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Introduction.  The theory of generalized dynamic systems (GDS) 

 

The evolution of dynamic a system with time suffers frequently structural 

changes in the sense that the laws that ruled the system during a certain time 

interval change to new laws that will rule the system for another time 

interval. 

This change in the laws of the evolution can be considered either depending 

or not depending of the time  

 When the change depends on time the classical theory of the dynamic 

systems considers a non-autonomous system either continuous or discrete    

dx/dt =  f(t, x(t))     t real 

xt+1 = f (t, xt)       t = 0, 1, ... 

As it is well known non-autonomous systems may be reduced to 

autonomous ones that is, systems that do not depend explicitly on the 

variable t. 

However, when the change in the laws of the system is caused by other 

factors that not simply the flow of time, the classical theory of dynamic 

systems has no answers. 

In  case of structural change we may consider three types of situation. 
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a) The evolution of the system after the structural change forgets the 

previous dynamics 

b) The evolution of the system is directly but partially conditioned by the 

previous dynamics 

c) The present dynamics is totally conditioned by the previous dynamics.  

An example of the first situation happens when we have till moment T a 

path x*(t) that is the solution  of a system dx/dt = f(x) and from T on another 

path x**(t) that is the solution of another system  dx/dt = g(x), with no 

relation between functions g e f. The dynamics beginning at T forgets the 

previous dynamics and it is only the initial value of the new dynamics 

x**(T) that reflects a vague echo of that previous dynamics. 

Let us now jump over situation b) and consider situation c). In this case the 

new dynamics from T on can be expressed as x**(t) = F (x*(t)) where x* (t) 

is the path, for t > T of the previous solution of the system. That is the path 

that the system now takes depends directly and exclusively on the previous 

path x*(t) and on the values that this path would take (it is a virtual path) if it 

was extended  beyond  T. 

Situation b) may be considered as the antecedent situation but where we 

have x**(t) = F(t, x*(t)) so co-existing a determination from the previous 

dynamics (represented by x*(t)) and the present dynamics (represented by t). 

The theory of generalized dynamics systems is the theory of the situations b) 

and c) Situation a) mat be dealt with the classical theory since is just a 

sequence of classical systems  
 

 

1. Formalization of the GDS 

 



To formalize adequately the evolution with time of systems such that their laws change 

we can use the following concepts. 

Let [0 T] be a finite interval of time2 including m+1 moments  

tk k= 1,…m+1  

such that  t1 = 0 e tm+1= T.  

Let us consider the sequence of m intervals Ak= [tk tk+1), k = 1,...m where Am 

is also closed from the right  

Let C be the set of functions x(t) defined and continuous on the interval  

I = [0 T ]3. 

Let F* be the set of continuous maps of  C into itself. 

That is, f ∈ F*  f: C→C. 

However not all the maps of F*can be considered. It is necessary to restrict 

somewhat the field of study. To see this consider a time interval I and x(t) 

and y(t) defined on I, with y = f(x).  

The existence of  f  does not imply that it exists a function g  such for each t, 

y(t) = g(x(t)). However the reciprocal is true. 

We call atomizable the functions of  F* such that 

y(t) = f(x(t)). 

Formally 

Let f : C → C and let W ⊂ C.  

 f is atomizable on W if and only if for each  x∈W and for each t* we have 

f (x)(t*) = f(zx(t*))(t*) for all the zx(t*), where zx(t*) is any function of  W such 

that   

                                                 
2 In this section we consider finite intervals. Later on we will work with infinite intervals. 
3 Since the time intervals are finite we can work with all the continuous functions. For infinite intervals we 
have to restrict the analysis to bounded functions. 



zx(t*)(t*) = x(t*). 

It is straightforward to see that the sum and the product of atomizable 

functions are atomizable 

We have the following theorem. 

TEOREM 1. Let {fn} be a sequence of atomizable functions on W 

converging uniformly on the set W*, W ⊂ W*, to the function f (that is , 

∀ε > 0, ∃ N such that for each x∈W* we have for all the  n > N  || fn(x) – 

f(x)|| < ε and the value of N is not dependent on x; the norm involved is the 

supremum norm). Then f is atomizable on W. 

Proof. 

For each  x and each z of W we have 

supt|f(x)(t) – f (zx(t))(t)| ≤ (supt | f(x)(t) – fn(x)(t)|)+ (supt|fn(x)(t) – f(zx(t))(t)|) 

But as all the fn are  atomizable  we have 

| fn(x)(t) – f (zx(t))(t)| = | fn(zx(t))(t) – f(zx(t))(t)|  

Then if n tends to infinity and having in mind the uniform convergence of 

the sequence {fn} on  W, we have necessarily f(x)(t) = f(zx(t))(t) for any  t 

and  for all the  zx(t), as we had to prove. ***  

From now on we consider only  the set  F of atomizable functions which is a 

subset of F*. 

The concept of GDS is now formalized in the following way: 

For each k=1, … m e and each Ak we have 

1) xk(t) = fk [xk-1(t)]  

where fk∈F, xk∈C  and xk(t) and xk-1(t) are the values of the functions xk e 

xk-1 respectively for each moment of the interval Ak. 



Note that as was previously mentioned, we focus our attention on non-

autonomous systems. However to simplify the notations we will not 

consider explicitly (unless there is the danger of confusion) the variable t in 

fk [xk-1 (t)]. 

A particular case of GDS is one where  fk = fk-1 that is one for which the 

function f  is always the same. 

It may seem at first view hard to correlate the concept of GDS with the 

concepts usually applied  both in natural and social sciences. We are used to 

consider that what happens in period t (in discrete time) results exclusively 

(apart from some stochastic factor)  from the situation that existed in  period  

t-1.But now what we present is a formulation where xkt é determined by  

x(k-1)t and not by xk(t-1). What is the sense of this? The following 

interpretation may perhaps make easier the interpretation of what is really 

the matter. 

 

2 Emerging situations, strong determinism and kinds of causality  
To make interpretation easier we start by defining an emerging situation in a continuous 

system. 

Let K be a complex at moment t composed by a set St of p elements and a set Rt of the 

relevant relations established at that  moment between the p elements of   St. 

We  assume  the existence of a complex that  origins a dynamic system, that is  a time 

evolution of a variable x(t) that in a certain way characterizes the time evolution of the 

elements of the set St. 

Let Ak = [tk, tk+1 ) be a time interval. 

We say that the complex  K presents a homogeneous situation during Ak if Rt = R  

∀ t ∈ Ak, that is if the relevant relations between the elements of S do not change with 

time in that interval  Ak. 



The emerging situation of the complex K  in moment tk for the interval Ak is the pair  

Etk = (Stk, Rtk) when complex K presents a homogeneous situation during Ak. That is 

 Etk = (Stk, Rtk) = (Stk , R). 

We these definitions we can proceed to the strong determinism hypothesis 

 

2.1 Strong determinism  

Let Ak be a time interval and let  xk (t) be the variable that characterizes the 

state of the system for each moment t of Ak. Assume also that the complex 

which originates the system presents a homogeneous situation during Ak. 

The following is the first version of the hypothesis of strong determinism. 

Strong determinism (first version). For each emerging Etk at moment  tk 

corresponds one and only one path xk for each moment t of interval Ak and 

reciprocally.. 

The acceptability of this hypothesis depends on the way that the emerging 

situation is defined and on the way the path is characterized for each time 

interval .On the other hand the correspondence of the definition can be split 

in two correspondences. 

Let us start by the correspondence that goes from the path to the emerging 

situation. If we consider a sufficient number of characteristics of the 

evolution during Ak, then we can assume that to each path in time interval 

Ak corresponds one and only one initial emerging situation.  Indeed , 

suppose that we characterize that path in the interval Ak using a certain set of 

characteristics. If we verify that using those characteristics for characterizing 

the evolution in Ak, two different emerging situations could have generated 

the path evolution in Ak then we can add more characteristics in order to 

differentiate the paths of those two emerging situations.. 



If this reasoning is valid we have an important methodological consequence 

which is the following : the fact that we find possible that a certain path in a 

time interval could have been originated in two different initial situations is 

only a mere consequence of the fact that the characterization of the evolution 

is incomplete because of an excessive abstraction... 

Let us now consider the inverse correspondence. If we admit the Leibnizian 

principle of sufficient reason (1983, pag 211) that nothing happens without a 

sufficient reason why it happens then to each emerging situation corresponds 

one and only one path.  

From the two correspondences follows the hypothesis of strong determinism 

and therefore a one to one function xk = G(Etk). 

Pushing the argument further we can make stronger the hypothesis and 

enunciate  the second version of the hypothesis 

Strong determinism (second version). To each emerging situation Etk 

corresponds a path xk and reciprocally and for two different emerging 

situations that originate respectively two paths  xk e x*k,we have  

xk(t) ≠ x*k(t) for all the t of Ak. 

It is clear that this stronger hypothesis has less applicability then the weaker 

one. However it may be useful for studying some particular systems.  

 

2.2 Causality of the second kind 

A second hypothesis apart from strong determinism is that in the space of 

emerging situations there exist functions hk of the space into itself such that  

Etk = hk(Etk-1),  

That is there is a deterministic evolution of emerging situations. This means 

that there are two kinds of causality. One, the causality of the first kind  

determines the path followed by the system from a given emerging situation, 



The other, causality of the second kind determines an emerging situation 

from previous emerging situations. 

With these two hypothesis (strong determinism-first version and causality of 

the second kind) we can write 

Etk-1 = G-1 (xk-1)  

On  time  interval Ak,  the path followed by the system will be 

xk = G.hk.G-1(xk-1) = fk(xk-1)4  

which is the formulation of the GDS that we introduced above. 

It is easy to see that if the hypothesis of strong determinism (second version) 

applies function fk is atomizable.  

Indeed let xk-1(t) for any  t in the time interval. Then by strong determinism 

(second version) there is only one possible path xk-1 that has the value 

xk-1(t) at moment t. Therefore there exists only one Etk-1 corresponding to the  

value xk-1(t) and so by the second kind causality and again by strong 

determinism there is only one xk that corresponds to xk-1(t) and therefore 

only one xk(t). 

However some additional comments are needed. 

 

2.3 Strong determinism and causality of the  second kind  

The vision of reality that is implicit in these two assumptions is that the 

behavior of a system with time is nothing more that the generation of 

emerging situations coupled with the evolution of these  of situations 

We define the development of the path of a system  the progressive 

actualization of the path x(t) starting from the emerging situation Etk 

                                                 
4 C Of course  xk-1 (t) at each t of Ak is a virtual path  that is, is the path that the system would follow if it 
were not interrupted by the emerging of a new situation Etk 



We call evolution of the system the process that leads to a new emergent 

situation Et-1k from the previous emerging situation Etk. 

For the systems for which there is no intervention of conscious  human 

action it is usually difficult to find functions hk that describe the evolution of 

emergent situations. When we deal with human process for instance when 

the evolution of the system is the change of a computer program for another 

one it is easier to know the functions hk  

However even in the special case of conscious intervention it is in general 

difficult to characterize completely an emergent situation. That is why our 

formulation go the GDS which is implicitly based on the evolution of 

emergent situations is useful since it eliminates the need to consider 

explicitly emergent situations, albeit at a price which is that we have to 

admit the two assumptions of strong determinism and second kind causality. 

A final aspect needs to be clarified 

When we write xk(t) = fk [xk-1(t)] for t∈Ak , this may cause some difficulty in 

accepting  the interpretation described above since we are considering  a 

virtual and not actual path xk-1(t). However a simple example may help to 

see that virtual paths do not introduce undue complications.  

Consider a system that follows the path xk-1(t) till moment tk and such that 

we know that after that moment and caused by a new emergent situation Etk 

the rate of growth of x will be  one half  of the rate of growth that would be 

the case if there was no evolution of the system, that is if  there was no 

change from Etk-1 to Etk . In this case we can obtain for all the moments of Ak 

the new path  xk(t) using as reference a virtual path  xk-1(t) that will never be 

actualized.     

  

 



After this clarification is now time to proceed to the analysis of the GDS 

 

3. The case fk= fk-1 

In this case – the simpler one - the map f is the same for any moment of time 

We can write 

2) xk (t) = f [xk-1 (t)]     t∈Ak  x0 ∈C  for a given x0  

We start by defining solution of 2) 

DEFINIÇÃO Solution of system 2) is a finite sequence  S = {x*k} of 

functions  x*k∈C such that  for all the t∈Ak 

x*k (t) = f [x*k-1 (t)]   given the values of x*0(t) for all the  t of Ak. 

As it easily seen the solutions of a system are infinite in number. That is why 

we need to define a more operational concept, that we call the elementary 

case and that is the only case that is analyzed in this paper and that 

corresponds to the strong determinism. 

 

DEFINITION The elementary case of system 2) is the solution S such that 

x*k(t) = f[x*k-1(t)] for all the  t of the interval [0 T] 

Example 

Given the system  

xk (t)= e λt xk-1(t)β        x0 (t) = eθt   

we have the elementary case solution 

eθt ,               e(λ+θβ)t   , ... ,  exp [λ(1-βk)/(1-β) + θβk] , ... for each t of the interval 

[0 T].  

The path that the solution follows is composed by the values of the functions 

respectively  for 

t ∈ A1       t ∈ A2 , ... ,        t ∈Ak ,... 



We can now proceed and define the stationarity of a solutions 

DEFINITION. A solution S=x*k is stationary if and only if  x*k = x* for 

all the  k  

In the previous example x (t) = exp [λt/(1-β)] are the values of a stationary 

solution provided that  λ/(1-β) = θ 

Another important definition applies to some stationary solutions 

DEFINITION. Stability of a stationary solution. Let S =x* be a stationary  

solution of a system 2). Then  S is stable if and only if   

∀ε> 0, ∃ δ(ε)> 0  such that for any other solution S’= y*k starting at y*  

with   || y*- x*||<δ we have  || y*k - x*||< ε for all the  k. 

The norm is the supremum norm defined for all the space of functions C that 

is || x*|| = sup|x*(t)| t ∈[0 T]. 

This definition introduces  a strong concept of stability  since it demands 

the proximity of y*k e x* based on the norm calculated for all the values of t. 

We can also define  a weak stability. 

Let  ||x*||Ak  be the restriction of the norm to the values of the supremum of 

the values |x*(t)| in the interval Ak. 

DEFINITION. Weak stability of a stationary solution. In the same 

conditions of the previous definition S is stable  if and only if  

∀ε> 0 ∃δ (ε) > 0 such that with com ||y* - x*||A1 < δ we have  

||y*k – x*||Ak < ε. 

In what follows however the concept used is the strong one. 

. 

To be useful this concept needs some more elaboration. We have the 

following theorem 



THEOREM 2. Consider system 2) above and let  f  be  Fréchet differentiable 

being Df the derivative. Let S= x* be a stable solution of 2) and let y*k , 

y*1 = y* be another solution.. Let,  W be the set of the union of all the lines 

Rk = z: z = x*+p(y*k - x*) 0≤p≤1, k=0,…m    . 

Then if  ||Df(z)|| ≤ 1 for all the z  of  W, the solution is stable. 

Before proving the theorem some remarks are in order: 

a) The functional space C of functions  x(t) is a Banach space when we use 

the supremum norm ||x||  = sup|x(t)| t∈[0 T] 

b)The  Fréchet derivative is defined for all the maps of a Banach space into 

another Banach space so that we can use the Fréchet derivative for a map f 

of C into itself. f is Fréchet differentiable at x’ if it exists the linear map 

Df(x) : C → C such that  

limx→x’ ||f(x) - f(x’) - Df(x-x’)|| / || x-x’|| = 0 

Df(x’) is the  Fréchet derivative of de f at x’5. 

we can now prove the theorem 

Proof.  

It is based on the theorem 6 that shows that if x e y ∈ C  and if ||Df(z)|| ≤ M 

for all the  z∈W we have || f(y) - f(x) || ≤ M|| y - x || . Then we may conclude 

that given the stationary solution S = x*(t) , and the solution S’ =y*k(t), 

and putting  M=1, we have for all the  k,  

|| f(y*k ) - x*|| ≤ || y*k - x*|| , 

since f(x*)=x* . 

Proceeding successively  for all k decreasingly till k=1 we have 

|| y*k - x* || ≤ || y*-x*|| for all the k. 
                                                 
5 We consider only atomizable functions that have Fréchet derivatives atomizable. 



then for any ε> 0, it is only necessary to choose δ < ε to obtain the condition 

for stability*** 

 

Example 1 

Consider the system 

xk(t)=(1-1/ax1(0)) e-mt xk-1 (t) + 1/a  

on a given interval [0 T ], the union of intervals Ak. 

It is easy to see that  x*(t) = 1/[a-(a-1/x1(0))e-mt] is a stationary solution (it is 

the logistic curve) if the initial condition is 

x1 (t) = 1/[a-(a-1/x1(0))e-mt]. 

Let us confirm that it is a stable solution when ax1(0) > 1. 

It is easy to see that for every z(t),  

Df (z) = Df =(1-1/ax1(0))e-mt (.), since f is the sum of a linear operator with a 

constant  (that is with a null derivative). So that  Df does not vary with z. 

Being Df a continuous and linear operator we have, by definition of a norm 

of such an operator  

||Df|| = sup ||Df(z)|| for all the  z such that ||z|| = 1. As we have for every  z 

||Df(z)|| = ||(1-1/ax1(0))e-mt(z)|| ≤ ||(1-1/ax1(0))e-mt||.|| z ||  

we get || Df || ≤ || (1-1/ax1(0)e-mt|| since the norm is calculated for all the z 

such that 

 ||z|| = 1. As ||e-mt|| = 1 (the supremum norm in [0 T]), we get 

||Df|| ≤ |1- 1/ax1(0)| and it is sufficient that ax1(0) > 1 to have the condition of 

stability verified 

if ax1(0) > 1 then ||Df|| < 1. 

Example 2 

                                                                                                                                                 
6 Jost (1998) pag 103. 



Consider now the more general case f ≡ L(.) + a  

L is a limited linear transformation and a(t) is given, so that it is a constant in 

the space of the functions of t. 

If ||L|| < 1, then (I - L)-1 exists and the stationary solution is given by 

x* (t) = (I - L)-1 a(t).  

Since L is  linear, the Fréchet derivative is DL = L. As the  norm of L is less 

than one, the stationary solution is stable. 

It is also easy to see that in this case we have 

xk+1 = Lk x1 + (I - Lk) (I - L)-1 a 

and 

xk+1 - x* = Lk (x1 - x*),  

so that  

|| xk+1 - x*|| ≤ || Lk|| .||x1 - x*|| ≤ ||L||k.|| x1 - x*||. 

In the Appendix is described another example, an application to economic 

growth theory. 

 

  

 

4. A different representation of the GDS for the discrete case. A 

measure of variability 

The systems analyzed so far are written in the form 

xk (t) = f[xk-1 (t)]  with x1 given by x1(t) = f[x0(t)] t ∈ A1 

Then for ever  k = 1,...we have the paths  

x2(t)=f[x1(t)]  t∈ A2 

x3 (t)= f[x2(t)]= f2[x1(t)]   t∈A3 

 



xk(t) = fk-1 [x1(t)] t∈Ak 

Let us consider the discrete case where the t are integers in the intervals Ak. 

If x1 (t) is also the solution of a simple discrete dynamic system that is if 

x1(t)= gt(x1(0)), we can write 

xk(t)= fk-1[gt(x1(0))]  where t∈[tk tk+1) and k goes from  1 to m. 

This means that each actual value of the variable x(t) is defined by the 

ordered pair (k t).  

Let  P ⊂ N2 be the set of all the ordered pairs (k  t), k from 1 to m, t from  

t1 = 0 to tm =T-1 that correspond to values of xk(t) . We can define a square 

matrix A, of T rows /columns, such that its elements are : 

aij = 0 se (i j)∉P 

aij = 1  se (i j)∈P 

Obviously matrix A is a stochastic matrix in terms of columns since each 

column has only one non-null element and that element is equal to one. We 

call A the characteristic matrix of the solution of the system. 

When  xk= xk-1, that is, when we have a path corresponding to a  stationary 

path of the system xk = f [xk-1(t)] but not necessarily of the system  

x1(t)=gt[x1(0)], the characteristic matrix has the first line all of unitary 

elements and all the other elements are null.. 

For this case the variability of the solution of the system is minimum and 

reduces just to the variation associated with the simple dynamic system   

x1(t)=gt[x1(0)]. 

On the other hand if as time flows the solution is such that xk changes from a 

period t to the next period then the variability is at its maximum and the 

matrix A is the identity matrix. 



Based on these examples we can define a measure of the variability of the 

solution of a the system.  

Let  

bi ≡ ∑T
j=1 aij  

and define vector c de with components 

ci = bi/T . 

Obviously,  ∑i ci =1  

We define the degree of variability of the solution S of the system, G(S) as 

G(S)= - ∑ ci log ci 

As we can easily see G is formally equivalent to the entropy of a system T of 

states i such that the probability of occurrence of each state i is ci. 

As it is well known from information theory the entropy has its maximum 

value G=log T when all the  ci are identical and has its minimum value G=0, 

that is when one of the ci is 1 and all the others 0, which corresponds 

respectively to the cases of maximum and minimum variability of the system 

as we have seen above 

We can now leave the case  f k= fk-1 and proceed to the more complex case  

 

5. The case fk  ≠ fk-1 

We have studied so far the case where all the changes in the structure of the 

system occur as time flows but always in an identical manner However we 

can study now a more general case where we have  

fk = g (fk-1) 

where g is a map into itself  of the space F of the maps of C into itself.  

However In order to make progress in the analysis we have to restrict the 

space F, and that is why we consider only the space of linear maps. 



It is well known 7 that the space L ⊂ F of the linear mappings of C into 

itself  is a Banach space equipped with the norm 

||L|| = sup ||L(x)||: ||x|| =1 where x∈C and the norm  L(x) and x is the norm 

of the supremum that we used for the x∈C. 

Choosing this norm, L is a  Banach space and we can use all the theorems 

that apply to Banach spaces. 

It is easy to define the concept of a solution fk = g(fk-1). It is the series f*k,  

k =1,…m of maps f*k such that f*k = g(f*k-1)and f*0 = f*. 

Let us start by defining the stationary point of type I 

DEFINITION Stationary point of type I 8is the map  f* such that 

f*=g (f*)  

All the analysis we made in the above sections has to do precisely with a 

map f that may be considered as a stationary point  of the system  

3) fk = g(fk-1) 

In the same way we can define the stability of a stationary point  

DEFINITION  f* ∈ L be a stationary point of fk =g(fk-1) , f* is stable if and 

only if  ∀ε>0 ∃δ(ε)> 0 such that for any other sequence f**k of solutions 

of 3) beginning at f** and with ||f**-f*||<δ we have  ||f**k-f* ||<ε k=1,…m 

(the involved norms are of course those of the space L) 

It is easy to prove as was done for the previous case, that if g is Fréchet 

differentiable and if  ||Dg(f)|| ≤ 1 for all the f∈L then  the solution  fk=f* is 

stable. 

We can now give an example that is a generalization of the logistic curve  

                                                 
7 Céa (1971). 
8 We designate by Stationarity II   the possible stationarity of the functions x(t). 



Example1 

Consider  the system  

xk(t) = bk(1-1/ax1(0))e-mtxk-1(t)+ck/a 

with  bk and ck real numbers such that   

bk=αbk-1 + β 

ck=αck-1+s 

We have then 

xk(t)=αbk-1(1-1/ax1(0))e-mtxk-1(t) +  αck-1/a + β(1-1/ax1(0))e-mtxk-1(t)+s/a 

that is 

xk(t)=αfk-1 [xk-1(t)] +ϕ[xk-1(t)] 

 where  

ϕ ≡ β(1-1/ax1(0))e-mt (.)+s/a  

does not depend of any f belonging to L, so that it may be considered a 

constant in this space 

We  have obviously  

fk =α f k-1 + ϕ  

||Dg(f)|| = |α| 

so that the system will be stable  I if |α| ≤1 

The stationary solution is  

f*=ϕ /(1-α)= β(1-1/ax1(0))e-mt (.)/(1- α) + s/a(1-α) 

and we have 

b*=β/(1-α) e c*=s/(1-α) 

so that 

f*=b*(1-1/ax1(0))e-mt(.) + c*/a 

We can now proceed to stationarity II that is stationarity relative to the 

functions x(t). 



Applying f to the function x(t)∈C we have 

xk(t)=b*(1-1/ax1(0))e-mtxk-1(t)+c*/a 

The stationary solution is 

x*(t)= c*/a[1-b*(1-1/ax1(0))e-mt] 

which is stable if |b*(1-1/ax1(0))|≤1 

The logistic case with the scale parameter  c*, is found when b* =1, that is 

when α+β =1. 

Therefore the logistic curve can be interpreted as a solution that is double 

stationary of a generalized system when b*=1. It is a stable solution when 

ax1(0) > 1 and |α| ≤ 1. 

Example 2 

Consider now a more general case (we continue to assume as in the previous 

example that the moments k when changes of behavior of xk are the same of 

the changes in fk). 

       xk = Lk xk-1 + a 

a)    Lk = MLk-1 + B 

Where the Lk and B are bounded linear maps on the space of the functions of 

t and M is a bounded linear map in the (Banach) space  L of the linear 

transformations on the space of the functions of t  

Assuming ||M|| ≤ c < 1  

we may write  (as in the case fk = fk-1) 

Lk = Mk-1 [L1 - (I -M)-1B] + (I - M)-1B 

So that  

xk ={ Mk-1[L1 - (I - M)-1B] + (I-M)-1B} xk-1 + a  ≡ Nkxk-1 + a 

A double stationary solution exists whenever  

||B|| < 1-c. 



Indeed, if  M is a bounded linear transformation such that ||M|| ≤ c <1 we 

have || (I - M)-1|| ≤ 1/(1-c) ( Saaty, 1981 page34). 

So that as the stationary solution of  a) is L* = (I -M)-1B, we have 

||L*|| ≤ ||(I -M)-1||.||B|| ≤ ||B|| /(1-c) and since  L* ≡ N, ||N|| will be lower than 

1 if  ||B|| < 1-c.  

Note that this condition implies obviously  

||M|| + ||B|| < 1. 

Note also that in this case of coincidence of moments k of changes in xk and 

fk, to obtain the double stationarity it is sufficient to impose conditions to the 

mappings M e B relative to fk, being unnecessary to impose them at the level 

of  xk. 

 

6. Cycles 

The formulation of the GDS offers the possibility of defining  a new concept 

of cycle that goes beyond the traditional definition. 

According to the theory of the simple dynamic systems given a solution 

x*(t)  there exists a  s-cycle if x*(t+s) = x*(t) for  some s and  for all the t. 

For a GDS and for the case xk (t) = f[xk-1 (t)] where the solution is x*(t), 

there exists a  s-cycle, with s integer  if 

x*k+s(t) = x*k (t) for every k and for all the t ∈ Ak+s. 

The recurrence therefore is not the recurrence of values that the solution 

takes at different moments t but it is a recurrence of behaviors. History does 

have similitude of eras but does not repeat itself. . 

Consider the following example for a linear GDS 

xk = Lk xk-1 + a 

where all the operators Lk have an inverse. 



Suppose that Lk = (Lk-1)-1 e La = -a. We have the 2-cycle: 

xk = L2x1 + a 

xk+1 = x1                     for every even k.  
  
 

 

 7. Structural changes 

So far we have studied GDS supposing that at some moments tk some 

structural change happen. However we have not studied  how these changes 

happen.  

The task of this section is too study this question. However and contrary to 

the previous analysis we consider now an infinite interval that is the interval 

[0 +∞), which means that the sequences of intervals Ak may be infinite  

There are two possibilities of emergence of structural changes: stochastic 

and deterministic. Let us begin by the stochastic ones. 

 

7.1 Stochastic structural changes 

We limit ourselves to the case where x(t) is discrete and as always to what 

we previously called the elementary case.  

Let p be the probability of the occurrence of a structural change at each 

moment t (integer). We assume that this probability remains constant all the 

time, which means that it does not change in consequence of the possible 

existence of previous changes.  

Let x*(t) be the solution of the system. Then the probability of x*(t) being 

equal to xk for t∈Ak = [tk tk+1) that is of having happened k-1 changes before 

tk, is given by  

Qk-1tk = (tk-1
k-1) pk-1(1-p)tk-k 



And the expected value of x*(t) for each  t integer is given by 
                     tk 

E[x*(t)] = Σ  Qk-1tk fk-1 [x1(t)] 
                  k=1 

            
This is of course a simple but perhaps useful model for the study of 

stochastic changes. However interesting as it is the stochastic case is not the 

more adequate one to explain structural changes, namely in what concerns 

both natural and social sciences. So let us now look at the deterministic case. 

 

7.2 Deterministic structural changes .Structural jumps. Hypercomplex 

dynamic systems 9 

Consider a GDS corresponding to the elementary case. The solution is given 

by . x*(t) = fk [x0(t)] where t takes values on  the interval [0 + ∞) and x1 (t) is 

continuous and bounded and f a map f :  Cl →Cl in the space  Cl of the 

bounded and continuous functions of t.  

DEFINITION A  structural jump at moment  t with a time-lag   h > 0 

exists if and only if  

 x* (t+j) = fk [x0 (t+j)] for  0 ≤ j < h 

x* (t+h) = fk+1 [x0 (t+h)] 

There is a structural jump with time lag  h = 0 when there is a ε > 0 and a 

δ ≥0  such that 

x* (t-ε) = fk [x0 (t-ε)] e  x*(t+δ) = fk+1[x0(t+δ)] 

REMARK. We assume that if there is a structural jump at t with time  

lag  h > 0 no more structural jumps will exist before t+h  

 

                                                 
9 The term hypercomplex system was used by Professor Almeida Costa sixty years ago when studying 
algebraic matters that have nothing in common with the present study. To avoid confusion we call the 
models hypercomplex dynamic systems.  



In this section we study a simple case of structural jump that may be used to 

explain several evolutions in social and natural sciences 

Suppose that there is a function y(t) such that whenever x*(t) reaches the 

value  y(t) a structural jump of time lag   h ≥ 0 happens. 

We can think for instance of a society where the intensity of conflicts 

reaches such a point that the social agents change their behaviors. Or of an 

individual subject to such a psychological tension that he changes his regular 

behavior and so one. 

 

DEFINITION A system is structurally stable if and only if 

∃ T real and R integer and positive such that 

x* (t) = fR[x0 (t)] for all the t > T 

That is after a certain moment T there are no more structural jumps10. 

Consider the following example : 

The GDS is given by  

xk (t) = e -.08txk-1(t) + e0.05t       x0(t) = e.08t 

and suppose that there is a structural jump of lag 0 whenever x*(t) = y(t) 

with  

y(t) = -0.0253t2 + 0.6525t - 1.108 

We obtain the evolution x*(t) = x0(t) = e0.08t                         for 4.9 > t  ≥ 0 

x*(t) = 1+e0.05t                                for  8 > t ≥ 4.9 

x*(t) = e-008t + e-0.03t + e0.05t                      for  14.5 > t ≥ 8 

x* (t) = e-0.16t + e-0.11t + e-0.03t + e0.05t   for all the t such that   t ≥ 14.5 

                                                 
10 This concept is used by Prigogine et al (1984 pag 189) with a meaning that is quite similar to our own., 
since it means for those authors that a system is able to maintain unchanged as time goes by its laws of  
functioning 



The system is structurally stable since there is a value of t  (t =14.5) such 

that for posterior moments there are no more structural jumps. 

For this case, that is the case where there is a structural jump whenever x*(t) 

= y(t) we have the following theorem 

 

 THEOREM 3. If the sequence of maps fm(x) converges uniformly to a 

certain map a(x) when m increases and for all the  x∈W ⊂ Cl, where a(x) is 

such that   

inf t |a[x(t)] - y(t)| > 0, for  t >T* 

then the system is structurally stable when the initial path x0 belongs to   W. 

Proof.. 

Due to the uniform convergence of the sequence fm we have for each 

function  x(t), with x∈ W           

∀ε>0 ∃ n∈N such that  ∀m ≥ n  we have  ||fm(x) – a(x)|| < ε 

That is we have for m ≥ n 

supt| fm(x)-a(x)| < ε 

Then for all the t 

|fm[x(t)]-a[x(t)]| < ε 

Let  δ = inft|a[x(t)]- y(t)| 

Then for all the o t > T* |a[x(t)]-y(t)| ≥ δ holds  

Taking ε = δ/2, there exists a certain  n* such hat for m ≥ n* we have for all 

the t t  

|fm[x(t)]- a[x(t)]| < δ/2 . Then combining with condition  

|a[x(t)]- y(t)| ≥ δ 

We have for all the x de W, aa the  t > T*  and all the  m ≥ n*  

|fm[x(t)] - y(t)| > δ/2 and no more structural jumps will happen after  



max (tn*, T*) where  tn* is the left limit of interval An*.***  

An issue that may be of great importance for the analysis of the GDS, 

namely in the case that we are considering is the question of knowing how 

the solution x* (t) behaves when t goes to infinity. 

For the analysis of this issue the following definition may prove helpful.  

DEFINITION Let fm be a sequence of maps of Cl  into itself. Then fm 

converges uniformly (weakly)  f of Cl on W  if and only if for every x of 

W 

∀ε>0 ∃ n* integer such that sup |fm[x(t)]-f[x(t)]| < ε for all the m> n*  

and for  t∈[tn*,  +∞). 

A sequence that is uniformly convergent is  uniformly convergent in the 

weak sense . 

Another useful definition is the following  

DEFINITION The map  f  is continuous in the strong sense in x if and only 

if   lim x(t) t→∞ exists, is finite and 

lim f[t, x(t)] t→∞ = lim  t→∞ f[t, lim x(t) t→∞] .11 

Example 

The map f ≡ (t+1).x is not continuous in the strong sense  for  x(t) = 1/(t +1) 

but it is continuous in the strong sense for x(t) = 1/(t+1)2. 

It is easy to see, that for f ≡ m(t).x with a given m(t) and with bounded 

functions  x the functions  x for which  f  is not continuous in the strong 

sense are those such that lim x(t) t→∞ = 0 and lim m(t)x(t) t→∞ ≠ 0. In 

particular, if m(t) is bounded, f is continuous in the strong sense for all the 

functions  x bounded. 

With this definition we have the following theorem 



THEOREM 4. Let fm be a sequence of maps converging uniformly in the 

weak sense to f∞ em W. Then, if f∞  is strongly continuous at x0 ∈ W, with 

lim x0(t)t→∞ = r,  we have  

lim x*(t)t→∞ = lim f∞ [t, r]t→∞ . 

Proof.. 

By the definition of uniform convergence in the weak sense 

∀ε > 0 ∃n* such that for m ≥ n* we have 

|fm[t, x0(t)]- f∞[t, x0(t)]| < ε/2 for each t ≥ n* 

On the other hand since f∞ is continuous in the strong sense at x0 (t), 

∀ε/2 ∃ T such that for  t ≥ T we have |f∞[t, x0(t)] - f∞[t, r]| < ε/2 

so that for t ≥ max (tn*, T) we have 

|fm[t, x0(t)] - f∞[t, x0(t)]| + |f∞[t, x0(t)] - f∞[t, r]| < ε 

therefore  |fm[t, x0(t)]- f∞[t, r]| < ε 

That is with  x* (t) = fm [t, x0(t)] for m ≥ n*and t∈ Am ,  

we have that for  t > max (tn*, T) 

|x*(t) - f∞[t, r]| < ε  so that lim x*(t) t→∞ = lim f∞[t, r] t→∞ as we had to prove 

.*** 

 

This theorem is important because it allows us to study what happens to the 

asymptotic evolution of the system following a small variation in the initial 

function x0(t). 

Other important theorems for the study of the trajectory if the solution can 

be found. One of such theorem is the following that provides a sufficient 

condition for the continuity of the functions xk(t). 

                                                                                                                                                 
11 As there is some possibility of confusion and differently from what we have been writing till now we 
used the symbol  f[t, x(t)] to emphasize that we are considering non autonomous systems. 



THEOREM 5.Suppose a non-autonomous GDS. Let xk-1
 be a continuous 

function and xk-1(a) the value of  xk-1 for t = a. Let  xk-1(a)* be the constant 

function that for each  t has the value  xk-1(a). 

Then if  f [t, x(t)] is continuous on the space of functions x(t) defined  for 

every interval  (t1, t2) and if f[t, xk-1(a)*] is continuous as function of t  at the 

point t = a, then xk(t) = f [t, xk-1 (t)] is continuous as a function of t at the 

point t=a. 

Proof 

As f[t,xk-1(a)*] is continuous we have  

a)   ∀ δ >0 ∃ ε> 0 such that |t - a| < ε ⇒|f[t, xk-1(a)*] - f[a, xk-1(a)*]| < δ/2 

On the other hand since f is continuous on the space of the functions we 

have  

b) ∀δ > 0 ∃ ε*>0 such that  

||xk-1 – xk-1(a)*|| < ε* ⇒|| f [t, xk-1(t)] – f[t, xk-1(a)*]|| < δ/2, where the 

supremum norm may be calculated for each interval (t1 t2). 

As  xk-1 (t) is assumed continuous  and as the norm is a supremum norm we 

can write for every  ε’ < ε * 

c)  ∃ ε**(ε’) such that  

|t - a| < ε** ⇒ |xk-1(t) – xk-1(a)| < ε’⇒||xk-1 –xk-1(a)*|| < ε*, where the 

supremum of the norm is calculated in the neighborhood  ε** of a. 

And so using a), b) e c) and noting that  xk (t) ≡ f [t, xk-1(t)]  and  

xk (a) ≡ f [a, xk-1(a)*]  we have 

∀δ > 0 ∃ ε*** = min (ε, ε**) such that |t - a| < ε*** ⇒ |xk(t) – xk (a)| < δ, as 

we had to prove.*** 



COROLLARY . If the GDS is autonomous the continuity of the mapping f 

and of xk-1(t) as a function of t are sufficient for obtaining the continuity of 

xk(t). (The proof is straightforward). 

Another important formula has to do with the derivative xk(t) that we 

designate by x’k(t). 

THEOREM 6. 

We have for t=a 

 x’k(a) = (df[t, xk-1(a)*]/dt)a + (Df(xk-1(a)*)•x’k-1(t)*)a 

Were the second summand of the right side represents the value for t =a of 

the function of t that is obtained applying the Fréchet derivative, calculated 

at xk-1(a)*, to the derivative of  xk-1(t). 

Proof 

We have 

xk(a+h) – xk(a) = f[a+h, xk-1(a+h)*] - f[a, xk-1(a)*] = 

 = f[a+h, xk-1(a+h)*] - f[a+h, xk-1(a)*] + f[a+h, xk-1(a)*] - f[a, xk-1(a)*]. 

On the other hand using a property resulting from the definition of the 

Fréchet derivative12 and using as always the symbol “*”to designate the 

respective constant function we have , 

f[a+h, xk-1(a+h)*] = f[a+h, xk-1(a)* + x’k-1(a)h* + υ(h)*] =  

= f[a+h, xk-1(a)*] + [Df(xk-1(a)*)•[(x’k-1(a)h]*+υ(h)*)] + 

+ ϕ(x’k-1(a)h*+υ(h)*)  

where lim υ(h)/h = 0  when h→0 and lim ϕ /||x’k-1(a)h*+υ(h)*||=0 when 

h→0.  

so that xk(a+h) – xk(a) = [Df(xk-1(a)*)•[(x’k-1(a)h]* +υ(h)*)] + f[a+h, xk-

1(a)*] -  

                                                 
12 f(u+v) = f(u) + Df(u)•v + ||v||ε (u,v) where lim ε(u,v) = 0 when v→0. 



-   f[a, xk-1(a)*] + ϕ 

Dividing both sides by h, multiplying and dividing   ϕ  by ||x’k-1(a)h+υ(h)||, 

calculating the limit as h→0 and recalling the linearity of Df(xk-1(a)*) and 

the continuity of the functions involved  we get immediately what we 

wanted to prove.*** 

COROLLARY. If the GDS is autonomous we have  

x’k(a) = (Df(xk-1(a)*) • x’k-1(t))a. 

Proof 

It follows directly from the fact that the first summand of the previous 

formula is null.***. 

 

 

These results show that it is possible to study as a GDS a complex system 

that suffer endogenous structural changes. 

We call Hypercomplex Dynamic System a system where structural 

changes are at least partially a consequence of the working of the system and 

not totally due to exogenous causes. Hypercomplex systems may therefore 

be analyzed with the help of  the theory of GDS.   

 

 

Conclusion 

As we have seen GDS are useful for studying hypercomplex systems and 

also for defining and studying cycles of a new type where the recurrence is 

one of paths and not values of a variable.  

It is also apparent that the analysis may be extended to the degrees that we 

want for instance to systems where g is itself variable with a map   



gk=h (gk-1). 

The interest of this generalization is however limited. We have to restrict 

ourselves to the linear case.  On the other hand the actual meaning of the 

systems is rapidly lost.  

There is a crucial problem that is not solved by the previous analysis. When 

we deal with time series how can we distinguish in statistical terms an 

evolution that may be described by a simple dynamic system from an 

evolution that is the result of structural jumps?. The development of 

statistical tests to distinguish this two situations is of course crucial for the 

empirical applications of the theory of GDS . 
 

 

          APPENDIX: An Example: the Harrod-Domar model 

 

Consider the moment t =1 at the beginning of period 1. 

At this moment there is a given capital of knowledge (D1) in a given 

economy. This capital permits that the production in period 1 is obtained by 

the production function  

K1 = M(D1)Y1 

where K1 is the physical capital existent at moment 1, Y1 the GDP produced 

in period  1 and M(D1) the capital /output ratio in that period.. 

If we assume as in the Harrod-Domar model that ∆Kt = sYt we have  

∆Yt /Yt-1 = s/M(D1) 
 

Now suppose that at moment T, at the beginning of period T, there is a 

structural jump that is an increase of the capital of knowledge from D1 to D2. 



Then the new capital output ratio is M(D2) and the behavior of GDP after T 

is given by  

xt ≡ ∆Yt/Yt-1 = s/M(D2)  

Suppose that the knowledge capital increases as follows. After five years 

there is an increase of the coefficient M(D) at the same rate  i, so that for 

each moment k  k =1, 2,  ... where a jump happens M(Dk) =M(Dk-1)(1+i)  

Then for t = k, k+1, ...k+4  com k = 1, 2,...       we have  

x kt = s/M(Dk) = s/ [M(Dk-1) (1+i)] = xk-1t/(1+i) that is we our notation of the 

GDS  

xkt = f(xk-1t) ≡ 1/(1+i) (xk-1t) 

 

If  i < 0, that is if the increase in the knowledge capital leads to new 

technologies that use less physical capital by unit of output the system has 

not a stationary path.  

A more sophisticated model would be  

M(Dk) = {s/M(Dk-1) / [bs/M(Dk-1) + a ] } M(Dk-1)  

with  b > 0and a < 0. In this case we have  

xkt = bxkt-1 + a  

and the analysis could proceed using the GDS theory. 
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