean collection could be useful for the selection of cultivars with higher nutrition value and

for the improvement of seed nutrition quality traits.

� 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Legume seeds are an important staple food and source of
dietary minerals that potentially provide all of the 15 essential
minerals required by humans (Welch et al., 2000). The common
bean (Phaseolus vulgaris L.) is the most important grain legume
for direct human consumption and is an extremely diverse crop
in terms of morphological variability, uses and cultivation
(Broughton et al., 2003). At average levels of usual consumption
by people of reduced economic means (15–20 kg yr�1), beans can
provide 10–20% of the adult requirement for a number of
nutrients, namely iron, phosphorus, magnesium, manganese, and
in lesser degree, zinc, copper and calcium (Broughton et al.,
2003). However, the concentrations of Fe, Zn, and Ca are low
when compared to animal food products (Wang et al., 2003).
Therefore, increasing the content of those minerals in plant food
through breeding is considered a suitable strategy to combat
mineral deficiency in human populations (Moraghan and
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Grafton, 2001). Searching for high mineral content cultivars is
thus fundamental.

The Iberian Peninsula was an important region of introduction
of the American P. vulgaris in Europe, becoming a secondary centre
of diversity (Santalla et al., 2002). P. vulgaris rapidly conquered all
of Portugal, partially replacing Vigna and the Asian Phaseolus

species. As agriculture and society have evolved together, the
current state of farming systems is the result of the interaction of
climatic, edaphic, biotic and social factors (Broughton et al., 2003);
consequently, crop seed composition has been modulated by
genotype and environmental interactions. Due to its cleistogamic
nature and the diversity of edafic climatic regions in Portugal, a
natural selection and genetic drift of P. vulgaris led to the
appearance of numerous local forms still in cultivation. Since
these local forms were grown in the same soil for centuries they are
somehow the result of the farmer’s selection, who, year after year,
chose varieties of high production.

This observation implies that P. vulgaris forms originating from
very different soil types (reflecting the geological substrates) may
have quite distinct genetic characteristics in relation to mineral
uptake and use efficiency. This fact together with the suggestion
that P. vulgaris seeds are a good nutritional source of several
minerals prompted us to evaluate the mineral composition of a
collection of local accessions from all over the country.
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Table 1
Physical characteristics and chemical data (0–30 cm depth layer)

from the Anthrosol (WRB, 2006) where the 155 P. vulgaris

accessions were grown.

Coarse sand (%) 12.8

Fine sand (%) 29.7

Silt (%) 24.5

Clay (%) 33.0

pH (H2O) 7.9

CaCO3 (%) 6.0

Organic matter (%) 1.51

Organic C (%) 0.88

Total N (%) 0.14

Available PO4 (mg kg�1) 422

Available K2O (mg kg�1) 378

Available Cu (mg kg�1) 1.35

Available Fe (mg kg�1) 3.81

Available Mn (mg kg�1) 7.77

Available Zn (mg kg�1) 0.87
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2. Material and methods

2.1. Plant sampling

The 155 accessions studied in this work belong to the P.

vulgaris germplasm collection stored at the EAN Germplasm
Bank (Oeiras, Portugal), and were originated from the regions
shown in Fig. 1.

All the seeds assayed resulted from plants grown at Oeiras
(Quinta do Marquês) in the same Anthrosol (WRB, 2006)
fertilised at sowing with 300 kg/ha 1:3:3 (N:P:K) and with the
characteristics shown in Table 1. The main soil characteristics
were determined through the methods adopted by the Soil
Conservation Service (1972): Soil PO4 and K2O availability was
determined by the Egner–Riehm method (Egner et al., 1960),
and Cu, Zn, Fe and Mn were extracted by the diethylenetria-
minepentaacetic acid (DTPA) method (Lindsay and Norvell,
1978), and analysed by atomic absorption spectrometry as
described below for the seeds.

From each accession, 20 plants were grown in a row and care
was taken to check that each plant pertained to that specific
accession. At harvest, each plant was collected individually and the
seeds of 3 of its representative pods were gathered. A biological
sample refers to 3 seeds from an individual plant.
Fig. 1. Map of Portugal showing the collection sites of the several P. vulgaris

accessions studied in the present work (ESRI1 ArcMapTM 9.1).
2.2. Mineral composition analysis

For the determination of the seed minerals, Zn, P, Cu, Fe, Mg,
Mn, Ca and K, triplicate biological samples (n = 3) from each
accession were analysed. The seeds were washed with deionised
water, dried at 80 8C, weighed and ashed at 450 8C in a muffle
furnace. The ashes were dissolved in 5 mL of 20% (v/v) HCl and
diluted to a volume of 100 mL with deionised water. This solution
was analysed for Cu, Zn, Fe, Mn, Ca, Mg and K using a Perkin–Elmer
5000 flame (air–acetylene) atomic absorption spectrometer with
hollow-cathode lamp tubes (Norwalk, Connecticut, USA), accord-
ing to Chapman and Pratt (1961) and Anon. (1971). Phosphorus
was measured in 5 mL of the same solution by the colorimetric
molybdenum ammonium vanadate method (Black et al., 1965),
using a Hitachi Perkin–Elmer Model-139 UV–vis spectrophotom-
eter (Tokyo, Japan), at the wavelength of 470 nm.

For the atomic absorption spectrophotometer analyses, the
linear ranges (mg l�1) were: Ca = 7; Cu and Fe = 5; Mn = 3; K = 2;
Zn = 1 and Mg = 0.5; the detection limits (mg l�1) were: Fe = 0.01;
K = 0.005; Mn, Cu, and Zn = 0.002; Ca = 0.001; Mg = 0.0001; the
sensitivities for 1% absorption (mg l�1) were: Fe and Cu = 0.1;
Ca = 0.07; Mn = 0.05; K 0.02; Zn = 0.015 and Mg = 0.007. For the
UV–vis spectrophotometer P determination, the linear range was
20.0 mg l�1.

2.3. Protein analysis

Seed protein content was determined by Palha et al. (1988), and
calculated from the total nitrogen measured by the Kjeldhal
method.

2.4. Statistical analysis

The data were analysed by principal component analysis (PCA),
using the correlation matrix, to determine the variables containing
the maximum possible variance (first, second and third coordinate
axes). The statistical software utilised was the JMP In 5.1 (SAS
Institute, Cary, NC, USA).

3. Results

Table 2 shows the concentration of Zn, Cu, Fe, Mg, Mn, Ca, K and
P in the seeds of the 155 accessions of P. vulgaris representative of
the Portuguese cultivation regions shown in Fig. 1. Table 2 also
contains the seed protein content, as determined by Palha et al.
(1988).

High diversity in the mineral composition was found for the
accessions of this germplasm collection. For each of the 8 minerals



Table 2
Mineral (Zn, P, Cu, Fe, Mg, Mn, Ca and K) and protein content, and weight of 100 seeds, in 155 common bean accessions of a Portuguese germplasm collection. Average values (and standard errors) from three independent samples are

represented.

Accession Weight of

100 seeds (g)

Zn (ppm) Cu (ppm) Fe (ppm) Mn (ppm) Ca (%) Mg (%) K (%) P (%) Proteina (%) Region

1 70.9�2.1 36.9�0.5 11.8�0.7 65.3�9.3 12.7�0.4 0.089� 0.006 0.191� 0.005 1.85�0.07 0.542� 0.026 24.9 Leiria

2A 46.2�0.7 27.5�0.8 9.5�0.5 37.5�3.9 11.9�0.5 0.102� 0.017 0.208� 0.002 1.97�0.05 0.465� 0.046 27.6 Leiria

2B 60.6�1.9 33.6�1.9 11.6�1.4 55.2�5.4 10.6�0.6 0.101� 0.015 0.206� 0.021 1.95�0.02 0.519� 0.033 25.7 Leiria

3 68.6�2.4 36.2�3.8 9.2�0.6 53.9�4.8 11.8�0.7 0.089� 0.015 0.216� 0.005 1.81�0.10 0.552� 0.058 27.6 Leiria

4 58.3�1.5 41.4�1.9 10.5�0.4 84.6�3.7 10.6�0.5 0.112�0.013 0.220� 0.102 1.84�0.05 0.489� 0.010 29.9 Leiria

5 57.5�1.8 29.4�1.0 8.9�2.1 45.4�3.7 8.4�0.3 0.095� 0.007 0.177� 0.030 1.75�0.08 0.514� 0.026 27.0 Leiria

6B 39.2�2.5 30.6�4.0 9.1�0.8 53.5�3.4 10.4�0.4 0.090� 0.023 0.242� 0.020 1.74�0.10 0.496� 0.038 25.8 Leiria

7 56.3�1.8 31.6�2.8 11.5�0.7 50.8�5.1 10.1�0.6 0.137�0.048 0.226� 0.022 1.73�0.01 0.528� 0.041 26.2 Guarda

8A 68.7�2.8 32.8�2.3 8.9�1.1 49.6�3.0 10.4�0.6 0.124�0.008 0.221� 0.012 1.65�0.11 0.568� 0.045 Guarda

8B 67.0�2.7 32.0�1.7 7.5�0.1 52.9�3.9 10.3�0.5 0.151�0.028 0.210� 0.006 1.64�0.08 0.498� 0.013 Guarda

10 55.4�0.9 42.8�4.5 10.5�0.6 63.8�1.5 12.2�0.6 0.125�0.009 0.192� 0.001 1.64�0.05 0.557� 0.050 27.5 Guarda

11 41.7�2.5 29.4�3.5 8.7�0.2 39.3�7.4 10.0� 0.7 0.107� 0.029 0.204� 0.005 1.66�0.03 0.478� 0.035 25.3 Guarda

12 62.0�0.9 35.4�6.5 11.0�0.6 54.1�2.9 11.2�0.6 0.098� 0.006 0.180� 0.001 1.66�0.13 0.510�0.025 Guarda

13 45.5�1.2 24.7�3.7 9.7�1.2 48.6�9.0 11.3�0.3 0.136�0.018 0.201� 0.009 1.74�0.06 0.445� 0.045 27.2 Guarda

14 51.8�0.8 27.2�0.7 9.5�0.8 42.1�4.9 12.9�1.2 0.152�0.033 0.186� 0.014 1.61�0.05 0.493� 0.095 25.3 Guarda

15 47.1�2.4 31.3�4.9 8.3�0.1 52.0�4.8 10.2�0.4 0.076� 0.012 0.193� 0.005 1.91�0.05 0.487� 0.039 Sabugal

16 59.8�0.3 31.6�0.4 10.5�0.6 52.4�2.5 10.6�0.7 0.112�0.020 0.202� 0.009 1.83�0.13 0.511� 0.014 25.0 Sabugal

17 50.2�3.3 34.4�2.1 11.1�0.9 59.9�3.5 11.1�0.1 0.137�0.019 0.217� 0.008 1.77�0.05 0.519� 0.026 24.0 Sabugal

18 37.5�2.9 41.4�4.6 12.6�0.6 70.2�8.4 16.2�1.5 0.199�0.037 0.253� 0.026 1.65�0.05 0.658� 0.061 26.9 Sabugal

19 48.9�1.0 29.5�2.4 9.3�0.6 46.6�4.4 11.2�0.8 0.110� 0.005 0.202� 0.003 1.86�0.07 0.484� 0.016 23.5 Sabugal

20 66.0�3.1 26.8�1.8 10.0�1.0 39.8�3.0 8.6�0.7 0.101� 0.015 0.158� 0.006 1.60�0.08 0.479� 0.041 25.3 Sabugal

22 28.1�1.4 27.6�1.0 9.0�0.3 48.4�5.2 13.1�1.1 0.106� 0.010 0.200�0.008 1.66�0.03 0.462� 0.034 25.9 Sabugal

23 43.4�0.5 34.4�2.9 10.6�0.7 59.3�2.3 9.8�1.2 0.126�0.021 0.179� 0.006 1.65�0.06 0.505�0.028 23.5 Braga

24A 53.2�0.9 34.5�3.2 11.3�0.6 67.1�3.5 10.9�0.7 0.122�0.022 0.187� 0.010 1.73�0.01 0.563� 0.038 28.2 Guarda

25 43.4�1.7 28.9�2.2 8.8�0.2 41.1�4.8 9.8�0.2 0.125�0.011 0.200�0.004 1.67�0.01 0.492� 0.010 24.6 Guarda

26 67.8�1.0 33.9�1.4 12.2�0.4 52.2�5.8 10.4�0.5 0.133�0.016 0.212� 0.005 1.64�0.12 0.560�0.021 27.6 Guarda

28 49.1�4.0 37.4�5.2 10.3�0.8 46.4�2.9 9.4�0.4 0.121�0.014 0.246� 0.031 1.64�0.11 0.527� 0.019 25.1 Guarda

31 66.5�3.6 31.9�2.9 10.8�0.3 49.0�7.7 10.5�0.4 0.122�0.016 0.224� 0.006 1.56�0.05 0.501�0.052 Guarda

32 57.3�0.6 35.4�1.6 10.0�0.4 56.7�6.7 8.7�0.3 0.088� 0.003 0.196� 0.006 1.59�0.03 0.528� 0.022 25.5 Guarda

33 46.6�1.1 41.3�8.1 11.4�0.2 57.1�3.6 10.5�0.6 0.095� 0.017 0.211� 0.006 1.81�0.05 0.583� 0.023 28.8 Guarda

34 61.1�2.1 37.7�2.6 11.1�0.3 57.5�4.9 11.4�0.8 0.124�0.018 0.206� 0.006 1.54�0.08 0.596� 0.004 25.5 Guarda

35 38.7�1.0 32.6�2.4 10.2�0.1 51.0�1.5 9.9�0.5 0.109� 0.013 0.176� 0.003 1.59�0.01 0.510�0.027 24.0 Guarda

36 32.4�0.7 38.1�1.9 12.7�0.7 56.3�4.2 10.6�0.6 0.136�0.019 0.201� 0.008 2.04�0.08 0.572� 0.039 26.6 Guarda

37 46.1�1.1 36.4�0.9 12.8�0.6 59.8�4.7 11.6�0.6 0.130� 0.017 0.169� 0.005 1.60�0.03 0.592� 0.022 30.0 Guarda

39 65.9�4.1 32.1�2.2 11.2�0.2 42.6�2.1 9.8�0.2 0.097� 0.004 0.155� 0.005 1.34�0.05 0.528� 0.007 29.7 Guarda

43 56.8�3.0 36.2�1.7 11.5�0.4 54.5�2.8 11.4�1.8 0.158�0.020 0.185� 0.015 1.48�0.04 0.516� 0.005 27.5 Guarda

46 51.5�0.3 32.3�2.1 9.9�0.5 39.7�4.3 10.8�0.6 0.120� 0.006 0.161� 0.001 1.26�0.02 0.474� 0.013 Guarda

47 51.3�1.6 27.5�0.6 9.0�0.7 37.2�1.8 12.3�1.5 0.180� 0.017 0.191� 0.004 1.58�0.05 0.453� 0.002 25.4 Guarda

48 42.6�0.6 43.7�10.2 11.7�1.6 48.7�6.6 11.1�0.9 0.105� 0.003 0.178� 0.009 1.55�0.10 0.629� 0.089 29.3 Guarda

49 33.8�0.8 37.7�5.6 10.7�0.6 51.5�6.7 11.2�1.8 0.139�0.039 0.171� 0.005 1.35�0.06 0.596� 0.033 25.5 Guarda

51A 43.2�1.8 40.1�1.6 9.6�0.4 60.3�4.2 12.6�1.0 0.135�0.015 0.175� 0.001 1.60�0.03 0.498� 0.031 28.7 Guarda

51B 36.2�0.9 42.5�2.2 10.4�0.3 64.5�4.6 12.9�0.3 0.137�0.002 0.168� 0.015 1.65�0.07 0.547� 0.009 27.7 Guarda

52 54.8�0.5 35.7�1.4 11.0�0.4 55.5�3.4 11.0� 0.2 0.121�0.009 0.152� 0.005 1.72�0.03 0.557� 0.045 Guarda

54 52.5�0.9 36.5�1.0 13.5�1.0 61.7�2.2 12.8�0.7 0.087� 0.010 0.172� 0.009 1.63�0.11 0.537� 0.010 28.5 Aveiro

55 50.8�2.9 28.2�1.3 8.4�0.3 52.7�3.8 14.1�0.1 0.188�0.004 0.156� 0.005 1.49�0.05 0.461� 0.025 27.8 Aveiro

56A 58.0�0.5 42.3�2.0 10.2�1.0 50.2�3.4 12.4�0.8 0.157�0.009 0.228� 0.002 1.64�0.02 0.615� 0.046 26.7 Aveiro

56B 52.4�0.6 36.5�2.0 12.9�1.8 67.5�12.3 15.8�1.4 0.138�0.012 0.189� 0.010 1.82�0.05 0.554� 0.030 25.5 Aveiro

56C 47.5�1.6 41.3�2.3 11.8�0.5 74.5�9.7 14.3�2.0 0.167�0.035 0.186� 0.010 1.71�0.06 0.487� 0.046 Aveiro

57A 42.0�1.2 35.1�3.0 11.6�0.2 68.9�4.1 12.9�1.3 0.150� 0.010 0.156� 0.001 1.66�0.11 0.521� 0.018 26.4 Aveiro

57B 36.7�1.6 34.4�0.2 11.7�0.6 54.4�5.1 13.1�0.5 0.101� 0.022 0.179� 0.008 1.68�0.10 0.513� 0.034 26.6 Aveiro

58 41.7�0.7 36.6�3.2 11.4�0.7 67.2�5.6 11.7�0.6 0.107� 0.015 0.161� 0.003 1.58�0.04 0.533� 0.038 24.9 Aveiro

59 47.0�0.6 36.0�2.2 11.5�0.1 70.3�3.8 11.9�0.2 0.114�0.012 0.175� 0.002 1.70�0.03 0.585� 0.016 26.0 Minho

60 58.2�1.5 41.8�3.1 12.2�0.3 45.8�1.8 9.8�0.7 0.082� 0.002 0.150� 0.004 1.69�0.06 0.576� 0.053 28.7 Minho

61 59.4�1.0 35.4�2.7 8.8�0.3 62.6�6.4 14.7�1.8 0.200� 0.010 0.166� 0.006 1.57�0.05 0.424� 0.015 25.4 Minho
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Table 2 (Continued )

Accession Weight of

100 seeds (g)

Zn (ppm) Cu (ppm) Fe (ppm) Mn (ppm) Ca (%) Mg (%) K (%) P (%) Proteina (%) Region

62 24.9� 0.3 37.5�1.0 9.9�2.0 77.6�6.1 16.0�0.9 0.158� 0.007 0.217�0.017 1.48� 0.03 0.545�0.015 23.6 Minho

64A 40.5� 0.5 33.5�1.6 8.7�1.0 68.6�2.7 13.2� 0.4 0.195� 0.027 0.208�0.005 1.47� 0.06 0.513�0.043 24.4 Minho

64B 42.0�1.3 37.6�2.5 10.8� 0.2 75.9�3.5 15.7�2.4 0.151� 0.033 0.187�0.008 1.50� 0.03 0.544�0.029 Minho

65 54.6� 0.2 32.0�0.9 9.7� 0.6 54.5�1.6 12.5� 0.4 0.123� 0.013 0.185�0.001 1.41� 0.08 0.466�0.025 26.0 Minho

66A 47.3�1.2 34.4�1.4 11.9� 0.4 56.3�4.0 10.2� 0.7 0.094�0.020 0.202�0.002 1.40� 0.03 0.580� 0.033 27.4 Minho

66B 43.6�3.0 35.8� 0.9 12.4� 0.5 53.6�3.9 11.4� 0.3 0.129� 0.018 0.181�0.005 1.33� 0.03 0.566�0.034 27.4

67A 58.6�1.1 32.9�1.2 11.0�0.9 52.7�3.8 12.3� 0.5 0.143� 0.007 0.161�0.002 1.31� 0.02 0.516�0.030 23.8 Minho

67B 49.3�2.5 33.4�1.2 8.7� 0.4 49.0�1.2 9.9� 0.6 0.125� 0.007 0.194�0.003 1.36� 0.10 0.499�0.063 23.8

68 50.7�1.2 34.1�4.4 7.8� 0.6 55.5�6.1 11.1� 0.5 0.127� 0.015 0.179�0.003 1.58� 0.10 0.459�0.063 23.5 Minho

69 70.9�1.8 44.0�1.6 12.1�1.5 56.9�9.3 11.0�0.2 0.103�0.001 0.168�0.011 1.53� 0.02 0.543�0.036 27.6 Oeste

71 45.3�1.3 35.9� 0.7 10.2� 0.8 64.6�3.7 10.5� 0.4 0.117� 0.014 0.184�0.003 1.55� 0.05 0.512�0.017 25.4 Oeste

72 50.9� 0.6 32.5�2.8 8.1� 0.5 59.0�4.2 14.1�2.1 0.152� 0.014 0.178�0.003 1.59� 0.14 0.486�0.058 24.0 Oeste

76 69.0�5.6 41.1�4.5 10.5� 0.5 71.3�5.0 10.8�1.1 0.093�0.012 0.192�0.012 1.45� 0.03 0.601� 0.035 25.4 Algarve

77 54.6�1.8 37.8�1.4 9.8� 0.3 73.9�6.5 9.9� 0.2 0.102�0.021 0.149�0.001 1.71� 0.10 0.529�0.020 28.3 Algarve

78A 59.8�1.8 36.8� 0.8 10.5� 0.5 71.6�3.8 10.2�1.0 0.074�0.005 0.146�0.004 1.80� 0.08 0.564�0.023 29.6 Algarve

79 44.8�1.1 33.1�3.6 9.3�1.4 50.8�6.8 12.4�1.3 0.116� 0.026 0.176�0.003 1.62� 0.14 0.474�0.033 26.5 Algarve

80A 58.9� 0.4 36.2� 0.8 6.5� 0.7 67.2�8.6 14.4�1.0 0.122� 0.012 0.178�0.007 1.46� 0.02 0.538�0.035 27.8 Algarve

80B 52.6�2.4 40.6�5.9 7.7�1.3 76.1�3.8 15.2�1.1 0.123� 0.017 0.163�0.005 1.75� 0.18 0.564�0.034 27.8

81 48.5� 0.5 41.9�2.1 12.4� 0.7 83.7�5.0 10.1� 0.6 0.117� 0.016 0.168�0.002 1.81� 0.04 0.570� 0.017 29.5 Guarda

82 31.2�2.6 26.7�3.0 7.7�1.1 49.2�5.2 12.0�1.4 0.123� 0.032 0.208�0.012 1.33� 0.06 0.458�0.044 25.7 Açores

83 43.1�3.5 28.8�2.1 7.2� 0.9 54.6�5.2 11.4� 0.9 0.174� 0.014 0.188�0.009 1.34� 0.02 0.432�0.036 26.0 Viseu

85 41.4� 0.6 36.3�2.8 10.1� 0.8 63.2�9.7 16.1�1.3 0.090�0.016 0.192�0.009 1.60� 0.02 0.535�0.056 28.1 Viseu

86A 60.2� 0.6 33.8� 0.7 10.5� 0.2 63.8�2.1 10.7� 0.8 0.120�0.010 0.160�0.004 1.64� 0.03 0.421�0.019 25.6 Viseu

86B 42.3�2.2 37.7�2.1 8.7� 0.9 59.9�3.1 10.1� 0.2 0.102�0.005 0.179�0.004 1.78� 0.13 0.438�0.033 Viseu

87 71.7�1.3 35.7�2.6 12.4�1.0 52.7�1.0 10.2� 0.3 0.124� 0.018 0.148�0.005 1.76� 0.28 0.496�0.015 25.5 Viseu

88 64.3� 0.9 34.8�1.6 11.0�0.3 61.8�3.7 11.1� 0.5 0.125� 0.004 0.151�0.001 1.80� 0.03 0.534�0.025 26.4 Viseu

89A 61.1�2.5 36.0�1.5 10.5�1.3 64.5�5.1 12.5�1.1 0.125� 0.016 0.177�0.005 1.36� 0.07 0.480� 0.044 25.4 Viseu

90 38.1� 0.5 43.4�2.6 10.9� 0.2 88.4�4.0 12.7� 0.3 0.157� 0.024 0.154�0.001 1.59� 0.11 0.585�0.034 27.9 Lisboa

91 86.0�4.7 27.4�2.3 5.4� 0.3 41.9�5.4 15.5�1.3 0.121� 0.008 0.228�0.013 2.07� 0.14 0.458�0.051 Faro

98A 65.0�3.6 28.4�1.9 8.7�1.4 52.3�4.6 13.3� 0.5 0.086�0.021 0.192�0.009 1.75� 0.03 0.558�0.169 28.9 Faro

99A 40.0�0.9 37.1�3.0 6.5� 0.6 61.7�4.7 20.0�2.1 0.137� 0.014 0.193�0.011 1.76� 0.01 0.498�0.025 Faro

100 35.9�4.8 37.4�1.5 10.9� 0.9 67.3�1.0 13.2�1.0 0.142� 0.028 0.172�0.008 1.58� 0.08 0.550� 0.019 27.0 Tavira

101 37.7�1.5 31.4� 0.4 5.7� 0.5 54.1�2.1 11.9� 0.4 0.099�0.006 0.202�0.005 1.29� 0.03 0.540� 0.128 23.3 Faro

102 53.1�4.5 29.7�1.8 4.7�1.1 49.2�3.6 15.0�1.5 0.158� 0.011 0.182�0.006 1.69� 0.14 0.353�0.085 – Faro

103 48.4�1.9 36.3�1.7 12.7� 0.4 68.9�7.6 11.7� 0.6 0.110�0.016 0.207�0.006 1.39� 0.4 0.604� 0.011 28.9 Loulé

105 43.0�0.5 33.7�1.8 11.2� 0.2 66.5�6.6 11.8�1.1 0.132� 0.007 0.211�0.014 1.46� 0.08 0.470� 0.019 23.4 Tavira

106 42.7�1.0 35.3� 0.9 13.3� 0.5 59.3�3.6 16.5� 0.6 0.174� 0.023 0.204�0.004 1.65� 0.02 0.537�0.027 27.0 Faro

107 41.1� 0.4 45.3�2.7 10.8� 0.3 80.0�6.9 15.6� 0.5 0.176� 0.020 0.185�0.006 1.47� 0.07 0.649�0.029 28.5 Tavira

108A 33.6�2.5 34.0�1.8 10.4� 0.4 52.1�3.4 15.0�1.2 0.216� 0.025 0.170�0.005 1.35� 0.08 0.513�0.006 23.9 Tavira

108C 42.4�2.0 33.9� 0.8 12.2� 0.3 60.6�6.3 11.8� 0.9 0.205�0.009 0.167�0.002 1.36� 0.03 0.487�0.015 24.0 Loulé

109 36.3�2.3 36.0�3.3 9.9�1.0 66.0�10.0 12.9� 0.6 0.172� 0.014 0.175�0.001 1.57� 0.08 0.797�0.402 27.1 Faro

111B 28.2�2.1 43.5�2.0 10.9�1.2 63.1�4.3 11.2� 0.4 0.135� 0.021 0.197�0.018 1.85� 0.16 0.554�0.030 26.7 Faro

112 27.0�1.4 33.7�1.8 9.0�1.0 49.3�1.4 12.9� 0.6 0.111� 0.010 0.187�0.012 1.52� 0.09 0.475�0.019 25.5 Tavira

113 42.9� 0.5 36.0�1.0 10.4� 0.6 62.0�11.5 10.5�1.1 0.132� 0.016 0.168�0.012 1.67� 0.18 0.470� 0.034 21.7 Tavira

114 35.5�3.0 26.2�3.5 10.5�1.0 61.9�1.4 12.4� 0.1 0.116� 0.012 0.242�0.009 1.44� 0.07 0.496�0.034 25.9 Faro

116 35.1� 0.3 31.6� 0.5 10.5� 0.6 55.1�6.3 10.7�1.0 0.156� 0.007 0.217�0.013 1.42� 0.08 0.476�0.017 23.7 Loulé

118 65.3�2.2 34.5�2.6 9.2�1.1 55.6�4.4 10.0�0.8 0.139� 0.002 0.175�0.005 1.62� 0.05 0.493�0.042 24.6 Faro

119 32.8�3.8 41.0�1.5 10.1� 0.3 56.2�1.2 11.0�0.5 0.107�0.016 0.213�0.014 2.12� 0.14 0.589�0.028 25.8 Tavira

120 45.4�2.2 29.3�3.0 9.5�1.0 54.9�7.1 13.5�2.1 0.131� 0.015 0.211�0.019 1.66� 0.10 0.430� 0.039 25.3 Algarve

121 66.9�2.6 29.1�2.6 9.6�1.1 53.6�9.7 8.9� 0.6 0.109�0.004 0.192�0.008 1.70� 0.03 0.543�0.071 26.0 Algarve

125 42.7�3.0 35.1�2.7 8.2�1.0 60.3�9.2 11.8� 0.6 0.171� 0.018 0.187�0.016 1.52� 0.14 0.480� 0.054 Algarve

126 46.3�1.7 30.8�1.9 8.7� 0.3 54.1�10.3 17.8�2.7 0.165� 0.028 0.175�0.007 1.55� 0.09 0.472�0.040 Faro

127 56.2�2.5 34.8�1.5 8.8�1.0 43.9�1.6 14.9�2.1 0.093�0.012 0.165�0.008 1.62� 0.11 0.439�0.050 25.4 Faro

129 40.4�1.2 26.8�2.5 8.4� 0.4 39.5�3.6 15.0�0.1 0.247� 0.060 0.206�0.012 1.77� 0.12 0.432�0.027 26.4 Faro

131 41.3� 0.7 38.9�4.9 8.6�1.0 57.1�11.8 18.6�7.2 0.136� 0.015 0.200� 0.001 1.71� 0.05 0.528�0.032 – Faro

132 63.8� 0.8 33.7�1.2 10.2� 0.4 58.2�3.7 10.7� 0.4 0.104�0.001 0.179�0.014 1.69� 0.09 0.540� 0.005 27.0 Faro
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134 79.0�0.3 23.8�2.5 8.8�0.3 54.2�4.7 15.7�1.5 0.174�0.004 0.173� 0.002 1.66�0.06 0.524� 0.035 Faro

136 75.1�2.2 23.9�1.9 8.2�0.7 34.0�4.1 11.4�0.8 0.143�0.009 0.173� 0.009 1.54�0.04 0.478� 0.044 Faro

146 53.0�1.9 41.1�2.1 7.9�0.8 50.4�1.7 17.2�2.3 0.186�0.023 0.202� 0.003 1.34�0.09 0.441� 0.067 Faro

147 47.2�1.1 30.0� 0.8 9.8�1.0 44.6�1.9 17.4�1.6 0.153�0.020 0.195� 0.005 1.72�0.10 0.604�0.021 Faro

151 80.0�5.7 29.4�5.8 7.2�0.8 47.0�14.6 17.5�8.6 0.122�0.013 0.205� 0.021 1.89�0.13 0.535� 0.025 Faro

155 53.0�1.4 35.9�2.3 10.7�1.3 55.3�7.3 16.9�2.1 0.116�0.012 0.209� 0.009 1.71�0.05 0.418� 0.038 26.0 Faro

156 63.9�1.4 32.7�3.0 8.9�1.0 55.5�8.0 11.1�0.6 0.093� 0.013 0.207� 0.010 1.80�0.05 0.389� 0.030 26.4 Faro

157 46.0�1.5 34.8�1.6 10.3�0.7 57.6�4.6 16.2�1.6 0.141�0.009 0.200�0.008 1.59�0.07 0.412� 0.027 25.5 Faro

158 50.0�1.4 31.4�1.8 11.5�0.1 42.9�2.1 12.5�1.7 0.145�0.026 0.215� 0.007 1.76�0.09 0.493� 0.203 29.7 Faro

161 54.6�1.8 38.0�3.9 8.5�1.0 72.7�1.2 16.5�2.4 0.168�0.027 0.227� 0.002 1.52�0.05 0.476� 0.088 26.2 Oeste

167 49.3�1.8 31.1�2.9 10.2�0.9 43.1�3.4 13.2�1.4 0.167�0.009 0.185� 0.008 1.69�0.07 0.428� 0.032 28.4 Oeste

168 43.2�2.4 33.0�2.5 7.5�1.1 51.7�8.9 10.2�1.2 0.114�0.007 0.199� 0.015 1.71�0.07 0.458� 0.020 29.4 Oeste

174 66.4�3.2 36.0� 0.8 11.2�1.8 47.2�2.5 10.8�0.2 0.119�0.016 0.182� 0.009 1.52�0.03 0.496� 0.055 26.9 Oeste

175 63.6�2.1 33.2�4.5 10.7�1.6 40.1�4.6 11.2�0.7 0.144�0.026 0.174� 0.006 1.69�0.06 0.467� 0.038 Oeste

199 48.9�2.2 28.4�3.4 12.6�0.8 56.7�4.1 11.3�1.0 0.106� 0.012 0.186� 0.006 1.63�0.06 0.472� 0.029 22.6 Oeste

205 58.6�5.5 33.6�1.1 6.8�0.2 56.2�2.4 11.4�0.5 0.099� 0.003 0.192� 0.008 1.64�0.13 0.454� 0.048 24.1 Oeste

220 55.4�1.4 19.7�2.7 6.4�0.3 52.0�3.5 9.7�0.6 0.068� 0.013 0.178� 0.007 1.46�0.06 0.502�0.047 28.0 Oeste

222 32.3�2.2 36.7�0.3 10.9�0.9 85.5�2.9 18.8�1.2 0.293�0.040 0.212� 0.010 1.34�0.10 0.383� 0.021 21.1 Oeste

224 56.6�0.4 37.2�2.3 8.9�1.1 65.5�4.6 12.5�0.6 0.153�0.004 0.184� 0.008 1.57�0.16 0.552� 0.019 29.2 Bragança

226 49.8�1.6 28.0� 0.9 9.3�0.5 38.8�3.8 13.4�0.5 0.141�0.022 0.178� 0.001 1.39�0.09 0.410�0.010 24.0 Bragança

229 46.5�2.0 35.0�2.1 11.9�0.7 83.5�8.1 16.7�0.8 0.174�0.021 0.228� 0.028 1.24�0.67 0.478� 0.093 26.2 Bragança

233 63.3�4.4 11.5�1.1 5.1�0.6 32.2� 0.8 8.0� 0.3 0.126�0.014 0.199� 0.010 1.43�0.03 0.613� 0.023 22.6 Bragança

234 55.8�2.5 20.3�2.5 9.3�1.6 66.5�1.8 13.3�1.6 0.123�0.010 0.192� 0.014 1.52�0.09 0.541� 0.019 22.2 Bragança

243 45.6�1.7 16.1�2.4 10.3�1.6 41.9�4.6 15.3�2.0 0.142�0.045 0.217� 0.011 1.35�0.15 0.564� 0.039 27.2 Bragança

245 60.8�0.8 32.9�2.9 9.3�0.3 60.6�2.2 11.0� 0.8 0.125�0.015 0.193� 0.010 1.41�0.09 0.438� 0.028 24.6 Bragança

246 70.6�6.0 35.8�4.9 10.5�1.3 73.9�3.0 15.2�2.0 0.196�0.006 0.179� 0.027 1.56�0.16 0.487� 0.114 24.6 Bragança

248 45.0�0.5 37.5�2.4 9.9�1.1 61.5�8.1 13.3�2.3 0.154�0.026 0.184� 0.002 1.49�0.13 0.493� 0.008 26.6 Miranda do Douro

249 59.5�2.1 34.2�3.1 9.7�1.1 85.8�8.1 12.7�2.1 0.087� 0.028 0.198� 0.004 1.49�0.05 0.507�0.060 26.0 Miranda do Douro

250 46.8�2.2 34.7�2.0 9.3�0.7 60.2�9.3 15.6�1.0 0.162�0.019 0.165� 0.013 1.45�0.08 0.462� 0.026 26.1 Miranda do Douro

257 36.2�1.4 36.3�1.4 9.0�0.1 49.6�3.4 16.3�0.9 0.162�0.007 0.222� 0.019 1.59�0.03 0.528� 0.024 26.2 Algarve

262 23.9�1.4 35.3�2.3 8.2�1.3 66.0�8.2 19.5�1.0 0.152�0.004 0.208� 0.006 1.57�0.14 0.479� 0.038 Cabo Verde

275A 100.4�3.1 29.8�1.2 8.5�0.7 48.4�1.3 10.2�1.4 0.076� 0.002 0.198� 0.005 1.56�0.06 0.339� 0.021 Barcelos

275B 97.3�4.0 27.8�1.7 7.0�0.3 41.4�4.7 9.8�1.3 0.120� 0.023 0.183� 0.020 1.59�0.01 0.332� 0.030 Barcelos

275R 57.8�0.9 28.9�0.7 8.8�1.1 46.0�5.3 10.7�0.2 0.127�0.010 0.169� 0.006 1.54�0.04 0.405�0.010 Barcelos

276 34.4�1.0 30.0�1.5 8.2�0.4 43.7�5.6 10.6�0.2 0.138�0.003 0.197� 0.006 1.45�0.09 0.426� 0.020 23.2 Barcelos

277 35.5�1.4 31.0� 0.3 10.0�0.3 53.3�9.4 12.2�1.1 0.136�0.013 0.128� 0.010 1.70�0.04 0.483� 0.012 22.9 Barcelos

278 36.3�1.6 35.2�0.8 9.2�0.6 61.8�3.5 16.1�2.2 0.154�0.029 0.224� 0.015 1.71�0.07 0.507�0.137 21.9 Barcelos

281 63.9�4.2 32.9�2.3 10.3�0.5 60.2�2.4 17.3�0.6 0.189�0.007 0.198� 0.014 1.65�0.04 0.393� 0.149 22.3 Barcelos

283 56.5�1.0 33.1�1.6 10.8�1.0 48.4�5.8 12.5�1.0 0.145�0.030 0.198� 0.009 1.74�0.09 0.537� 0.155 Barcelos

285 44.9�2.2 31.1�1.3 8.0�1.4 50.1�6.1 14.3�1.4 0.172�0.028 0.197� 0.009 1.57�0.12 0.411� 0.046 26.5 Barcelos

291 61.3�2.7 42.6�1.7 8.6�1.6 63.3�5.6 20.1�1.1 0.174�0.028 0.187� 0.009 1.66�0.11 0.491� 0.057 Barcelos

291E 54.5�2.0 30.5�2.3 9.8�1.0 41.3�6.4 16.3�1.3 0.099� 0.004 0.204� 0.013 1.77�0.04 0.557� 0.067 Barcelos

293 40.5�2.4 34.4�0.9 10.3�1.0 51.6�6.1 13.0� 0.7 0.125�0.036 0.198� 0.009 1.85�0.10 0.457� 0.028 Barcelos

297 24.0�0.4 34.0�1.9 11.6�0.7 61.1�6.1 18.5�1.3 0.165�0.014 0.239� 0.008 1.81�0.13 0.503�0.026 22.5 Barcelos

298 24.8�0.1 34.2�1.2 10.7�0.2 62.7�3.5 15.9�0.2 0.137�0.001 0.247� 0.010 1.57�0.02 0.489� 0.025 Barcelos

Ratio percentileb 3.0 2.2 3.8 2.3 2.2 2.700 1.600 1.5 1.700 1.4

Max 100.4 45.3 13.5 88.4 20.1 0.293 0.253 2.12 0.797 30.0

Min 3.0 11.5 4.7 32.2 8.0 0.068 0.128 1.24 0.497 21.1

a Protein content as determined by Palha et al. (1988) in 124 accessions.
b Ratio percentile 97.5%/2.5%.
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Fig. 2. Graphical representation of the correlations between the several elements

analysed in the P. vulgaris accessions (n = 155), which results from the total

correlation matrix: P � 0.0001 (triple line), P � 0.001 (double line) and P � 0.05

(single line). Negative correlations are similarly illustrated by dotted lines.
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analysed it was possible to detect many accessions with very high
seed concentration of that mineral. Particularly high levels of Fe,
Zn, P and Ca were observed, but several accessions with low levels
of seed minerals were also identified. For the micronutrient
concentrations, accessions varied from 2.5-fold for Mn to 3.9-fold
for Zn, while for the macronutrient concentrations, accessions
varied from 1.6-fold for P to 4.3-fold for Ca. Taking into
consideration the coefficient of variation, for micronutrients the
observed variation ranged from 15.3% for Zn to 20.6% for Mn, and
for macronutrients from 10.0% for K to 25.5% for Ca. These results
indicate the existence in the germplasm collection of a significant
degree of genetic variability that seems particularly relevant for
Cu, Ca, Fe, Zn and Mn.

A total correlation matrix analysis (Fig. 2) revealed two strong
sets of correlations, one associating protein, Zn, Fe, P and Cu
(P � 0.0001), and the other Ca and Mn (P � 0.0001). When partial
correlations were considered, the very strong associations Zn–Fe,
Zn–Cu, Cu–P and Ca–Mn were confirmed and it was possible to
Fig. 3. Principal component analysis of the several elements (Zn, Cu, Fe, M
classify the Fe–P association as a strong correlation ‘‘forced’’ by the
other very strong ones. We could not find any correlation between
mineral composition and the geographical origin of the accessions,
which might be due to the high soil heterogeneity in Portugal. We
could not find any correlation between mineral composition and
seed size either.

A PCA showed that Zn, Fe and Cu are highly correlated to the
first component (27% of the variability), Ca and Mn to the second
component (22% of the variability) and Mg and K to the third
component (15% of the variability) (Fig. 3).

4. Discussion

Considering the great value of traditional plant germplasm
collections, it is important to characterise them with respect to
their nutritional value. Studies on Portuguese grain legume
germplasm (Palha et al., 1988; Pereira and Tavares-de-Sousa,
1996; Pereira et al., 1998, 2006; Rodiño et al., 2001, 2003; Vaz et al.,
2004) have focused on growth habits, physiological traits and seed
protein content. We have now analysed the seed mineral content
of an important Portuguese germplasm collection of common bean
(P. vulgaris). The high variability in Fe and Zn concentration found
in Mesoamerican and Andean landraces (Beebe et al., 2000;
Moraghan and Grafton, 2001; Moraghan et al., 2002) is also
observed in the Portuguese collection, which, additionally, displays
high variability in relation to P, Mn, Ca and Cu. This information is
potentially important for breeding programs since some acces-
sions have high values of P, Zn, Fe, Cu and protein. It is also relevant
that besides the Fe–Zn positive correlation previously reported
(Welch et al., 2000) we find strong positive correlations of P–Cu, P–
protein and Ca–Mn.

Despite the detection of these correlations, little information
exists on the biochemical processes that underlie them. Concern-
ing the P–proteins correlation we might speculate that it could
reflect some kind of association existing in the protein bodies,
where protein and phosphorus (as phytate) are accumulated. The
Ca–Mn correlation highlights the problems associated with Mn
metabolism in grain legumes. Considerable variability can occur in
the Mn concentration of seeds, influencing plant growth and
development, crop yield and seed quality (Longnecker and Uren,
1990). Manganese toxicity is a major constraint for the production
of common bean in tropical and subtropical soils (Gonzalez and
Lynch, 1999), but it can be avoided if the soil Ca/Mn ratio is higher
than 80 (Bekker et al., 1994). Ca may alleviate Mn phytotoxicity
n, Ca, Mg, P and K) analysed in the P. vulgaris accessions (n = 155).
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through the inhibition of Mn absorption (Bekker et al., 1994) and
translocation to the shoots (Alam et al., 2006). In our study, Mn
toxicity during common bean development was not expected
because the soil Ca/Mn ratio was �3000. Interestingly, Mn
accumulation in seeds does not seem to be negatively affected
by Ca. On the contrary, we observed a strong positive Ca–Mn
correlation that was similarly found in Arabidopsis seeds
(Vreugdenhil et al., 2004).

When considering the nutrition potentialities of this common
bean collection we should emphasise the importance of legumes
(in particular common beans) for direct human consumption
worldwide (Broughton et al., 2003) and the relevance of grain
legumes as mineral suppliers (Welch et al., 2000). Deficiencies in
essential mineral cations affect large populations in several parts of
the world, as it is well known for Fe and Zn. The importance for the
human nutrition of P, Cu, Ca and Mn, in addition to Zn and Fe
should also be taken into consideration (Solomons and Ruz, 1998).
For instance, Mn deficiency has been detected in animals, and it
was also observed that high dietary intake of Ca, P and Fe reduces
Mn absorption (Hathcock, 2004). So, the relevance of the observed
Ca–Mn strong positive correlation in the common beans should be
evaluated in terms of nutritional Mn bioavailability.

Our results, besides expressing the importance of the Portu-
guese common bean germplasm collection, raise several questions
of a physiological and biochemical nature, indicating that
processes that culminate in the mineral storage in the seeds are
poorly understood. Additional studies are needed to understand
the integration of all those processes and their implications
regarding animal and human nutrition.
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