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Abstract: Smart control of light propagation through highly scattering
media is a much desired goal with major technological implications.
Since interaction of light with highly scattering media results in partial
or complete depletion of ballistic photons, it is in principle impossible
to transmit images through distances longer than the extinction length.
Nevertheless, different methods for image transmission, focusing, and
imaging through scattering media by means of wavefront control have been
published over the past few years. In this paper we show that single-pixel
optical systems, based on compressive detection, can also overcome the
fundamental limitation imposed by multiple scattering to successfully
transmit information. But, in contrast with the recently introduced schemes
that use the transmission matrix technique, our approach does not require
any a-priori calibration process that ultimately makes the present method
suitable to use with dynamic scattering media. This represents an advantage
over previous methods that rely on optical feedback wavefront control,
especially for short speckle decorrelation times.

© 2014 Optical Society of America

OCIS codes: (290.4210) Multiple scattering; (110.7050) Turbid media; (110.1758) Computa-
tional imaging; (230.6120) Spatial light modulators.
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1. Introduction

In a conventional imaging experiment, a lens maps every input pixel of an object to its con-
jugated output pixel at the sensor. Input and output measurement modes correspond to highly
specific and localized information and all modes are simultaneously measured with an optical
array detector, being transfer of information physically limited, in the ideal case, by diffraction.
However, in a scattering medium the relationship between input and output pixels suffers the
effects of light propagation by multiple scatterers. As a result, the spatial information of an
input mode is scrambled and coupled through all output modes. Alternatively, an output pixel
retains a tiny fraction of the optical field coming from every input mode and the interference
between the different light fields generates an image that looks like a speckle field. Indeed, the
ability of a lens to provide a clear image of an object is critically limited, even when a very thin
layer of a scattering material is placed in the light path.

Scattering is the dominant extinction process that limits the imaging depth range inside bi-
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ological tissue [1]. Although optical clearing techniques based on tissue manipulation has re-
cently resulted in a see-through tissue [2], manipulation of photons provides a parallel avenue
to control light-matter interactions without alteration of the biological material. Fine control of
wave fields with current megapixel programmable spatial light modulators is by far the most
employed approach. Examples of such technology are adaptive optics [3] and, more recently,
control of disorder [4]. Transmission matrix characterization or feedback control based on iter-
ative methods has allowed to undo the modifications that a scattering medium performs on the
incoming wavefront by wavefront shaping [5-9] and seeing through static scattering media has
also been demonstrated with this approach [10, 11]. Additionally, the angular correlation ex-
hibited by speckle patterns within a small range of angles has been exploited for non-invasive
imaging of a fluorescent object completely embedded in an opaque scattering medium [12].
Some recent attempts to extend the above techniques to steady focusing light through a slowly
evolving dynamic medium are based on the use of faster spatial light modulators or by all-
optical feedback [13, 14]. In this direction, recent advances in both DMD technology and GPU
processing allow to compute the transmission matrix in tens of milliseconds [15]. However
the dynamic nature of scattering in living tissue still remains an open question. Micrometer-
scale translations of the scatter centres generate a decorrelated speckle field on the millisecond
timescale, which makes dificult to follow the changing state of the medium for current feedback
control techniques.

Image transmission through dynamic scattering media requires a paradigm shift to remove
the use of feedback algorithms. Here we address this challenge. To do this, we use compu-
tational imaging of projected patterns with measurements being captured sequentially by a
single-pixel sensor. The programmed patterns are used as generalized measurement modes
where the object information is expressed. The same principle enables retrieval of the spatial
information of an object with the use of a single-pixel detector in ghost [16, 17] and compres-
sive imaging [18, 19]. In the latter case, the development of data collection strategies based on
compressive sampling allows image compression to be performed at the sensing stage [20].
Applications that benefit from the advantages of single-pixel cameras are, among others, 3D
imaging [21], entanglement imaging [22], fluorescence microscopy [23] or imaging at regions
of the electromagnetic spectrum where current pixelated sensors are unavailable [24]. In this
work we demonstrate that the presence of a scattering medium between the object and the light
detector, even in the dynamically varying case, does not invalidate the operation principle of
the proposed single-pixel scheme. Notably, scrambling of light due to disorder mixes informa-
tion from all the regions of the sample but does not destroy the object information that can be
retrieved from the generalized modes. As we will show later, we emphasize that this statement
is accurate even if the medium is dynamic. Image transmission through disordered media has
an immediate impact in the case of multimode fibers, which are subject to mode coupling. This
crosstalk effect behaves in a similar way to a disordered medium. In this sense, an increment
of the imaging capabilities of multimode fibers has been achieved by exploiting the properties
of highly scattering media with a ‘single-pass’ architecture [25]. This approach, conceptually
similar to that presented in Ref. [10], implies a precise calibration of the scattering effects and
assumes a static medium. Both limitations are overcome by our single-pixel-sensor method.

2. Operation principle

To demonstrate our technique for image transmission through a scattering medium with a
single-pixel camera, we refer to the diagram illustrated in Fig. 1(a). First, we consider the situ-
ation of static scattering. The sample (in this example a binary version of the famous Cheshire
Cat in Alice‘s Adventures in Wonderland) is sequentially illuminated with a set of microstruc-
tured projecting patterns, which are codified onto a spatial light modulator. The light transmitted
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through the sample undergoes strong scattering so that any object is completely hidden, as is
shown in Fig. 1(b). For each pattern, an optical sensor without spatial resolution averages the
signal generated by the noise-like light distribution that covers its active surface. Each photode-
tected signal corresponds to a fraction of the light arising from the inner product between the
sample and the projecting pattern and contains information of the whole sample thanks to light
scrambling imposed by the scattering medium. Given that the sensor averages a sufficient num-
ber of speckle grains and that the number of input patterns is suitable, the information arising
from the different modes is decorrelated and equally weighted. This fact guarantees that their
contributions become independent for incoherent imaging and that the image-retrieval process
can be formulated as a sequential measurement of the coefficients of the object intensity in the
input basis (see Section 5). Notably, most of the coefficients of the object expressed in the func-
tion basis do not contribute in a significant way to image retrieval (see Fig. 1(c)). This means
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Fig. 1. Schematic diagram of the experimental set-up. (a) Set of microstructured patterns
is projected onto the sample, which is placed in front of the scattering layer. The transmit-
ted light undergoes strong scattering and a fraction is recorded by a photodiode. Within
single-pixel imaging schemes, we need to project several patterns to form the image with
measurements captured sequentially. (b) Photograph of the scattering layer covering par-
tially a text located at a distance 10mm from the diffuser. In this way we show that the
portion of the text under the diffuser is completely hidden. (c) Plot of two thousand projec-
tions derived from the photodetected signal in terms of the input modes.

that the signal is sparse and compressive sensing can be used at the sampling stage by selecting
in a random way the projecting patterns. In Section 3 we include a detailed study about the
applicability of compressive sensing to our technique.

In our experiments, the Walsh-Hadamard basis is used to express the object x* as a linear
combination, x* = Z,-E{"Hl- (i=1,...,N). A Walsh-Hadamard matrix of order n, denoted by
H;(n), is an N = n x n matrix with entries that satisfies HY (n)H;(n) = nI(n), where I(n) is
the identity matrix and Hl-T (n) stands for the transposed matrix. Hadamard matrices form an or-
thonormal basis of matrices that was first proposed by researchers in statistics and is considered
to be the optimum weighting design for extracting information from random noise. A shifted
and rescaled version of H;(n) generates a binary pattern taking on the values O or 1, which can
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be simply encoded onto a spatial light modulator as an intensity pattern.

The scattering medium placed after the object is characterized at the macroscopic scale
through the transmission matrix K with complex coefficients k. The individual element &,
connects the nth input Hadamard mode with the mth output measurement mode expressed in
the canonical basis [27]. We assume that the matrix-coefficient statistics follows from the clas-
sical random walk phenomenon, as each k,,, results from the sum of contributions from many
elementary pathways inside the medium that connect incoming and outgoing modes. As a re-
sult, the complex phasor &, is said to be a circular complex Gaussian variate and the trans-
mission matrix amounts to a random matrix of independent identically distributed entries of
Gaussian statistics [28]. The outgoing optical field corresponding to the mth output mode is
given by E%“ =Y, k;, EI" and the field intensity from the mth mode is 12 = |¥, k. E"|?. The
input modes add together on an amplitude basis and the signal is affected by strong correla-
tions between the signals provided by the different input Hadamard modes. In addition, the
measurement in our scheme of single-pixel detection is given by the summation of the sig-
nals provided by the output canonical modes that cover the active surface of the sensor, i.e.,
P =y, 1o (m=1,...,5). However, the averaging over the photodetector surface forces the
cross terms that couple different input modes to vanish and their contributions become uncor-
related and equally weighted so that the modes now add together on an intensity basis, i.e.,
1o =¥, 1% o ¥, |E"|?. Consequently, the sequential projection of the different Hadamard
modes onto the input object allow us at the detection level to measure separately any image
expansion coefficient |E"|2. This result, derived in the Section 5, is extremely crucial for the
validity of our proposed disorder-assisted single-pixel image-retrieval method and states that
the incoherent nature of single-pixel imaging is preserved even through disordered media.

a b

Fig. 2. Seeing through scattering media with a single-pixel camera. (a) The Cheshire Cat
is placed in front of a scattering layer that completely hides it. We show the image of the
object as seen by a charge-coupled-device camera (Stingray-F-145 with square pixel size
of 6.45 x 6.45um?). The image contains not information at all on the shape of the object.
(b) Image of the retrieved object from the photodetected values recorded by the photodiode.
The good quality of the reconstructed image confirms that disorder-assisted imaging can
indeed recover fine details of the object even though a sensor without spatial resolution is
used.

Applying the above ideas to our test object, we obtained the results shown in Fig. 2. The
Cheshire Cat was directly codified onto the spatial light modulator with an image size of N =
128 x 128 pixels. The number of Walsh-Hadamard patterns was M = 0.2N. We used a diode-
pumped laser at 532 nm (Oxxius slim-532) coupled to a single mode optical fiber. The beam
was expanded and modulated by a liquid crystal reflective spatial light modulator (Holoeye
LC-R 2500, with XGA pixel pitch of 19um) inserted between an appropriate combination
of polarizers. The scattering layer was a commercial diffuser (Edmund Optics T54-497). After
passing through the diffuser, the light was partially guided by a lens to the photodiode (Thorlabs
DET36A with active area size of 3.6 x 3.6mm?) to measure the fraction of the transmitted light
intensity and an analog-to-digital converter digitized the photodetected signal. We found that
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the scattering layer completely hides the presence of the object so that the image recorded by
a charge-coupled device camera is simply a speckle pattern (see Fig. 2(a)). On the contrary,
the reconstructed image from computational imaging of projected patterns with single-pixel
detection showed an excellent resemblance with the original object (see Fig. 2(b)).

3. Compressive imaging through a static scattering layer

3.1. Compressive sensing

In the framework of single-pixel imaging, the imaging process in intensity is formulated as

Hlll e H
y=MI"=| : - I (M)
Hl%ll e Hp

where the sampling matrix M is here a row-wise array of the Walsh-Hadamard modes and

I'" = ‘x’"’Z denotes the sampled intensity corresponding to the unknown object (expressed in
the canonical basis) arranged in a column vector of dimension N. The components of the vector
y are the projecting coefficients ’E,’,” |2.

The object is recovered off-line from the projections |E,’1” |2 by solving the algebraical prob-
lem described in Eq. (1). To form a completely determined set of measurements, the rank of
the sampling matrix M must equal the object data dimension N, as has been written in Eq.
(1). However, compressive sensing allows the reconstruction of sparse signals I although the
number of measurements M be lower than the number of pixels of the sampled object, i.e.,
M << N. This image sampling mechanism overcomes the fundamental tradeoff in imaging be-
tween speed and resolution and allows to speed up computational imaging. The point is that a
sparse signal has only a small part of coefficients with a significant value when transformed in
the appropriate base of functions. Therefore, many of the modes of the base provide little to
no useful information and can be removed without substantial loss of image quality. Although
it is not known at the sensing stage what coefficients have appreciable amplitude, compressive
sensing algorithm recovers an undersampled signal I, that approaches the exact signal I with
high probability from random undersampling of the matrix M. From a mathematical point of
view, the system is undetermined and the object is recovered by solving the optimization prob-
lem min( ||[1™(|;,) such that y(M) = M,,I"'(N). In the above equation M, is the undersampled
version of the sampling matrix M, with dimension M x N, and |[I"|;, is the /;-norm of the
object represented in an appropriate basis (in our case, the Walsh-Hadamard basis), which re-
flects the inherent sparsity that exists in natural objects. Given a sufficiently large number of
samplings, the problem is rigorously solvable and the recovered signal I approaches the exact
signal I If only kX Hadamard projections of the signal I"" have a significant value, the number
of helpful sampling modes scales as M > k logN [20] and the compression ratio is given by
CR=N/M.

3.2.  Application to a microscopic sample

To test the quality of the images recovered by compressive sensing through a turbid medium,
we conducted a series of experiments with the optical implementation shown in Fig. 3(a). The
laser source and the photodiode were those employed in the preceding section. The object was
a sample of stained onion cells, the Walsh-Hadamard patterns had 64 x 64 pixels and the optics
of the system was adapted to adjust the spatial scale of the projecting patterns to the sample
by use of an optical relay containing a microscope objective (Nikon 4x and NA = 0.1). We
used the diffuser shown in Fig. 1(b) and included in the optical system the Stingray CCD cam-
era. The sample was hidden by the scattering layer so that the image recorded by the CCD
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camera was a speckle pattern, as is shown in the small intensity map in Fig. 3(a). The code em-
ployed for compressive sensing was the function 11eg-pd of the /;-magic software pack-
age, which solves the standard basis pursuit problem using a primal-dual algorithm [29]. The
quality of the undersampled image was tested using the standard peak signal-to-noise ratio,
PSNR = 10log(12,,,/MSE), where I,,,, is the maximum pixel intensity value of the reference
image and MSE = () |[1 . — 122 ||* stands for the mean square error between the undersam-

pled image, I, and the image recovered from the whole measurement set, Ii’;f. Figure 3(b)
illustrates that the time required for the sensing stage could be reduced by a factor of 2 while
the PSNR is still higher than 20dB, which indicates high image fidelity. This is relevant to
speed up the image retrieval. Moreover, for faster operation, the slow liquid crystal spatial light
modulator can be replaced by a digital micromirror device or any equivalent component. Con-
sidering that the maximum full-image frame rate of commercially available digital micromirror
devices is 22.7kHz, the capture of images of 64 x 64 pixels at the sensing stage could operate
at a frame rate of 10Hz. Even in this situation, the above imaging rate is still unsatisfactory to
overcome the dynamic nature of real scattering media whose speckle decorrelations are on the
millisecond order.

4. Image reconstruction through dynamic scattering media

Our method is also valid to recover the image through a scattering medium that changes its
temporal properties due to the movement of the scattering centres. The critical point here is that
our technique works without the need of a signal feedback. For a dynamic scattering medium,
new realizations of the random walk are created as the time goes by and, as a consequence,
the speckle intensity at any point on the detector plane changes with time, and the transmission
matrix too. However, our approach addresses this situation in a rather different way. As long
as the statistical properties of the medium remain stationary and the number of speckle grains
impinging on the active area of the sensor is high enough, the photodetected current does not
change with time and, as a result, the sample is reconstructed regardless of the diffuser move-
ment (see Fig. 4(a)). In our experiment the diffuser was a polypropylene cover characterized
by its orange peel texture. The diffuser was moved by means of a stream of air and a USAF
resolution chart acted as the sample. The chaotic movement of the diffuser mimicked a dy-
namic scattering medium generating variable speckle. The key point was that the photodiode
performed a spatial intensity integration in such a way that, under the above assumptions, the
value of every measurement provided by the non-pixelated detector was effectively the same as
in the static state. Figure 4(b) shows a snapshot of the dynamic speckle pattern after the moving
diffuser. This image was recorded by use of a charge-coupled device camera like in Fig. 3(a). A
plot of the measured intensity as a function of time for a single pixel of the camera is compared
with that corresponding to a small region of 64 x 64 pixels. The uniformity of the intensity level
in the latter case is clearly noticed and is the basis of our implementation.

5. Discussion

Here we examine in greater detail the impact of the statistical properties of the scattering
medium in the retrieved image process. As discussed before, the medium is characterized at
the macroscopic scale through the transmission matrix K with complex coefficients k;,,. The
individual quantity k,, connects the nth input Hadamard mode with the mth output measure-
ment mode expressed in the canonical basis. The measurement in our scheme of single-pixel
detection is given by the summation of the signals provided by the different output modes that
cover the active surface of the sensor, say S modes. Thus, when the media is fed with a complex
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Fig. 3. Disorder-assisted compressive microscopy. (a) Schematic diagram of the optical
setup. LS laser source; L lens; BS beam splitter; SLM programmable spatial light modu-
lator; D iris diaphram; MO microscope objective; OBJ sample (stained onion cells); SM
scattering medium; CCD charge-coupled device camera; PD Photodiode. (b) Plot of the
quality of the recovered images in dB as a function of the compression ratio. We show as
insets the image of the onion cells retrieved from the photodetected signals generated by a
randomized selection (24% and 50%) of the 4096 input modes, along with the unsampled
image (CR = 1) for comparison.

signal that consists of N input modes, the photodetected signal is given by

S S | N ) 2 S N s S N N o
=Y =Y Y kB =YY k| EP Y Y Y kil ERER(2)
m=1 m=1 |n=1 m=1n=1 m=1n=1pn'=1
n'#n

It is convenient to define A, =Y, |km,,|2 and B,y = Y., kunk;,,, to shorten the above expression,
so that the output signal can be rewritten as

N L, NN o
=Y AJEN + Y Y BwE/E)". 3)
n=1 n=1n'=1
n'#n
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Fig. 4. Image reconstruction through a dynamic scattering medium. (a) Image of the sam-
ple (a typical resolution chart) reconstructed from the photodetected signal showing the
successful image retrieving ability of our single-pixel imaging setup through a moving dif-
fuser. (b) Snapshot of the speckle field generated by the object placed in front of a moving
diffuser. At the right side we plot the detected signal with an integration time smaller than
the typical temporal drift of the speckle grains corresponding to both a pixel of the camera
(top) and a region of 64 x 64 pixels (bottom).

Due to the scattering statistics, roughly speaking the averaging over the photodetector sur-
face forces to cancel the cross terms that couple the B, contributions from the different input
modes, or more precisely, the contribution of the coefficients B, is negligible with respect to
that of the coeffcients A,,. Instead, the A,, contributions nearly become equally weighted for all
n. Consequently,

N
17 e Y |EP. )
n=1

The input modes now add together on an intensity basis, as in conventional single-pixel imag-
ing, which is at the core of our computational imaging method. At this point, and concerning Eq.
(4), two additional comments are relevant. On one hand, the projection of the nth Hadamard
mode onto the input plane allows us at the detection level to evaluate separately the corre-

sponding squared object expansion coefficient, |E" |2. On the other hand, compressive sensing
reduces the number of sequentially projected patterns we need to recover the object information
from N to M < N modes randomly selected. We tested experimentally the above hypotheses
by sequentially launching several Hadamard patterns onto the spatial light modulator and de-
tecting the output intensity with the charge-coupled-device camera used in Fig. 3(a). The size
of the speckle grains recorded by the camera (see inset in Fig. 3(a)) was estimated from the
full width at half maximum (FWHM) of the autocorrelation signal to be about 12.9um. Next
the active area of the matrix sensor was limited to 64 x 64 pixels. In the experiment, 1500
Hadamard modes were sequentially displayed onto the spatial light modulator and the signal
corresponding to the 64 x 64 output modes was separately recorded for every input mode. The
histogram of the |k,;,,|-values is shown in Fig. 5(a). The results fit nicely to the assumed random
walk model for the scatterers. From the above experimental counts, we numerically calculate
the value of the parameters A, and B,,,. Their corresponding statistical distributions are shown
in Figs. 5(b) and (d), respectively. In the latter case, in order to compute the B,,,; coefficients, we
allocate a random uniform phase distribution between 0 and 27 to the |k,,| measured elements.

Two findings are clear from the histograms in Figs. 5(b) and (d). First, the A, values are
clearly clustered around a certain value (A). In mathematical terms, the quotient between the
standard deviation 64 and the mean value of the histogram turns out to be 0.13, in good agree-
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Fig. 5. Charting the statistical properties of the scattering layer. (a) Histogram of the abso-
lute value of the transmission matrix elements assessed by experimental means. The plot
fairly matches the Rayleigh distribution, as we expected. (b) Histogram of the summations
A, evaluated from the data in (a). The small ratio between the standard deviation 64 and
the mean value (A) ensures that the integrated contributions coming from the different in-
put modes are nearly equally weighted. (c) Relative dispersion of the A, contributions in
terms of the number of output modes integrated by the area of the sensor. (d) Histogram
of the summations B,,, evaluated from the data in (a) assigning randomly a uniform phase
distribution between 0 and 27. Note that in order to make easier the comparison of results,
the scale of the abscissa axis in the graphs (b) and (d) is the same.

ment with the nearly zero value we expected. Likewise, the B, coefficient histogram (a nearly
Gaussian distribution) is centred at origin, shows positive and negative values, and is far away
to intersect the A,, coefficient distribution. The combination of all the above facts validates the
assumptions we guessed to derive Eq. (4) from Eq. (3). Figure 5(c) shows that the relative
dispersion of the A, contributions increases when the number of output modes integrated by
the detector is smaller and smaller. The stagnation value (0.13 in Fig. 5(b)) can be reduced
by increasing the number of input modes taken into account. In our experiments in Fig. 3, the
number of modes inside the active surface of the photodiode was about 10°, which is clearly
enough to assume decorrelation between the different input modes.

6. Conclusions

We have demonstrated that computational techniques combined with single-pixel sensing en-
ables image reconstruction behind arbitrary scattering media, in contrast to charge-coupled
device cameras, where the pixelated structure of the sensor returns a noise-like speckle pattern.
Our approach does not require a previous calibration of the disordered media and permits to
retrieve images when we deal with dynamic scatterers. In contrast with techniques based on
measuring the transmission matrix, our technique does not need to characterize the scattering
medium, but operates on an intensity basis, thereby computing intensity distributions instead of
complex fields. Moreover, the use of compressive sensing is limited to scenes that are sparse on
the chosen basis. Different scenes may need different compression ratios (up to 1), which could
entail higher acquisition times depending on the object under study. Our implementation is a
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first step to tackle the general problem of imaging objects completely embedded in a scattering
medium. In parallel, our disordered-assisted single-pixel configuration shows straightforward
applications for image transmission through multimode fibers or to look around corners. In
addition, the operation principle of single-pixel imaging offers an ideal framework for using
dedicated sensors, such as fiber spectrometers, beam polarimeters, and avalanche photodiodes,
which can be employed to measure new physical imaging dimensions (wavelength, polariza-
tion, low-light intensity level, ...) of the sample under scrutiny.
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