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Abstract

We consider centralized matching markets in which, starting from an arbitrary match-

ing, �rms are successively chosen in a random fashion and o¤er their positions to the

workers they prefer the most. We propose an algorithm that generalizes some well-known

algorithms and explore some of its properties. In particular, di¤erent executions of the

algorithm may lead to di¤erent output matchings. We then study incentives in the rev-

elation game induced by the algorithm. We prove that ordinal equilibria always exist.

Furthermore, every matching that results from an equilibrium play of the game is stable

for a particular preference pro�le. Namely, if an ordinal equilibrium exists in which �rms

reveal their true preferences, only matchings that are stable for the true preferences can

be obtained.

JEL Classi�cation: C78; J44

Keywords: Matching Markets; Stability; Random Mechanism
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1 Introduction

Simple models of two-sided matching have proved to be very useful in understanding

the organization and evolution of many markets, namely labor markets, as well as other

economic environments. The term �two-sided� refers to the fact that agents belong

to one of two disjoint sets and can never interchange roles. Thus, we may have, for

instance, �rms and workers, hospitals and interns, colleges and students, men and women.

Each agent has preferences over the other side of the market and the prospect of being

unmatched and the matching problem reduces to assigning the members of these two

sets to one another. When each agent may be matched with at most one agent of

the opposite set we speak of a �marriage model.�This tractable model gives a lot of

insight on many phenomena observed in real markets as documented in the large body

of literature devoted to it.1

Stable matchings are those that we may expect to observe in practice: if the market

outcome is unstable, there is an agent or a pair of agents (henceforth, a �rm and a

worker) with an incentive to circumvent the matching. Under a stable matching every

agent prefers his partner to being alone and, moreover, no pair of agents, consisting

of a �rm and a worker, who are not matched to each other would rather prefer to be

so matched. In a seminal paper, Gale and Shapley (1962) demonstrated that at least

one stable matching exists for every marriage market. Their proof of existence of stable

matchings consists of a procedure, the �deferred-acceptance�algorithm which, for every

stated preferences, transforms the empty matching (in which all agents are unmatched)

into a stable matching.

In this paper we consider an extension to Gale and Shapley�s algorithm or, to be

precise, to the version proposed by McVitie and Wilson (1970). We start from an

arbitrary matching and the algorithm proceeds by creating, at each step, a provisional

matching. Hence, at each moment in time, a �rm is randomly chosen and the best worker

on its list of preferences is considered. If this worker is already holding a �rm he prefers,

1For an excellent survey on the matching problem, see Roth and Sotomayor (1990).
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the matching goes unchanged and this particular worker is removed from the �rm�s list.

Otherwise, they are (temporarily) matched, pending the possible draw of even better

�rms willing to match this worker. McVitie and Wilson�s algorithm is an instance of

the one we are proposing, when the initial matching is the empty matching. Moreover,

it also encompasses the algorithm proposed by Blum, Roth, and Rothblum (1997) to

explore the vacancy chain problem when the input matching is �rm-quasi-stable (i.e.,

a matching whose stability was disrupted by the emergence of a new position or the

retirement of a worker).

We then analyze incentives in a centralized market where agents submit ordered

lists of preferences on prospective partners to a clearinghouse, which then produces a

matching by processing these lists according to the algorithm we propose. The random

order in which �rms are selected when the algorithm is run introduces some uncertainty in

the output reached. It may happen that, starting with the same input matching, di¤erent

executions of the algorithm yield di¤erent outcomes for the same preference pro�le. Since

agents�preferences are merely ordinal in nature, we use a concept of equilibrium based on

�rst-order stochastic dominance. This guarantees that in equilibrium each agent plays his

best response to the others�strategies for every utility representation of the preferences.2

We prove the existence of equilibria and show that some stability is preserved in every

equilibrium. Following the literature, we then focus on equilibria in which one side of the

market, in particular the �rms�side, tells the truth and provide a partial characterization

of such equilibria. Contrary to Gale and Shapley, possibly not every stable matchings can

be supported at equilibrium, since the initial matching constrains the set of achievable

matchings, but we will show that some stable matchings can be reached with probability

one. Furthermore, we prove that, even though workers may not play straightforwardly,

stability with respect to the true preferences holds for any matching that results from a

play of equilibrium strategies in which �rms reveal their true preferences.

We proceed as follows. In Section 2 we present the simple marriage model and

2This concept has been used in the context of matching markets with incomplete information in Roth

and Rothblum (1999), Ehlers (2003, 2004), and Ehlers and Massó (2003).
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introduce notation. We formally describe the algorithm in Section 3, showing that it

captures other algorithms. In addition, some of its features are explored. In Section

4 we turn our attention to a di¤erent class of questions, related to individual decision

making. The matching process is modeled as a game and its equilibria are characterized.

Some concluding remarks follow in Section 5.

2 The Marriage Model

Consider two �nite and disjoint sets F = ff1; :::; fng and W = fw1; :::; wpg, where F is

the set of �rms and W is the set of workers. Let V = F [W: Sometimes we refer to a

generic agent by v and we use f and w to represent a generic �rm and worker, respectively.

Each agent has a strict, complete, and transitive preference relation over the agents on

the other side of the market and remaining unmatched. The preferences of a �rm f ,

for example, can be represented by P (f) = w3; w1; f; w2; :::; w4, indicating that f�s �rst

choice is to be matched to w3, its second choice is w1 and it prefers remaining unmatched

to being assigned to any other worker. Sometimes it is su¢ cient to describe only f�s

ranking of workers it prefers to remaining unmatched, so that the above preferences can

be abbreviated as P (f) = w3; w1. Let P = (P (f1); :::; P (fn); P (w1); :::; P (wp)) denote

the pro�le of all agents�preferences; we sometimes write it as P = (P (v); P�v) where

P�v is the set of preferences of all agents other than v. Further, we may use PU , where

U � V , to denote the pro�le of preferences (P (v))v2U . We write v0P (v)v00 when v0 is

preferred to v00 under preferences P (v) and we say that v prefers v0 to v00. We write

v0R(v)v00, when v likes v0 at least as well as v00 (it may be the case that v0 and v00 are

the same agent). Formally, a marriage market is a triple (F;W; P ). Let A(P (f)) denote

the set of workers that are acceptable to �rm f , i.e., A(P (f)) = fw 2 W : wP (f)fg;

A(P (w)) is de�ned analogously. A pair (f; w) 2 F �W is acceptable if f and w are

acceptable to each other.

An outcome for a marriage market, a matching, is a function � : V �! V satisfying

the following: (i) for each f in F and for each w inW , �(f) = w if and only if �(w) = f ;
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(ii) if �(f) 6= f then �(f) 2 W ; (iii) if �(w) 6= w then �(w) 2 F . If �(v) = v, then

v is unmatched under �, while if �(w) = f , we say that f and w are matched to one

another. A description of a matching is given by � = f(f1; w2); (f2; w3)g, indicating

that f1 is matched to w2, f2 is matched to w3 and the remaining agents in the market

are unmatched. A matching � is individually rational if each agent is acceptable to its

partner, i.e., �(v)R(v)v, for all v 2 V . We denote the set of all individually rational

matchings by IR(P ). Two agents f and w form a blocking pair for � if they prefer

each other to the agents they are actually assigned to under �, i.e., fP (w)�(w) and

wP (f)�(f). A matching � is stable if it is individually rational and it is not blocked

by any pair of agents. A matching � is �rm-quasi-stable if it is individually rational

and if every blocking pair for � contains an unmatched �rm. We denote the set of all

stable matchings by S(P ) and the set of all �rm-quasi-stable matchings by QS(P ). The

set S(P ) forms a lattice (see Roth and Sotomayor (1990) for a formal statement of this

result, attributed to John Conway), with the extreme elements being the �rm-optimal

stable matching �F and the worker-optimal stable matching �W . There exists no stable

matching � that matches any �rm f to a partner that it prefers to �F (f). Analogously,

�W is optimal for workers. Finally, we de�ne a �rm f and a worker w to be achievable

for each other if f and w are paired at some stable matching.

3 The Algorithm

In this section, we provide an informal description of Gale and Shapley�s algorithm,

as well as of the one proposed by Blum, Roth, and Rothblum (1997). Subsequently, we

present the generalized deferred-acceptance algorithm and explore some of its properties.

Gale and Shapley (1962) showed that a stable matching exists for every marriage

market. Their proof is in fact an algorithm for �nding such a matching. Starting from

a situation where no agent is matched, in the �deferred-acceptance� algorithm (DA-

algorithm), �rms propose to workers who can hold at most one unrejected o¤er at any

time. At any step of the algorithm, every rejected �rm proposes to its next choice, as
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long as there are acceptable workers on its list to whom it has not made an o¤er yet.

The algorithm stops after the step in which every rejected �rm has proposed to all of its

acceptable workers.

McVitie and Wilson (1970) proposed a di¤erent version of this algorithm, which

turned out to be a key piece in obtaining the full set of stable matchings. The di¤erence

with respect to the DA-algorithm is that at each step of this algorithm only one randomly

chosen �rm makes an o¤er. Nevertheless, the output matching of McVitie and Wilson�s

algorithm is independent of the order in which �rms are selected to propose and it

coincides with the output produced by the DA-algorithm. Furthermore, it is the �rm-

optimal stable matching �F . (Alternatively, if in any of the two algorithms described

the workers proposed, �W would be obtained.)

These algorithms were used to study entry-level markets, characterized by the avail-

ability of cohorts of vacant positions and, simultaneously, of candidates in need of a

position. Blum, Roth, and Rothblum (1997) developed a deferred-acceptance algorithm

to model senior level labor markets, where positions become available when an incum-

bent worker retires or when a new �rm comes into the market. This leads to vacancy

chains, since as one �rm succeeds in �lling its vacancy it may cause another �rm to have

one. The algorithm starts with an arbitrary matching, selects a �rm whose position is

vacant and lets it approach its most preferred workers in order of preference. At each

step a blocking pair is satis�ed, but only when the �rm�s position is vacant and the

o¤er is acceptable. This process is iterated until there is no �rm eligible to propose.

It is shown that all executions of this algorithm with the same input terminate after a

�nite number of steps and yield the same output matching. Moreover, when the input

matching is �rm-quasi-stable, the algorithm terminates at a stable matching.

3.1 De�nition of the DA�I-algorithm

In what follows, we describe a modi�ed version of McVitie and Wilson�s algorithm to be

applied to any input matching. It di¤ers from the algorithm proposed by Blum, Roth,
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and Rothblum (1997) in the fact that not only �rms with vacancies can make proposals.

Indeed, any �rm can be greedy and invite the most preferred workers on its list of

preferences. Thus, starting with an arbitrary matching �I , at each step, a randomly

selected �rm, say f , approaches the �rst worker on its preference list to whom it has not

made an o¤er yet, say w. If the worker rejects, no change occurs. If the worker accepts,

a new matching is formed where f and w are matched and their previous partners� if

any� remain unmatched. This process is repeated until no �rm is willing or able to make

a new o¤er (either its proposal was accepted and is held by some worker or the �rm has

already proposed to all the acceptable workers on its list). Formally:

De�nition 1 The Generalized Deferred-Acceptance Algorithm (DA�
I
-algorithm):

Input: a matching �I ; a preference pro�le P .

Initialization.

1. (a) For all f 2 F; A0f = A(P (f)) [ ffg;

(b) �0 = �I ; i := 1;

2. If, for all f 2 F , �i�1(f) = maxP (f)Ai�1f , then stop with �i�1.

3. Else, take any �rm f such that:

(a) either maxP (f)Ai�1f = f and �i�1(f) 6= f , leading to �i = �i�1 nf(f; �i�1(f))g;

(b) or maxP (f)Ai�1f = w and �i�1(f) 6= w, in which case:

i. if �i�1(w)P (w)f , then �i = �i�1 and Aif = A
i�1
f nfwg, Aif 0 = Ai�1f 0 , for all

f 0 6= f ;

ii. else:

A. if �i�1(f) = f and �i�1(w) = w, then �i = �i�1 [ f(f; w)g and Aif 0 =

Ai�1f 0 , for all f
0 2 F ;

B. if �i�1(f) 6= f and �i�1(w) = w, then �i = (�i�1[f(f; w)g)n f(f; �i�1(f))g

and Aif 0 = A
i�1
f 0 , for all f

0 2 F ;

7



C. if �i�1(f) = f and �i�1(w) 6= w, then �i = (�i�1[f(f; w)g)n f(�i�1(w); w)g

and Ai�i�1(w) = A
i�1
�i�1(w)nfwg; Aif 0 = A

i�1
f 0 , for all f

0 6= �i�1(w);

D. if �i�1(f) 6= f and �i�1(w) 6=w, then �i = (�i�1 [ f(f; w)g)n f(f; �i�1(f));

(�i�1(w); w)g and Ai�i�1(w) = Ai�1
�i�1(w)nfwg; Aif 0 = Ai�1f 0 , for all f

0 6=

�i�1(w);

4. i := i+ 1; go to 2.

3.2 Properties of the DA�I-algorithm

In the DA�
I
-algorithm no �rm proposes to the same worker twice: if a �rm, say f , is

rejected by some worker w at step i, he will not be part of Ai+1f and hence, permanently

removed from its list of workers to be proposed. This feature guarantees that cycling is

avoided, ensuring that every execution of the algorithm with an arbitrary input matching

terminates after a �nite number of iterations. Still, as the following example shows, for a

given input matching and a preference pro�le, the output matching need not be unique.

Example 1 The outcome depends on the selection of the order by which �rms propose.

Let (F;W; P ) be a marriage market with P such that

P (w1) = f2; f1 P (f1) = w1; w2

P (w2) = f1; f2 P (f2) = w2; w1:

Consider the DA�
I
-algorithm applied to P , with �I = f(f1; w2)g.

Start by considering the case in which f1 is the �rst to make an o¤er. According to

the algorithm (step 3(b)iiB), f1 proposes to w1 and w1 accepts this proposal, as he is

initially unmatched and f1 is an acceptable �rm. Then, f2�s opportunity comes and it

proposes to its most preferred worker, w2, who is currently unmatched (step 3(b)iiA).

As both �rms are matched to the workers they proposed to, the algorithm stops (step

2). The �rm-optimal matching �F = f(f1; w1); (f2; w2)g is obtained.
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Nevertheless, if the �rst randomly chosen �rm is f2, its proposal to w2 is refused, as

this worker is still matched to f1 (step 3(b)i). Then, we can either have f2 proposing

again or f1, both to w1. If f2 proposes �rst, w1 accepts (step 3(b)iiA); next, it must

be f1�s turn to propose to w1, who rejects this o¤er (step 3(b)i), and �nally to w2, who

accepts it. On the other hand, if f1 proposes w1 �rst, he accepts (step 3(b)iiB); however,

he exchanges it for f2, when this �rm is given the opportunity to move (step 3(b)iiC).

Thus, according to this order of proposals, f1 is also assigned to w2. In both cases, the

worker-optimal matching �W = f(f1; w2); (f2; w1)g is reached as the outcome of the

DA�
I
-algorithm. �

This example shows that di¤erent executions of the DA�
I
-algorithm with the same

input matching may yield di¤erent output matchings. In what follows we will be more

precise in describing this uncertainty and introduce some notation.

We consider lotteries over sequences of �rms, where each sequence corresponds to an

order in which �rms are given the opportunity to make an o¤er. The randomization over

the set of �rms is not simple: only �rms whose preference lists have not been exhausted

and that are not matched to their best elements are contemplated. Therefore, given

a sequence, we start from the last �rm that has been considered and take the next

�rm in the sequence that ful�lls these requirements. In between, every ineligible �rm

(i.e., a �rm that is currently matched to the best worker on its list of preferences or

whose list of workers is already empty) is discarded. The game ends when every �rm

in the remainder of the sequence is ineligible to propose. In order to ensure that, once

started, every execution of the algorithm is run to completion, we will allow for in�nite

sequences, where each �rm appears an in�nite number of times. The sample space over

which lotteries are considered is denoted by �.

Although a random element appears each time a �rm is chosen, all the uncertainty is

fully translated into a probability distribution over the set of matchings. For each input

matching and for each pro�le of preferences, a lottery over matchings is obtained. Hence,

�x a probability distribution on � and take an initial matching �I , a preference pro�le P ,
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and an arbitrary worker w:We will letgDA�I [P ] denote the probability distribution over
the set of matchings induced by the DA�

I
-algorithm andgDA�I [P ](w) be the distribution

that gDA�I [P ] induces over F [ fwg. The expression PrfgDA�I [P ] = �g represents the
probability that � is the output of the DA�

I
-algorithm with preferences P . Observe that

this probability rests on the probability distribution on �, but all results hold regardless

of this lottery. Finally, for all w 2 W , v 2 F [ fwg, the subset of all possible orders

leading to an output matching where w is assigned to v is denoted by �v;w.

In the particular case that the input matching is the empty matching, ;, a degenerate

probability distribution over the set of matchings is obtained. In fact, it turns out that,

when �I = ;; the DA�I -algorithm specializes to McVitie and Wilson�s algorithm and the

�rm-optimal stable matching is obtained with probability one. For illustration, consider

the matching market in Example 1 and assume the algorithm starts with the empty

matching. If f1 is the �rst �rm to propose, it invites w1 and w1 accepts this proposal.

Then, f2 follows and proposes to w2, who also accepts. If we reverse the order of events

and f2 is the �rst to move, w2 accepts its proposal, given that he is currently unmatched;

f1 invites the best worker on its list, w1, who also accepts. Thus, we always reach �F

for every order of proposals.

Proposition 1 For any matching market (F;W; P ), PrfgDA;[P ] = �Fg = 1.
Proof. First, we will show that no worker rejects a proposal from its partner at �F

in any execution of the algorithm. By contradiction, assume that there exists an order

of proposals under which at least one worker rejects its partner at �F . Suppose that

w is the �rst worker to reject �F (w). Let f = �F (w) 2 F . This implies w obtained a

proposal from a �rm he strictly prefers, say bf . So, bfP (w)f ; given that �F is stable, we
must have �F ( bf)P ( bf)w. Then, before inviting w; bf must have proposed to �F ( bf) and
�F (

bf) must have rejected its proposal, contradicting the fact that w was the �rst worker
to reject his partner at �F .

It follows that, in the output matching, for every order in which �rms propose, every

�rm must be assigned to a worker at least as good as its mate at �F . Suppose that there
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exists an output matching � and a �rm, say f 0, matched to some w0 2 W under �, such

that w0P (f 0)�F (f
0). This implies that � is not stable by de�nition of �F . Naturally, no

�rm ever proposes to a worker that it �nds unacceptable; on the other hand, a worker

never accepts a proposal from an unacceptable �rm. Together with the fact that every

agent is unmatched in the initial matching, this implies that � is individually rational.

Thus, if � is not stable there must exist a pair that blocks �; say f 00 and w00. Since

w
00
P (f

00
)�(f

00
), f 00 must have proposed to w

00
and w

00
must have rejected this proposal.

But this means w00 received a better o¤er, from a �rm he strictly prefers to f 00. Then,

�(w
00
)P (w

00
)f

00
, contradicting the fact that f 00 and w00 block �. As a consequence, no

�rm can be matched to a worker it strictly prefers to its partner at �F . Therefore,

for every order of proposals, �F is the matching that is reached as the outcome of the

DA;-algorithm.

Another case worth describing is when the input matching is a �rm-quasi-stable

matching, as de�ned by Sotomayor (1996) and Blum, Roth, and Rothblum (1997). In

Proposition 2 we show that when the initial matching is �rm-quasi-stable, the same

stable output matching is obtained, independently of the order in which �rms propose.

Remark 1 turns out to be crucial in what follows.

Remark 1 The DA�I -algorithm implies that once a �rm proposes to a worker and he

accepts, this �rm cannot �re him nor exchange him for another worker. In fact, when

the proposal is made, the �rm reveals that this particular worker is the best among all

who have not rejected it. If the worker accepts, the only occasion under which the �rm

can make a proposal again is when the worker it holds accepts an o¤er from a di¤erent

�rm.

Proposition 2 Let (F;W; P ) be a matching market. For all �I 2 QS(P ), there is some

� 2 S(P ) such that PrfgDA�I [P ] = �g = 1:
Proof. Take �I 2 QS(P ). For every order of proposals, the �rst �rm to have its

o¤er accepted must be unmatched at �I . In fact, by de�nition of �rm-quasi-stability, if
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(f; w) blocks �I , f must be unmatched at �I . Assume hence that f proposes to w and

that this proposal is the �rst to be accepted. It follows that, after this acceptance, w is

strictly better o¤ and every other worker is holding its initial partner. The rest of the

proof now follows using an induction argument.

Suppose that up to step i in the algorithm only �rms with vacancies have had their

proposals accepted. Let �i be the matching at the beginning of step i + 1. Assume

that all workers are weakly better o¤ at �i than at the initial matching �I . We will

show, by way of contradiction, that the next �rm to be accepted by some worker must

be unmatched. So assume that f is matched to w at �i, it proposes to w0 and this

proposal is accepted. Thus, at �i+1, f and w0 are matched to each other and their

former partners are unmatched. By Remark 1, if f is matched to w at �i and it is

willing to propose to another worker, it must be the case that �I(f) = w. Now, by

assumption, �i(w0)R(w0)�I(w0). Since fP (w0)�i(w0), we have fP (w0)�I(w0). Further,

w0P (f)�I(f) = w. Thus, (f; w0) form a blocking pair to �I and �I(f) 6= f , contradicting

the fact that �I 2 QS(P ).

The algorithm starts with an unmatched �rm having its proposal accepted and we

have proved that it must continue to be so. It follows that the DA�
I
-algorithm reduces

to Blum, Roth, and Rothblum�s algorithm when �I is �rm-quasi-stable and all of its

results are replicated. Thus, given a matching market (F;W; P ) and an input matching

�I 2 QS(P ), the same stable matching will be obtained in any execution of the algorithm.

Starting with a �rm-quasi-stable matching, the DA�
I
-algorithm replicates Blum,

Roth, and Rothblum�s algorithm and a stable matching is obtained with probability

one. In the general case, however, we have shown that in a market (F;W; P ), given

�I , di¤erent outcomes may be reached depending on the order in which �rms propose.

Furthermore, as the following example shows, unstable matchings may be obtained with

positive probability.

Example 2 An output matching may not be stable.
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Let (F;W; P ) with F = ff1; f2g, W = fw1; w2g and preferences such that

P (w1) = f2; f1 P (f1) = w1

P (w2) = f2 P (f2) = w2; w1:

Let the initial matching be �I = f(f2; w1)g and suppose f1 is the �rst �rm to make a

proposal. Then, f1 invites w1, the only worker on its list of preferences and w1 rejects

this proposal, given that he is still holding f2 (step 3(b)i). When f2 is given its turn to

move, it proposes to w2. Since he is alone and f2 is the only acceptable �rm, w2 accepts

this o¤er (step 3(b)iiB) and the matching � = f(f2; w2)g is obtained. It is easy to see

that f1 and w1 block �: �

An execution of the DA�
I
-algorithmwith arbitrary input matching need not be stable.

Further, any worker involved in instability of the output matching � must have been

matched under the input matching.3 And, if some �rm is part of a blocking pair for �,

it must have been rejected by the worker with whom it forms a blocking pair for � along

the execution of the algorithm.4

In the following results we describe some further characteristics of the output of the

DA�
I
-algorithm as a function of the initial matching �I . First, it is shown that if a

worker ends up strictly worse o¤ in the output matching, then there must be at least

one worker that strictly improves his match. The only instance under which this can be

violated is when the input matching is not individually rational.

Proposition 3 Let (F;W; P ) be a marriage market and �I 2 IR(P ). Let � 6= �I be

3The instability of � may be due to lack of individual rationality for some worker or to the existence

of some blocking pair. In both cases, it is necessary that the worker involved is matched to a �rm at �I ;

in particular, if � is not individually rational for some worker, then �I cannot be individually rational

either.
4In fact, the only instance under which a blocking pair may arise is when at some point a worker

rejects a proposal from an acceptable �rm, say f , because he is still holding the initial partner, ranked

higher in his list of preferences. In this case, it may happen that the worker ends up being assigned to a

�rm he considers worse than f and, as a consequence, he will block the output matching together with

f .
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such that, for all w 2 W , �I(w)R(w)�(w). Then, PrfgDA�I [P ] = �g = 0.
Proof. By contradiction, let us suppose that, given an individually rational �I , a

matching � such that � 6= �I and �I(w)R(w)�(w) for all w 2 W is reached under some

execution of the algorithm. This means that every worker weakly prefers the initial

matching �I and that there exists at least one worker that strictly prefers it.

No unmatched worker would accept to �ll a position in an unacceptable �rm. There-

fore, a worker who is strictly worse o¤ in the output matching � must have started

matched. Moreover, he must have been �red by his initial partner. So, assume w1 is

the �rst worker to be �red by �I(w1). This implies that either �I(w1) �red w1 to be

alone or it proposed to another worker, say w2, and he accepted. In the former case the

individual rationality of �I is contradicted. In the latter case, since by assumption w2 is

still holding �I(w2), we must have �I(w1)P (w2)�I(w2). By Remark 1, w2 will never end

up worse o¤ in the output matching, contradicting the de�nition of �.

A slightly weaker result holds for the �rms. An output matching where every �rm

is matched to a worker ranked lower than its initial partner in its preference list cannot

be reached with positive probability. Example 3 shows that the requirement of having

every �rm strictly worse o¤ in the output matching is necessary. Subsequently, we state

the result.

Example 3

Let (F;W; P ) be a matching market where P is given by:

P (w1) = f1; f2 P (f1) = w2; w1

P (w2) = f2; f3; f1 P (f2) = w1; w2

P (f3) = w2;

and let the input matching be �I = f(f1; w2); (f2; w1)g. Every execution of the

algorithm leads to the matching � = f(f1; w1); (f2; w2)g. In fact, for every order in

which �rms propose, when f3 is given the opportunity to act, it makes a successful o¤er
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to w2, who is still holding f1 at that point. Later, f1 is forced to propose to w1 and f2

ends up matched to w2. Hence, � 6= �I such that �I(f)R(f)�(f) for every f 2 F is

reached with probability one. �

Proposition 4 Let (F;W; P ) be a marriage market, and let �I be an arbitrary input

matching. Let � be such that �I(f)P (f)�(f); for all f 2 F . Then, PrfgDA�I [P ] = �g =
0.

Proof. Notice that if some �rm is not matched at �I , then the result trivially holds,

since no �rm will ever propose to an unacceptable worker. So, let us assume every �rm

in F is matched under �I . The argument now follows by contradiction. Let � be such

that �I(f)P (f)�(f); for all f 2 F and assume that there is an execution that leads to

�.

Claim 1 The set of unmatched workers is the same under both �I and �.

Proof. Notice that every worker who is initially assigned to a �rm cannot end up

alone in the output matching �. Assume not and, without loss of generality, let us say

w such that �I(w) 2 F is unmatched under �. This implies that �I(w) �red w. In

addition, it follows from Remark 1, that no �rm, including �I(w), proposed to w later

on. But if this is so, �I(w) must end up matched to a worker ranked higher than w in

its list of preferences. This contradicts the fact that �I(f)P (f)�(f); for all f 2 F .

Claim 2 Every �rm is matched under �.

Proof. Immediate from Claim 1 and the fact that every �rm starts matched.

Claim 3 An initially unmatched worker accepts no proposals along the execution.

Proof. This follows from Remark 1 and Claim 1.

Consider the last step at which a proposal is made by a �rm f and accepted by

a worker w. (Note that if no proposal is accepted along the execution, then � = �I ,

contradicting the de�nition of �:) At the last step of the algorithm, w must be unmatched

when he accepts f�s proposal. Otherwise, the �rm held by w would be unmatched under
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�, which contradicts Claim 2.

By Claim 3, w must be matched under �I , let us say bf = �I(w). Firm f is not

w�s initial partner, or else �I(f) = �(f), contradicting the de�nition of �. By Claim 2

and given that we are considering the last step of the algorithm, bf is matched at this
stage. Given that every �rm is worse o¤ under the output matching, it must be the case

that bf is matched to a worker ranked lower than w in P ( bf). As a consequence, bf must
have proposed to w and this proposal was rejected. By Remark 1, this implies that w is

matched to a �rm preferred to bf at this last step of the algorithm and we get another

contradiction: w was not alone when he accepted f�s proposal.

4 The Game

We have so far informally described an algorithm in terms of the actions of the agents�

proposals by the �rms, and acceptances and rejections by the workers. Consider now a

mechanism where agents face the single decision of submitting lists of preferences over

prospective partners to a central clearinghouse, which uses this information to arrange a

matching of workers to �rms by means of the generalized deferred-acceptance algorithm.

Clearly, in the game induced by this mechanism, agents may behave strategically: �rms

may choose not to reveal how they rank the workers in the market, or it may be sensible

for workers to put forward other than their true ordering of positions. Therefore, we will

now turn to a di¤erent class of questions, investigating how we may expect individuals

to behave. In this section we discuss the strategic environment facing the agents in the

revelation game induced by the DA�
I
-algorithm.

Since we are dealing with a centralized market, the strategy space of a player in

the game is con�ned to the set of all possible preference lists over the other side of the

market. Hence, strategies will be represented by the corresponding preference pro�le�Q;

for instance� while true preferences will always be denoted by P .

To address strategic questions we need to develop ideas about what constitutes a
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�best decision�to be taken by an agent. With this purpose in mind, take two probabil-

ity distributions over the set of matchings, e� and e�0. Without loss of generality, consider
w 2 W (what follows also holds for a representative �rm, with the obvious modi�ca-

tions); e�(w) and e�0(w) denote the distributions induced over w�s set of assignments by e�
and e�0, respectively. We say that e�(w) �rst order stochastically P (w)-dominates e�0(w) if
Prfe�(w)R(w)vg � Prfe�0(w)R(w)vg, for all v 2 F [ fwg. Thus, for all v 2 F [ fwg, the
probability of w being assigned to v or to a strictly preferred agent is higher under e�(w)
than under e�0(w). Now, consider the problem that player w would face if the strategy

choices Q�w of the other players were known. In this case, any strategy Q(w) by w would

determine the probability distribution induced by the mechanism over the set of match-

ings. Therefore, a particular strategy choice Q(w) is preferred if the induced probability

distribution over the set of matchings stochastically dominates the one induced by any

other alternative strategy.

De�nition 2 Given Q�w and the preferences P (w), we say that a strategy Q(w) stochas-

tically P(w)-dominates another strategy bQ(w) if, for all v 2 F[fwg, PrfgDA�I [Q(w); Q�w]
(w)R(w)vg � PrfgDA�I [ bQ(w); Q�w](w) R(w) vg. In a similar way, given Q�f and the
preferences P (f), we de�ne stochastic P(f)-dominance.

In a problem like the one described here, each agent must make a decision without

knowing the strategies of the others. It may happen that an arbitrary agent v has a

strategy that is a best response to every pro�le of strategies that the other players may

choose. In this case, we say v has a dominant strategy.

De�nition 3 Given an initial matching �I and the preferences P (v), a dominant strat-

egy for v 2 V is a strategy Q(v) that, for every Q�v, stochastically P (v)-dominates every

alternative strategy bQ(v):
In Example 1, we have shown that the outcome of the generalized deferred-acceptance

algorithmmay depend on the random order in which �rms�lists are considered. Thus, the

study of Nash equilibria in the game induced by the mechanism we have described would
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require us to consider not merely agents�preferences over riskless outcomes, but also over

lotteries. Since agents�preferences are ordinal and no natural utility representation of

these orderings exists, we will adopt the following equilibrium notion.

De�nition 4 Given an initial matching �I and a pro�le of preferences P , the pro�le of

strategies Q is an ordinal Nash equilibrium (ON equilibrium) if, for each player v in V ,

Q(v) stochastically P (v)-dominates every alternative strategy bQ(v), given Q�v.
It is clear that we will be concerned in �nding a pro�le of strategies Q with the

property that once they are adopted by the agents, no one can pro�t by unilaterally

changing his strategy; further, this is true for all possible utility representations of agents�

preferences. This means that by using a strategy other than Q(v), for any v0 (an agent

with whom it may end up matched), v will not be able to strictly increase the probability

of obtaining v0 and all agents ranked higher than v0 in P (v).

4.1 Strategic questions

In the revelation game induced by Gale and Shapley�s DA-algorithm, straightforward

behavior is not in every agent�s best interest. This means that some agent may have an

incentive to misrepresent its preferences. Given that the DA�
I
-algorithm replicates Gale

and Shapley�s when the initial matching is the empty matching, truth telling may not

be an ordinal Nash equilibrium in the revelation game induced by the DA�
I
-algorithm.

Nevertheless, acting according to the true preferences is a dominant strategy for �rms

in Gale and Shapley�s environment (Dubins and Freedman (1981) and Roth (1982)).

So, in what �rms are concerned, there is a clear sense in which honesty is the best

policy under the DA�
I
-algorithm in the particular case that �I is the empty matching.

Moreover, if �I is �rm-quasi-stable, �rms�true preferences remain a dominant strategy

(Blum, Roth, and Rothblum (1997)). Unfortunately, as shown in the example below,

truth is not a dominant strategy for �rms when an arbitrary input matching is considered.

Clearly, a �rm will not bene�t from using a truncation of its true preference list (i.e., a
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strategy that, besides ranking the workers in the same way as the true preference relation,

each of its acceptable workers is under the true preferences both acceptable and preferred

to any worker which is unacceptable in the truncation strategy). Other manipulations,

however, like ranking as acceptable an unacceptable worker, may be bene�cial.

Example 4 Revealing the true preferences is not a dominant strategy for all �rms.

Let (F;W; P ) be a matching market with P given by:

P (w1) = f2 P (f1) = w2

P (w2) = f3; f1 P (f2) = w1

P (w3) = f3 P (f3) = w3; w2:

Let �I = f(f3; w2)g. Let Q(f1) = w1, w2 be an alternative strategy for f1. Assume

that every agent except for f1 submits the true preferences. By using either P (f1) or

Q(f1), f1 may end up matched to w2 or unmatched. Consider every sequence for which

f1 is unmatched under the output matching when using Q(f1), i.e., every sequence

where f1�s second draw happens to be before f3 is considered for the �rst time. Clearly,

in these sequences, the �rst time f1appears is also before f3, so that f1 also ends up

unmatched by using P (f1). However, consider, for instance, the sequence that starts

with f1, immediately followed by f3: In this case, f1 ends up matched to w2 only if it

acts according to Q(f1). Otherwise, by using P (f1), the �rst time f1 is drawn and its

willingness to match w2 is taken into account, w2 is still holding f3. Since w2 prefers

f3 to f1, this worker keeps f3 and f1 ends up unmatched. It follows that f1 pro�ts by

deviating from its true preferences. �

4.2 Ordinal Nash equilibria

We have observed that faithfully transmitting the true preferences is not necessarily an

ordinal Nash equilibrium. Therefore, we need to ask whether ordinal Nash equilibria

always exist in the revelation game induced by the DA�
I
-algorithm. Proposition 5 will
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show that they do: when �I is individually rational, every element of a non-empty subset

of IR(P ) can be sustained in equilibrium with probability one.

De�nition 5 Let �I be an arbitrary matching. We say that � is individually rational

with respect to �I if � 2 IR(P ) and if, for all f 2 F , w0 = �I(f)P (f)�(f), implies

�(w0) 6= w0.

We will denote by IR�
I
(P ) the set of all individually rational matchings with respect

to �I . This set is always non-empty since it includes S(P ), the set of stable matchings

(Pais (2004)).

Proposition 5 Let �I be an individually rational matching for (F;W; P ) and let � 2

IR�
I
(P ). Then, there exists an ordinal Nash equilibrium Q in the revelation game in-

duced by the DA�
I
-algorithm that leads to �. Furthermore, PrfgDA�I [Q] = �g = 1.

Proof. De�ne Q(v) = �(v), for all v 2 V . It is clear that every play of the game

with the pro�le Q will lead to the output matching �. Thus, PrfgDA�I [Q] = �g = 1.
Let us show that for every �rm f , Q(f) is a best reply to Q�f . First, as long

as �(f) 6= �I(f), f never holds its initial match under �. Indeed, it is clear that if

�I(f)P (f)�(f), then �I(f) receives and accepts another �rm�s proposal (and in the case

that �(f)P (f)�I(f), �I(f) is not a temptation). Hence, when �(f) 2 W , given that the

only worker willing to accept f�s proposal is �(f), the only choice f can actually make

is between being assigned to this worker or staying alone. From individual rationality

we have �(f)P (f)f which implies that f will not be able to pro�t from deviating from

Q(f). Obviously, for f such that �(f) = f , no worker accepts f�s proposal and it can

do no better than staying alone.

Finally, for any w, Q(w) is a best reply to Q�w. In fact, given �rms�strategies, w

gets at most one proposal and, considering � is individually rational, the best he can do

is to accept it. This completes the proof.

20



Although the strategies used can be seen as an amazing act of coordination, they serve

the purpose of �nding a su¢ cient condition for ordinal Nash equilibrium outcomes. In

what necessary conditions for equilibrium are concerned, it is obvious that every output

matching reached with positive probability in equilibrium must be individually rational

with respect to true preferences. Furthermore, in the result that follows, we will show

that some stability is preserved in every ordinal Nash equilibrium.

Theorem 1 Let �I be an individually rational input matching for (F;W; (QF ; PW )).

Assume that the strategy pro�le Q is an ordinal Nash equilibrium in the revelation game

induced by the DA�
I
-algorithm. Then, the probability distribution obtained over the set

of matchings is such that every element in its support is a member of S(QF ; PW ).

Proof. Suppose that f�1; :::; �kg is the support of the distribution induced by the

DA�
I
-algorithm over the set of matchings. Assume that for some i 2 f1; :::; kg; �i =2

S(QF ; PW ). We will prove that Q is not an ON equilibrium.

To start, notice that for every �rm f it must be the case that its assignment, �i(f),

is individually rational with respect to Q(f), as this is the strategy �rm f is using. On

the other hand, individual rationality with respect to P must hold for every worker.

Assume that this is not the case and that there exists a worker, say w, such that

wP (w)�i(w). Individual rationality of the matching �
I implies �i(w) 6= �I(w). Hence,

w must have, at some point, accepted �i(w)�s proposal. This means that under Q(w)

we have �i(w)Q(w)w. Now take an alternative strategy eQ(w) in which all �rms are
considered unacceptable, meaning that no o¤er is accepted by w. By using eQ(w), w may
end up unmatched or matched to his original �rm �I(w), but he is never assigned to a

�rm considered unacceptable under P (w). Thus, the following holds:

1 = PrfgDA�I [ eQ(w); Q�w](w)R(w)wg > PrfgDA�I [Q](w)R(w)wg
and Q(w) is not a best reply to Q�w.

We have proved that �i is individually rational. Thus, there must exist a blocking

pair for �i when the preference pro�le (QF ; PW ) is considered. Let us say (f; w) blocks �i,
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i.e., fP (w)�i(w) and wQ(f)�i(f). This implies that f proposed to and was rejected by

w in the course of every execution leading to �i. By Remark 1, either �i(w)Q(w)f (case

(i)) or, if not, w must have rejected f while he was still holding �I(w) and �I(w)Q(w)f

(case (ii)).

(i) Assume �i(w)Q(w)f . We will prove that Q(w) is not a best reply to Q�w. De�neeQ(w) that preserves the same ordering as in Q(w), except that f holds the �rst position
under eQ(w). Formally, for all v, bv 2 (Fnffg)[fwg, [v eQ(w)bv () vQ(w)bv] and f eQ(w)v.
Let us prove that the probability of being assigned to f is strictly higher under eQ(w)

than under Q(w). We know that in a path leading to �i, �rm f must have proposed to

w. If, instead of using Q(w), w deviates and acts according to eQ(w), w holds f until
the algorithm stops. Thus, every order that originally lead to �i results in an output

matching where f and w are together. If, under Q(w), �f;w = ;, so that f and w are

never matched under the original strategy pro�le, then the probability of having f and

w matched is strictly increased when w deviates. Otherwise, for �f;w 6= ;, by moving f

up in the ranking of w�s preferences, f is still assigned to w for every element of �f;w.

Indeed, under any such order of o¤ers, f proposes to w, whether w is using Q(w) oreQ(w), and in both cases w accepts this o¤er. Hence, the probability of having f and w
matched is also strictly increased when w uses eQ(w).
In order to prove Q(w) is not a best reply to Q�w, assume, without loss of generality,

that P (w) = f1, f2,..., fm�1, f , fm+1,..., w,..., fn. Consider a �rm fj, with j = 1; :::;

m�1, and consider �fj ;w when Q(w) is used. It cannot be guaranteed that every element

in �fj ;w still gives fj assigned to w when he deviates and acts according to eQ(w). Clearly,
if fj is ranked below f in Q(w), no change occurs. If fj is ranked higher than f , for all

the orders in �fj ;w that involved f proposing w at some step of the algorithm, by usingeQ(w), w now holds f�s proposal until the end. Thus, for every element of �fj ;w, w either
ends up matched with fj or with f . Hence,

PrfgDA�I [ eQ(w); Q�w](w)R(w)fg > PrfgDA�I [Q](w)R(w)fg;
contradicting that Q is an ON equilibrium.
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(ii) Now take the case in which �I(w)Q(w)fQ(w)�i(w) (notice f 6= �i(w), otherwise

f and w could not block �i). De�ne the deviation, eQ(w), as before. Under eQ(w), w
accepts f at any step of the algorithm and hold its o¤er until the end. Then, it is obvious

that the chances of having f matched to w in the �nal output increase� at least� in the

probability of all orders of proposals that originally lead to �i.

Again, suppose P (w) = f1, f2,..., fm�1, f , fm+1,..., w,..., fn. Using the same argument

as before, we can guarantee that for any order of proposals that gives w matched to any

�rm fj, j = 1; :::; m� 1, by acting according to eQ(w), w will either be assigned to f or
to fj. Once more, it is true that Q(w) is not a best reply to Q�w as

PrfgDA�I [ eQ(w); Q�w](w)R(w)fg > PrfgDA�I [Q](w)R(w)fg:
This completes the proof.

An immediate implication of this result is worth noticing. As proved in McVitie and

Wilson (1970) and Roth (1982), in a market (F;W; P ) with strict preferences, the set of

unmatched agents is the same for all stable matchings. Hence, for any two matchings that

arise with positive probability under an ordinal Nash equilibrium, the set of unmatched

agents is the same� when agents act strategically, no one can hold chance responsible

for ending up unmatched. This provides a further step towards describing ordinal Nash

equilibria.

The following result is an important special case of Theorem 1.

Corollary 1 Let �I be an individually rational input matching for (F;W; P ). Assume

(PF ; QW ) is an ordinal Nash equilibrium in the revelation game induced by the DA�
I
-

algorithm. Then, the probability distribution obtained over the set of matchings is such

that every element in its support is a member of S(P ).

Proof. Immediate from Theorem 1 with QF = PF .

Remarkably, in any equilibrium in which �rms play straightforwardly stability with

respect to true preferences is recovered. This result generalizes a known feature of
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the game induced by Gale and Shapley�s mechanism (Roth (1984)), as well as a result

obtained by Blum, Roth, and Rothblum (1997) with a �rm-quasi-stable matching as

an input. Focusing on truth telling is easily justi�able. In some settings, sophisticated

strategic play by one side of the market does not even make sense (e.g., universities

select students according to their grades). Also, in an environment where agents do not

know how the others will play and given the multiplicity of available strategies, acting

according to the true preferences can be seen as an easy resort.

When the initial matching is empty, any stable matching can result from some equilib-

rium where �rms play according to their true preferences (Gale and Sotomayor (1985)).

Thus, a group of workers with more than one achievable outcome can reveal preferences

to compel any jointly achievable outcome. Moreover, Blum, Roth, and Rothblum (1997)

have shown that this result can be generalized to a game that starts at a �rm-quasi-stable

matching as long as agents must use strategies that are identi�able with preference lists.

It is no longer the case that every stable matching can be reached; what happens is

that any jointly achievable outcome for the workers that are unmatched at �I can result

from an equilibrium in which �rms use their true preferences. In the next proposition

we extend these results.

De�nition 6 Let � 2 S(P ). Let �I be an arbitrary matching. We say that � is stable

with respect to �I if, for all f 2 F such that �I(f)P (f)�(f); we can de�ne a non-empty

subset of �rms bF (f) = ff1; f2; :::; frg, r � n, for which the following conditions hold:
1. �(fi+1) = �I(fi); for all i = 1; :::; r � 1, and �(f1) = �I(fr);

2. �(�I(f)) 2 bF (f);
3. �(fi)P (fi)�I(fi), for some i = 1; :::; r:

Let S�
I
(P ) be the set of all stable matchings with respect to �I . This set may be

empty, as the following example shows.

Example 5 (Example 3 continued)
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In the matching market of Example 3, the only stable matching is � = f(f1; w1);

(f2; w2)g. Comparing � with the initial matching �I = f(f1; w2); (f2; w1)g, it is clear

that no �rm is strictly better o¤under � than under �I : Hence, condition 3 is not ful�lled

and S�
I
(P ) is empty. �

We will show that, when �I is individually rational and S�
I
(P ) is non-empty, there

is an ordinal Nash equilibrium where �rms tell the truth leading to each element of

S�
I
(P ). As it will become clear when the equilibrium strategies are described, a lot of

coordination is still needed to achieve a particular equilibrium.

Proposition 6 Let �I be an individually rational input matching for (F;W; P ). Let � 2

S�
I
(P ). Then, there exists an ordinal Nash equilibrium (PF ; QW ) in the revelation game

induced by the DA�
I
-algorithm that leads to �. Moreover, PrfgDA�I [PF ; QW ] = �g = 1.

Proof. De�ne Q(w) = �(w), for all w 2 W . Let us start by showing that the pro�le

of strategies (PF ; QW ) always leads to the matching �, i.e., PrfgDA�I [PF ; QW ] = �g = 1.
If this is not the case, then there exists an order of proposals leading to b� 6= �. But

this is equivalent to having a �rm, say f , whose partner, b�(f), is di¤erent from �(f)

after some execution of the algorithm. Given the strategies of the workers, we can either

have b�(f) = f� when f 6= �(f)� or b�(f) = �I(f)� if �I(f) 6= �(f). To start, assume
that b�(f) = f . Since �(f) would accept f�s proposal and f is acting according to its

true preferences, it must be the case that fP (f)�(f). But this contradicts the stability

of �. Now suppose that b�(f) = �I(f), with �I(f) 6= �(f). Again, given f�s strategy,

we must have �I(f)P (f)�(f). Besides, �I(f) cannot be matched under �. Otherwise,

he would receive and accept a proposal from its assignment at � (notice that from the

de�nition of S�
I
(P ) there exists bf 2 bF (f) such that �( bf)P ( bf)�I( bf), guaranteeing that

such a proposal would actually be made). So assume that �I(f) is unmatched at �.

However, we know that fP (�I(f))�I(f) by individual rationality of �I . Also, as � is

stable, �I(f) must prefer to be matched to its partner at �, rather than staying with f ,

i.e., �(�I(f))P (�I(f))f . Thus, we have �(�I(f)) 6= �I(f) and, once more, we obtain a

contradiction.
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Let us now prove that, for every �rm f , P (f) stochastically P (f)-dominates every

other strategy Q(f). We will consider the most general case, assuming that �I(f); �(f) 2

W and �I(f) 6= �(f) (the proofs for other cases follow easily from this one). Given that

the only worker who is willing to accept f is �(f), by choosing its strategy appropriately,

f can either be alone, hold �(f) or, eventually, remain with �I(f) under the output

matching. By stability of �, �(f)P (f)f . If, additionally, �(f)P (f)�I0(f); �rm f can do

no better than obtaining �(f) and truth telling guarantees �(f) is assigned to f with

probability one. Otherwise, if �I(f)P (f)�(f), f is not able to retain �I(f). In fact,

given the de�nition of S�
I
(P ), �I(f) is matched to some �rm under � and obtains a

proposal from this �rm. Thus, f cannot do better than being assigned to �(f) and P (f)

stochastically P (f)-dominates every other strategy Q(f).

Now take the case of an arbitrary worker, w. Suppose, by way of contradiction, that

Q (w) does not stochastically P (w)-dominate a di¤erent strategy bQ(w). This implies
that PrfgDA�I [PF ; bQ(w); Q�w](w)R(w)�(w)g = 1 and that there exists a �rm, say f ,

such that the following holds: fP (w)�(w) and PrfgDA�I [PF ; bQ(w); Q�w](w) = fg > 0.
But this means that, for some order of proposals, f approaches w before making an o¤er

to �(f). In fact, it cannot be the case that f proposes to �(f) �rst and he does not

accept it, as �(f) is acting according to his original strategy, Q(�(f)). Thus, f must

prefer w to �(f). However, in this case (f; w) forms a blocking pair for �, contradicting

the fact that � is stable.

Proposition 6 showed that there are ordinal Nash equilibria at which �rms reveal

their true preferences and the output is stable for the true preferences. These equilib-

ria involve misrepresentation by the workers. Further, by misstating their preferences

�appropriately,�workers can compel the best achievable stable matching. However, as

the following example shows, the above proposition does not exhaust all ordinal Nash

equilibria.

Example 6 (Example 3 continued) There may be more ordinal Nash equilibria than

those given in Proposition 6.
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Recall that in the matching market in Example 3, when �I = f(f1; w2); (f2; w1)g is

considered, every execution of the algorithm with P leads to � = f(f1; w1); (f2; w2)g:

Under �; workers obtain the best possible positions and �rms cannot improve by devi-

ating. No manipulation will enable f1 and f2 to keep the workers they hold under �I ;

given the presence of f3. As a result, P is an ordinal equilibrium, even though S�
I
(P )

is empty. �

5 Concluding remarks

In this paper we have tried to extend the theoretical analysis of two-sided matching

models, by describing a mechanism that generalizes the original deferred-acceptance

algorithm proposed by Gale and Shapley (1962). In fact, we consider matching beginning

from arbitrary input matchings instead of just from the empty matching, under which all

candidates and positions are available. Furthermore, we have shown that the outlined

mechanism encompasses Blum, Roth, and Rothblum�s, in the particular case that we

start from a �rm-quasi-stable matching (a stable matching destabilized by the entry of

a �rm or the retirement of a worker).

The strategic decisions facing players were also considered, in a revelation game

that follows the rules laid out by the algorithm at hand. The uncovered results extend

those obtained for the Gale and Shapley�s DA-algorithm. It is shown that in general

truth revealing behavior is not an equilibrium, but that there may be equilibria at

which �rms behave straightforwardly. A class of equilibria is described in which this

side of the market plays according to the true preferences and, although the workers

need not be frank about their preferences, outcomes are stable. Nevertheless, some of

the presented equilibria are unlikely to be observed in reality. In fact, the strategies

described for the workers require a lot of coordination among them and the multiplicity

of equilibria gives no clue to the form that a sensible strategy should have. A perhaps

more serious drawback of this analysis concerns truth telling by �rms. How plausible is

straightforward behavior by �rms is a question to be explored. A natural direction to

27



pursue further research will be into characterizing equilibria in a more precise way, in

particular equilibria where �rms are not restricted to truth telling. It was shown that

a good part of the individually rational matchings can be obtained as a result of an

equilibrium play and that every equilibrium output obeys some form of stability.

In closing, when describing the algorithm, we have assumed that only one side of the

market� �rms, to be precise� can actually make proposals. However, some of the above

results can be extended to a mechanism in which, at each step, an arbitrarily chosen

agent� �rm or worker� is selected to make a proposal. It turns out that, starting from

an arbitrary matching, every ordinal Nash equilibrium outcome must be individually

rational. Conversely, every individually rational output matching can be obtained with

probability one in equilibrium. Finally, in what equilibria where one side of the market

tells the truth are concerned, every stable matching that agents belonging to the truthful

side of the market weakly prefer to the initial matching can be sustained as the unique

outcome of an equilibrium play.
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