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We show that the amplitude and phase information from a two-dimensional complex field can be synthesized from a
phase-only optical element with micrometric resolution. The principle of themethod is based on the combination of
two spatially sampled phase elements by using a low-pass filter at the Fourier plane of a 4 − f optical system. The
proposed encoding techniquewas theoretically demonstrated, as well as experimentally validated with the help of a
phase-only spatial light modulator for phase encoding, a conventional CMOS camera to measure the amplitude of
the complex field, and a Shack–Hartmann wavefront sensor to determine its phase. © 2014 Optical Society of
America
OCIS codes: (120.5060) Phase modulation; (100.5090) Phase-only filters; (260.1960) Diffraction theory.
http://dx.doi.org/10.1364/OL.39.001740

The two-dimensional amplitude A�x; y� and phase φ�x; y�
of a complex field U�x; y� expressed as U�x; y� �
A�x; y�eiφ�x;y� can be conveniently rewritten in the form
U�x; y� � Beiθ�x;y� � Beiϑ�x;y�. In the above expression
the terms θ�x; y� � φ�x; y� � cos−1�A�x; y�∕Amax� and
ϑ�x; y� � φ�x; y� − cos−1�A�x; y�∕Amax� hold for spatially
distributed phase functions, but B � Amax∕2 is now a
constant. Here, Amax is the maximum value of A�x; y�.
Consequently, the complex field U�x; y� is mainly deter-
mined by the phase functions θ�x; y� and ϑ�x; y�, because
the constant term B has influence over only the intensity
of the field. From the above analysis, it is apparent that
U�x; y� can be retrieved from the coherent superposition
of two uniform waves having constant amplitude. This is
commonly done with an optical setup able to generate
the interference between the two phase elements
θ�x; y� and ϑ�x; y�. However, in practice the above pro-
cedure is limited by two fundamental reasons. The first
reason is related to the alignment of the interferometer
with subpixel accuracy, whereas the second one is its in-
herent usefulness to synthesize the complex field U�x; y�
with a single phase element. In particular, the former
handicap has been widely investigated, developing meth-
ods for encoding amplitude and phase into phase-only
filters [1–9]. Applications of phase-only filters include,
but are not limited to, pattern recognition [10,11], corre-
lation discrimination [12], optical encryption [13],
shaping of femtosecond pulses [14], or research on non-
diffracting speckle fields [15].
Early in 1978, Hsueh and Sawchuk used the phase

functions θ�x; y� and ϑ�x; y� (for Amax ≡ 1, and then
B � 1∕2) to generate double-phase holograms (DPHs)
implemented into binary devices [16]. Basically, in DPHs
the phase functions θ�x; y� and ϑ�x; y�, encoded into a
single hologram, are suited combined to produce the de-
sired complex field U�x; y�. Recent advances in this topic
show that phase coding techniques based on the princi-
ple of DPH can provide a reasonable good approximation
to encode complex fields into a single static optical
element or a dynamical optical device, e.g., a phase-only
spatial light modulator (SLM). Regarding this point, in
2003 a modification of DPH technique allowed Arrizón

to encode an arbitrary complex function with a twisted
nematic liquid-crystal display [17]. Based on the DPH
configuration, Arrizón also theoretically introduced in
the same year a single-pixel on-axis technique to encode
complex fields [18]. Here, it should be noted that the
phase modulation proposed in [18] does not coincide
with the original one proposed for DPH because in
[18] Arrizón includes certain binary factors which are in-
tended to separate noise from the signal in the
reconstruction plane. More recently, simultaneous and
independent amplitude and phase modulation that uti-
lizes the DPH representation was proposed [19]. In the
above work, two adjacent pixels of a phase SLM are
superimposed for interference by using polarization-
sensitive components.

On the other hand, 4 − f optical systems allow for the
implementation of different phase coding techniques by
using SLMs as well as different types of spatial filters in
the Fourier plane. For instance, a 4 − f optical system
with a phase grating filter placed in the Fourier plane
was employed to combine two phase holograms in
DPH configuration that are displayed in symmetrically
separate regions of a SLM [20]. In addition, the encoding
of arbitrary scalar complex fields with three types of
computer-generated holograms reconstructed by spatial
filtering in the Fourier spectrum plane was discussed in
[4]. Recently, effects of the shape of the Fourier filters on
the quality of the reconstructed complex field obtained at
the output a 4 − f optical system were investigated [7]. In
[7], each pixel at the output plane was encoded by an
array ofN × N subpixels of the phase hologram. This also
happens with the codification employed in [8], where a
method for performing binary intensity and continuous
phase modulation of beams with a SLM and a low-pass
spatial filtering 4 − f system is introduced.

In this Letter, we propose a single-pixel on-axis tech-
nique based on DPH to approximately encode a complex
field U�x; y� into a phase-only optical element. The
reconstruction of U�x; y� is achieved at the output plane
of a 4 − f optical system, after applying a low-pass filter in
the Fourier plane. We theoretically demonstrate that for
band-limited functions, that is, functions with Fourier
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transforms that are nonzero over only a finite region of
the frequency space, the proposed encoding technique
allows for an exact retrieval of the spectrum of U�x; y�
just after the filter.
To obtain the encoding function, we represent the

functions eiθ�x;y� and eiϑ�x;y� (for Amax ≡ 2, and then
B � 1) by arrays of their sampled values M1�x; y�eiθ�x;y�
and M2�x; y�eiϑ�x;y� at a given input plane. The functions
M1�x; y� and M2�x; y� hold for the transmittance of com-
plementary two-dimensional binary gratings (checker-
board patterns) taken at the Nyquist limit, such as
M1�x; y� �M2�x; y� � 1. It can be shown these checker-
board patterns can be described by the following
expressions:

M1;2�x; y� �
1
2

X∞
n�−∞

X∞
m�−∞

Λ1;2�n;m�ei2πnxp ei
2πmy
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�
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2

�
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�
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�
m
2

�
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In Eqs. (1) and (2), sinc�ξ�≡ sin�πξ�∕�πξ� represents the
sinc function of argument ξ, p is the period of the two-
dimensional binary gratings, and the numbers n, m will
denote their diffraction orders. The difference between
M1�x; y� and M2�x; y� is only given by the sign of the
sumwithin the argument of the cosine in Eq. (2). In Fig. 1,
the functions M1�x; y� and M2�x; y� are evaluated within
the intervals x � y � �−p; p� up to 300 steps of the sums
for the variables n, m with p � 16 μm.
As far as the above steps are incremented, the func-

tions M1�x; y� and M2�x; y� approach better the checker-
board patterns. In addition, owing to the fact that the
sampled values are located at different spatial positions
in the input plane, the following equality takes place:

M1�x; y�eiθ�x;y� �M2�x; y�eiϑ�x;y� � eiα�x;y�; (3)

α�x; y� � M1�x; y�θ�x; y� �M2�x; y�ϑ�x; y�: (4)

In Eqs. (3) and (4), the phase term α�x; y� will be the de-
sired encoding function. Here, it should be noted that, at
the input plane, the complex field U�x; y� cannot be ap-
proximated by the function eiα�x;y�, because at this plane
the functions eiθ�x;y� and eiϑ�x;y� do not interfere at all.
At this point, we assume that U�x; y� is a band-limited
function, and determine the spectrum H�u; v� of the
function eiα�x;y� by using the following Fourier transform
definition:

H�u; v� � Ffeiα�x;y�g≡
Z

∞

−∞

Z
∞

−∞
eiα�x;y�e−i

2π�x0x�y0y�
f λ dxdy:

(5)

In Eq. (5), the distance between the input plane and the
Fourier plane is denoted by f , λ represents the wave-
length of light, and the coordinates u and v in the fre-
quency space are given by u � x0∕f λ and v � y0∕f λ.
From Eqs. (3) and (4), after applying the convolution
theorem, the spectrum H�u; v� can be expressed as

H�u; v� � 1
2
�H1�u; v� �H2�u; v��; (6)
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In Eqs. (7) and (8), Ψ�u; v� � Ffeiθ�x;y�g and
Ω�u; v� � Ffeiϑ�x;y�g. The band-limited condition ensures
that the spectrum H�u; v� is nonzero over only a finite
region of the frequency space. Now, from Eqs. (6)–(8)
it follows that this region is about the points (n∕p,
m∕p), that correspond to the diffraction orders of the
phase optical element α�x; y�. Furthermore, if the period
p of the gratings M1�x; y� and M2�x; y� is sufficiently
small, the spatial frequency separations 1∕p among
diffraction orders will be great enough to guarantee that
adjacent diffraction orders do not overlap. At the Nyquist
limit of the above gratings the maximum spatial
frequency separation is theoretically achieved. From
Eqs. (6)–(8) it is easy to see that if we use a filter
P�u; v� to block all diffraction orders but the zero one,
the spectrum is reduced to the expression

H�u; v�P�u; v� � 1
2
FfU�x; y�g; (9)

where

FfU�x; y�g≡Ψ�u; v� �Ω�u; v�: (10)

This is the main theoretical result of our manuscript.
On one hand, Eqs. (9) and (10) show that by using the
single pixel encoding function given in Eq. (4) we are
able to exactly retrieve the full spectrum FfU�x; y�g of
the original complex field U�x; y� in the Fourier plane,
about the zero diffraction order. In addition, at the output
plane, after Fourier transform of the filtered Fourier
plane we find, without including irrelevant constant fac-
tors, the convolution of the magnified spatially reversed
complex field with the Fourier transform of the filter,
that is, U�−x∕Mag;−y∕Mag� ⊗ FfP�u; v�g. The output
plane is located now at the distance g from the Fourier
plane, and the corresponding magnification factor
is Mag � g∕f .

Owing to the characteristics of the filter P�u; v�, the
previous convolution operation gives us an approximate

Fig. 1. Checkerboard patterns obtained with functions
(a) M1�x; y� and (b) M2�x; y�, respectively.
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description of the complex field. To clarify this aspect,
we consider a particular case of a filter in the frequency
domain given by the two-dimensional rectangle function
P�u; v� � rect�u∕�ε∕f λ�; v∕�ε∕f λ��, where ε � f λ∕p. The
value of ε was taken from Eq. (6) as the distance from
the propagation axis to the first diffraction order. Note
that, the above filter meets with Eq. (9), and its Fourier
transform yields

Ffrect�x0∕ε; y0∕ε�g ∝
sin

�
π

pMag x
�

πx

sin
�

π
pMag y

�
πy

: (11)

As far as the parameter π∕pMag tens to infinity, the
function described by Eq. (11) approaches to the two-
dimensional Dirac delta function δDirac�x; y�. In this case
U�−x∕Mag;−y∕Mag�⊗δDirac�x;y�≡U�−x∕Mag;−y∕Mag�
and the complex field at the output plane is completely
retrieved. In practice, as the convolution operation
cannot be avoided, the spatial resolution of the recon-
structed amplitude and phase at the output plane is lower
than that of the original A�x; y� and φ�x; y� functions.
In order to experimentally corroborate the encoding

technique discussed above, we implement the optical
setup given in Fig. 2. The quasi-monochromatic laser
beam emitted from a Ti: sapphire laser oscillator (Fem-
tosource, Femtolaser), working without mode-locking, is
used as a light source. In this condition, the laser beam
has a narrow spectral line centered at wavelength
λ � 800 nm. Before it impinges onto a reflective liquid
crystal on silicon phase-only SLM (Holoeye Pluto), the
beam is conveniently attenuated with neutral filters
(NF), and spatially magnified by using a commercial
beam expander (BE). The desired phase element
α�x; y� is encoded into the SLM that has 1920 × 1080 pix-
els and 8 μm of pixel pitch. The first beam splitter (BS1)
allows for both the normal incident onto the SLM, and its
backreflection forward a 4 − f imaging system. The input
plane of this optical system coincides with the SLM
plane. The 4 − f imaging system is made up of a couple
of identical refractive lenses (L) with focal length of
150 mm. At the Fourier plane, the beam is transmitted
through a low-pass spatial filter that consists of an iris
of radius ε∕2. The second beam splitter (BS2) is used
to simultaneously align both a CMOS camera (Ueye
UI-1540M, 1280 × 1024 pixel resolution and 5.2 pixel
pitch), and a Shack–Hartmann wavefront sensor
(SH-WS) at the output of the 4 − f optical system.
The CMOS camera (CAM) records the amplitude of

the reconstructed complex field, and the SH-WS is in-
tended to measure its phase.

In Fig. 3, the initial and retrieved amplitude and phase
functions within a square spatial window of �3 mm ×
3 mm� are shown. For this experiment we use two com-
plex field functions whose amplitudes are composed of
the well-known Lena and Cameraman images, whereas
their phases are φ�x;y��π∕2 sin�2πx∕�5λ��cos�2πy∕�5λ��
and φ�x; y� � π∕2 sin�500π�x3 � y3�∕λ�, respectively.
The mean square error between the normalized data
from theory and experiment yields 1.7% for Figs. 3(a)
and 3(b), 2.8% for Figs. 3(c) and 3(d), 6.4% for Figs. 3(e)
and 3(f), and 5.2% for Figs. 3(g) and 3(h). We believe that
small differences among them come mainly from two
causes. The first one is the decreasing of the spatial res-
olution of the recovered amplitude and phase data due to
the above-mentioned convolution operation. This convo-
lution is affected by the value of ε, which is inversely pro-
portional to the pixel size of the SLM. The second reason
is the low spatial resolution of the SH-WS, which is
unable to resolve phase functions with spatial structure
below its lenslet pitch (150 μm for our SH-WS).

The phase encoding conditions imposed by the modu-
lation range of our SLM (almost 3π for normal incident),
as well as the limited phase range �−π∕2; π∕2� used to en-
code the amplitude if Amin � 0 can also affect the quality
of the measured data. The term Amin holds for the

Fig. 2. Schematic setup used to measure the amplitude and
phase of a complex field.

Fig. 3. Experimental results. (a), (e) Initial amplitude and
(c), (g) phase of the complex field, and corresponding (b),
(f) amplitude and (d), (h) phase measured. All data are shown
within a square window of �3 mm × 3 mm�.

1742 OPTICS LETTERS / Vol. 39, No. 7 / April 1, 2014



minimum value of A�x; y�. We find out that the contrast of
the image recorded by the camera depends on percent of
modulation range employed to encode A�x; y�.
In this experiment, the phase range dedicated to

encode the amplitude was increased up to the range
�−π; π� by setting Amin � −1. This allows us to improve
the contrast of the measured amplitude image at expense
of decreasing the phase range used to encode φ�x; y�.
The sampling technique described by Eq. (3) is similar

to the random mask encoding technique of multiplexing
phase-only filters [21], later adapted to the generation of
holographic optical tweezers [22]. The main difference
between both techniques is given by the selection of
the complementary binary functions. In this manuscript
these functions are determined by two complementary
checkerboard patterns taken at the Nyquist limit,
whereas in [21] and [22] they are generated following
a random procedure. Recently, a stack of random resam-
pling masks are also used to propose a robust method for
rapidly reducing the incoherent noise in digital hologra-
phy [23]. Furthermore, the encoding method presented in
[22] consists of the Fourier transform of N linear phase
functions, sampled previously into a SLM by spatially dis-
joint binary masks. In contrast, by using the encoding
method discussed here one can directly reconstruct
the complex field obtained from the linear superposition
of phase functions. Here it should be emphasized addi-
tional features of our method. The encoding function
given in Eq. (4) allows for a single-pixel mathematical op-
eration, instead of using an iterative algorithm and/or an
array of N × N subpixels to codify each pixel of the input
plane. This allows for quite dynamic and extremely fast
computation process. The information of the complex
field is recovered with an accuracy that strongly depends
on the minimum feature size of the encoded phase
element. The smaller the pixel size, the better.
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