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Abstract

Decentralized markets are modeled by means of a sequential game where, starting from any matching

situation, �rms are randomly given the opportunity to make job o¤ers. In this random context, we prove

the existence of ordinal subgame perfect equilibria where �rms act according to a list of preferences.

Moreover, every such equilibrium preserves stability for a particular pro�le of preferences. In particular,

when �rms act truthfully, every outcome is stable for the true preferences. Conversely, when the initial

matching is the empty matching, every stable matching can be reached as the outcome of an ordinal

equilibrium play of the game.

JEL Classi�cation: C78; J44

Keywords: Matching Markets; Stability; Random Mechanisms
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1 Introduction

The study of centralized markets has been privileged in the two-sided matching literature. The

introduction of centralized matching procedures in markets that experienced certain kinds of

failures is partially responsible for such dedication. In fact, a number of markets� for physi-

cians, lawyers, dentists, and osteopaths, among others� have adopted central clearinghouses

after periods of uncontrolled unraveling of appointment dates and chaotic recontracting.1 These

markets now work by having each agent of the two sides of the market submit a rank ordered

preference list of acceptable matches to the central clearinghouse, which then produces a match-

ing by processing all the preference lists according to an algorithm. Roth (1984a, 1991) showed

that the algorithms used in most of the successful clearinghouses roughly follow the lines of

Gale and Shapley�s deferred acceptance algorithm (Gale and Shapley, 1962). This procedure

generates a matching of workers to positions that is stable in terms of the submitted preferences

in the sense that no worker and �rm that are not matched to each other would prefer to be so

matched.2

In contrast, decentralized markets have received relatively little attention.3 The exact set of

rules that governs a centralized market, making it particularly amenable to analysis, is no longer

present when matching is organized in a decentralized way. Moreover, decentralized markets

involve di¤erent strategic issues from those of centralized markets. In fact, when a clearinghouse

exists, agents must simply decide what preference lists to submit to the matchmaker, after which

the match is created. However, in a decentralized market agents do not submit lists; instead,

1See Roth and Xing (1994) and Niederle and Roth (2003).
2See Roth and Sotomayor (1990) for a comprehensive study of two-sided matching markets.
3There are notable exceptions, namely Blum, Roth, and Rothblum (1997), Haeringer and Wooders (2004),

Roth and Vande Vate (1991), Roth and Xing (1997), among others.
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they can decide, after each interview or telephone call what to do next. The size of the strategy

space is thus extremely large and has precluded analysis by means of standard matching tools.

The purpose of this paper is to apply the extremely simple marriage model to the study of

decentralized labor markets. In this model, agents�preferences are ordinal in nature. Hence, we

merely take for granted their ability to order the potential working partners, without assuming

that they are capable of giving cardinal content to their preferences.4 The starting point of

the analysis is any matching situation, providing a framework to the study of both entry-

level and senior level markets. The matching process is then modeled as an extensive form

game, where �rms sequentially o¤er their positions. Clearly, decentralized decision making

in complex environments may introduce randomness in the order in which o¤ers are made.

The speed of the mail, the telephone network, or the internal structure of �rms making some

react faster than others determine the success in establishing communication with the desired

workers. Such inherently uncertain features of the market are modeled here as chance moves

that determine the order of play. Hence, at each moment in time, any �rm� even if already

matched� is randomly selected and given the opportunity to o¤er its position to a worker.

This worker compares it with any o¤er he may be holding and rejects one, while (temporarily)

holding the other, pending the possible arrival of even better o¤ers. Note that only �rms have

the initiative to make proposals or to cease a working relationship, while workers undertake the

more passive role of reacting to o¤ers. We assume that, once rejected, the �rm is not willing to

propose to the same worker again, but it may obviously o¤er its position to a di¤erent worker

4 It follows that monetary transfers are embodied in agents�preferences, i.e., there is more to a job than just

a salary.
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when given the opportunity to act.5

In a decentralized labor market, informal rules and practices govern the process of making

proposals, and also their comparison, acceptance, or rejection. There are thus di¤erent options

when it comes to modeling such elements of market culture which, together with the assump-

tions taken on what agents know when taking decisions, play an important role in in�uencing

the results. Two closely related papers are worth mentioning. Haeringer and Wooders (2004)

model decentralized markets in which only �rms make job o¤ers, agents� decisions may be

irreversible� once a proposal is accepted, the agents involved simply leave the market� and

agents hold a lot of information on the history of the game.6 There is no uncertainty whatso-

ever, suggesting that markets are small worlds. In contrast, Blum, Roth, and Rothblum (1997)

model a senior level labor market where agents are poorly informed� each �rm knows which

of her o¤ers have been rejected and by whom, and each worker recalls all the proposals he

obtained� and there is no commitment. Nevertheless, only �rms with vacant positions are al-

lowed to make proposals: �ring a worker is simply too costly. In this paper, no such restriction

is imposed, i.e., any �rm, even if matched, can hire a new worker or simply �re its current

match. There is no commitment: agents are greedy and always willing to look for a better

partner. Moreover, agents may hold di¤erent degrees of information on the actions of the oth-

ers, ranging from the imperfect information scenario in Blum, Roth, and Rothblum (1997) to

knowing every proposal made, accepted, and rejected. Finally, we extend the analysis to the

case in which every agent, �rm or worker, may have the initiative to either break the current

5 It does not appear that allowing for any �nite number of repeated proposals would materially change the

validity of the results that follow.
6Throughout the paper, information is assumed to be perfect or almost perfect: agents on each side of the

market may ignore some actions of their peers.
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match or start a new working relationship. Hence, this paper does not compete with the cited

literature, but rather complements it by providing yet another perspective on the functioning

of decentralized markets.

In our setting, the random order in which �rms are selected introduces some uncertainty in

which matchings are achieved. In fact, it may happen that starting with the same initial match-

ing, di¤erent plays of the game yield di¤erent outcomes for the same strategy pro�le. Since

preferences are ordinal, in order to compare di¤erent probability distributions over matchings,

we use a solution concept based on �rst-order stochastic dominance. The notion of ordinal Nash

equilibrium guarantees that each agent is an expected utility maximizer for every utility rep-

resentation of his preferences.7 We go beyond this concept to account for the dynamic nature

of the game and characterize subgame perfect ordinal Nash equilibria. Despite the strength of

this concept, we prove the existence of subgame perfect ordinal Nash equilibria and, in particu-

lar, equilibria where �rms use preference strategies (i.e., strategies that can, up to some point,

be identi�ed with a list of preferences). On the other hand, every such equilibrium delivers

matchings that are stable with respect to a particular pro�le of preferences. This has two

appealing implications. First, for any equilibrium where �rms adhere to preference lists, all

outcomes are such that the set of unmatched agents is the same. Second, in the particular case

that �rms act according to their true preferences, stability with respect to the true preferences

is guaranteed in a subgame perfect ordinal Nash equilibrium. This provides an explanation for

the success of some decentralized labor markets. In fact, if we expect equilibria where �rms

act straightforwardly to prevail, only stable matchings are obtained and no individual agent

7This concept was introduced in d�Aspremont and Peleg (1988); it has been used in the context of voting

theory in Majumdar and Sen (2004) and in matching markets in Ehlers and Massó (2003), Majumdar (2003),

and Pais (2004).
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or pair of agents (consisting of a �rm and a worker) will have the incentive to circumvent the

matching. Moreover, using a list of preferences as a strategy or revealing the true preferences

can be justi�ed in some settings. The decisions of a �rm do not usually re�ect the opinion of a

single individual; instead, such actions embody a complex process of assembling the opinions

of several individuals. We may conjecture that establishing a list of candidates and using it as

guidance is� despite the apparent myopia� a more plausible form of behavior than deciding,

at each moment in time, whom to propose to. In addition, in some settings �rms obey objec-

tive criteria to admit workers, so that strategic behavior on the �rms�side looses its meaning.

The (partially) converse statement holds when we start from a situation where all agents are

unmatched: every stable matching for the true preferences can be reached as the outcome of

an equilibrium play where �rms act straightforwardly according to their true preferences.

The paper is organized as follows. In Section 2 we introduce the matching model, and review

some results on matching markets. We formally present the model in Section 3. In Section

4 we turn our attention to questions related to individual decision making and characterize

equilibria. Some results and underlying assumptions are discussed in Section 5. We conclude

in Section 6. Some proofs can be found in the Appendix.

2 The Marriage Model

Consider two �nite and disjoint sets F = ff1; :::; fng and W = fw1; :::; wpg, where F is the set

of �rms and W is the set of workers. We let V = W [ F and sometimes refer to a generic

agent by v, while w and f represent a generic worker and �rm, respectively. Each agent has

a strict, complete, and transitive preference relation over the agents on the other side of the

market and the perspective of being unmatched. The preferences of a �rm f , for example, can
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be represented by Pf = w3; w1; f; w2; :::; w4, indicating that f�s �rst choice is to be matched

to w3, its second choice is w1 and it prefers remaining unmatched to being assigned to any

other worker. Sometimes it is su¢ cient to describe only f�s ranking of workers it prefers to

remaining unmatched, so that the above preferences can be abbreviated as Pf = w3; w1. Let

P = (Pf1 ; :::; Pfn ; Pw1 ; :::; Pwp) denote the pro�le of all agents�preferences; we sometimes write

it as P = (Pv; P�v) where P�v is the set of preferences of all agents other than v. Further,

we may use PU , where U � V , to denote the pro�le of preferences (Pv)v2U . We write v0Pvv00

when v0 is preferred to v00 under preferences Pv and we say that v prefers v0 to v00. We write

v0Rvv00, when v likes v0 at least as well as v00 (it may be the case that v0 and v00 are the same

agent). A worker is acceptable if the �rm prefers to employ him rather than having its position

un�lled; similarly, a �rm is acceptable to a worker if he prefers occupying its position, rather

than being unemployed.

Formally, a marriage market is a triple (F;W;P ). An outcome for a marriage market, a

matching, is a function � : V �! V satisfying the following: (i) for each f in F and for each w

in W , �(f) = w if and only if �(w) = f ; (ii) if �(f) 6= f then �(f) 2W ; (iii) if �(w) 6= w then

�(w) 2 F . If �(v) = v, then v is unmatched under �, while if �(w) = f , we say that f and w

are matched to one another. A description of a matching is given by � = f(f1; w2); (f2; w3)g,

indicating that f1 is matched to w2, f2 is matched to w3 and the remaining agents in the

market are unmatched. A matching � is individually rational if each agent is acceptable to its

partner, i.e., �(v)Rvv, for all v 2 V . We denote the set of all individually rational matchings

by IR(P ). Two agents f and w form a blocking pair for � if they prefer each other to the

agents they are actually assigned to under �, i.e., fPw�(w) and wPf�(f). A matching � is

stable if it is individually rational and it is not blocked by any pair of agents. We denote the
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set of all stable matchings by S(P ).

3 The Decentralized Job Matching Game

3.1 Description of the Game

In this section, we de�ne the Decentralized Game. The game is given by a market (F;W;P )

and an initial matching �I . In general, we consider �I to be individually rational under the

true preferences. The rules of the game are as follows.

The game begins with a node at which nature chooses a sequence of �rms at random. Each

sequence corresponds to an order at which �rms are given the opportunity to make proposals.

Following nature�s move, the �rst �rm in the selected sequence has the chance to make a

proposal. If unmatched under �I , the �rm may propose to any worker or pass its turn. If

matched under �I , it may simply �re its initial partner, propose to a di¤erent worker, or pass

its turn and keep the initial partner.

In the case that a proposal is actually made, the game continues by having the proposed

worker deciding whether to accept or to reject the o¤er. If he accepts, a new matching is

formed where this worker and the proposing �rm are together and their previous partners, if

any, are unmatched. If he rejects, �I goes on unchanged. In the case that the �rm simply

chose to �re its initial worker, a new matching is formed where the �rm and its former partner

are unmatched, whereas if the �rm chose �pass,�the initial matching is preserved.

The second �rm then moves and the game continues by giving �rms the opportunity to

make o¤ers, in accordance with the order of the sequence. Each time a �rm is called to play,

the available moves depend on whether its position is vacant or not. If vacant, the �rm may
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propose to any worker to whom it has not proposed before or simply pass its turn. Otherwise,

it may �re the worker it holds, propose to a worker di¤erent from its current match and from

any worker it has already proposed to, or pass its turn. When a worker receives a proposal, he

may accept the o¤er or reject it and keep his former partner.

The game continues as long as there is at least one �rm wishing to make a new o¤er or to

�re the incumbent worker. As soon as every �rm in the market sequentially passes its turn,

the game ends.

Two remarks are in order. First, the fact that �rms are reluctant to repeating o¤ers guaran-

tees that every play of the game ends in a �nite number of steps. Still, relaxing this simplifying

assumption and allowing for a �nite number of repeated o¤ers would not compromise the re-

sults. Second, a matched worker is only allowed to reject his current position if he obtains and

accepts an alternative o¤er. This is a one-side-proposing game: workers do not have the spirit

to make o¤ers or even to quit their current job. In Section 5, we discuss the consequences of

having both �rms and workers playing an active role.

To complete the description of the game, we still have to specify the information that

each agent possesses throughout the game. It is sensible to assume that in labor markets

where myriads of �rms and workers interact, each agent only becomes aware of events as they

directly impinge on him. In the particular case of a �rm, this means that it learns only if

the proposal it made was accepted or rejected, or if its position became vacant. Hence, a

�rm�s information set is de�ned by its initial partner and an ordered list of workers to whom it

proposed, along with their reactions. Similarly, a worker is only aware of events that directly

a¤ect him. A worker�s information set is identi�ed by his initial position, as well as an ordered

list of proposals received, his own responses, and �rings. The initial chance move is never
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observable.8

3.2 Chance Move

Let us now focus on nature�s move. At each moment in time, a randomly selected �rm is

given the chance to play. This random selection should not be interpreted merely as every

�rm having equal probability of proposing at each step. It may re�ect some institutional�

and perhaps inherently uncertain� features of the market which are not modeled. In fact, in

decentralized markets matching is performed over the telephone network, using the mail, or

through the Internet. In such environments, randomness determines the order in which agents

communicate: it may depend on which telephone call goes through, on the speed of the mail,

or on how fast �rms react to eventual proposals. Or it may even be the case that there exists

a natural order in which �rms are expected to propose� �rms that have potentially more to

gain will certainly devote more resources into �nding the right worker for their position and

are, therefore, more likely to make o¤ers.

To be precise, the game starts with a lottery prescribing a sequence of �rms that de�nes

the subsequent moves. A sequence corresponds to one of the innumerable possible orders in

which �rms are allowed to act. We assume that every sequence is in�nite and that, in each

sequence, every single �rm appears in�nitely many times. We also assume that every sequence

has positive probability of occurring. The sample space over which this probability distribution

is de�ned is denoted by O and o is an arbitrary sample point, a sequence of �rms.

8Such low information environment may be enriched. It may be the case that agents learn of the actions of

the others, even though they are not immediatly a¤ected by them. The validity of the results that follow will

be discussed for broader information structures.
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Note that, even though we consider in�nite sequences of �rms, every play of the game ends

in �nite time. In fact, as �rms are only allowed to propose to each worker once and, obviously,

�ring is possible only if matched, the moment comes when every �rm chooses to pass its turn

if called to play, either because keeping the incumbent worker is part of its strategy, or because

passing is the only available action. Moreover, the fact that a �rm appears in�nitely many

times in each sequence guarantees that this moment comes and the �rm is actually called to

play. The end is then reached for every play of the game.

3.3 The Strategy Space

In what follows, we will describe agents�strategies and introduce some notation. A player�s

strategy in the Decentralized Game complies with the usual de�nition of behavioral strategy

in an extensive form game, i.e., a plan of action for each information set where he is called

to act. However, in the context of a matching market there is a class of strategies worth

emphasizing, strategies that resemble those used in a centralized market. Following Blum,

Roth, and Rothblum (1997) we will call these strategies �preference strategies.�Such strategies

obey a consistency criterion in which agents decide how to move at any information set basing

on a list of preferences, including those information sets that would not be reached had that list

actually been used. Hence, deviations are regarded as temporary mistakes and further moves

�t in the original list. To make things clear, when using a preference strategy, a �rm selects an

ordered list of potential matches and, whenever called to propose, makes the o¤er to the best

worker on its list to whom it has not proposed before; likewise, a worker decides whether to

accept or to reject a new proposal by comparing it with his current position on his list.

Even though the lists of preferences that serve as guidance do not have to faithfully reveal
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agents�true preferences, the set of preference strategies represents merely a small part of the set

of feasible strategies.9 For example, a worker w�s strategy of accepting only the �rst proposal he

gets and rejecting all the others is not consistent with any list of preferences. In fact, di¤erent

plays of the game induce di¤erent orders of proposals; thus, depending on the play of the game,

w�s �rst proposal may be from, say, f and f 0. It follows that f may be revealed preferred to

f 0 by w or vice-versa, which clearly cannot be consistent with a preference list.

As for notation, actions are taken at decision nodes, typically denoted by x. A strategy

pro�le � speci�es a strategy for each agent; we sometimes write � = (�v; ��v), where �v de-

notes the strategy of v and ��v denotes the strategy pro�le of the other agents. Preference

strategies will be denoted by the corresponding preference pro�le� Qv, for example, is a pref-

erence strategy for v� while Pv always denotes v�s true preferences. A sequence of �rms o and

a strategy pro�le � determine a play of the game, denoted by �.

3.4 Random Matching and Ordinal Nash Equilibria

In the Decentralized Game, di¤erent plays of the game with the same strategy pro�le may yield

di¤erent output matchings, depending on the order of proposals. This applies even in the case

that agents use preference strategies, as the following example illustrates.

Example 1 The outcome depends on the selection of the order by which �rms propose.
9We refer to Pais (2004) for the analysis of a job matching game where the strategy space is con�ned to the

set of preference strategies.
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Let (F;W;P ) be a marriage market with P such that

Pw1 = f2; f1 Pf1 = w1; w2

Pw2 = f1; f3; f2
Pf2 = w2; w1

Pf3 = w2:

Note that the unique stable matching for this market is � = f(f1; w2); (f2; w1)g. Now

consider the Decentralized Game with �I = f(f1; w2)g when agents play according to their

true preferences P .

Start by considering the case in which f3 is the �rst to make an o¤er. Given that f3 is

using Pf3 , it proposes to the only acceptable worker, w2, and w2 rejects this proposal, as he is

initially matched to f1, the best �rm on his list. Then, it may be the case that either f1�s or

f2�s opportunity comes. Let us say f1 makes an o¤er; it proposes to w1, the �rst worker in Pf1 ,

who is currently unmatched and thus accepts the proposal. Once this proposal is accepted,

w2 is left unmatched. Hence, when f2 is given the chance to propose, w2 accepts its o¤er. In

the following moves every �rm passes its turn, so that the game ends with the �nal non-stable

matching �̂ = f(f1; w1); (f2; w2)g.

Nevertheless, if the �rst randomly chosen �rm is f2, its proposal to w2 is refused, as this

worker is still matched to f1 and f1 is preferred to f2 in Pw2 . The next �rm to propose can

either be f1, f2, or f3. Assume f2 is the �rst to propose. It proposes to w1, the second worker

on its list, and w1 accepts. Next, if f1�s turn comes, it proposes to w1, who rejects this o¤er,

since he is matched to his top choice f2. So imagine f1 is called to propose once more, tendering

an o¤er to w2, who accepts it. When �nally f3 proposes to w2, he rejects the o¤er, given that

he is already holding the highest ranked �rm in his preference list. This play of the game

terminates when the three �rms are given the chance to pass their turns and the matching
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� = f(f1; w2); (f2; w1)g is reached as the outcome of the game. �

Given an initial matching and a strategy pro�le, all the uncertainty on the order of play

as described above is fully translated into a probability distribution over the set of matchings.

Hence, �x a probability distribution on O and take an initial matching �I , a preference pro�le

P , and an arbitrary worker w (what follows also holds for a representative �rm, with obvi-

ous modi�cations). We will let gDG�I [�] denote the probability distribution over the set of
matchings induced by the Decentralized Game starting from �I when the strategy pro�le � is

used and gDG�I [�](w) is the distribution that gDG�I [�] induces over F [ fwg. The expression
PrfgDG�I [�] = �g represents the probability that � is the �nal matching of the Decentralized
Game with the strategy pro�le �. Moreover, PrfgDG�I [�](w)Rwvg is the probability that, in
the Decentralized Game, w obtains a partner at least as good as v when � is adopted. Observe

that these probabilities rest on the probability distribution on O, but all the results that follow

hold regardless of this lottery.

To address strategic questions we need to develop ideas about what constitutes a �best

decision� to be taken by an agent. With this purpose in mind, let � be a strategy pro�le

and again consider w 2 W . We say that, given ��w, the strategy �w stochastically Pw-

dominates �0w in the Decentralized Game if, for all v 2 F [fwg, PrfgDG�I [�w; ��w](w)Rwvg �
PrfgDG�I [�0w; ��w](w)Rwvg. Thus, for any level of satisfaction, the probability that w�s match
exceeds that level of satisfaction is greater under gDG�I [�w; ��w] than under gDG�I [�0w; ��w].
This provides the basis for the solution concepts we will adopt throughout the paper.

De�nition 1 Let (F;W;P ) be a matching market and let �I be the initial matching. The

pro�le of strategies � is an ordinal Nash equilibrium (ON equilibrium) in the Decentralized

Game if, for each player v in V , �v stochastically Pv-dominates every alternative strategy �0v
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given ��v.

Thus, by using a strategy other than �v, v will not be able to strictly increase the probability

of obtaining any v0 (an agent with whom it may end up matched) and all agents ranked higher

than v0 in its true preference list, Pv. This means that we will be concerned in �nding a

pro�le of strategies � with the property that, once adopted by the agents, no one can pro�t by

unilaterally deviating for all possible utility representations of the agents�preferences.

Finally, the notion of ordinal Nash equilibrium can be re�ned to account for the dynamic

nature of the Decentralized Game.

De�nition 2 Let (F;W;P ) be a matching market and let �I be the initial matching. The

pro�le of strategies � is an ordinal subgame perfect Nash equilibrium (OSPN equilibrium)

in the Decentralized Game if it induces an ordinal Nash equilibrium in every subgame of the

Decentralized Game.

4 Equilibrium analysis

We begin this section by exploring the relationship between ordinal Nash and subgame perfect

ordinal Nash equilibria.

Proposition 1 Let jF j � 2. Then, no information set is a singleton.

Lemma 1 Let jF j � 2: Let x and x0 be the two last decision nodes of the play of the game �,

such that x0 precedes x. Then, x and x0 belong to two di¤erent �rms and both �rms choose the

action �pass�at these nodes.
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Proof. First, notice that the game ends when every �rm has sequentially chosen �pass.�

Given that x and x0 precede the terminal node reached with � and that jF j � 2, it follows that

the action taken at these nodes must be �pass.�Now suppose, by contradiction, that both x

and x0 are �rm f�s decision nodes. Since, when � is considered, the game ends after f chooses

�pass� at x, every �rm other than f must have chosen �pass� in the nodes that precede x.

Hence, every �rm other than f has passed its turn in the nodes that precede x0. The rules of

the game thus imply that the game ends immediately after f chooses �pass�at x0 and we reach

a contradiction: x is not a decision node.

Lemma 2 Let jF j � 2: Let � be a play of the game and let x be a node of f reached along �,

such that the game does not end after f�s choice at x along �. Then, there exists a �rm f 0 that

still has a chance to act in �.

Proof. Immediate from Lemma 1.

Proof of Proposition 1. Let x be a node that belongs to f in � when nature draws the

sequence o. Let f�s move at x correspond to the kth element of o. We will prove that there

exists a sequence o0 and a node x0 reached when nature draws o0, such that x and x0 belong to

the same information set.

First, assume that the game does not end after f�s choice at x along �. By Lemma 2,

there exists a �rm f 0 that still has the chance to act along �. Now let o0 be a sequence whose

k �rst elements are the same as those in o, but that di¤ers from o in that f is inserted in

position k + 1 and all the remaining elements are identical. Consider any play of the game

where nature draws o0 and every agent chooses exactly the same actions as along � up to the

point where o0k+1 is called to play. Let x
0 be the node corresponding to f�s move in position
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k of the sequence o0. It is clear that x0 belongs to the same information set as x, since every

action, except for the unobservable nature�s move, is the same along � and �0.

Now let x be a node of f , reached along �, such that f�s action at x is the last action in �.

By Lemma 1, there exists a �rm f 0 6= f that has had the chance to move immediately before f

moves at x, i.e., in position ok�1 of the sequence, and both have chosen �pass.�Now let o0 be a

sequence whose �rst k�1 elements coincide with those of o, but where f 0 occupies the position

ok and f occupies the position ok+1. Consider the play of the game �0 where nature draws o0,

every agent up to the element k � 1 in the sequence chooses exactly the same action as in �,

and f 0 chooses �pass�when called to play at the kth position of the sequence. Let x0 be the

node reached in �0 where f acts in position k + 1. Since f cannot observe nature�s moves nor

f 0�s action, it holds exactly the same information in both x and x0. Hence, x0 belongs to the

same information set as x.

Now consider � where nature draws o and along which some worker w may accept or reject

a proposal made by �rm f . Let x be the node where w acts and let f�s proposal correspond to

the kth element of o. Lemma 1 ensures that the game does not end after w�s move at x. Hence,

let o0 be any sequence whose k �rst elements are the same as those in o, but such that the

elements in position k+1 are di¤erent. De�ne �0 as a play of the game in which nature draws

o0 and every other player chooses the same actions as along � up to the point where w reacts

to f�s proposal. Let x0 be the node where w takes such decision. Since nature�s draws are not

observable, w�s information is exactly the same in x and in x0. It follows that the information

set containing x is not a singleton.

An immediate implication of this result is that the set of ordinal Nash and subgame perfect

ordinal Nash equilibria coincide. In fact, given that all information sets are non-singletons, the
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Decentralized Game has no proper subgames. It may be conjectured that this is due to the low

information environment we have assumed. And there are labor markets in which agents may

become aware of events that do not a¤ect them directly� acquaintances and social networks in

general may play an important role. However, considering an enriched information environment

where agents perceive all the o¤ers that are made, as well as the proposed workers�reactions,

the arguments in the above proof remain valid, as long as nature�s move remains unobservable.

Roughly speaking, for every decision node x along some play of the game that includes a draw

of nature o, it is always possible to �nd a decision node x0 belonging to the same information

set of x by building a di¤erent play of the game in the following way: add a single �rm to o, let

it choose �pass�in its new decision node, and let agents choose exactly the same actions as in

the original play in every other node. The conclusion follows since every proposal, acceptance,

and rejection is made respecting the original order. Hence, even in this extreme case, ordinal

subgame perfect Nash coincide with ordinal Nash equilibria. In what follows, we will refer to

these concepts indistinctly as ordinal equilibria.

The following theorem is the main result of this section. Individual rationality is an obvious

necessary condition that every ordinal equilibrium outcome must ful�ll. Here, we state that

under every ordinal equilibrium play of the Decentralized Game where �rms use lists of pref-

erences, some form of stability is preserved. To be more precise, every matching that can be

obtained under such a play is stable for the same pro�le of preferences. The following remark

is used in the proof of the theorem.

Remark 1 When using a preference strategy, a �rm will not �re a worker it proposed to nor

exchange him for another worker along any play of the Decentralized Game. In fact, when a

proposal is made, the �rm reveals that this particular worker is the best among all who have
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not rejected it. If the worker accepts, the only occasion under which the �rm makes a proposal

again is when the worker it holds resigns from his position.

Theorem 1 Let �I be an individually rational input matching for (F;W; (QF ; PW )). Assume

that the strategy pro�le � = (QF ; �W ) is an ordinal equilibrium in the Decentralized Game.

Then, the probability distribution obtained over the set of matchings is such that every element

in its support is a member of S(QF ; PW ).

Proof. Suppose that f�1; :::; �kg is the support of the distribution induced over the set of

matchings when agents use �. Assume that for some i 2 f1; :::; kg; �i =2 S(QF ; �W ). We will

prove that � is not an ordinal equilibrium.

Let � be a play of the game that results in �i. To start, notice that for every �rm f it

must be the case that its assignment, �i(f), is acceptable with respect to Qf . In fact, once

using Qf , f never proposes, under any play of the game, to a worker that, according to Qf ,

is considered worse than being unmatched. On the other hand, every worker must consider

his partner acceptable with respect to P . Assume that this is not the case and that there

exists a worker, say w, such that wPw�i(w). Individual rationality of the matching �
I implies

�i(w) 6= �I(w). Hence, �w must include, at some point along �, accepting �i(w)�s proposal.

Now take an alternative strategy �̂w according to which no o¤er is accepted by w. By using

�̂w, w may end up unmatched or, if initially matched, keep his original partner �I(w), but he

is never assigned to a �rm considered unacceptable under Pw. Thus, the following holds:

1 = PrfgDG�I [�̂w; ��w](w)Rwwg > PrfgDG�I [�](w)Rwwg
and �w is not a best reply to ��w.
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We have proved that �i is individually rational. Thus, there must exist a blocking pair

for �i when the preference pro�le (QF ; PW ) is considered. Let us say (f; w) blocks �i, i.e.,

fPw�i(w) and wQf�i(f). This implies that f proposed to w and, by Remark 1, was rejected

by w in the course of �. Hence, �w includes rejecting f in at least one of w�s information sets.

Now, de�ne �̂w as the strategy according to which w chooses the same actions as under �w at

every information set, except for those that lead to rejecting f . When using �̂w, if f proposes

to w, w accepts this proposal and rejects every subsequent o¤er.

First, let us prove that the probability of being assigned to f is strictly higher under �̂w

than under �w. Recall that � is a play of the game leading to �i and let o be nature�s move in

�. We know that �rm f must have proposed to w along �. If, instead of using �w, w deviates

and acts according to �̂w, by Remark 1, w will end up matched to f when nature draws o and

��w is used. Now let �0 be the play of the game in which nature draws o0, with o0 6= o, and

players use (�̂w; ��w). If f does not propose to w along �0, w acts exactly as if using �w and

ends up matched to the same partner as when nature draws o and players use �. Otherwise,

f and w are matched in the �nal matching. It follows that the probability of having f and w

matched is strictly increased when w uses �̂w.

In order to prove �w is not a best reply to ��w, assume, without loss of generality, that

Pw = f1, f2,..., fm�1, f , fm+1,..., w,..., fn. Consider a �rm fj , with j = 1; :::; m � 1, and

consider all the plays of the game where � is used and where w and fj end up together in the

�nal matching. Some of these plays may not give fj assigned to w when he deviates and acts

according to �̂w. However, the only occasion under which this happens is when w obtains a

proposal from f and ends up matched to f . Hence, the probability of having w matched to f

21



or to a �rm he considers better than f is strictly increased when w uses �̂w. We have

PrfgDG�I [�̂w; ��w](w)Rwfg > PrfgDG�I [�](w)Rwfg;
contradicting that � is an ordinal equilibrium.

The importance of this result lies in two of its implications. Since the set of unmatched

agents is the same for every matching that is stable in a matching market (McVitie and Wilson,

1970, and Roth, 1982), the same agents remain unmatched in every possible outcome of an

ordinal equilibrium where �rms use lists of workers to guide their decisions. Moreover, when

we focus on equilibria where �rms act according to their true preferences, stability with respect

to the true preferences is guaranteed. Such straightforward form of behavior can be justi�ed.

In some settings, �rms obey objective criteria when selecting whom to hire (e.g., universities

select students according to their grades, some �rms choose their workers basing on scores

given by a recruiting agency, student placement mechanisms assign students to public schools

according to the area of residence,...). Even when �rms are not constrained to follow such rules,

hiring new workers embodies a process of aggregating the opinions of di¤erent individuals that

compose a recruiting committee; hence, it may be that a list of workers is �xed and all decisions

are myopically taken basing on that list. Having to decide what to do next at each moment

in time may be a less plausible form of behavior. Finally, reverting to the true preferences is

always an easy resort, given the multiplicity of available strategies and the complexity of the

environment.

Ordinal equilibria always exist when the initial matching is individually rational. In par-

ticular, the following results show the existence of ordinal equilibria where �rms use preference

strategies.
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De�nition 3 Let �I be an arbitrary matching. We say that � is individually rational with

respect to �I if � 2 IR(P ) and if, for all f 2 F , w0 = �I(f)P (f)�(f), implies �(w0) 6= w0.

We will denote by IR�
I
(P ) the set of all individually rational matchings with respect to �I .

For illustration, in the particular case that �I is the empty matching, the set of all individually

rational matchings with respect to this initial matching coincides with the set of individually

rational matchings (i.e., IR?(P ) = IR(P )).10

Proposition 2 Let �I be an individually rational matching for (F;W;P ). Then, S(P ) is a

subset of IR�
I
(P ).

Proof. Consider � 2 S(P ). We will prove that � 2 IR�
I
(P ) using a contradiction

argument. Assume that � 2 S(P ): By de�nition of stability, this implies � 2 IR(P ), but

assume that there exists a �rm f such that w0 = �I(f)Pf�(f) and �(w0) = w0. Stability of

� implies that w0Pw0f and we get a contradiction: �I is not individually rational. Therefore,

every stable matching is an element of IR�
I
(P ).

Since a stable matching exists for every marriage market (Gale and Shapley, 1962), IR�
I
(P )

is not empty for every individually rational matching �I .

Proposition 3 Let �I be an individually rational matching for (F;W;P ) and let � 2 IR�I (P ).

Then, there exists an ordinal equilibrium � = (QF ; �W ) in the Decentralized Game that leads

to � with probability one.

Proof. De�ne Qf = �(f), for every �rm f and let �w = Qw = �(w). It is clear that every

play of the game with the pro�le � will lead to the output matching �.
10This holds since if fP (f)�(f), then �(f) 6= f .
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Let us show that for every �rm f , Qf is a best reply to Q�f . First, as long as �(f) 6= �I(f),

f never holds its initial match under �. Indeed, it is clear that if �I(f)Pf�(f), then �I(f)

receives and accepts another �rm�s proposal (and in the case that �(f)Pf�I(f), �I(f) is not a

temptation). Hence, when �(f) 2W , given that the only worker willing to accept f�s proposal

is �(f), the only choice f can actually make is between being assigned to this worker or staying

alone. From individual rationality we have �(f)Pff which implies that f will not be able to

pro�t from deviating from Qf . Obviously, for f such that �(f) = f , no worker accepts f�s

proposal and it can do no better than staying alone.

Finally, for any w, �w is a best reply to ��w. In fact, given �rms�strategies, w gets at

most one proposal and, considering � is individually rational, the best he can do is to accept

it. This completes the proof.

One particular case worth exploring is the case in which the starting point is the empty

matching. The Decentralized Game then becomes a stylized model of an entry-level labor

market without commitment, where cohorts of vacant positions and cohorts of candidates

become simultaneously available, and decisions are taken in a decentralized way. It turns out

that starting from the empty matching allows us to take the analysis farther.

Proposition 4 Let �I be the empty matching and let � 2 S(P ). Then, there exists an ordinal

equilibrium in the Decentralized Game where �rms reveal their true preferences that yields �

with probability one.

Proof. Let � = (PF ; �W ) and de�ne �w as follows. For every worker w matched under �,

�w is the strategy of accepting only �(w) and rejecting every other proposal, while it leads to

the rejection of all proposals, without exception, when w is unmatched under �.
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We start by showing that the pro�le of strategies � always leads to the matching �, i.e.,

PrfgDG�I [�] = �g = 1. If this is not the case, then there exists a play of the game leading to
b� 6= �. But this is equivalent to having a �rm, say f , that ends up matched to a partner, b�(f),
di¤erent from �(f) for some instance of the game. Given that f is unmatched in the initial

matching and that the only worker willing to accept f is �(f), we must have b�(f) = f (as long
as f 6= �(f); otherwise it must be the case that b�(f) = �(f) and we have a contradiction).

So assume that b�(f) = f . Since �(f) would accept f�s proposal and f is acting according to
its true preferences, it must be the case that fPf�(f). Hence, �(f) is not acceptable and the

stability of � is contradicted.

Let us now prove that, for every �rm f , Pf stochastically Pf -dominates every other strategy

�f . We will start by considering the case in which �(f) 6= f . Given that the only worker who is

willing to accept f is �(f), by choosing its strategy appropriately, f can either be alone or hold

�(f) under the output matching. By stability of �, �(f)Pff ; since truth telling guarantees

that �(f) is assigned to f with probability one, f cannot improve by switching its strategy.

In the case that �(f) = f , no worker accepts its proposal, and the best it can achieve is

staying unmatched. It follows that f cannot do better than being assigned to �(f) and Pf

stochastically Pf -dominates every other strategy �f .

Now take the case of an arbitrary worker, w. Suppose, by contradiction, that �w does not

stochastically Pw-dominate strategy �̂w. This implies that PrfgDG�I [PF ; �̂w; ��w](w)Rw�(w)g =
1 and that there exists a �rm, say f , such that the following holds: PrfgDG�I [PF ; �̂w; ��w](w) =
fg > 0 and fPw�(w). But this means that, for some draw of nature, f approaches w before

making an o¤er to �(f). In fact, it cannot be the case that f proposes to �(f) �rst and he does

not accept it, as �(f) is acting according to his original strategy, ��(f), de�ned above. Thus, f
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must prefer w to �(f). However, in this case (f; w) forms a blocking pair for �, contradicting

the fact that � is stable.

Hence, in a decentralized entry-level labor market every stable matching can be reached as

the outcome of an ordinal equilibrium play of the game where �rms stick to their true rankings.

The (partially) converse statement is given by Theorem 1, ensuring that every such ordinal

equilibrium guarantees stability. These results may be viewed as an extension of some known

features of the game induced by Gale and Shapley�s centralized mechanism (Roth, 1984b),

where the underlying strategy space is con�ned to the set of preference strategies.

5 Discussion

In this section we put our results in perspective and discuss some of the underlying assumptions.

As mentioned in the Introduction, centralized procedures have been introduced in many

matching markets in response to certain market failures. It has been argued that the stability

of the mechanisms employed is crucial for their success. In fact, those centralized procedures

that achieved stable outcomes resolved the market failures, while those producing unstable

outcomes continued to fail.11 Since many matching markets do not employ centralized match-

ing procedures, and yet are not observed to experience such problems, we can suspect that

some markets may reach stable outcomes by means of decentralized decision making without

commitment. Theorem 1 provides support to this conjecture. To make things clear, let us

return to Example 1. We have seen that some plays of the game lead to unstable outcomes

for the true preferences (the matching �̂ is not stable). Nevertheless, Theorem 1 implies that

11See, for example, Roth (1984a, 1990, 1991).
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if we expect agents to use equilibrium strategies and, by best-replying, �rms faithfully reveal

their true preferences, then a stable matching is reached. Hence, if equilibrium predictions are

to be taken seriously, the success of some decentralized markets is explained.

It is now probably worth discussing the robustness of the results to some changes in the

rules of the game. First, as already mentioned, the simplifying assumption that �rms do not

repeat o¤ers ensures that the game is �nite. Still, admitting that �rms are persistent does not

compromise the above results, as long as we allow for a �nite number of repetitions.

Second, throughout the game matchings are formed and dissolved as agents act in what

they perceive to be their own best interest. We may think of this as a mere negotiation

process, where no contracts are signed and where these temporary matchings would be the

ones prevailing should negotiations suddenly stop. Alternatively, considering that provisional

matchings are indeed consummated amounts to assuming that agents are free to recontract

without any restrictions whatsoever. In the other extreme, we can consider that it is too

costly to �re a worker. Hence, only �rms with vacancies will actually make proposals and the

Decentralized Game falls in the realms of Blum, Roth, and Rothblum�s analysis. Blum, Roth,

and Rothblum (1997) study how markets for senior positions may be re-stabilized after new

�rms have been created or workers have retired. In fact, stability for the true preferences is

achieved in every equilibrium where �rms act according to their true preferences, as long as

the starting point is a �rm-quasi-stable matching, i.e., a matching whose stability has been

disrupted by the creation of a new position or the retirement of a worker. Hence, Theorem

1, which allows for having any individually rational as an initial matching, no longer holds.

The validity of Proposition 3 is also compromised: if we start form an initial matching where

every �rm is matched, no �rm will be allowed to hire a new worker and the initial matching
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situation will be preserved, independently of the strategies used. In this setting, the majority

of the results on equilibria depend on having a �rm-quasi-stable matching as a starting point.

A di¤erent issue concerns providing workers with the initiative to quit and to propose. In

some real labor markets, not only �rms, but also workers may defy their preferred �rms and

we may account for this in the Decentralized Game. Hence, suppose that at each moment

in time, an agent, either a �rm or a worker, is randomly selected and makes an o¤er to

someone in the other side of the market to whom it has never proposed to nor received a

proposal from. The agent that receives the o¤er can only accept, or reject and keep his former

partner, if a former partner existed. The game ends when every agent in the market passes

its turn. It turns out that, starting from an arbitrary matching, every individually rational

matching can be obtained in an ordinal equilibrium play of the game, so that the scope of

Proposition 3 is enhanced. In what Theorem 1 and its implications are concerned, stability is

robust to sophisticated behavior by one side of the market, provided that the other side acts

in accordance with the true preferences. To be precise, every matching sustained at an ordinal

equilibrium is stable with respect to the true preferences whenever �rms (respectively workers)

faithfully transmit their preferences and workers (respectively �rms) behave strategically by

using strategies that may reveal di¤erent orderings of the other side of the market in di¤erent

executions of the algorithm. Finally, in the particular case that the initial matching is the

empty matching, every stable matching can be reached with probability one in an equilibrium

where one side of the market truthfully reveals its preferences.12

12A formal statement of these results and their proofs are given in the Appendix, in Propositions 5, 6, and 7.
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6 Concluding Remarks

The present paper attempts to extend the two-sided matching theory by constructing a game

that mimics the behavior of some decentralized labor markets. Equilibrium analysis in a

random context is performed at the expense of using an ordinal equilibrium concept that

allows for obtaining some interesting results. Namely, equilibria where �rms use preference

strategies always exist and lead to matchings that preserve stability for a particular pro�le of

preferences. Furthermore, when we consider an ordinal equilibrium where �rms act truthfully,

stability for the true preferences is achieved in every outcome matching. This fact may account

for the success of some decentralized labor markets. A case of particular interest has the empty

matching as the starting point of the game. Here we give a fairly complete characterization of

ordinal equilibria.

It is natural to ask to what extent the stylized model constructed here can serve as a

description of a real decentralized labor market. The marriage model is perhaps too simple.

Aside from the assumption that each �rm has a unique position to �ll, the important unrealistic

feature lies in considering that the salary associated with each position is a �xed part of the

job description, rather than something to be negotiated between each �rm and prospective

worker. Furthermore, the concept of ordinal equilibrium� justi�ed by the ordinal nature of

agents�preferences� is quite demanding. It thus remains important to explore models where

these assumptions are relaxed and a milder solution concept is used, even though we believe

that the present analysis provides a good starting point to understand the functioning of some

decentralized labor markets.
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7 Appendix

In this section we extend some of the above results to the case in which both sides of the market

are able to tender o¤ers. First, it can easily be shown that no information set is a singleton,

as long as there are at least two agents in the market, i.e., jV j � 2.13 It follows that subgame

perfect ordinal Nash equilibria coincide with ordinal Nash equilibria. The remaining results

are proved in what follows.

Proposition 5 Let �I be an arbitrary matching in (F;W;P ) and let � 2 IR(P ). Then, there

exists an ordinal equilibrium in the Decentralized Game that leads to � with probability one.

Proof. Let Qv = �(v), for all v 2 V . Clearly, every play of the game with strategy pro�le

Q leads to �. We will show that Q is an ordinal equilibrium. In the case that v is such that

�(v) 6= v, the only agent that proposes to or accepts a proposal from v is �(v). Hence, no

deviation will improve v�s match. Otherwise, for v such that �(v) = v, no agent is willing to

match v. As before, by switching strategy, v cannot end up matched and improve his position.

In what follows, we extend Theorem 1. The result is stated for equilibria in which �rms use

preference strategies and workers are allowed to have other forms of behavior. Note however

that we restrict to equilibria where a worker�s strategy is consistent with a list of preferences

along each play of the game (even though it may correspond to incompatible lists when di¤erent

plays of the game are considered). A similar result, where the roles of �rms and workers are

13The reasoning behind the proof of Proposition 1 remains valid, but instead of analysing decision nodes that

belong to �rms and to workers as separate cases, the distinction to be made is between nodes where proposals

are issued, and those where acceptances or rejections take place.
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interchanged, can be proved.

Proposition 6 Let �I be an arbitrary matching in (F;W;P ). Assume that the strategy pro�le

� = (QF ; �W ) is an ordinal equilibrium in the Decentralized Game, where �w is consistent with

a list of preferences in each play of the game, for all w 2W . Then, the probability distribution

obtained over the set of matchings is such that every element in its support is a member of

S(QF ; PW ).

Proof. Suppose that f�1; :::; �kg is the support of the distribution induced over the set of

matchings when agents use � and assume that for some i 2 f1; :::; kg; �i =2 S(QF ; �W ). We

will prove that � is not an ordinal equilibrium.

We will denote by � a play of the game leading to �i. To start, notice that for every �rm

f it must be the case that its assignment, �i(f), is acceptable with respect to Qf . In fact,

once using Qf , f never proposes to nor accepts a proposal from a worker that, according to

Qf , is considered worse than being unmatched. On the other hand, every worker must �nd

his partner acceptable. Assume that this is not the case and that there exists a worker, say w,

such that wPw�i(w). Now take an alternative strategy �̂w according to which w resigns from

�I(w)� if w is initially matched� and accepts no o¤ers. By using �̂w, w ends up unmatched in

every play of the game. Hence, 1 = PrfgDG�I [�̂w; ��w](w)Rwwg > PrfgDG�I [�](w)Rwwg and
�w is not a best reply to ��w.

Individual rationality of �i of (QF ; PW ) is proven. Thus, there must exist a blocking pair

for �i when the preference pro�le (QF ; PW ) is considered. Let us say (f; w) blocks �i, i.e.,

fPw�i(w) and wQf�i(f). This implies that, in the course of �, either (i) f proposed to w or

(ii) w proposed to f . If (i) holds, by Remark 1, f was rejected by w and we can prove that �w
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is not a best-reply to ��w using the same arguments as in the proof of Theorem 1. Otherwise,

in case (ii), since w uses a strategy that is consistent with a list of preferences under �, f must

have rejected w. (The reasoning behind this relies in arguments similar to those of Remark 1.)

In this case we can �nd a successful deviation for f . In fact, de�ne �̂f as the strategy according

to which f chooses the same actions as under �f at every information set, except for those that

lead to rejecting w when w proposes. Hence, when using �̂f , if w proposes to f along a play

of the game, f accepts this proposal and holds it until the end of this play. For every play of

the game in which w does not propose to f , f acts exactly as when using �f .

First, we will prove that the probability of being assigned to w is strictly higher under �̂f

than under �f . Recall that � is a play of the game leading to �i and let o be nature�s move

in �. We know that w must have proposed to f along �. Once f deviates and acts according

to �̂f , f will end up matched to w when nature draws o and ��f is used. Now let �0 be the

play of the game in which nature draws o0, with o0 6= o, and players use (�̂f ; ��f ). If w does

not propose to f along �0, f ends up matched to the same partner as when nature draws o

and players use �. Otherwise, f and w are matched in the �nal matching. It follows that the

probability of having f and w matched is strictly increased when f uses �̂f .

In order to complete the proof that �f is not a best reply to ��f , assume, without loss of

generality, that Pf = w1, w2,..., wl�1, w, wl+1,..., f . Consider a worker wj , with j = 1; :::; l�1,

and consider all the plays of the game where � is used and where f and wj end up together in

the �nal matching. Such plays may not give wj assigned to f when f switches to �̂f . However,

the only occasion under which this happens is when f obtains a proposal from w and ends up

matched to him. Hence, the probability of having f matched to w or to a worker it considers
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better than w is strictly increased when f uses �̂f . We have

PrfgDG�I [�̂f ; ��f ](f)Rfwg > PrfgDG�I [�](f)Rfwg;
contradicting that � is an ordinal equilibrium.

Proposition 7 Let �I be the empty matching and let � 2 S(P ). Then, there exists an ordinal

equilibrium in the Decentralized Game where one side of the market reveals its true preferences

that yields � with probability one.

Proof. We analyze the case in which �rms act according to their true preferences; the

same arguments hold, with the roles of �rms and workers reversed, when workers act straight-

forwardly. Hence, consider � = (PF ; �W ) and de�ne �w as follows: if w is matched under �,

�w is the strategy of always choosing �pass�when called to propose and accepting only �(w)�s

proposal; while if w is such that �(w) = w, no proposal is made nor accepted by w.

We start by showing that the pro�le of strategies � always leads to the matching �. If this

is not the case, then there exists a play of the game leading to b� 6= �. But this is equivalent
to having a �rm, say f , that ends up matched to a partner, b�(f), di¤erent from �(f) for some

instance of the game. Given that workers make no proposals and that the only one willing to

accept f is �(f), we must have b�(f) = f (as long as f 6= �(f); otherwise it must be the case
that b�(f) = �(f) and we have a contradiction). So assume that b�(f) = f . Since �(f) would
accept f�s proposal and f is acting according to its true preferences, it must be the case that

fPf�(f). Hence, �(f) is not acceptable and the stability of � is contradicted.

Let us now prove that, for every �rm f , Pf stochastically Pf -dominates every other strategy

�f . We will start by considering the case in which �(f) 6= f . Given that workers do not issue

o¤ers and that the only worker who is willing to accept f is �(f), by choosing its strategy
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appropriately, f can either be alone or hold �(f) under the output matching. By stability of

�, �(f)Pff ; since truth telling guarantees that �(f) is assigned to f with probability one, f

cannot improve by deviating. In the case that �(f) = f , no worker accepts its proposal nor

proposes to f , and the best it can achieve is staying unmatched. It follows that f cannot do

better than being assigned to �(f) and Pf stochastically Pf -dominates every other strategy

�f .

Now take the case of an arbitrary worker, w. Suppose, by contradiction, that �w does not

stochastically Pw-dominate a di¤erent strategy �̂w. Then, PrfgDG�I [PF ; �̂w; ��w](w)Rw�(w)g =
1 and that there exists a �rm, say f , such that the following holds: PrfgDG�I [PF ; �̂w; ��w](w) =
fg > 0 and fPw�(w). Let � be a play of the game where f and w are matched. By stability

of �, �(f)Pfw, so that f proposes to �(f) in the course of �. Given the outcome matching,

�(f) rejects f�s proposal. This contradicts the de�nition of �(f)�s strategy.
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