
 1

 

 

 

FORECASTING LONG-TERM GOVERNMENT BOND YIELDS: AN APPLICATION OF 

STATISTICAL AND AI MODELS 

 

 

 

 

 

 

 

 

 

MARCO CASTELLANI 

CENTRIA – DI 

Faculdade Ciências e Tecnologia 

Universidade Nova Lisboa 

Quinta da Torre, 

2829-516 Caparica, Portugal 

email: mcas@ftc.unl.pt 

 

 

 

 

 

 

 

 

 

EMANUEL AUGUSTO  DOS  SANTOS
1,2

 

email: emanuelagsa@sapo.pt 

 

 

                                                 
1
 Affiliation: This paper was mainly prepared in 

the first half of 2005 when I was member of the 

Board of  IGCP – Portuguese Public Debt Agency  
2
 I am grateful to António Afonso for very helpful 

comments.which benefited the paper. The usual 

disclaimer applies.   



 2

ABSTRACT 

This paper evaluates several artificial intelligence and classical algorithms on their ability of 

forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic 

indicators. Due to the complexity of the prediction problem, the task represents a challenging test 

for the algorithms under evaluation. At the same time, the study is of particular significance for the 

important and paradigmatic role played by the US market in the world economy. Four data-driven 

artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a 

machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron 

model. Their performance is compared with the performance of two classical approaches, namely, a 

statistical ARIMA model and an econometric error correction model. The algorithms are evaluated 

on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 

1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the 

best results are obtained by the three parametric regression algorithms, namely the econometric, the 

statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, 

the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the 

range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map 

model gives an unsatisfactory performance. Analysis of the results indicates that the econometric 

model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that 

pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in 

interest rates. Overall, the prediction accuracy of the best models is only marginally better than the 

prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the 

modelling task and, in general, the difficulty of building reliable predictors for financial markets.  

Keywords: interest rates, forecasting, neural networks, fuzzy logic 
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NOTATION 

 

AI  Artificial intelligence   

ANN  Artificial neural network   

BP  Backpropagation    

CBOE  Chicago Board Options Exchange   

CPI  Consumer Price Index   

EA Evolutionary algorithm 

ECM  Error correction model   

Fed  Federal Reserve   

FL  Fuzzy logic   

GDP  Gross domestic product   

ISM  Institute for Supply Management) 

KB  Knowledge base   

Libor  London Inter Bank Offering Rate    

MF  Membership function   

MLP  Multi-layer perceptron   

PMI  Purchasing Managers' Index   

RB  Rule base 

RMSE  Root mean square error   

SOM  Self-organising map  

VAR (vector autoregressive) 

VIX  Volatility Index   
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1. INTRODUCTION 

Changes in interest rates are important to macroeconomic analysis and economic growth. However, 

it is in the financial markets that they have a more valuable impact and are most closely monitored. 

That is so because interest rates are the price for borrowing money and determine the value of 

financial assets. 

Starting from the real world of business, a large amount of information on future and forward 

contracts on bonds can be collected and used for building a model for the so-called term-structure of 

interest rates
3
. In a framework of certainty equilibrium, forward rates

4
 must coincide with future 

spot rates
5
. In theory, using a model that maximises the economic agents behaviour under rational 

expectations, it is possible to get specific formulas, which can be calibrated and empirically tested 

and used for predicting interest rates
6
. 

In reality, such an environment does not exist, future interest rates reflect human expectations on 

many factors not under control. Moreover, given the increasing internationalisation of economies 

and financial markets, the prediction of interest rates has become more complex, since 

developments in one country influence other countries as well. 

Classical financial modelling theory is based on accurate mathematical identification of the 

observed system behaviour, modelling and forecasting economic variables using classic 

econometrics (Greene, 2003) or time series theory (Newbold, 1986; Clements, 1998). Econometrics 

departs from the specification of a theoretical relationship between a specific economic variable 

(endogenous) and a set of explanatory variables. In most cases, the postulated functional form can 

be a linear or non-linear function. The unknown parameters of the model are then estimated using 

algebraic techniques such as least squares. The estimated model is an eligible tool for making 

forecasts that can be statistically evaluated. 

This structural approach to time series modelling makes use of economic theory to define the 

structure that is estimated by statistical techniques. Conversely, univariate ARIMA models (Box 

and Jenkins, 1976) employ pure statistical methods for estimating and forecasting future values of a 

variable. In this case, current and past values are the only data used in the estimation process. 

Unfortunately, the complexity of financial markets and the intrinsic uncertainties regarding their 

dynamics make the expression of precise analytical relationships often impossible, impractical or 

                                                 
3
 The term-structure of interest rates measures the relationship among the yields of risk-free securities that 

differ only in their term to maturity.  
4
 Forward rates apply to contracts for delivery at some future date.  

5
 Spot rates, on the contrary of forward rates, apply to contracts for immediate delivery  

6
 The Cox, Ingersoll, Ross (1985) model is an example of an equilibrium asset pricing model for the term 

structure of interest rates. 
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just unmanageably complex. Moreover, due to the non-linear, non-parametric nature of economic 

systems, standard linear econometric modelling has often turned out to be unsatisfactory. 

The study of biological nervous systems has shown that highly accurate and robust mappings can be 

achieved by learning appropriate sets of condition-response pairs. In the field of artificial 

intelligence (AI) two main approaches have emerged, each modelling cognitive processes at 

different levels of abstraction. The first method focuses on high-level symbolic associations and 

expresses complex stimulus-response relationships through sets of if-then rules. Fuzzy logic (FL) is 

a symbolic AI paradigm that extends Aristotle’s classical logic to take into account the uncertainty 

about real world knowledge (Pham and Li, 2005). 

The second approach postulates that the computational capabilities of living nervous systems are 

based on the parallel distributed processing of massively connected networks of simple computing 

units. Artificial neural networks (ANNs) represent the connectionist AI effort to model the 

architecture of biological information processing systems (Norgaard et al., 2000). 

ANNs and FL systems share common features and complementary limitations. Both paradigms 

provide a choice of mapping algorithms capable to perform model-free identification of any 

arbitrarily complex non-linear function (Goonatilake and Khebbal, 1995; White and Sofge, 1992). 

The approximate nature of their pattern matching and association processes makes them particularly 

suitable to deal with ill-defined and uncertain problem domains. 

These two AI approaches appear as alternatives to modelling and forecasting economic variables 

using classic theory. This paper compares the performance of AI models and classical econometric 

and ARIMA models for forecasting the US 10-year Treasury bonds yields. The task is chosen 

because of its complexity as a modelling problem and because of the role played by the US 

economy in the world market. A complete series of end-month US 10-year Treasury bonds yields 

and economic indicators covering 19 years between 1986:1 and 2004:12 are available. The models 

are fitted using data regarding the first 18 years and evaluated on their capability of forecasting the 

US 10-year Treasury bonds yields for the remaining 12-months. The root mean square error 

(RMSE) of the 12-month out of sample forecasts is used to measure the modelling accuracy. 

The remainder of the paper is organized as follows. Section 2 presents the problem domain. Section 

3 introduces the FL and ANN models. Section 3 describes the econometric and ARIMA models. 

Section 4 presents the experimental results and compares the performance of the models. Section 5 

discusses the results. Section 6 concludes the paper and proposes areas for further investigation. 
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Fig. 1: US treasuries yields versus German bunds yields 

2. PROBLEM DOMAIN AND EXPERIMENTAL DATA 

The proposed case study concerns the forecasting of the US Treasury bonds yields from the 

measures of four economic indicators. A complete set of 228 monthly data covering the 19 years 

between 1986:1 and 2004:12 are available. There are no missing attributes. 

The AI and classical approaches presented respectively in Section 2 and Section 3 are evaluated on 

their accuracy of predicting the correct monthly figure for the US Treasury bonds yields. This figure 

must be estimated based on the corresponding monthly figure of the four economic indicators. The 

forecasting task requires the identification of the input-output relationship between the dependent 

variable (the US bonds yields) and the four independent variables (the indicators). 216 data samples 

relative to the first 18 years are used to fit the models, and the remaining 12 data samples (2004:1 to 

2004:12) are used to evaluate the modelling accuracy. 

The choice of forecasting US Treasury bonds yields has its rationale in the fact that the US 

economy is a paradigmatic market playing an important role in the world economy. In particular, 

the developments in the US economy have impact on the other two main economic areas – Europe 

and Japan. 

In the case of Europe, it is recognised the existence of a significant correlation between the yields of 

US treasuries and the yields of German bunds given a stable exchange market. Fig. 1 visualises this 

correlation during the period 2000:12-2004:12. 

Since the German bund is nowadays the benchmark for the bonds issued by the other countries in 

the euro area, the forecast of US long-term interest rates could help to foresee the future evolution 
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of interest rates on sovereign debt in any other European country. A recent study (Baele, 2004) 

points out that the government bonds yields in countries belonging to the euro area are sensitive to 

regional and global shocks but not to idiosyncratic shocks, supporting the assumption of an 

increasing interrelationship of the financial markets at world level. 

2.1. Dependent variable 

The 10-year U.S. Treasury bonds is one of the fixed maturity securities for which the U.S. Treasury 

calculates a daily yield. The other maturities are, currently, 1, 3 and 6 months and 1, 2, 3, 5, 7 and 

20 years. The 10-year maturity is selected because it is a widespread benchmark used in financial 

markets. In spite of not being available every day a bond with a constant maturity, it is possible to 

calculate a theoretic yield of such bond by interpolating the daily yield curve for Treasury nominal 

securities. The data is the end-period yield for each month disclosed by the Federal Reserve. 

2.2. Independent variables 

Four economic indicators are chosen as explanatory variables to predict the US Treasury bonds 

yields, namely, the Purchasing Managers’ Index (PMI), the Consumer Price Index (CPI), the 

London Inter Bank Offering Rate (Libor) and the Volatility Index (VIX). 

The economic situation is important to interest rates. When the economy is booming and there is a 

high demand for funds, the price of borrowing money goes up, leading to increasing interest rates. 

Conversely, in economic recessions, everything else being equal, there is downward pressure on 

interest rates. The most important economic indicator for the output of goods and services produced 

in a country is the gross domestic product (GDP). However, this indicator is published only on a 

quarterly and annual basis. The PMI published monthly by the ISM (Institute for Supply 

Management) appears to be a good proxy for the GDP, as it generally shows a high correlation with 

the overall economy. For example, according to ISM analysis, a PMI in excess of 42.7 percent, over 

a period of time indicates an expansion of the economy. This month-to-month indicator is a 

composite index based on the following five indicators for the manufacturing sector of the U.S. 

economy: new orders, production, employment, supplier deliveries and inventories. 

Inflation is important to interest rates as well. Higher-than-expected inflation can cause yields and 

interest rates to rise, as investors want to preserve the purchasing power of their money. The most 

important measure of inflation is the average change over time in prices included in the CPI. A 

more accurate measure of the underlying rate of inflation is obtained when the volatile food and 

energy prices are excluded from the CPI. The latter measure, sometimes referred as the “core” CPI, 

is selected for this study as one of the four explanatory variables. The year-on-year rate of change is 

used in place of the raw core CPI index. The source of the data is the Bureau of Labor Statistics. 
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Year-on-year rate of change of core CPI
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    a) PMI index (input variable)        b) CPI index (input variable)  
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e) US 10-year Treasury bonds yields (output variable) 

Fig. 2: Input and output variables 

Another major factor in interest rate changes is the monetary policy of central banks. For example, 

the Federal Reserve (Fed) increases or decreases the Fed Funds rate – the key-rate for lending 

money to the other banks – according to the economic condition. When the economy is growing 

above its potential and unemployment is low, a central bank will increase rates to curb inflationary 

pressures. In a recession, a central bank will cut rates to stimulate economic growth and reduce 

unemployment. In this study the Libor is used instead of the Fed Funds rate for the three-month 

term. The Libor is an average of the interest rate on dollar-denominated deposits traded between 

banks in London. The Libor reflects every change in the Fed Funds rate and has the advantage of 

having a daily market-driven fixing. As the source of data the British Bankers Association is used. 
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Main statistical measures 

Sample: 1986:01 2004:12 Observations: 228 

 US 10y TB yields PMI index CPI-yoy Libor-3m VIX index 

Mean 6.507105 52.175439 3.153809 5.291756 20.231899 

Standard Deviation 1,540538 5.011609 1.075363 2.270260 6.555111 

Kurtosis -0.955555 -0.233122 -0.855340 -0.625088 4.094172 

Skewness 0.019810 -0.251113 0.341810 -0.207222 1.455191 

Correlation Matrix 

  US 10y TB yields PMI index CPI-yoy Libor-3m VIX index 

US 10y TB yields 1      

PMI index -0.002433 1     

CPI-yoy 0.86356 -0.309878 1    

Libor-3m 0.842462 -0.183082 0,696916 1   

VIX index -0.101080 -0.105170 -0.061067 0.070075 1 

Table 1: Summary of data. 

Another factor that affects the course of bonds yields is the stock exchange condition. When the 

demand in the capital market shifts from government bonds to equities, bonds prices tend to 

decrease and bonds yields to increase as these variables move in opposite direction. To capture this 

relationship an indicator for the stock market volatility is chosen for this study. The VIX compiled 

by the Chicago Board Options Exchange (CBOE) is chosen. The VIX is calculated using options on 

the S&P 500 index, the widely recognised benchmark for U.S. equities. The VIX index measures 

market expectations of near-term volatility and has been considered by many to be the world’s 

premier barometer of investor sentiment. To obtain a long series starting in 1986:1 two indices have 

to be reconciled: the VOX (1986:1 to 1989:12) and VIX (1990:1 to 2004:12). For the whole period, 

the most recent indicator VIX (1990:1 to 2004:12) is kept as released by the CBOE and its value for 

the period 1986:1 to 1989:12 is calculated by using the implicit rates of change in the old series. 

Figs. 2a-e show the evolution of the 10-year U.S. Treasury bonds yields together with the evolution 

of the four explanatory variables over the 19 years period. For each plot, the vertical dashed line 

marks the division between the 18-years modelling samples and the one-year evaluation samples. 

The two horizontal lines show the range of variation of the variable over the evaluation period. 

Table 1 summarises the main statistical measures of the time series. 

3. AI MODELLING APPROACHES 

There is a large and ever growing literature regarding applications of AI techniques to financial 

problems. Due to their capability of learning complex non-linear relationships from raw numerical 

data, ANN systems were often used for prediction of financial time series. Typical applications 
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include the forecasting of interest rates (Cheng et al., 1996; Din, 2003), stock market predictions 

(Refenes et. al, 1997; Dunis and Jalilov, 2002; Bartlmae et al., 1997), forecasting of currency 

exchange rates (Walczak, 2001; Chen and Leung, 2005), house pricing and bond rating (Daniels et. 

al., 1999), etc.. For a broad overview on the use of ANNs in finance, the reader is referred to Trippi 

and Turban (1996) and McNelis (2005). 

ANNs can be divided into supervised and unsupervised, according to the training procedure 

implemented (Lippmann, 1987). Supervised ANNs are trained under the control of an omniscient 

teacher that gives the input and the correct output to be modelled. This is by far the type of ANN 

most commonly used in financial prediction tasks. Unsupervised ANNs are left free to organise 

themselves to find the best partition of the input space. In this study, two of the best known 

examples of of supervised and unsupervised ANN models are evaluated. For a quick introduction to 

ANN functioning and terminology, the reader is referred to appendix A. 

The lack of a standard data induction algorithm makes the implementation of FL system less 

straightforward. Nonetheless, several studies address the application of FL to financial modelling 

and decision making (Goonatilake et al., 1995; Mohammadian and Kingham, 1997). In this study, a 

manually designed FL model and an automatically generated FL system are evaluated. For a quick 

introduction to FL functioning and terminology, the reader is referred to appendix B. 

For all the machine learned AI models, accuracy results are estimated on the average of 10 

independent learning trials 

3.1. Supervised artificial neural network model 

The multi-layer perceptron (MLP) (Lippmann, 1987) is perhaps the best known and most successful 

type of ANN. It is characterised by a fully connected feedforward architecture composed of three or 

four layers of processing elements. Fig. 3 shows a typical MLP architecture. 

The basic unit of this ANN is the perceptron. The perceptron performs a weighted summation of the 

input signals and transforms it via a non-linear stepwise transfer function. Fig. 4 shows a perceptron 

unit. 

The input layer fans the incoming signals out to the neurons of the next layer. Since the monthly 

forecasts for the US Treasury bonds are based on four economic indicators, four input neurons are 

used. 

One or more hidden layers of perceptrons split the input space into several decision regions, each 

neuron building onto the partition of the previous layer. The more hidden layers there are and the 

larger they are, the more complex the overall mapping is. However, it can be shown that no more  
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Fig. 3: Multi-layer perceptron 
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Fig. 4: Perceptron unit 

than two hidden layers are required to model any arbitrarily complex relationship (Lippmann, 

1987). The optimal configuration is chosen by trial and error, that is, by training different MLP 

structures and assessing their merit on the learning accuracy. The best prediction results for the US 

Treasury bonds yields are obtained using one hidden layer of 50 units. 
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Multi-Layer Perceptron Settings  

Input nodes 4 

Output nodes 1 

Hidden nodes 50 

Activation function of hidden layer nodes Hyper-tangent 

Activation function of output layer nodes Sigmoidal 

Initialisation range for MLP weights [-0.3, 0.3] 

Backpropagation Rule Settings  

Learning coefficient 0.06 

Momentum term 0.1 

Learning trials 10 

Learning iterations 100 

Table 2: MLP settings and BP parameters. 

The ouput layer collects the signals from the last hidden layer and further processes them to give the 

final ANN response. Since only one output is required (that is, the monthly forecast for the US 

treasury bonds yields), this layer is composed of a single perceptron unit. 

The mapping capabilities of the MLP stem from the nonlinearities used within the nodes. The 

proposed ANN model uses the hyperbolic tangent function for the hidden units and the sigmoidal 

function for the output node. Since the mapping range of the sigmoidal function is within the 

interval [0,1], the output of the MLP model is multiplied by a factor 10 to obtain a [0,10] mapping 

range. 

The network is trained using the standard error backpropagation (BP) rule with momentum term 

(Rumelhart and McClelland, 1986). According to this algorithm, the MLP uses the set of training 

patterns to learn the desired behaviour via least squares minimisation of the output error. The 

algorithm is run for a fixed number of iterations which is manually set to optimise the learning 

accuracy. Learning via backpropagation is akin to stochastic approximation of the input-output 

relationship. The learning parameters of the BP algorithm are optimised according to experimental 

trial and error. 

Once the architecture is optimised and the ANN is trained, the system is ready to operate. Table 2 

summarises the final MLP structure and BP rule settings. 

3.2. Unsupervised artificial neural network model 

Kohonen’s self-organising feature map (SOM) (Kohonen, 1984) was originally created to reproduce 

the organisation of biological sensory maps of the brain. This ANN model implements a clustering 

algorithm that is akin to K-means. Fig. 5 illustrates a typical SOM architecture. Due to its simple  
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Fig. 5: Kohonen’s self-organising map 

architecture, versatility and ease of implementation, the SOM is the most popular kind of 

unsupervised ANN system. SOMs found application in several financial domains (Deboeck, 1998). 

The SOM is composed of two layers of nodes, namely the feature layer and the output layer. 

The feature layer collects the ANN input and forwards it to the neurons of the next layer. The output 

layer is composed of a two-dimensional grid of processing units. Each neuron measures the 

similarity between the input pattern and a reference vector stored in the values of the incoming 

weights. Similarity is measured as the Euclidean distance between the reference vector and the input 

vector. 

Neurons of the output layer operate in a competitive fashion, that is, only the unit having the best 

matching reference vector is allowed to respond to the input pattern (winner-take-all rule). 

Learning generates a vector quantiser by adjusting the incoming weights of the winner neuron to 

resemble more closely the input pattern. Other neurons in the neighbourhood have their weights 

modified of an amount that is increasingly scaled down as their distance from the winner unit 

widens. The magnitude of the weight correction factor is controlled via a neighbourhood function. 

In biological systems, competitive activation and neighbourhood learning are obtained respectively 

via inhibitory and excitatory synapses. 
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Self-Organising Map Settings  

Input nodes 5 

Output nodes 15x15 grid 

Initialisation range for weights [-0.3, 0.3] 

Learning Parameters  

Learning trials 10 

Learning iterations (τ) 10000 

Learning coefficient (at iteration t) 1-t/τ 

Neighbourhood function Gaussian 

Spread of gaussian neighbourhood 15*(1-t/τ) 

Table 3: SOM settings and learning parameters. 

Upon iterative presentation of the input patterns, the ANN self-organises to respond with 

topologically close nodes to physically similar patterns. Reference vectors cover the input 

distribution by moving toward the centres of the clusters of training data samples. As learning 

proceeds, the amount of weight adaptation is decreased to allow finer adjustments of the SOM 

behaviour. Changes are also made more local by increasing the dampening of the weight correction 

factor with the distance from the winner neuron. At the end of the process, only the weights of the 

winner node are adjusted. The final setting of the reference vectors tends to approximate the 

maximal points of the probability density function of the training data (Kohonen, 1984). 

SOMs can be used in model approximation by presenting the network with input vectors composed 

by input-output pairs of training patterns. The ANN adjusts its behaviour to cluster similar sets of 

condition-response pairs. During the validation phase, only the input pattern is fed and matched 

with the corresponding elements of the reference vector (i.e. the condition). The remaining weights 

of the winner neuron (i.e. the response) define the ANN model response. 

Because of the topological organisation of the output layer, neighbouring conditions elicit similar 

responses, thus ensuring a smooth mapping of the desired relationship. Accordingly, previously 

unseen data are mapped according to the most similar training examples. 

The SOM architecture and the learning parameters are set according to experimental trial and error. 

For the proposed study, a SOM having an input layer of 5 units (4 monthly economic indicators 

plus the corresponding US bonds yield) and an output layer of 15x15 units is built. The number of 

mapping nodes is suggested by the low sampling of the training space, since a large number of 

neurons ensures a smoother coverage of the unsampled input space. Table 3 summarises the main 

SOM settings and training parameters. 
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Fig. 6: Mamdani-type fuzzy logic system 

3.3. Manually designed fuzzy logic model 

A standard Mamdani-type (Mamdani, 1974) FL system is used. The block diagram of this system is 

shown in fig. 6.  

Fuzzy sets are defined via trapezoidal membership functions (MFs), while output defuzzification is 

performed via the height method (Castellani and Pham, 2002a). Since no expert knowledge is 

available in the form of fuzzy if-then rules, the FL model is built solely on the basis of the available 

data samples. 

The partition of the input and the output spaces is determined according to experimental trial and 

error. The space of each of the four input variables is divided into seven evenly spaced linguistic 

terms. The output space is divided into nine linguistic terms spanning the interval [0, 10]. 

The rule base (RB) is built by creating a fuzzy rule out of each of the 216 training examples. Rules 

are generated by associating the fuzzy terms that better match the values of the input variables to the 

term that better matches the desired output. Duplicate rules are removed, rules having the same 

input but different output are resolved by choosing the case that best fits the training examples. At 

the end of the process, the span of each input MF is slightly enlarged to reflect the uncertainty about 

the space partition. 

This procedure generates 110 rules that are then used to forecast the values of the remaining 12-

month out of sample 10-year Treasury bonds yields. 
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3.4. Automatically designed fuzzy logic model 

Although the design of the fuzzy model is conceptually straightforward, much effort is required to 

generate the mapping knowledge base (KB) (i.e., the fuzzy rules and MFs). Keeping the same 

Mamdani-type FL system used in the previous test, an alternative inductive machine learning 

approach is investigated for automatic identification of the 10-year Treasury bonds time series. 

The generation of FL systems is essentially a search problem, where the solution space is 

represented by the large number of possible system configurations. Evolutionary algorithms (EAs) 

(Fogel, 2000) are a class of global search techniques that provide an ideal framework for the task. 

As well as allowing the optimisation of both the KB and the MFs, EAs only need a small amount of 

problem domain expertise for implementation. 

EAs are modelled on Darwin’s theory of natural evolution. This stipulates that a species improves 

its adaptation to the environment by means of a selection mechanism that favours the reproduction 

of those individuals of highest fitness. A population of candidate solutions (i.e., FL systems) is 

iteratively made to evolve until a stopping criterion is met. At the end of the process, the best 

exemplar is chosen as the solution to the problem. 

In EAs, the adaptation of an individual to the environment is defined by its ability to perform the 

required task. A problem-specific fitness function is used for the quality assessment of a candidate 

solution. The population is driven toward the optimal point(s) of the search space by means of 

stochastic search operators inspired by the biological mechanisms of genetic selection, mutation and 

recombination. Problem-specific operators are often used to speed up the search process. 

The EA used in this trial (Pham and Castellani, 2002b) generates Mamdani-type FL systems 

through simultaneous evolution of the RB and MFs. The algorithm uses the generational 

replacement reproduction scheme (Fogel, 2000) and an adaptive selection operator (Pham and 

Castellani, 2002b) that aims at maintaining the selection pressure constant throughout the whole 

evolution process. A set of crossover and mutation procedures each concerned with a different level 

of KB optimisation is used, namely, RB optimisation, MFs optimisation, and optimisation of both 

RB and MFs simultaneously. 

Each member of the starting population is initialised with a blank RB and a random partition of the 

input and output spaces. During the fitness evaluation phase, candidate solutions are tested on the 

series of training data points. At each step, a solution forecasts the value of the US bonds yield by 

searching its KB for the rules best matching the set of input conditions. The algorithm creates a new 

rule if the set of input conditions having the highest matching degree does not lead to an existing 

rule action. The consequent of the newly generated rule is randomly determined. The aim of the  
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EA parameters  

Population size 80 

Learning trials 10 

Learning iterations 500 

Crossover rate 1 

Mutation rate 0.1 

Max number of terms per variable 6 

Initialisation parameters  

Number of terms per variable 4 

Rule base empty 

Fitness function settings  

Evaluation steps 216 

Error measure root MSE 

Table 4: EA parameters. 

procedure is to limit the RB growth only to the most relevant instances. 

The fitness of the candidate solutions is evaluated as the measure of their root mean square 

modelling error over the set of training patterns. The lower the error is, the higher the chances are 

that the solution is selected for reproduction. Each learning cycle, a fitter population is produced 

through genetic crossover and mutation of the individuals that are selected for reproduction (i.e., the 

best performing ones). This procedure is repeated until a pre-defined number of iterations has 

elapsed and the fittest solution of the last generation is picked. 

The learning parameters are set according to experimental trial and error. Table 4 summarises the 

main EA settings. 

4. CLASSICAL MODELLING APPROACHES 

In this study two classes of traditional models are tested. The first model is an univariate model, in 

which future values of the variable are predicted only using current and past values of the own 

variable. For this reason, it belongs to the class of statistical models. The second model uses a set of 

variables chosen according to economic theories about the nature of the relationship with the 

variable to be forecast. Since the second model combines economics, mathematics and statistics, it 

is an example of econometric model. For a brief overview of the two classical models presented, the 

reader is referred respectively to appendices C and D. 

4.1. ARIMA model 

The first step to build the ARIMA model is the identification of the data-generating process. There 

are some statistical rules that help to find out the appropriate specification. In this regards, visual  
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Variable ADF Test Statistic 

  Level First Diff. 

US 10y TB yields -1.300460 -7.138813 

PMI index -3.312909 -6.633664 

CPI-yoy -0.849709 -5.350012 

Libor-3m -1.410705 -5.008327 

VIX index -2.906936 -9.735054 

1% Critical Value    -3.4612 

5% Critical Value    -2.5737 

10% Critical Value  -2.5737 

Table 5: Augmented Dickey-Fuller Unit Root Test. 

Variable Coefficient t-Statistic

constant -0.016974 2.328155

AR(1) -0.090818 3.542232

AR(2) -0.944908 3.186955

MA(1) 0.092203 8.690526

MA(2) 0.99182 -2.505165

S.E. of regression 0.287393

Durbin-Watson statistic 1.823712

F-statistic 4.150752

Prob(F-statistic) 0.002953

Inverted AR Roots -0.05+0.97i -0.05-0.97i

Inverted MA Roots -0.05+0.99i -0.05-0.99i

Method: Least Squares

Number of observations: 213 after adjusting endpoints

Dependent variable: ∆(U.S. 10-year Treasury bond yield)

 

Table 6: Output from ARIMA(2,1,2) model. 

inspection of correlograms of the autocorrelation function and of the partial autocorrelation function 

is often recommended. The order of differentiation is related to the need to work with stationary 

time series. In many economic variables, first-difference is enough to achieve that objective. 

Since the Dickey-Fuller test (Dickey and Fuller, 1979; 1981) indicates that the U.S. 10-year 

Treasury bonds yield is an integrated variable of first order, the ARIMA model is estimated in first-

difference. Following extensive experimental estimations, it is concluded that the ARIMA(2,1,2) is 

the best model for the available sample in terms of forecast performance and also because of its 

parsimony of parameters. The augmented Dickey-Fuller unit root test for all the variables is 

presented in table 5. 

The output from the ARIMA estimation is shown in table 6. AR(p) is the component containing just 

the p lagged dependent variable terms statistically meaningful in the past history of the process. 

MA(q) is the disturbance component of the model. All AR and MA terms have high levels of  
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Variable Coefficient t-Statistic

constant 1.511884 2.328155

x1: Purchasing Managers' Index 0.031313 3.542232

x2: Core CPI, y-o-y rate of previous period 0.361839 3.186955

x3: 3-month LIBOR on US dollar 0.454422 8.690526

x4  Volatility Index of the CBOE -0.009144 -2.505165

Error of previous period 0.907958 29.40349

R-squared 0.972524

Adjusted R-squared 0.971863

S.E. of regression 0.248929

Durbin-Watson statistic 1.883824

F-statistic 1472.428

Prob(F-statistic) 0.000000

Dependent variable: U.S. 10-year Treasury bond yield

Method: Leasr Squares

Number of observations: 214 after adjusting endpoints

 

Table 7: Output from the econometric model. 

statistical significance. Moreover, the inverted roots of the polynomials have absolute value no 

greater than one. Before using the estimated equation to forecast the 12-month values ahead of the 

variable, the performance of an augmented Dickey-Fuller test is used to confirm that the residuals 

of the equation are white noise disturbances. 

4.2. Econometric model 

The output from the econometric estimation is shown in table 7. Upon the output of the regression, 

it is concluded that that all coefficients are statistically significant within the usual standard levels of 

confidence. The residuals from the regression are a white noise series. R-squared is the coefficient 

of determination. When multiplied by 100 it represents the percentage of variability in the 

dependent variable that is explained by the estimated regression equation. For this reason, it is a 

measure of the strength of the regression relationship. 

All the coefficients have the expected signals predicted by economic theory and summarised earlier 

in this paper. The coefficients of the variables related to economic growth, inflation and reference 

interest rates are positive indicating a direct relationship with the yields on long-term Treasury 

bonds. The negative coefficient of the volatility index suggests a negative correlation between the 

bonds market and the stock exchange condition as it is very often observed. 

5. EXPERIMENTAL RESULTS 

This section compares the accuracy results obtained using econometric, statistical and AI models 

for forecasting te US 10-year Treasury bonds yields. In all the cases, the models are fitted using the 

216 data samples covering the 18-years span between 1986:1 and 2003:12. The evaluation of the  
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model Accuracy Std. deviation 

Fuzzy (manual) 0.3523 - 

Fuzzy (learned) 0.3325 0.0872 

SOM 0.2693 0.0248 

One-step lag 0.2574 - 

MLP 0.2480 0.0016 

ARIMA(2,1,2) 0.2464 - 

Econometric 0.2376 - 

Table 7: RMSE modelling error. 

models is based on the RMSE of the 12-month out of sample forecasts (2004:1 to 2004:12). For the 

machine learned AI models, accuracy results are estimated on the average of 10 independent 

learning trials. Table 8 gives the accuracy results of the six modelling approaches. For the sake of 

comparison, table 8 includes also the RMSE of a one-step lag predictor, that is, a basic algorithm 

that predicts the yields of the US 10-year Treasury bonds from the figure of the previous month. 

For each approach, figs. 7a-f show the evolution of the actual Treasury bonds yields and the 

corresponding forecasts of the models over the 12-month evaluation period. For the machine 

learning approaches, figs. 7a-f show a sample result. 

The two FL modelling approaches give the worst accuracy results. Considering the high standard 

deviation of the RMSE of the EA-generated models, the difference in accuracy between the two 

approaches is statistically not significant. However, the automatic method creates more compact 

solutions. These solutions are characterised by a RB that is on average half the size of the RB of the 

manually designed FL system. 

Figs. 7a-b show the behaviour of two sample FL models. The forecast of the manually fitted FL 

system for the US 10-year Treasury bonds yields is constant throughout most of the year (9 

months). During the period that the response is flat, the output of the model is decided exclusively 

by one rule. Since the overall system behaviour is built by assembling condition-response 

associations taken from the history of the past years, the mainly flat output of the manually built FL 

system suggests that insufficient data may have prevented a finer modelling of the desired 

relationship. Indeed, inspection of figs. 2a-e shows the combination of values that the input 

variables take during the 12-month evaluation period has little history in the past. Namely, the range 

of values taken by the CPI and the Libor indexes mostly reflects the history of the last years, while 

the range of values taken by the PMI and VIX indexes finds correspondence in more remote times. 



 21

FUZZY LOGIC (manual) model

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

1 2 3 4 5 6 7 8 9 10 11 12

month

TB

TB10y

forecast

 

FUZZY LOGIC (learned) model
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a) manually designed FL model    b) EA-generated FL model (sample) 
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SOM model
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c) MLP model  (sample)     d) SOM model (sample) 
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ECONOMETRIC model
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e) ARIMA model       f) ECM model  

Fig. 7: Modelling results 

Since the mapping of the EA-generated FL system is also learned from the same data samples, the 

results of the automatic FL modelling procedure do not improve the results of the manual FL 

modelling procedure. Similarly to the case of the manually fitted FL model, the output of the 

sample EA-generated model appears to be dominated by very few rules, roughly modelling the 

main trend of the US 10-year Treasury bonds yields over the validation span. 
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The SOM system outperforms the two fuzzy models in terms of learning accuracy and robustness. 

The superior performance of the SOM model stems from the generalisation capability of the ANN. 

Although the learning algorithm is equally based on pointwise mapping of input-output training 

pairs, the action of the neighbourhood function (see subsection 3.2) partially fills the gaps between 

the centres of the training data clusters with the response of neurons that are not clearly committed 

to any cluster. The large number of neurons utilised in this experiment is likely to have helped the 

SOM system to provide a better response to previously unseen input data. Fig. 7d shows the 

response of a sample SOM model. Analysis of fig. 7d shows that the ANN output resembles a 

slowly varying interpolation of the desired curve. Also in this case, the lack of historical data allows 

only the overall trend to be modelled. 

The MLP is the AI system that gives the best modelling results. The average accuracy achieved by 

the MLP solutions improve of about 10% the results obtained by the SOM model. The very small 

standard deviation indicates the high consistency of the learning procedure. This result is due to the 

distributed way that this type of ANN uses to store the mapping knowledge. FL and SOM systems 

cluster similar data patterns into single functional units, respectively rules and neurons, and use 

some in-built mechanism to generalise to unseen cases, respectively the MF width and the vector 

quantiser properties of the competitive layer. In MLP systems, the memorisation of each single 

training pattern affects the setting of all the ANN weights. As a consequence, the overall behaviour 

is set to best fit the distribution of the whole training data. This “global” fitting of the training data 

improves the generalisation capability of MLP systems, particularly when a limited training set is 

available and the “local” data fitting procedure of SOM and FL systems disregards unsampled input 

conditions. 

Fig. 7c shows the response of a sample MLP system throughout the evaluation year. The curve 

follows more closely the evolution of the US 10-year Treasury bonds yields, even though the 

quality of the mapping is still quite coarse. 

The accuracy of the statistical model is within one standard deviation from the average accuracy of 

the MLP model. Given that the MLP learning algorithm performs a stochastic approximation of the 

desired input-output relationship, the equivalence of the modelling results reflects the similar 

statistical nature of the two modelling approaches. The similarity between the MLP and the 

statistical model extends also to their global approach to curve fitting. In the case of the ARIMA 

model, the model is fit by adjusting the global system response through the ARIMA parameters. 

Fig. 7e shows the output of the ARIMA(2,1,2) model. The curve resembles a one-step lag 

prediction model. 



 23

Finally, the econometric ECM model obtains the best forecasting accuracy. Given the lack of 

historical data that affected the performance of the AI and pure statistical models, it is likely that the 

superior performance of the ECM model is due to the embedded problem domain knowledge. Fig. 

7f shows the output of the econometric model. Also in this case, the gross system response seems to 

resemble a one-step lag prediction model. 

6. DISCUSSION 

The main difficulty of the modelling task results from the sparseness of the data that are used to 

deduce the models. Indeed, only 216 data points are available to identify the highly complex 

mapping from the 4-dimensional vector of economic indicators to the US Treasury bonds yields. 

This lack of historical data puts severly to the test the generalisation capability and the reliability of 

the modelling algorithms under evaluation. Unfortunately, such situation is not uncommon in the 

field of financial market prediction, where the completeness of the sample data is restricted within 

the boundaries of past market fluctuations. Given that some economic indicators are published only 

on periodical basis (e.g., the monthly PMI), the availability of historical data is further restricted. 

The sparseness of the data samples affects the accuracy of the six models. In particular, the two FL 

system and the unsupervised ANN system give unsatisfactory results in terms of precision of the 

forecasts and reliability of the learning procedure. The main reason for the failure of these three 

methods is in the modelling algorithm, which is based on the composition of several local input-

output associations that are inferred from the distribution of the training data. Such approach is 

liable to  produce poor prediction results when the input conditions are dissimilar from the cases 

covered by the training data. It is important to note that, in the case of the two FL systems, the poor 

prediction results are related to the chosen data-driven induction algorithms. A different modelling 

approach, such as the encoding of expert knowledge (if available), could produce a FL system 

capable of entirely acceptable performances. 

The MLP and the two classical algorithms share the same global approach to modelling, based on 

parameteric regression of the functional relationship. Their prediction results clearly improve the 

results obtained by the FL and the SOM systems. However, due to the lack of data samples, the 

prediction results are only marginally better than the forecasts made using a simple one-step lag 

algorithm (see table 8). 

The MLP, the ARIMA and the ECM models give similar RMSE results. To assess the statistical 

significance of the differences between the measures, the prediction accuracy of these three models 

is compared using the Diebold-Mariano (1995) test. 

Given a series and two competing predictions, the Diebold-Mariano test applies a loss criterion 
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variable forecasts squared residuals Difference of squared residuals 

month 10Y TB ECM ARIMA MLP EECM
2 

EARIMA
2
 EMLP

2
 EMLP

2
- EARIMA

2
 EMLP

2
- EECM

2 
EECM

2
-EARIMA

2
 

2004:01 4.16 4.28 4.28 4.32 0.0154 0.0152 0.0263 0.0111 0.0109 0.0002 

2004:02 3.99 4.09 4.09 4.28 0.0105 0.0103 0.0830 0.0727 0.0726 0.0002 

2004:03 3.86 4.04 3.94 4.21 0.0329 0.0071 0.1216 0.1145 0.0887 0.0258 

2004:04 4.53 4.03 3.89 4.21 0.2457 0.4092 0.1030 -0.3062 -0.1427 -0.1635 

2004:05 4.66 4.64 4.53 4.28 0.0003 0.0175 0.1418 0.1242 0.1414 -0.0172 

2004:06 4.62 4.73 4.63 4.33 0.0118 0.0001 0.0846 0.0846 0.0728 0.0118 

2004:07 4.50 4.72 4.60 4.36 0.0485 0.0095 0.0189 0.0094 -0.0295 0.0389 

2004:08 4.13 4.43 4.50 4.30 0.0891 0.1357 0.0305 -0.1052 -0.0586 -0.0466 

2004:09 4.14 4.35 4.11 4.35 0.0440 0.0007 0.0452 0.0446 0.0013 0.0433 

2004:10 4.05 4.30 4.09 4.27 0.0633 0.0016 0.0477 0.0460 -0.0157 0.0617 

2004:11 4.36 4.29 4.04 4.39 0.0052 0.1046 0.0008 -0.1038 -0.0044 -0.0994 

2004:12 4.24 4.57 4.37 4.44 0.1110 0.0169 0.0390 0.0222 -0.0720 0.0942 

std dva 0.1211 0.0788 0.0712 

mean 0.0012 0.0054 -0.0042  

DM 0.0098 0.0685 -0.0592 

Table 9: Comparison of prediction accuracies (Diebold-Mariano test). 

(such as squared error or absolute error) and then calculates a number of measures of predictive 

accuracy that allow the null hypothesis of equal accuracy to be tested. The procedure tests whether 

the mean difference between the loss criteria for the two predictions is zero using a long-run 

estimate of the variance of the difference series. The most common formula used to perform the 

Diebold-Mariano test is the following: 
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where DM is the Diebold-Mariano statistic, A and B are two models, EA and EB are their prediction 

errors, and the average and the standard deviation are calculated over the entire validation span. 

Table 9 gives the statistics of the Diebold-Mariano test for the comparisons of the three parameteric 

regression algorithms. Using a one-tailed test at a level of significance of 0.05, the critical value for 

rejecting the null hypothesis can be inferred from the Standard Normal Distribution to be equal to 

1.645. Since the Diebold-Mariano test for the three parameteric regression algorithms gives results 

that all are clearly lower than the critical value, the hypothesis that the three models have a similar 

forecasting accuracy can not be rejected. 
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As a conclusion, although the three parameteric regression algorithms can not be considered 

statistically different according to the Diebold-Mariano test, the relative size of the MSE points to a 

better performance of the econometric model as against the ARIMA and the AI models. 

7. CONCLUSIONS AND FURTHER WORK 

Six AI and classical algorithms are evaluated on their ability of forecasting the monthly yield of the 

US 10-year Treasury bonds from a set of four economic indicators. The study compares the MSE of 

four AI models, namely  a manually built and a machine learned FL model, a SOM model and a 

MLP model, with the MSE of two classical models, namely a statistical ARIMA model an 

econometric ECM model. 216 monthly data samples from 1986:1 to 2003:12 are used to fit the six 

models and 12 monthly data samples from 2004:1 to 2004:12 are used to validate the results. 

In spite of the long observation period, the 216 data samples cover only sparsely the range of 

possible market fluctuations, representing thus a challenging test for the reliability and the accuracy 

of the algorithms under evaluation. Experimental evidence indicates the ECM model has a slight 

edge over the other algorithms, closely followed by the MLP and the ARIMA model. The better 

performance of the ECM model is likely due to the problem-specific knowledge that is embedded in 

the algorithm. 

The two FL models failed to provide reliable and accurate forecasts for the US Treasury bonds 

yields. The main reason for their failure is probably due to the data-driven nature of their modelling 

algorithms, which in combination with the local mapping of the individual fuzzy rules gave poor 

results in the presence of conditions far from the training examples. For similar reasons, also the 

SOM model produced an unsatisfactory performance. 

Examination of the prediction results of the six models showed that the AI systems tend to 

approximate the main trend of the modelling variable. However, the lack of an exhaustive training 

set of examples prevented the AI systems from capturing more detailed oscillations of the US 

Treasury bonds yields. Conversely, the two classical systems showed a behaviour more resembling 

a one-step lagged system. 

The MSE obtained by the best models is only marginally better that the MSE produced by a basic 

one-step lag predictor, that is, by predicting the yields of the US 10-year Treasury bonds from the 

figure of the previous month. This result underlines the difficulty of the modelling test and, in 

general, the difficulty of building reliable predictors for financial markets. The conclusions of this 

study suggest that pure data-driven induction can not fully capture the behaviour of the desired 

variable. A combination of statistical or machine learning techniques with expert knowledge of the 

financial markets is likely to provide the best predictive accuracy. 
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Further work should aim at building more powerful hybrid systems, combining machine learned 

and statistical information with economic theory and expert knowledge. A viable approach would 

be to incorporate expert knowledge into a FL framework, either as a complement or a complete 

replacement of the data-driven model fitting algorithms tested in this study. The main difficulty in 

this approach is represented by the often problematic process of knowledge elicitation from human 

experts. An alternative hybrid approach to FL modelling would be to combine the output of 

different predictors into a final forecast. The main difficulty of this approach concerns the definition 

of the weighing criterion for the output of the different models. 

 

REFERENCES 

Baele, L., Ferrando, A.,Hordal, P.,Krilova, E. Monnet, C. (2004), Measuring Financial Integration 

in Euro Area, ECB Occasional Paper Series, No.14. 

Bartlmae, K., Gutjahr, S. and Nakhaeizadeh, G. (1997), Incorporating prior knowledge about 

financial markets through neural multitask learning, Prooceedings of the Fourth International 

Conference on Neural Networks in the Capital Markets. 

Chen, A.S. and Leung, M.T. (2005), Performance Evaluation of Neural Network Architectures: The 

Case of Predicting Foreign Exchange Correlations, Journal of Forecasting, vol. 24, no. 6, pp. 403-

420. 

Cheng, W., Wagner, L. and Lin, C.H., (1996) Forecasting the 30-year U.S. Treasury bond with a 

system of neural networks, Journal of Computational Intelligence in Finance, vol. 4, pp. 10-16. 

Box, G. E. P. and Jenkins G. M. (1976), Time series analysis: forecasting and control, Revised 

edition, Holden-Day, San Francisco, CA. 

Clements, M.P. and Hendry, D. F. (1998), Forecasting Economic Time Series, Cambridge 

University Press. 

Cox, J. C., Ingersoll, J.E. and Ross, S. A., A Theory of the Term Structure of Interest rates, 

Econometrica, 53(2), 1985. 

Daniels, H. Kamp, B. and Verkooijen, W. (1999), Application of neural networks to house pricing 

and bond rating, Neural Computing and Applications, vol. 8, pp. 226–234. 

 



 27

Deboeck, G.J. (1998), Financial applications of self-organising maps, Neural Network World, vol. 

8, no. 2, pp. 213-241. 

Dickey, D., and Fuller, W. (1979), Distribution of the Estimators for Autoregressive Time Series 

with a Unit Root, Journal of the American Statistical Association, vol. 74, pp. 427-431. 

Dickey, D., and Fuller, W. (1981), Likelihood Ratio Tests for Autoregressive Time Series with a 

Unit Root, Econometrica, vol. 49, pp. 1057-1072. 

Diebold, F. X. and Mariano, R. S. (1995), Comparing Predictive Accuracy, Journal of Business and 

Economic Statistics, vol. 13, pp. 253-263. 

Din, A. (2003), Forecasting interest rates using neural network models, Geneva Research 

Collaboration, Technical Report, available at http://www.genevaresearch.org/media/GRC-interest-

rate.pdf 

Dunis, C.L. and Jalilov, J. (2002), Neural network regression and alternative forecasting techniques 

for predicting financial variables, Neural Network World, vol. 12, Part 2, pp. 113-140. 

Engle, R. and Granger, C. (1987), Co-integration and Error Correction Representation, Estimation 

and Testing, Econometrica, vol. 35, pp. 251-276. 

Fogel, D. B. (2000), Evolutionary Computation: Toward a New Philosophy of Machine 

Intelligence, 2nd ed., IEEE Press, New York. 

Goonatilake, S., Campbell, J.A. and Ahmad, N. (1995), Genetic-Fuzzy systems for financial 

decision making, Advances in Fuzzy Logic, Neural Networks and Genetic Algorithms, 

IEEE/Nagoya-University World Wisepersons Workshop, Furuhashi, T. Ed., Springer, Lecture 

Notes in Artificial Intelligence, USA, pp. 202-223. 

Goonatilake, S. and Khebbal, S. (1995), Intelligent hybrid systems, Chichester (England), J. Wiley, 

New York. 

Granger, C.W.J., and  Newbold, P. (1986), Forecasting Time Series, 2
nd

 ed., Academic Press, New 

York. 

Greene, W. (2003), Econometric Analysis, 5
th
 Edition, Prentice Hall. 

Hellendoorn, H. and Driankov, D. (1997), Fuzzy model identification : selected approaches, 

Hellendoorn and Driankov eds., Berlin; New York: Springer. 

Kohonen, T. (1984), Self-organisation and associative memory, Springer, Heidelberg. 



 28

Kosko, B. (1993), Fuzzy thinking, Hyperion, New York. 

Lee, C. C. (1990), Fuzzy logic in control systems: fuzzy logic controller, Part I & Part II, IEEE 

Trans. Syst. Man and Cyb., vol. 20, no. 2, pp. 404-418 & 419-435. 

Lippmann, R. P. (1987), An introduction to computing with neural nets, IEEE ASSP Mag., pp. 4-

22. 

Mamdani, E. H. (1974), Application of fuzzy algorithms for control of simple dynamic plant, Proc. 

Inst. El. Eng., vol. 121 nr. 12, pp. 1585-1588. 

Mc Culloch, W. S. and Pitts, W. (1943), A logical calculus of the ideas imminent in nervous 

activity, Bulletin of Mathematical Biophisics, vol. 5, pp. 115-133. 

Mohammadian, M. and Kingham, M. (1997), Hierarcical Fuzzy Logic for Financial Modelling and 

Prediction, 10th Australian Joint Conference on Artificial Intelligence, Perth, Australia, pp. 147-

156. 

McNelis, P.D. (2005), Neural Networks in Finance - gaining predictive Edge in the Market, 

Academic Press. 

Norgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K. (2000), Neural Networks for Modelling 

and Control of Dynamic Systems: A Practitioner's Handbook, Springer-Verlag UK 

Pham, D.T. and Castellani, M. (2002a), Action Aggregation and Defuzzification in Mamdani-type 

Fuzzy Systems, Proc. ImechE, part C, vol. 216, no. 7, pp. 747-759. 

Pham, D.T. and Castellani, M. (2002b), Outline of a New Evolutionary Algorithm for Fuzzy Systems 

Learning, Proc. ImechE, part C, vol. 216, no. 5, pp. 557-570. 

Pham, D. T. and Li, D. (2005), Fuzzy systems for modelling, control and diagnosis, Elsevier 

Science, Oxford. 

Refenes, A. N., Bentz, Y., Bunn, D.W., Burgess, A.N. and Zapranis, A.D. (1997), Financial time 

series modelling with discounted least squares backpropagation, Neurocomputing, vol. 14, pp.123-

138. 

Rich, E. and Knight, K. (1991), Artificial Intelligence 2
nd

 ed, MC Graw - Hill Inc. 

Rosenblatt, R. (1959), Principles of Neurodynamics, Spartan books, New York. 



 29

Rumelhart, D. E. and McClelland, J. L. (1986), Parallel distributed processing: exploration in the 

micro-structure of cognition, vol. 1-2, Cambridge, MIT Press. 

Trippi, R. and Turban, E. (1996), Neural Networks in Finance and Investing, Irwin Professional 

(UK), 2nd edition.  

Walczak, S. (2001), An Empirical Analysis of Data Requirements for Financial Forecasting with 

Neural Networks, Journal of Management Information Systems, vol. 17, no. 4, pp. 203-222. 

White, D. A. and Sofge, A. (1992), Handbook of intelligent control: neural, fuzzy and adaptive 

approaches, Van Nostrand Reinhold, New York. 

Zadeh, L. A. (1965), Fuzzy sets, Information and Contr., vol. 8, pp. 338-353. 

Zadeh, L. A. (1968), Fuzzy algorithms, Information and Contr., vol. 12, pp. 94-102. 

Zadeh, L. A. (1973), Outline of a new approach to the analysis of complex systems and decision 

processes, IEEE Trans. on Syst. Man and Cybern., vol 3, no. 1, pp. 28-44. 

 

APPENDICES 

A. ARTIFICIAL NEURAL NETWORKS 

The first studies related to computational models of the brain included the theoretical work carried 

out in the 40’s by (Mc Culloch and Pitts, 1943) and Rosenblatt’s perceptron (Rosenblatt, 1959), the 

latter being devised in the mid 50’s and inspired by the structure of the retina. Since then, many 

researchers have focused on modelling the structure and the processing mechanisms of human or 

animal nervous systems. The common name for all these computational models is ANNs. 

ANNs are composed of a certain number of elementary units called neurons, organised in layers. 

Each neuron receives inputs from other neurons or the external world via adjustable connections 

called weights, and maps these inputs to the output space via a transformation function. The 

transformation function can vary widely according to the ANN architecture but is usually common 

within a layer. The output (activation) is then distributed to other units or the external world through 

other connections.  

An ANN is generally divided into three parts. The first part is composed of an input layer of 

neurons. These nodes gather the incoming signals to the network and generally act as a buffer. The 

second part consists of one or more hidden layers. These neurons collect the signals coming from 
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the previous layers and process them via a generally non-linear transformation function. This is 

usually the stage where the input data are clustered and the partition of the input space is detemined. 

The ouput layer is the last part of an ANN. It collects the signals from the previous layers and 

processes them to give the final output. The network so far described is a feed-forward neural 

network, where the signal flows just in the forward direction. Further connections are sometimes 

added to feedback the signal to previous layers. This kind of architecture is called a recurrent 

neural network and is mainly used for prediction and control of dynamic processes. A wide survey 

of ANN architectures can be found in (Lippmann, 1987). 

Thanks to their learning capability, ANNs require no prior knowledge about the task to be 

performed. Typically, the network undergoes a training phase where the weights of the connections 

between neurons are adjusted. This procedure modifies the system response by modifying the way 

the incoming signals to the units are scaled. 

In an ANN, association rules are distributed among several neurons and data are processed in 

parallel layer by layer. Thanks to the non-linear mapping of the individual units, ANNs are capable 

of modelling any arbitrarily complex function. Moreover, their learning and generalisation 

capabilities remove the need for time-consuming system identification. However, because of its 

distributed nature, the expertise is not retrievable after the training has ended. ANNs act similarly to 

a blackbox of which only the input and the output can be observed. 

The accuracy result strongly depends from the setting of the ANN topology and from the quality of 

the learning process. Designing the optimal ANN structure is a ‘black art’, as the number of neurons 

and layers for a certain kind of ANN can vary considerably depending on the application. The 

chosen configuration is often the result of a time-consuming trial and error process, where several 

solutions need to be generated and trained before the optimal architecture is found. 

B. FUZZY LOGIC SYSTEMS 

FL (Zadeh, 1965) can be considered as a broadening of classical symbolic logic of which it keeps 

the deductive structure. 

The main idea is the extension of Aristotle’s binary logic with the concept of degree of truth. Binary 

logic constrains a statement to being either true or false, failing often to model the complexity and 

the uncertainty of a definition. FL partitions the space (universe of discourse) into overlapping sets 

called linguistic terms that are expressed through fuzzy sets (Zadeh, 1968; Zadeh 1973). A fuzzy set 

A in a universe of discourse U is defined by the following set of ordered pairs: 

A UA= ∈{( , ( ))| }u u uµ           (A.1) 
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where 0 ≤ µA (u) ≤ 1 is the membership function (MF) for A.  

A linguistic variable takes the values of the term set on which it is defined in a certain universe of 

discourse. The true or false dualism is now substituted by a MF that fills the space between the 

binary extremes {0,1} with the complete interval [0,1] (Zadeh, 1968; Zadeh 1973). The ordinary 

set-theoretic operations of classical binary logic can be extended to fuzzy sets (Lee, 1990). 

FL finds its natural application in the expression of qualitative knowledge that is naturally imprecise 

and vague. FL systems are usually composed of four blocks, namely the fuzzifier, the rule base 

(RB), the inference engine and the defuzzifier (Lee, 1990). The RB and the set of input and output 

MFs are often referred as the knowledge base (KB) of the system. The fuzzifier transforms crisp 

data into fuzzy sets and is the interface between the quantitative sensory inputs and the qualitative 

fuzzy knowledge.  

The core of the fuzzy system is constituted by the rule base and the inference engine. It closely 

resembles the structure of a standard Expert System (Rich and Knight, 1991) of which it can be 

considered an extension to the fuzzy domain. 

The rule base is composed of fuzzy if-then rules made by an antecedent-consequent pair. The 

conditions in the antecedent are joined by means of and/or logical connectives, while the 

consequent generally expresses one action per rule, since rules involving multiple outputs can 

always be decomposed into a set of single-output rules (Lee, 1990). The connective and is 

commonly expressed through a fuzzy set intersection operation in the Cartesian product space, 

while the connective or is usually associated with a fuzzy set union operation (Lee, 1990). 

A fuzzy rule is implemented by a relation between the universe of discourse of the antecedent and 

the universe of discourse of the consequent (Lee, 1990). 

Example A.1 (Fuzzy rule) 

‘if x is A and y is B then z is C’ 

where x, y, z are linguistic variables and A, B, C linguistic terms defined respectively in universes of 

discourse U, V, W. 

A rule base R composed of n control rules Rλ (λ = 1…, n) is usually expressed by the union of the n 

fuzzy relations: 

R R= ∪λ λ             (A.2) 
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When the antecedent of a fuzzy rule is matched with a fuzzified observation, the consequent is 

activated to a level equal to the truth degree of the antecedent. The rules of inference are usually 

implemented by extending the classical modus ponens rule to fuzzy sets (generalised modus 

ponens) (Zadeh, 1973; Lee, 1990). 

FL keeps the rigorous inferencing structure of classical logic and extends it to deal with imprecise 

data. When all the variables are defined using binary values, FL coincides with predicate logic. 

Each rule maps hyperplanes of the input space onto corresponding regions of the output space. The 

input-output relationship is therefore expressed through ‘patches’ in the cartesian product of the 

input and output space (Kosko, 1993). The extension of these patches depends on the fuzziness of 

the relationship. 

Because of the overlapping boundaries of fuzzy terms, the input data can match the antecedent of 

more than one fuzzy rule. The system response is therefore the result of the interaction of different 

individual rule mappings. 

The inference engine processes the rules and produces an overall response in the form of a fuzzy 

set. The defuzzifier must then convert that fuzzy output into a crisp number. Many defuzzification 

methods are possible, the most commonly used ones are the Centre Of Gravity method and the 

Mean of Maxima method (Lee, 1990). 

The structure of fuzzy system described so far is the most popular and is often dubbed the Mamdani 

model (Mamdani, 1974). Fuzzy mappings can be used as a qualitative model of the system, thus 

avoiding the time-consuming and complex stage of analytically modelling unknown dynamics. The 

fuzzy partition of the input space can fully express the uncertain nature of the expertise, eliminating 

the need for often complex and arbitrary constraints on the variables. It also makes the system more 

robust to noise and data corruption since the matching procedure is not bounded by perfect 

correspondence. Moreover, the graded and overlapping division of the input and output space 

smoothes the response of the system. 

FL modelling is akin to non-parametric basis function regression, where each rule can be thought of 

as a basis function. If a set of qualitative ‘rules of thumb’are available, the human-like nature of 

fuzzy logic makes it easier for experts to express such knowledge about the system behaviour. 

Alternatively, when expertise is not available, fuzzy rules can be obtained from experimental 

observations via machine learning techniques. Different strategies can be used and combined to 

create or modify fuzzy mappings, that is, new rules can be added or deleted, the input and the output 

space partitions (i.e. the membership functions) can be modified, or both the operations can be 

performed simultaneously. 
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A wide survey and an analysis on fuzzy identification systems is presented in (Hellendoorn and 

Driankov, 1997). 

C. ARIMA MODEL 

One of the most popular univariate time series model is the general ARIMA(p,d,q) model, where p 

is the number of autoregressive terms, d is the number of differences (order of integration), and q is 

the number of lagged disturbance terms. Its representation form is 

θ(L)(1-L)
d 
yt = c + φ(L)εt        (C.1) 

where yt is the time series, εt is the random error, c is a constant term and L is the backshift operator: 

Lyt = yt-1. 

θ(L) is the autoregressive operator that is represented as a polynomial in the back shift operator, that 

is, 

θ(L) = 1- θ1L - θ2L
2 
- … - θpL

p
        (C.2) 

finally, φ(L) is the moving-average operator, represented as a polynomial in the back shift operator, 

that is, 

φ (L) = 1- φ1L - φ2L
2 
- … - φpL

p        
(C.3) 

where t indexes time. 

D. ERROR CORRECTION MODEL 

The error correction model (ECM) (Engle and Granger, 1987) is the econometric method chosen to 

provide an alternative forecast for the time series of the bonds yields. This method differs from the 

standard regression model as it includes an error correction term to account for the cointegration 

issue. The ECM is generally considered by the specialised literature to possess a high predictive 

accuracy and appropriate to capture both the long and short-term dynamics of a time series.  

Despite the variables are integrated of order 1, our choice to estimate the  variables in levels within 

the ECM framework follows the method suggested by Engle and Granger (1987) that preserves the 

long-run relationship between the variables and takes into account the short-run dynamics implied 

by the deviations of the variables from their long-term trend. 

The following equation is estimated 
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ˆ...     (D.4) 

where yt is the dependent variable, xit,…, xit are the independent variables, yt-1-ŷt-1 is the modelling 

error of the previous period, β0 is a constant term, β1,…, β4 are the coefficients of the independent 

variables, t represents the time step, λ is the speed at which y adjusts to the error in the previous 

period, and εt is the random residual. 

An alternative statistical model would have been a VAR (vector autoregressive). In a context where 

some variables are weakly exogenous, a VAR model has the virtue of obviating a decision as to 

what variables are exogenous and what variables are not. In our case, some causal effects from the 

left-hand-side variable to the right-hand-side variables can not be ruled out. However, the 

forecasting performance of an ad-hoc VAR model estimated using all the five variables over the 

same period compares poorly with the forecasting performance of the other models.  

 


