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Abstract

In the college admissions problem, we consider the incentives confronting agents

who face the prospect of being matched by a random stable mechanism. We provide

a fairly complete characterization of ordinal equilbria. Namely, every ordinal equilib-

rium yields a degenerate probability distribution. Furthermore, individual rationality

is a necessary and su¢ cient condition for an equilibrium outcome, while stability is

guaranteed in ordinal equilibrium where �rms act straightforwardly. Finally, we re-

late equilibrium behavior in random and in deterministic mechanisms.
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1 Introduction

The study of two-sided matching has been mainly devoted to centralized markets. These

matching markets work by having each agent of the two sides of the market submit a

rank ordered preference list of acceptable matches to a central clearinghouse, which then

produces a matching by processing all the preference lists according to some algorithm.

Typically, such mechanisms are deterministic in the sense that the outcome depends on

the submitted lists in a way that involves no element of chance. As a consequence, the

existing results do not generally allow us to address behavior in many labor markets and

other two-sided matching situations where lotteries ultimately determine the outcome. In

discrete problems where agents have opposite interests randomization is surely one of the

most practical tools to achieve procedural fairness.1 Hence, equity considerations provide

an important justi�cation for the introduction of chance in many instances of centralized

matching. On the other hand, lotteries are especially attractive as a means of representing

the frictions of a decentralized market. Indeed, in the extremely complex environment of

a real life market, decentralized decision making will often lead to uncertain outcomes:

the question of who will match with whom depends on the realization of random events�

random meetings.

This paper studies a class of matching mechanisms that are random: given agents�be-

havior, chance determines the �nal outcome. These mechanisms may be used in centralized

markets as a means to promote procedural fairness. Or they may arise in the context of

decentralized decision making: starting from an arbitrary matching, agents from the two

sides of the market meet bilaterally in a random fashion. We assume that each individual

has preferences over the other side of the market and the prospect of being unmatched;

however, they are not compelled to behave in a straightforward manner, according to these

true preferences. Instead, agents are confronted with a game in which they act in what

they perceive to be their own best interest. Hence, upon meeting, the paired agents match

1At least to move towards procedural fairness. A random matching mechanism is procedurally fair

whenever the sequence of moves for the agents is drawn from a uniform distribution. See Moulin (1997,

2003).
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if this is consistent with their strategies, and separate otherwise. Since one of the clearest

lessons from the study of deterministic procedures is that understanding such incentives

is crucial to understand the behavior of the market, the paper is devoted to equilibrium

analysis.

Our study was largely motivated by Roth and Vande Vate (1990, 1991). In the context

of the marriage problem where matching is one-to-one, Roth and Vande Vate (1990) proved

that, starting from an arbitrary matching, the decentralized decision making process of al-

lowing randomly chosen blocking pairs to match will converge to a stable matching with

probability one. Under a stable matching no individual or pair of agents has incentives to

circumvent the matching. It is argued that such process can be thought of as an approxi-

mation to real life dynamics. In the related paper Roth and Vande Vate (1991), strategic

considerations are made for the marriage market, focusing on the class of truncation strate-

gies, i.e., strategies that are order-consistent with true preferences, but may regard fewer

partners as acceptable. In a one-period game in which every agent states a list of prefer-

ences and then a matching stable with respect to those preferences is selected at random,

it is shown that all stable matchings can be reached as equilibria in truncations. However

certain unstable matchings can also arise in this way. A multi-period extension is then

considered to rule out such undesirable outcomes.

As in Roth and Vande Vate (1991) we assume that random meeting among agents

will eventually converge to a stable matching with respect to the chosen strategy pro�le.

Hence, such process induces a lottery exclusively over stable outcomes. However, the

present paper extends their contribution in two ways. First, we take equilibrium analysis

further, going beyond the analysis of truncations. A concept of equilibrium based on

�rst-order stochastic dominance is used, given that preferences are ordinal in nature and

probability distributions over matchings are to be compared. The notion of ordinal Nash

equilibrium guarantees that each agent plays his best response to the others�strategies for

every utility representation of the preferences.2

2This concept was introduced in d�Aspremont and Peleg (1988); it has been used in the context of voting

theory in Majumdar and Sen (2004) and in matching markets in Ehlers and Massó (2003), Majumdar
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Second, the analysis is conducted in the context of the college admissions problem.

In this setting, agents belonging to two disjoint sets (henceforth �rms and workers) have

preferences over the other side of the market; in addition, each �rm can employ at most

some �xed number of workers, while each worker can �ll only one position. Strategic

issues in this context have been studied for a deterministic stable matching rule. Roth

(1985) shows that no stable matching rule exists that makes it a dominant strategy for

all players to report their true preferences. Moreover, he proves that there are equilibrium

misrepresentations that generate any individually rational matching with respect to the

true preferences.3 Ma (2002) shows that in order to obtain stability with respect to true

preferences, we have to use a re�nement of the Nash equilibrium concept and restrict

to truncations at the match point (i.e., strategies that preserve the ordering of the true

preferences, but rank as unacceptable all the agents that are less preferred than the current

match). More precisely, all strong equilibria in truncations at the match point produce

stable outcomes. Further, Ma (2002) establishes that every Nash equilibrium pro�le admits

at most one stable matching with respect to the true preferences; if, indeed, such a matching

is admitted, it will always be achieved.

In this paper we characterize equilibria arising in the game induced by a random stable

matching mechanism, providing simultaneously some results that extend to deterministic

mechanisms. First, we show that when ordinal Nash equilibria are considered, a unique

matching is obtained as the outcome of the random process. In addition, this outcome is

individually rational with respect to the true preferences. Since every individually rational

matching for the true preferences can be achieved as an equilibrium outcome, we establish

that a matching can be reached at an ordinal Nash equilibrium if and only if it is individu-

ally rational for the true preferences. We then turn our attention to equilibria where �rms

behave straightforwardly. In fact, there are reasons to contemplate truth telling as a salient

form of behavior in situations involving uncertainty; further, sophisticated strategic play

does not even make sense in settings where �rms follow an objective criterion to �ll their

(2003), Pais (2004a), and Pais (2004b).
3For a detailed explanation of these and other results see Roth and Sotomayor (1990), a comprehensive

treatment of the matching problem.
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positions. We prove that, even though workers may not play straightforwardly, stability

with respect to the true preferences holds for any matching that results from a play of equi-

librium strategies in which �rms reveal their true preferences. Conversely, every matching

that is stable for the true preferences can be achieved as an equilibrium outcome. In clos-

ing, we relate the equilibrium strategy pro�les in the games induced by both random and

deterministic mechanisms. In particular, for any random stable matching mechanism that

always assigns positive probability to two di¤erent stable matchings (when they exist), we

show that a strategy pro�le is an ordinal Nash equilibrium if and only if it has a unique

stable matching and it is a Nash equilibrium in the game induced by some deterministic

stable mechanism.

We proceed as follows. In Section 2 we present the college admissions problem and in-

troduce notation. We describe random matching mechanisms and the equilibrium concept

used in Section 3. In Section 4 we turn our attention to individual decision making. The

matching process is modeled as a one-period game and its equilibria are then character-

ized. In Section 5 we brie�y discuss equilibria in the context of a sequential game. Some

concluding remarks follow in Section 6.

2 The Model

The agents in the college admissions problem are two �nite and disjoint sets, the set

W = fw1; :::; wpg of workers and the set F = ff1; :::; fng of �rms. We let V = W [ F and

sometimes refer to a generic agent by v, while w and f represent a generic worker and �rm,

respectively. Each worker w can work for at most one �rm and each �rm f has a quota qf ,

the maximal number of workers it may employ.

Each worker w has a complete, transitive, and strict preference relation Pw over the set

F [ fwg. For example, the preferences of w on ff1; f2; f3; f4g [ fwg can be represented

by Pw : f1; f2; w; f3; f4, indicating that the best �rm for w is f1, his second choice is f2,

and he prefers being unemployed than working for either f3 or f4. Each �rm f also has a

complete, transitive, and strict preference relation Pf over the set W [ ffg. For example,

4



the preferences of f on fw1; w2; w3; w4g [ ffg can be represented by Pf : w3; w1; f; w2; w4,

indicating that the best worker for f is w3, its second choice is w1, and it prefers having a

position un�lled to hiring any other worker. A worker is acceptable if the �rm prefers to

employ him rather than having a position un�lled. Formally, the set of acceptable workers

for f is A(Pf ) = fw 2 W : wPffg. Given Pw, we can similarly de�ne an acceptable �rm

and the set of acceptable �rms for w as A(Pw) = ff 2 F : fPwwg. In the above examples,

the set of acceptable workers for f is A(Pf ) = fw1; w3g and the set of acceptable �rms

for w is A(Pw) = ff1, f2g. We let P = (Pf1 ; :::; Pfn ; Pw1 ; :::; Pwp) denote the pro�le of

all agents�preferences; we sometimes write it as P = (Pv; P�v) where P�v is the set of

preferences of all agents other than v. We let Pv denote the set of all possible preference

relations for agent v and let P =
Q
v2V

Pv be the set of admissible preference pro�les. We

write v0Pvv00 when v0 is preferred to v00 under preferences Pv and we say that v prefers v0 to

v00. Since agents will have to compare two potential partners v0 and v00 that may actually

be the same, we write v0Rvv00 to denote that either v0 = v00 or else v0Pvv00. In this case, we

say that v likes v0 at least as well as v00. The set of agents that v likes at least as well as

v00 is UPv(v
00) = fv0 2 V : v0Rvv00g.

Each �rm with quota greater than one must be able to compare groups of workers.

Following Roth (1985), we assume �rms�preferences over groups of workers are responsive

to the preferences over single agents. A preference �Pf for f over sets of workers is responsive

to its preference Pf over single workers if, for all S 2 2W such that jSj < qf ;

1. for all w, w0 2 WnS, S [ fwg �PfS [ fw0g if and only if wPfw0;

2. for all w 2 WnS, S [ fwg �PfS if and only if wPff ;

and for all S 2 2W such that jSj > qf , ; �PfS.4

Responsive preferences are assumed throughout the paper.

Since �rms may have to compare two groups of workers S and S 0 that may actually be

the same, we use �Rf , a responsive extension of Rf . We write S �RfS 0 to denote that either

4Note that, while �Pf is used to compare sets of workers, namely the empty set, Pf compares single

workers and f itself, the latter representing having an un�lled position.
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S = S 0 or else S �PfS 0. We let U �Pf (S) = fS 0 2 2W : S 0 �RfSg denote the set of groups of

workers f likes at least as well as S.

An outcome for the college admissions problem (F;W; P ) is a matching, a mapping �

from the set V into 2W [ V satisfying the following:

1. for all w 2 W; either �(w) 2 F or else �(w) = w;

2. for all f 2 F; j�(f)j � qf and �(f) 2 2W ;

3. for all (w; f) 2 W � F; �(w) = f if and only if w 2 �(f).

Observe that, while a worker may be matched to a �rm or to himself� the latter meaning

being unmatched� , a �rm is always matched to a subset of workers and being matched to

the empty set stands for being unmatched . We denote the set of all matchings byM.

We can extend preferences over partners to preferences over matchings in the follow-

ing, natural, way: each worker�s preferences over matchings correspond precisely to his

preferences over his own assignments at the matchings; similarly, �rms�preferences over

matchings are tantamount to the preferences over its assignments. For instance, w prefers

� to �0 when �(w)Pw�0(w), while f prefers � to �0 if �(f) �Pf�0(f).

A matching � is individually rational if, for every w 2 W , �(w)Rww and if, for every

�rm f and w in �(f), wPff .5 A �rm f and a worker w are a blocking pair for � if they are

not matched under � but prefer one another to one of their assignments, i.e., w =2 �(f) but

fPw�(w), wPff , and either (i) j�(f)j < qf or (ii) if j�(f)j = qf then there exists w0 2 �(f)

such that wPfw0. A matching � is stable if it is individually rational and if there is no

blocking pair for �. Note that the stability of � depends on preferences over individuals,

irrespective of the responsive extension that is being used. We let IR(P ) and S(P ) denote

the set of all individually rational and the set of all stable matchings respectively with

respect to a pro�le P . A �rm f and a worker w are achievable for each other if f and w

are matched under some stable matching.

5By responsiveness, the latter requirement is equivalent to �(f) �RfS, for every S � �(f).
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The proof of existence of stable matchings in Gale and Shapley (1962) is constructed by

means of the deferred-acceptance algorithm. For a given a preference pro�le P , proposals

are issued by one side of the market accordingly, while the other side merely reacts to

such o¤ers by rejecting all but the best in P . In the case that �rms make job o¤ers,

the algorithm arrives at the �rm-optimal stable matching �F [P ], with the property that

all �rms are in agreement that it is the best stable matching. The deferred-acceptance

algorithm with workers proposing produces the worker-optimal stable matching �W [P ]

with corresponding properties. Further, the optimal stable matching for one side of the

market is the worst stable matching for every agent on the other side of the market, a

result presented in Knuth (1976) but attributed to John Conway.

3 Random Matching and Ordinal Nash Equilibria

Many matching markets do not employ centralized procedures. Agents are free to issue

o¤ers and make acceptations and rejections as they please and matching is performed over

the telephone network, using the mail, or through the Internet. In such environments,

randomness determines the order in which agents communicate: it may depend on which

telephone call goes through, on the speed of the mail, or on how fast �rms react to even-

tual proposals. When a central clearinghouse does exist, chance is widely used to restore

procedural fairness� any deterministic mechanism is bound to favor a subset of the agents

involved. In two-sided matching markets, the need for compromise solutions is especially

intense given the strong polarization of interests of agents re�ected in the structure of the

set of stable matchings. Some real life applications of random procedures concern alloca-

tion problems as on-campus housing, namely in American universities, or public housing.6

Student placement mechanisms that assign students to colleges are another example of

mechanisms where randomness plays a role, as well as procedures used to match students

to optional courses or even children to summer camps.7 Finally, randomness is present

6See Abdulkadiroglu and Sönmez (1999).
7See Abdulkadiroglu and Sönmez (2003) for a description of student assignment mechanisms.
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in any matching mechanism where the position in a queue or the order of arrival may

in�uence assignments.

Formally, a random matching rule ~' is a mapping from preference pro�les to lotteries

over the set of matchings: ~' : P �! 4M. A random matching ~'[Q] is the image

of a preference pro�le Q under a random matching rule, i.e., a lottery over matchings.

Throughout the paper, we consider only random stable matching rules by restricting the

range of random matching rules to the set of lotteries whose supports are subsets of the sets

of stable matchings, i.e., we consider ~' such that, for every Q in P, the support of ~'[Q],

denoted by supp~'[Q], is included in S(Q). While ~'[Q] denotes a lottery over matchings, we

let ~'v[Q] represent the probability distribution induced over agent v�s achievable matches.

Whenever the probability distribution ~'[Q] is degenerate, we abuse the notation slightly

by letting ~'[Q] denote the unique outcome matching; similarly, if the distribution ~'v[Q] is

degenerate for some agent v, ~'v[Q] denotes v�s unique match in the random stable matching

~'[Q]. Observe however that in general supp~'[Q] is a subset of the set of stable matchings

S(Q). In contrast, a deterministic matching rule ' is a function from preference pro�les

to matchings: ' : P �! M. We consider only deterministic stable matching rules that

produce a unique stable matching '[Q] for every pro�le of preferences Q. In particular, 'F

and 'W denote the deterministic stable matching rules that yield the �rm-optimal �F [Q]

and the worker-optimal �W [Q] stable matchings, respectively, for every Q in P. Finally,

we let 'v[Q] denote v�s partner under the matching '[Q].

In a matching market (F;W; P ), we consider the game induced by a random stable

matching rule ~' in which agents are each faced with the decision of what strategies to

act on. As a �rst approach, we examine a one-period game where the strategy space of

player v in the game is the set of all possible preference lists Pv. Given the true preference

ordering Pv, each player v may eventually reveal a di¤erent order Qv over the players on

the other side of the market, and then a matching � stable with respect to the stated

preferences Q is selected at random among all the potential matchings, i.e., the elements

of supp~'[Q]. To be precise, we consider the mechanism (P ; ~'), where P is the set of

admissible strategy pro�les and ~' is a random stable matching rule; we refer to (P ; ~') as
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a random stable matching mechanism. Once the preferences P of the agents are speci�ed,

the above mechanism induces the game (P ; ~'; P ). Analogously, (P ; ') is a deterministic

stable matching mechanism that induces the game (P ; '; P ). In Section 5, we discuss an

extension of the obtained results to a more complex setting where agents�strategy spaces

are broader.

In the game (P ; ~'; P ), agents compare probability distributions over matchings when

deciding which strategic course to take. Since preferences are ordinal, there is no natural

utility representation of these preferences for expected utility calculations. It follows that

to address strategic questions we need to develop ideas about what constitutes a �best

decision�to be taken by an agent. With this purpose in mind, let Q̂ be a strategy pro�le and

consider w 2 W . Let ~'w[Q̂](S) be the probability that w obtains a partner in S � F [fwg

when the pro�le Q̂ is used in the game (P ; ~'; P ); in particular, let ~'w[Q̂](UPw(v)) be the

probability that w is matched to a partner at least as good as v when the pro�le Q̂ is

used in (P ; ~'; P ). Given a random stable matching rule ~' and given Q̂�w, we say that the

strategyQw stochastically Pw-dominates Q0w if, for all v 2 F[fwg, ~'w[Qw; Q̂�w](UPw(v)) �

~'w[Q
0
w; Q̂�w](UPw(v)). This means that, for all v 2 F [ fwg, the probability of w being

assigned to v or to a strictly preferred agent is higher under ~'w[Qw; Q̂�w] than under

~'w[Q
0
w; Q̂�w]. Similarly, given ~' and given Q̂�f , we say that the strategy Qf stochastically

Pf -dominates Q0f if, for all S 2 2W and for every responsive extension �Pf of Pf , we have

~'f [Qf ; Q̂�f ](U �Pf (S)) � ~'f [Q
0
f ; Q̂�f ](U �Pf (S)). This means that f is not able to increase

the probability of obtaining any set of workers S 0 (with whom it may end up matched)

and all sets ranked higher than S 0 in its list of preferences �Pf , when using Q0f instead of

Qf . Hence, if we consider the problem that agent v faces given the strategy choices Q̂�v

of the other players, a particular strategy choice Qv may be preferred if it stochastically

dominates every other alternative strategy. This provides the basis for the solution concept

we will adopt throughout the paper.

De�nition 1 The pro�le of strategies Q is an ordinal Nash equilibrium (ON equilibrium)

in the game (P ; ~'; P ) if, given Q�v, Qv stochastically Pv-dominates every alternative strat-

egy Q0v for every agent v.
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It follows from the above de�nition that Q is an ordinal Nash equilibrium when no

agent v can gain in expected utility terms by unilaterally deviating from Qv, no matter

what utility function is used to represent its true preferences. We will then be concerned in

�nding a pro�le of strategies Q that is a Nash equilibrium for every utility representation

of agents�preferences.

4 Equilibrium Analysis

We now turn to characterize ordinal Nash equilibria in the game induced by a random

stable mechanism. Proposition 1 asserts that no ordinal equilibrium supports more than

one stable matching. Using the decentralized interpretation, we can say that the outcome in

equilibrium is immune to the order in which agents meet when players behave strategically,

even though truth revealing often leads to a lottery over matchings. Agents manipulate to

protect themselves against uncertainty.

Proposition 1 Let Q be an ordinal Nash equilibrium in the game (P ; ~'; P ). Then, a

single matching is obtained with probability one.

Proof. By contradiction, assume that Q is an ON equilibrium in (P ; ~'; P ) and

jsupp~'[Q]j � 2. Then, there exists a worker w 2 W and matchings �, �̂ 2 supp~'[Q]

such that �(w) 6= �̂(w). Let �0(w) be the best match among all given by the elements of

supp~'[Q], i.e., �0(w)Rw�(w); for all � 2 supp~'[Q]. Let Q0w be such that A(Q0w) = f�0(w)g

and let Q0 = (Q0w; Q�w): Note that �
0 is stable for Q and, once w changes his strategy, it re-

mains stable forQ0 (it remains individually rational and no blocking pairs emerge). Further,

since the set of matched agents is the same under every stable matching, w is matched to

�0(w) under every matching in S(Q0): Then, 1 = ~'w[Q
0](UPw(�

0(w))) > ~'w[Q](UPw(�
0(w)))

andQw does not stochastically Pw-dominateQ0w. It follows thatQ is not an ON equilibrium

in (P ; ~'; P ).

As a consequence, in the particular case that the random matching rule always assigns

positive probability to at least two di¤erent matchings (if such matchings exist), the set of
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stable matchings of each ordinal Nash equilibrium is a singleton. In general, however, the

set of stable matchings of an ordinal Nash equilibrium may contain several elements. As

proved in Ma (2002) for a deterministic stable matching rule, the random stable rule then

chooses the matching that is unanimously preferred among all the stable matchings with

respect to the submitted pro�le.

Lemma 1 Let Q be an ordinal Nash equilibrium in the game (P ; ~'; P ). Then, for any

matching � 2 S(Q),

1. ~'w[Q]Rw�(w) for every w 2 W and

2. ~'f [Q] �Rf�(f) for every f 2 F and every responsive extension �Rf of Rf .

Proof. By Proposition 1, ~'[Q] is degenerate. The result then follows from Lemma 6

in Ma (2002).

For illustration, consider the following example.

Example 1 Let F = ff1; f2g, W = fw1; w2g, and qf1 = qf2 = 1. Suppose that the

true preferences are as follows:

Pw1 : f1; f2; w1 Pf1 : w1; w2; f1

Pw2 : f2; f1; w2 Pf2 : w2; w1; f2:

Let Qw1 : f2; f1; w1 and Qw2 : f1; f2; w2 and note that the preference pro�le Q = (Qw1 ; Qw2 ;

PF ) is an ordinal Nash equilibrium in (P ; 'F ; P ), the game induced by the mechanism that

yields the �rm-optimal stable matching. Now let ~' be a random matching rule that assigns

probability 0:5 to both the worker-optimal and �rm-optimal stable matchings. Clearly, the

support of the probability distribution induced by ~'[Q] includes both �F [Q] = f(f1; w1);

(f2; w2)g and �W [Q] = f(f1; w2); (f2; w1)g. By Proposition 1, Q is not an ordinal Nash

equilibrium in the game (P ; ~'; P ). In fact, every worker can successfully deviate. For

example, by using his true preferences, w1 obtains his preferred �rm f1 with probability

one. �
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In the context of deterministic mechanisms, Roth (1985) shows that by suitably falsify-

ing their preferences, agents can induce any individually rational matching with respect to

the true preferences. Unfortunately, this is not a very illuminating result: the set of individ-

ually rational matchings includes all the matchings that are remotely plausible. Moreover,

the possibility of sustaining matchings where agents hold non-acceptable partners is not

ruled out, although individual rationality appears to be a minimum requirement for an

equilibrium outcome.

The results that follow establish that � can be supported as an ordinal equilibrium

if and only if it is individually rational. Hence, we provide a complete characterization

of ordinal Nash equilibria outcomes in the game induced by random stable mechanisms.

Furthermore, it can easily be shown that Proposition 3 can be extended to the deterministic

case, providing a necessary condition for Nash equilibria in games induced by deterministic

stable matching mechanisms.

Proposition 2 Let � be any individually rational matching for (F;W; P ) and let ~' be

a random stable matching rule. Then, there exists an ordinal Nash equilibrium Q that

supports � in the game (P ; ~'; P ).

Proof. Let Qw be such that A(Qw) = f�(w)g, for every w 2 W , and let Qf be such

that A(Qf ) = �(f), for every f 2 F . Clearly, S(Q) = f�g and � is reached with probability

one. Moreover, no agent can pro�tably deviate. To see this, take an arbitrary worker w. If

�(w) 2 F , the only agent that accepts w is �(w): Hence, w faces the choice of holding �(w)

or being unmatched. Since �(w)Pww by individual rationality of �, w has no pro�table

deviation. If �(w) = w, no �rm is willing to hire w, so that w has no pro�table deviation:

his only alternative is to remain unmatched. Now consider f 2 F . If �(f) 6= ;, only

those workers in �(f) are willing to accept �lling a position in f: Moreover, by individual

rationality of �, �(f) �RfS, for every S � �(f). If �(f) = ;, no worker accepts �lling a

position if f . In neither case can f improve upon �(f) by deviating. Hence, Q is an ON

equilibrium in (P ; ~'; P ).
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Proposition 3 Let Q be an ordinal Nash equilibrium in the game (P ; ~'; P ). Then, the

unique equilibrium outcome ~'[Q] is individually rational for the true preferences P .

Proof. By Proposition 1, a degenerate probability distribution is achieved in any

equilibrium play of (P ; ~'; P ). Let us say ~'[Q] = �. We will prove that � is individually

rational.

First, by contradiction, assume there exists a worker w such that wPw�(w). Suppose

that, instead of acting according to Qw, w uses the strategy Q0w such that A(Q
0
w) = ;

and de�ne Q0 = (Q0w; Q�w): By considering every �rm unacceptable, w is alone under

every matching in S(Q0). Hence, 1 = ~'w[Q
0](UPw(w)) > ~'w[Q](UPw(w)) and Qw does not

stochastically Pw-dominate Q0w: It follows that Q is not an ON equilibrium in (P ; ~'; P ).

Now suppose that there is a �rm f and a set of workers SG  �(f) such that SG �Pf�(f).

Let SG be, among all the subsets of �(f), the one that is preferred by f . Consider Q0f , an

alternative strategy for f , where only the elements of SG are considered acceptable. We

will show that Qf does not stochastically Pf -dominate Q0f .

To start, consider the matching �0 such that �0(f) = SG and �0(f̂) = �(f̂), for every

f̂ 6= f . Let SB = �(f)nSG (note that SB 6= ;) and Q0 = (Q0f ; Q�f ). Now consider the

matching market (F;WnSB; Q0R), where Q0R is the same pro�le as Q0, but restricted to

WnSB. We will prove that �0 is stable for Q0R in this reduced market. Note that, when

Q is considered, �(w) is acceptable for every worker w, all elements in �( �f) are acceptable

for every �rm �f 6= f , and SG is the preferred subset of �(f) for f . It follows that �0

is individually rational for Q0R. Now suppose that (f̂ ; w) blocks �0, i.e., w =2 �0(f̂), but

f̂Q0Rw �
0(w), wQ0R

f̂
f̂ , and either (i) j�0(f̂)j < qf̂ or (ii) if j�0(f̂)j = qf̂ then there exists

w0 2 �0(f̂) such that wQ0R
f̂
w0. Since only the elements of �0(f) are considered acceptable

in Q0R
f̂
, we must have f̂ 6= f . Hence, Q0R

f̂
= QR

f̂
, where QR

f̂
is the same strategy as Qf̂ ,

but restricted to WnSB. By de�nition of �0, we have �0(f̂) = �(f̂); for every f̂ 6= f ,

and �0(w) = �(w), for every w 2 WnSB. The above expression thus becomes f̂QRw�(w),

wQR
f̂
f̂ , and either (i) j�(f̂)j < qf̂ or (ii) if j�(f̂)j = qf̂ then there exists w0 2 �(f̂) such that

wQR
f̂
w0. Hence, in the unrestricted market, f̂Qw�(w), wQf̂ f̂ , and either (i) or (ii) holds
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with wQf̂w
0, for some w0 2 �(f̂). This means that (f̂ ; w) blocks � under Q, contradicting

� 2 S(Q). Thus, �0 is stable in (F;WnSB; Q0R). Note that, since f is matched to SG

under a stable matching, it must hold exactly SG under the �rm-optimal stable matching

for (F;WnSB; Q0R), by de�nition of Q0Rf and of the �rm-optimal stable matching.

Suppose SB join in. By Theorem 5.35 in Roth and Sotomayor (1990), every �rm must

be at least as well o¤ in the new �rm-optimal stable matching. Since only SG are considered

acceptable by f in the strategy Q0f , f cannot improve upon S
G. Thus, it must be matched

to SG under the �rm-optimal stable matching of the market (F;W;Q0).

Finally, notice that since j�(f)j � qf and SB 6= ;, we have jSGj < qf . Hence, Theorem

5.13 in Roth and Sotomayor (1990) guarantees that f must hold the same workers under

every stable matching in (F;W;Q0). Therefore, by deviating and acting according to Q0f ,

f will get SG with probability one instead of �(f). Concluding, 1 = ~'f [Q
0](U �Pf (S

G)) >

~'f [Q](U �Pf (S
G)) and Q is not an ON equilibrium in (P ; ~'; P ).

The above result is as uninformative as large the set of individually rational matchings

may be. Ma (2002) shows that one way to make a sharper prediction of equilibrium out-

comes and guarantee stability is to go as far as re�ning the notion of Nash equilibrium to

strong Nash and require the use of a particular kind of strategies: truncations at the match

point (i.e., deleting the (m + 1)th and less preferred partners when matched to the mth

choice). We provide a di¤erent su¢ cient condition for stability in the game induced by

a random stable mechanism: every ordinal Nash equilibrium where �rms behave straight-

forwardly is stable for the true preferences. Truth telling by �rms is natural in markets

where �rms obey some kind of objective criterion to �ll their positions (e.g., universities

admit students on the basis of examination scores, student placement mechanisms assign

students to public schools according to the area of residence, �rms hire workers according

to scores given by recruiting agencies). Moreover, in situations involving uncertainty agents

may have no clue about the form that e¤ective strategies might have and straightforward

behavior is always an easy resort.

Proposition 4 Let Q = (PF ; QW ) be an ordinal Nash equilibrium in the game (P ; ~'; P ).

14



Then, the unique equilibrium outcome ~'[Q] is stable for the true preferences P .

Proof. By Proposition 1, a unique matching is achieved as the outcome of an ON

equilibrium in (P ; ~'; P ). Let us say that ~'[Q] = �. By Proposition 3, � 2 IR(P ). We

will prove that � 2 S(P ) by contradiction. Suppose that (f; w) blocks � when the true

preferences are considered, i.e., w =2 �(f) but fPw�(w), wPff , and either (i) j�(f)j < qf
or (ii) if j�(f)j = qf then there exists w0 2 �(f) such that wPfw0. Consider Q0w, an

alternative strategy for w, such that A(Q0w) = ffg and de�ne Q0 = (Q0w; Q�w). We will

prove that w is matched to f under every matching in S(Q0).

Let �� be the matching that corresponds to � in the related marriage market and let f i

denote the position of �rm f that either is vacant under �� if (i) holds or that is matched

to w0 under �� if (ii) holds.8 By Roth (1984a), under every stable matching for Q0, w

is either always unmatched or always matched to (possibly di¤erent) positions in �rm

f , the only positions he �nds acceptable. Let us assume that w is unmatched. This

implies that every position of �rm f , in particular f i, is matched to a worker better

than w under every matching in S(Q0), in particular under the worker-optimal stable

matching ��W [Q
0]. Thus, ��W [Q

0](f i)Pf iw. Now wPf if i by assumption and, if (i) holds,

f i = ��W [Q](f
i), since the same set of agents is unmatched under every stable matching

for Q (Roth, 1984a). If (ii) holds, we have wPf iw0 and, by de�nition of worker-optimal

stable matching, w0Rf i��W [Q](f
i). In either case, ��W [Q

0](f i)Pf i��W [Q](f
i). Nevertheless,

��W [Q
0] is the worker-optimal stable matching in the reduced market (F;Wnfwg; QR), with

QR representing the same orderings of preferences as in Q, but restricted to Wnfwg. This

contradicts Theorem 2.25 in Roth and Sotomayor (1990) since, under the worker-optimal

stable matching, no �rm can be matched to a better worker in the restricted market.

Therefore, w must be matched to a position of �rm f under every element of S(Q0).

8Given a college admissions problem (F;W;P ), we can build a related marriage market as follows. Each

�rm f is replaced by qf positions of f , say f1, f2,...fqf , so that the agents in the related market are workers

and �rm positions. Each of these positions has preferences over workers that are identical to those of f

and each worker�s preference is modi�ed by replacing f , wherever it appears, by the string f1, f2,...fqf ,

in this order. For more on related marriage problems, see Roth and Sotomayor (1990).
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In conclusion, by acting in accordance with Q0w, w will be matched to f with probability

one. Hence, Qw does not stochastically Pw-dominate Q0w and we have a contradiction: Q

is not an ON equilibrium in (P ; ~'; P ).

Two remarks are in order. First, this result can easily be applied to games arising from

deterministic stable mechanisms: stability for the true preferences is obtained in any Nash

equilibrium where �rms are truthful. Second, in accordance with the claims in Roth and

Sotomayor (1990) concerning deterministic mechanisms, the analogous result with workers

telling the truth and �rms acting strategically does not hold, although it would hold when

all quotas equal one.9 The college admissions problem, unlike the marriage problem, is

not symmetric between the two sides of the market and there are substantial di¤erences

between the two when strategic issues are contemplated. Any �rm with a quota greater

than one resembles something like a coalition rather than an individual. Hence, allowing

for manipulation on the �rms�side is similar to giving such powers to sets of agents in a

marriage market and, in equilibria where workers tell the truth, stability is lost.

The converse result is given in Proposition 5, asserting that every stable matching

for the true preferences can be supported as the outcome of an ordinal Nash equilibrium

where �rms act according to the true preferences. In fact, workers can compel any jointly

achievable outcome in the game induced by a random stable mechanism, while �rms behave

straightforwardly.

Proposition 5 Let � be any stable matching for (F;W; P ) and let ~' be a random stable

matching rule. Then, there exists an ordinal Nash equilibrium Q = (PF ; QW ) that supports

� in the game (P ; ~'; P ).

Proof. De�ne Qw such that A(Qw) = f�(w)g for every w 2 W . Clearly, S(Q) = f�g

and � is reached with probability one.

Let us now prove that Q is an ON equilibrium in (P ; ~'; P ). Take an arbitrary worker

w and suppose that there exists a �rm f such that fPw�(w). We claim that w cannot

9See Roth (1985).
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deviate to get matched to f . In fact, the stability of � with respect to P implies that

either fPfw� in which case f declares w unacceptable� or, if wPff , then j�(f)j = qf and

w0Pfw, for every w0 2 �(f). In the latter case, since �(w0) = f for every w0 2 �(f), then

Qw0 satis�es A(Qw0) = ffg and f ends up matched to �(f). Now consider �rm f . The

only workers willing to accept f are those in �(f). Furthermore, individual rationality of

� implies that �(f) �RfS, for every S � �(f). It follows that f cannot improve upon �(f)

by deviating. In conclusion, Q is an ON equilibrium in (P ; ~'; P ).

Our next results establish a strong link between equilibria in games induced by random

and by deterministic stable mechanisms. We start by pointing out that every ordinal Nash

equilibrium of the random process must be a simple Nash equilibrium of a game induced

by some mechanism where chance plays no role.

Proposition 6 Let Q be an ordinal Nash equilibrium in the game (P ; ~'; P ). Then, there

exists a deterministic stable matching rule ' such that Q is a Nash equilibrium in the game

(P ; '; P ).

Proof. Assume that Q is an ON equilibrium that yields � in (P ; ~'; P ). Proposition

1 guarantees that � is the only element in supp~'[Q] and, by Proposition 3, � 2 IR(P ).

Now suppose, by contradiction, that there exists no game induced by a deterministic stable

matching rule ' where Q is a Nash equilibrium. In particular, consider any ' such that

'[Q] = �� such a rule exists since � 2 S(Q)� and assume that some agent has a pro�table

deviation.

Let such agent be a worker, w. Then, there exists a strategy Q0w such that 'w[Q
0]

Pw�(w), with Q0 = (Q0w; Q�w). This implies that 'w[Q
0] 2 F since � 2 IR(P ). Let

f = 'w[Q
0] and de�ne Q00w such that A(Q

00
w) = ffg. Observe that under any matching

in S(Q00w; Q�w), w is matched to f� '[Q0] 2 S(Q00w; Q�w) since it remains individually

rational and no blocking pairs emerge once w uses Q00w. Therefore, under every matching

in supp~'[(Q00w; Q�w)], w holds f and Qw does not stochastically Pw-dominate Q
00
w. We get

a contradiction: Q is not an ON equilibrium in (P ; ~'; P ).
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Now assume that f 2 F can pro�t by deviating from Qf in (P ; '; P ). This means

that there exists Q0f such that 'f [Q
0] �Pf�(f), with Q0 = (Q0f ; Q�f ). Since � 2 IR(P ),

'f [Q
0] 6= ;. De�ne Q00f such that only the workers in 'f [Q0] are considered acceptable.

Since '[Q0] 2 S(Q0), once only the workers in 'f [Q0] are considered acceptable by f , we

can guarantee that '[Q0] 2 S(Q00). The de�nition of Q00f and the fact that under every

stable matching �rms have the same number of positions �lled (Theorem 5.12 in Roth

and Sotomayor (1990)) imply that f holds 'f [Q
0] in every element of S(Q00). Therefore,

1 = ~'f [Q
00](U �Pf ('f [Q

0])) > ~'f [Q](U �Pf ('f [Q
0])) = 0 and Q is not an ON equilibrium in

(P ; ~'; P ).

In Proposition 7, we establish a partially converse statement: the set of ordinal Nash

equilibria in the game induced by a random stable mechanism includes all the strategy

pro�les that are simultaneously equilibria in the games induced by the rules that yield the

�rm-optimal and the worker-optimal stable matchings.

Proposition 7 Let Q be a Nash equilibrium in both (P ; 'F ; P ) and (P ; 'W ; P ). Then, Q

is an ordinal Nash equilibrium in the game (P ; ~'; P ) for any random sable matching rule

~'.

The following Lemma is useful in proving Proposition 7.

Lemma 2 Let Q be a Nash equilibrium in both (P ; 'F ; P ) and (P ; 'W ; P ). Then, the set

S(Q) is a singleton.

Proof. Assume that Q is a Nash equilibrium in both (P ; 'F ; P ) and (P ; 'W ; P ).

Suppose, by contradiction, that jS(Q)j � 2. Clearly, this implies that 'F [Q] 6= 'W [Q].

Lemma 1 in Ma (2002) implies that, for any matching � 2 S(Q), we have 'Fw[Q]Rw�(w),

for every w 2 W . Since Q is an equilibrium in (P ; 'W ; P ), the same lemma guarantees that

'Ww [Q]Rw�(w), for every w 2 W and for any � 2 S(Q). It follows that 'Fw[Q] = 'Ww [Q],

for every w 2 W and we contradict the initial assumption that 'F [Q] 6= 'W [Q].
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Proof of Proposition 7. Suppose that Q is a Nash equilibrium in both (P ; 'F ; P )

and (P ; 'W ; P ). By Lemma 2, jS(Q)j = 1. Let us say that S(Q) = f�̂g and assume, by

contradiction, that there exists a random stable matching rule ~' such that Q is not an ON

equilibrium in (P ; ~'; P ).

Suppose then that there exists a worker w 2 W and an alternative strategy Q0w such

that Qw does not stochastically Pw-dominate Q0w. This implies that there exists � 2

supp~'[Q0w; Q�w] such that �(w)Pw�̂(w). Note that, since Q is a Nash equilibrium in the

game induced by a stable matching rule, �̂ 2 IR(P ). Hence, �̂(w)Rww and it must be

the case that w is matched to a �rm under every matching in S(Q0w; Q�w). Let �
0(w)

be the best match for w in supp~'[Q0w; Q�w] and de�ne Q
00
w such that A(Q

00
w) = f�0(w)g.

Since �0 2 S(Q00w; Q�w) (it is still individually rational and no blocking pairs emerged),

Theorem 5.12 in Roth and Sotomayor (1990) ensures that w is matched to �0(w) under

every matching in S(Q00w; Q�w). Then, in no game induced by a stable matching rule is

Q a Nash equilibrium, since for every stable matching rule ', 'w[Q
00
w; Q�w] = �0(w) and

�0(w)Pw�̂(w). It follows that no worker can pro�tably deviate in the game induced by ~'.

Then, there exists a �rm f and a strategy Q0f such that Qf does not stochastically

Pf -dominate Q0f , i.e., there exists � 2 supp~'[Q0f ; Q�f ] such that �(f) �Pf �̂(f). Since �̂ 2

IR(P ), we have �̂(f) �Rf; and, under every matching in S(Q0f ; Q�f ), f has at least one

position �lled. Let �0 be such that �0(f) �Pf�(f), for every � 2 supp~'[Q0f ; Q�f ]. De�ne Q00f
such that A(Q00f ) = �

0(f). Note that �0 2 IR(Q00f ; Q�f ) and that no pair of agents blocks �0

under the preference pro�le (Q00f ; Q�f ). Therefore, �
0 2 S(Q00f ; Q�f ) and, since �rms have

the same positions �lled under every stable matching (Theorem 5.12 in Roth and Sotomayor

(1990)), the de�nition of Q00f guarantees that f holds �
0(f) in every element of S(Q00f ; Q�f ).

Finally, for every stable matching rule ', 'f [Q
00
f ; Q�f ] = �

0(f) and �0(f) �Pf �̂(f). It follows

that there exists no stable matching rule ' such that Q is a Nash equilibrium in (P ; '; P ),

contradicting the initial assumption.

The proof of the above result reveals that a su¢ cient condition for an ordinal Nash equi-

librium in the game (P ; ~'; P ) is in fact being a Nash equilibrium in every game (P ; '; P ),
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i.e., in every game induced by a deterministic stable mechanism. This appears to be an

extremely strong condition to ful�ll. Nevertheless, we will now describe a class of random

matching rules for which such condition becomes necessary for an ordinal Nash equilibrium.

In the particular case that �I is the empty matching, Roth and Vande Vate (1990) have

shown that, in the marriage model, every element of the set of stable matchings for the

revealed preferences can be achieved with positive probability when the random matching

rule they de�ne is applied. In fact, starting from a situation in which all agents are

unmatched, by successively satisfying all the pairs of a stable matching, we can guarantee

that this matching is reached with positive probability. This random process is an instance

of what we will name as really random stable matching rule.

A really random stable matching rule ~' assigns positive probability to at least two

di¤erent elements of the set of stable matchings, i.e., jsupp~'[Q]j � 2 for every Q such that

jS(Q)j � 2. In Example 1, the rule that assigns probability 0:5 to the �rm-optimal and to

the worker-optimal stable matchings is clearly a really random stable matching rule. The

following result is an implication of Propositions 6 and 7 in the particular case that ~' is

really random.

Corollary 1 Let ~' be a really random stable matching rule. Then, the pro�le of strategies

Q is an ordinal Nash equilibrium in the game (P ; ~'; P ) if and only if the set of stable

matchings S(Q) is a singleton and there exists a deterministic stable matching rule ' such

that Q is a Nash equilibrium in the game (P ; '; P ).

Proof. Follows directly from Propositions 6 and 7, and the fact that Proposition 1

implies supp~'[Q] = S(Q) for a really random stable matching rule ~'.

For illustration, consider once more Example 1 and note that the set of stable matchings

for truth telling is a singleton; further, it can easily be shown that it is an equilibrium in

the game induced by the matching rule that yields, say, the �rm-optimal stable matching.

Corollary 1 thus implies that straightforward behavior is an ordinal Nash equilibrium in

the game induced by the random stable matching rule described in the example.
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5 Non-Preference Strategies

We have explored the game induced by a random matching mechanism, claiming that

one of the main motivations of this paper is the study of some decentralized markets. This

may be objected on the grounds that up to this point we have restricted our analysis

to a one-period game where strategies are preference lists, which perfectly mirrors the

functioning of a centralized market, but falls short of an illustration of a decentralized

market. In particular, in matching processes of the kind described by Roth and Vande Vate

(1990), at each moment in time, a pair of randomly chosen agents meets and (temporarily)

matches if this is consistent with both agents�strategies. This clearly �ts the structure

of a sequential game. In this context, restricting each agent to hold the potential partner

that is higher on some �xed preference ordering sustains the validity of the results of the

preceding section. However, in a sequential game, agents can be expected to use richer

strategies, conditioning behavior on the history of the game, and not necessarily acting

consistently with a unique preference ordering. The strategy of matching with the �rst

partner one meets and rejecting every other agent is an example of such kind of strategies.

One of the di¢ culties that arises in attempting to capture such complex forms of be-

havior concerns the very essence of the matching rule that, following Roth and Vande Vate

(1990), we assume to be stable with respect to the revealed preferences. In fact, such de�-

nition is compromised when, for some play of the game, no list of preferences is compatible

with the strategy of a player. Hence, the set of feasible strategies of the sequential game is

simply too large and precludes analysis in the theoretical framework we have been using.

One potential course of action is therefore to impose that under any play of the sequen-

tial game the choices actually made are consistent with some preference ordering, even

though they may correspond to incompatible preference orderings when several plays are

considered. We can then speak of preference orderings that are �revealed�in the course of

the play. A worker w that entertains the described strategy in the example above, would

match the �rst �rm to tender an o¤er to him under any play of the game, and reveal that

this �rm is preferred to every other �rm that he eventually meets in the course of that play.
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Since meeting is random, this worker would reveal distinct preference lists under di¤erent

plays of the game.

Hence, consider a sequential game where, starting from an arbitrary matching, at each

moment in time, a pair of randomly chosen agents, composed of a �rm and a worker,

meets. Agents match upon meeting if this is consistent with their strategies. We assume

that strategies are restricted to those strategies compatible with a preference ordering

for each play of the game, the revealed preference ordering, even though the information

gathered in the course of the play might allow for other forms of behavior.10 According

to Roth and Vande Vate (1990), once the probability that a given pair of agents meets is

bounded away from zero, each play of the game yields a matching stable with respect to

the revealed orderings in the course of that play. Hence, given a pro�le of strategies that

meets the above requirement, every outcome obtained with positive probability is stable

for some revealed pro�le of preferences. We let G(P ) denote this sequential game.

In Proposition 8, we show that ordinal Nash equilibria in preference strategies, which

correspond to those obtained for the one-period game, are robust to the enlarged strategy

space. In fact, given a pro�le of preference strategies, if by means of a strategy that is

not consistent with a unique preference ordering, an agent may improve his position, he is

certainly capable of doing so using a simple preference strategy.

Proposition 8 In the sequential game G(P ), for any collection of stated preferences Q�v
for agents other than an arbitrary agent v, agent v always has a best response that is

consistent with a unique preference ordering.

Proof. First, consider an arbitrary worker w and �x Q�w. Let sw denote an arbitrary

strategy for w, revealing a preference ordering (not necessarily the same) under each play

of the game. Denote by Qiw the preference ordering that is consistent with sw under

some play i. In general, we have supp~'[sw; Q�w] = f�1; :::; �kg, where �i 2 S(Qiw; Q�w),
10The lack of precision in de�ning what each player knows along the game is deliberate. The result that

follows is valid in a perfect information setting, as well as when agents are only partially aware of the

history of the game.
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for i = 1; :::; k. Now let Qw be such that A(Qw) = f�j(w)g where �j(w)Rw�i(w); for

all �i 2 f�1; :::�kg. Since �j 2 S(Qjw; Q�w), we must have �j 2 S(Qw; Q�w) (it is still

individually rational and there are fewer blocking pairs). Hence, given that the same

agents are matched under any two elements of the set of stable matchings and the only

�rm w �nds acceptable is �j(w), this worker is matched to �j(w) under every matching

in S(Qw; Q�w). It follows that any lottery over S(Qw; Q�w) gives w a partner at least as

good as any lottery over S(sw; Q�w). Since sw and Q�w are arbitrary, this completes the

proof for a worker w.

Now take an arbitrary �rm f . Let sf denote a strategy for f with the same properties

as the strategy for w above. De�ne Qif as the preference ordering over individual workers

that is consistent with sf for some play i of the game. Let supp~'[sf ; Q�f ] = f�1; :::; �kg,

where �i 2 S(Qif ; Q�f ), for i = 1; :::; k. Consider any alternative strategy Qf for f such

that A(Qf ) = �j(f) where �j(f) �Rf�i(f); for all �i 2 f�1; :::; �kg and for every responsive

extension �Rf of Rf . Then, �j 2 IR(Qf ; Q�f ) since �j 2 IR(Q
j
f ; Q�f ). Moreover, �j 2

S(Qf ; Q�f ) since �j 2 S(Q
j
f ; Q�f ) and no blocking pairs emerged. Given that the same

positions of a �rm are �lled under any element of a set of stable matchings and by de�nition

of Qf , f is matched to �j(f) under every matching in S(Qf ; Q�f ). Since sf and Q�f are

arbitrary, this completes the proof.

Nevertheless, this is far from being a characterization of equilibria in this new setting. In

fact, the set of ordinal Nash equilibria is larger here, as the following example demonstrates.

Example 2 (Example 1 revisited) Consider the matching market in Example 1. Let

the strategy of each agent be de�ned as follows: sfi = �match only with wi if f1 is the �rst

�rm to meet a worker; match only with wj otherwise�and swi = �match only with fi if f1

is the �rst �rm to meet a worker; match only with fj otherwise�, for i = 1; 2. This strategy

pro�le leads to a non-degenerate probability distribution over matchings. Namely, both

� = f(f1; w1); (f2; w2)g and �̂ = f(f1; w2); (f2; w1)g are obtained with a 50% probability.

Hence, Proposition 1 rules out the possibility that s can be reproduced by an equilibrium in

preference strategies. Still, s is an ordinal Nash equilibrium, since any unilateral deviation
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of a �rm or worker may either leave the probability distribution unchanged or leave the

deviator unmatched with positive probability. �

6 Concluding Remarks

At the expense of using an ordinal equilibrium concept, we have provided a charac-

terization of equilibria that arise in the game induced by a random stable mechanism.

The analysis is set in the college admissions problem. First, we have proved that every

ordinal Nash equilibrium yields a unique matching, while when agents act straightfor-

wardly according to the true preferences several matchings may be obtained with positive

probability. Hence, agents avoid uncertainty when behaving strategically. Furthermore, a

matching can be reached at an ordinal Nash equilibrium if and only if it is individually

rational for the true preferences. Ordinal equilibria where �rms best reply by behaving

straightforwardly always produce a matching stable for the true preferences. Conversely,

every stable matching can be reached as the outcome of an equilibrium play of the game.

In a di¤erent direction, we relate ordinal Nash equilibria in games induced by a random

matching mechanism with Nash equilibria arising in the games induced by deterministic

matching mechanisms. In particular, a preference pro�le is an ordinal equilibrium of the

game induced by a matching rule that always assigns positive probability to two di¤erent

matchings (if such matchings exists) if and only if the set of stable matchings is a singleton

and it is a Nash equilibrium in the game induced by some deterministic stable rule. In

the last section of the paper we have tried to extend the above results, derived for a one-

period game where the set of available strategies coincides with the set of all possible lists

of preferences, to the sequential game that may arise in a decentralized market. Here we

assume agents may use strategies that correspond to di¤erent preference orderings when

di¤erent plays of the game are considered. We have shown that ordinal Nash equilibria in

preference strategies are robust to the enlarged strategy space.

In what the above results are concerned, a couple of remarks is in order. The �rst obser-
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vation concerns fairness and random matching mechanisms. In opposition to deterministic

mechanisms, which are bound to favor one side of the market over the other, we have

claimed that random mechanisms promote procedural fairness.11 Nevertheless, �endstate�

justice is a di¤erent issue. Indeed, the results that relate equilibria in the games induced by

random and deterministic mechanisms imply that every equilibrium outcome in the game

induced by a random matching mechanism may be obtained by means of a deterministic

mechanism. It follows that, based on these results and in what �endstate�justice is con-

cerned, we should not expect random matching rules to improve upon deterministic ones

if equilibrium behavior is to be taken seriously.

Second, the aim of the last section is to shed some light on what happens once we

move towards allowing for history-dependent strategies, preserving the stability of the

mechanism. The purpose of this paper is to explore strategic behavior induced by random

stable matching mechanisms, and not to provide a thorough analysis of the incentives

agents face in decentralized markets.12 Therefore, relaxing the restriction we impose over

the strategy sets would compromise our main goal.

To conclude, equilibrium behavior in randommechanisms has barely been treated in the

matching literature. One of the di¢ culties that arises in attempting to apply the common

game theoretical tools stems from the need to compare the probability distributions over

matchings generated by a random rules when preferences are ordinal. By means of the

concept of ordinal Nash equilibrium we have taken a step towards �lling the gap in the

literature, providing a fairly complete characterization of equilibrium behavior.

11For example, in the kind of process described in Roth and Vande Vate (1990), each pair of agents

has the same probability of meeting at a certain point in the procedure, and this determines procedural

fairness.
12In this connection, see Pais (2004a).
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