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Term Structure Models with Shot Noise Effects

Raquel M. Gaspar1 and Thorsten Schmidt2

July 2007

Abstract

This work proposes term structure models consisting of two parts: a part which
can be represented in exponential quadratic form and a shot noise part. These term
structure models allow for explicit expressions of various derivatives. In particular,
they are very well suited for portfolio credit risk models and for the pricing of CDOs.
The goal of the paper is twofold. First, a number of key building blocks useful in term
structure modelling are derived in closed-form. Second, these building blocks are ap-
plied to single and portfolio credit risk. This approach generalizes Duffie and Gârleanu
(2001) and is able to produce realistic default correlation and default clustering. We
conclude with a specific model where all key building blocks are computed explicitly.

1 Introduction

The aim of this paper is to put forth a new class of term structure models, which general-
izes affine and jump-diffusion models and still allows for closed form solutions to prices of
numerous derivatives. This class is particularly suited to applications in single and portfolio
credit risk.

Using the framework of intensity-based models3 the proposed class combines the concept of
general quadratic term structure (GQTS) models put forth in Gaspar (2004) with a special
type of jump-processes, called shot noise processes. The obtained results show that shot
noise processes can be paired with any other, independent class of processes and we choose
GQTS for the following reasons: First, the considered factors need not to be Gaussian
as, e.g., is the case in Chen, Filipović, and Poor (2004). Second, they include affine term
structures as a special case. Third, the proposed framework naturally allows for negative
correlation of interest rates and default intensities, which is a rather delicate issue in affine
models, as pointed out in Chapters 5.8.2 and 5.8.3 of Lando (2004). Fourth, the quadratic
class is the largest polynomial class which can be considered without introducing arbitrage
opportunities (see Filipović (2002) or Gaspar (2004)).

On the other side, considering shot noise processes includes jump-diffusion models, like Duffie
and Gârleanu (2001), as special cases but allows for greater flexibility. In fact, we show how
to add several constant intensity jump processes with arbitrary decay rates to any given
quadratic diffusion component. Moreover, shot noise patterns are often evident from market
data (see Figure 1 for typical patterns of credit default swap (CDS) spreads and Figure 2
for a simulated path of a model of the proposed class). As argued in Mortensen (2006),
common jumps in intensities are an efficient way to reproduce observed correlation smiles in
the market. In particular, our setup allows to overcome a difficulty in Duffie and Gârleanu

1Advance Research Center, ISEG, Technical University of Lisbon, Rua Miguel Lupi 20, 1249-078 Lisboa,
PORTUGAL. Email: Rmgaspar@iseg.utl.pt

2Augustusplatz 10/11, 04109 Leipzig, GERMANY. Email: thorsten.schmidt@math.uni-leipzig.de
3See e.g. the survey Schmidt and Stute (2004) or one of the books Lando (2004), Bielecki and Rutkowski

(2002), McNeil, Frey, and Embrechts (2005) and Schönbucher (2003).
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Figure 1: 5-year credit spreads of General Motors (left) and Ford (right). The quoted
spread is in basis points and is shown from August 8th, 2005 to June 5th, 2006. Data-
source: Bloomberg.

(2001), as in the proposed class the mean-reversion speed of the diffusive and the jump
part can be adjusted separately. Finally, for the application to portfolio credit risk the shot
noise component allows to obtain a suitable dynamic dependence structure and produces
clustered defaults. Needless to say, capturing dynamic dependencies is one of the most
important points for modeling portfolio credit derivatives as collateralized debt obligations
(CDOs) or First-to-default swaps. In addition, a subclass of the proposed model allows for
separate calibration to single name and portfolio credit risk instruments, a useful property
in the pricing of portfolio products, see Proposition 4.3. Phrased in market language, the
marginal default distribution can be fixed first and the correlation between defaults can then
be independently adjusted. For other applications of shot noise processes in finance see, e.g.,
Altmann, Schmidt, and Stute (2007) and Dassios and Jang (2003).

A recent branch of affine models allows for direct contagion modelling, i.e. a default of one
firm has an immediate impact on the default intensity of the other firms. Pioneered by
Davis and Lo (2001), there are a number of approaches considering on this topic. We refer
to Collin-Dufresne, Goldstein, and Hugonnier (2004), Frey, Prosdocimi, and Runggaldier
(2007) and Frey and Runggaldier (2006). The model proposed in this paper excludes this
kind of direct contagion. Nonetheless, contagion effects are captured via the shot-noise part
as explained above. Being technically simpler, and still capturing typical default correlations,
the chosen approach seems to be very suitable for practical applications.

The main goals of this paper are:

• To use GQTS and shot noise processes to model default risk.

• To get explicit solutions (up to ODE systems solving) for all crucial expectations, here
called the credit risk building blocks.

• To use these building blocks to obtain key ingredients in credit risk, such as probabil-
ities of default and prices of risk-free and defaultable bonds, CDSs, etc.

• Finally, to propose a multi-firm setup which produces reasonable clustering of defaults
and realistic default correlation.
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The paper is organized as follows: in Section 2 we briefly review the GQTS. In Section 3 we
present the model and the key building blocks are derived. Section 4 shows the use of the
key building blocks providing several applications to the pricing of credit risk. In Section 5
we consider a three-factor model and provide all necessary expressions explicitly.

2 Risk-free bond market

For the risk-free bond market we use the GQTS setup studied in Gaspar (2004). This
setup assumes as given factors described by a Rm-valued stochastic process (Zt)t≥0 whose
dynamics, under the risk-neutral martingale measure Q, are of a special form. Furthermore,
it assumes that the risk-free rate of interest r is quadratic on those factors.

Assumption 2.1. W is an n-dimensional standard Brownian motion and Z is the unique
strong solution of

dZt = α(t, Zt)dt + σ(t, Zt)dWt.

Here α : R+ × Rm 7→ Rm and σ : R+ × Rm 7→ Rn×n are such that

α(t, z) = d(t) + E(t)z (1)

σ(t, z)σ>(t, z) = k0(t) +
m∑

i=1

ki(t)zi +
m∑

i,j=1

zi gij(t)zj (2)

with smooth functions d : R+ 7→ Rm, E, k0, ki and gij , i, j = 1, · · · , m map R+ to Rm×m.
Moreover, the risk-free short rate (rt)t≥0 is given by

r(t, Zt) = Z>t Q(t)Zt + g>(t)Zt + f(t). (3)

Q, g and f are smooth, mapping R+ to Rm×m, Rm and R. Q(t) is symmetric4 for all t.

We classify factors based on their impact on the drift, volatility or the short rate.

Definition 2.2. (Classification of risk-free factors)
• Zi is a risk-free quadratic-factor if it satisfies at least one of the following requirements:

(i) it has a quadratic impact on the short rate, i.e., there exists t such that Qi(t) 6= 0;

(ii) it has a quadratic impact on σσ>, i.e., there exist j and t such that gij(t) 6= 0;

(iii) it affects the drift term of the factors satisfying (i) or (ii), i.e., for some Zj

satisfying (i) or (ii) we have Eji(t) 6= 0, at least for some t.

• Zi is a risk-free linear-factor, if it does not satisfy any of (i)-(iii).

We write symbolically Zi ∈ Z(q), if Zi is a risk-free quadratic factor and Zi ∈ Z(l) otherwise.

Finally, based upon on the factor’s classification, it is possible to derive under what con-
ditions we will have a quadratic term structure of (zero-coupon) risk-free bond prices. To
explicitly get the term structure we will always have to solve what we will here define as
basic ODE system.

4The symmetry assumption is not restrictive. Any non-symmetric quadratic form can be rewritten in an
equivalent symmetric way with the advantage that the symmetric representation is unique.
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Definition 2.3. (Basic ODE System) Denote T := {(t, T ) ∈ R2 : 0 ≤ t ≤ T} and
consider functions A, B and C on T with values in R, Rm and Rm×m, respectively. For
functions φ1 and φ2, φ3 on R+ with values in R, Rm and Rm×m, respectively, we say that
(A,B,C, φ1, φ2, φ3) solves the basic ODE system if

∂A

∂t
+ d>(t)B +

1
2
B>k0(t)B + tr {Ck0(t)} = φ1(t)

∂B

∂t
+ E>(t)B + 2Cd(t) +

1
2
B̃>K(t)B + 2Ck0(t)B = φ2(t)

∂C

∂t
+ CE(t) + E>(t)C + 2Ck0(t)C +

1
2
B̃>G(t)B̃ = φ3(t)

subject to the boundary conditions A(T, T ) = 0, B(T, T ) = 0, C(T, T ) = 0. A,B and C
should always be evaluated at (t, T ). E, d, k0, are the functions from the above definitions
(recall (1)-(2)) while

B̃ :=




B 0 · · · 0
0 B · · · 0
...

. . .
0 · · · 0 B


 , K(t) =




k1(t)
...

km(t)


 , G(t) =




g11(t) · · · g1m(t)
...

. . .
...

gm1(t) · · · gmm(t)


 , (4)

where we have B̃, K(t) ∈ Rm2×m and G(t) ∈ Rm2×m2
.

The main result on risk-free bond prices’ term structure is the following.5

Result 2.4. (Gaspar) Suppose that Assumption 2.1 holds and factors in Z have been
reordered as Z = (Z(q), Z(l))>. If for ki and gij in (2) we have that

ki =




0 0

0 k
(ll)
i


∀ i and gij =




0 0

0 g
(ll)
ij


 ∀i, j s.t. Zi, Zj ∈ Z(q),

then the term structure of risk-free zero-coupon bond prices is given by

p(t, T ) = exp
[
A(t, T ) + B>(t, T )Zt + Z>t C(t, T )Zt

]

where (A, B,C, f, g,Q) solves the basic ODE system from Definition 2.3. Recall that f , g
and Q were given in Equation (3). Moreover, C has only quadratic factors.

3 Defaultable bond market

In this section we present the defaultable bond market. To this, we use the well-known
framework of doubly stochastic random times. For an introduction to this topic we refer to
McNeil, Frey, and Embrechts (2005) or Bielecki and Rutkowski (2002).

5For the proof and further details we refer to Gaspar (2004).
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3.1 Default events

The default intensity is modelled as a linear combination of GQTS and shot noise processes.
Throughout we assume Assumption 2.1 is in force6.

Assumption 3.1. (Default Events and Filtrations)
Consider a standard Poisson process Ñ with intensity l7. Denote the jumping times of Ñ
by τ̃1, τ̃2, . . . . The processes η, J and µ are strictly positive and follow

ηt = Z>t Q(t)Zt + g>(t)Zt + f(t) (5)

Jt =
∑

τ̃i≤t

Yih(t− τ̃i), (6)

µt = ηt + Jt. Here Q, g and f are smooth functions mapping R+ to Rm×m, Rm and R,
respectively. Q(t) is symmetric for all t. Yi, i = 1, 2, . . . are i.i.d., independent of W and Ñ
and h is a differentiable function on R+. The default time τ is a doubly stochastic random
time with intensity (µt)t≥0.

J is called a shot noise process.

Throughout, denote by FX the natural filtration generated by a generic process X. We
classify the market information according to the following filtrations: FW the informa-
tion about the diffusion factors; FJ the information about the jump factors; the filtra-
tion Ht := σ

(
1{τ>s} : 0 ≤ s ≤ t

)
, information on the default state; Ft := FW

t ∨ FJ
t =

σ (Zs, Js : 0 ≤ s ≤ t), information about all market factors and Gt := Ft ∨ Ht, the total
information. For future convenience, we also define

H(x) :=
∫ x

0

h(u) du, D(θ, x) :=
∫ 1

0

ϕ[θH(x(1− u))]du (7)

J(t, T ) :=
∑

τ̃i≤t

Yih(T − τ̃i), J̃(t, T ) =
∑

τ̃i≤t

YiH(T − τ̃i), (8)

where ϕ(θ) := E(exp(θY1)). Note that J(t, t) = Jt and we set J̃t := J̃(t, t).

Intuitively, the modeling of a quadratic component and a shot noise component leads to
the intensity being driven by a predictable component (the quadratic part) as well as by an
unpredictable component (the jump part). We note that both η and J are assumed to be
strictly positive. This assumption is needed because µ is supposed to be an intensity. This
point distinguishes classical interest rate models from reduced-form credit risk models in that
in contrast to interest rates, negative intensities show a model inconsistency. Unfortunately,
this is the case for some affine intensity models. Even if, through parameter restrictions,
positiveness can be guaranteed, this usually comes at the cost of a loss in flexibility. In
Proposition 3.3 we show that in our setting positivity can be guaranteed under very mild
assumptions. This is a crucial point in favor of quadratic processes over affine processes for
modelling the predictable part of the intensity.

For the shot noise part, Figure 2 shows a possible realization of J under h(x) = exp(−bx).
Note that for realistic modeling the decay factor b of the shot noise part is by far larger than
the mean reversion speed κ, which is a key improvement over affine jump-diffusions, as used
for example in Duffie and Gârleanu (2001).

2.2, we give an intensity classification of factors.
6Taking the same factors Z as for the risk-free process is no loss of generality.
7We assume that W and Ñ are adapted to a common filtration and hence are necessarily independent.
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Figure 2: Simulation of J with h(x) = e−bx for b = 30 (right) and b = 50 (left), χ2
2-

distributed Yi with additional quadratic part. The quadratic part is CIR with with mean
reversion speed κ = 0.5, mean reversion level θ = 1 and volatility σ = 2.

Definition 3.2. (Classification of intensity factors). We call Zi an intensity quadratic-
factor if it satisfies (ii) or (iii) in Definition 2.2 or it has a quadratic impact on η, i.e. ∃t ≥ 0
such that Qi(t) 6= 0; We call Zi an intensity linear-factor if it does not satisfy either of these.
We write Zi ∈ Z

(q)
η , Z

(l)
η for the quadratic and linear intensity factors, respectively8.

The next proposition gives a condition guaranteeing non-negativity of the default intensity.

Proposition 3.3. Assume that for all t ≥ 0, Q(qq)(t) is symmetric and nonnegative definite,
g(q)(t) lies in the subspace spanned by the columns of Q(qq)(t) and f(t) ≥ 0 . Denote by Z

(q)
η∗ (t)

the solution of Q(qq)(t)Z(q)
η (t) = − 1

2g(q)(t). Then η is non-negative, if the following holds9:

(i) for Zi ∈ Z
(l)
η , either Zi ≥ 0 and g

(l)
i ≥ 0 or Zi ≤ 0 and g

(l)
i ≤ 0,

(ii) for all t ≥ 0,
1
2
g(q)>Z

(q)
η∗ (t) + f(t) ≥ 0.

Proof. Let Zi be a linear factor, say Zi ∈ Z
(l)
η . As f ≥ 0, the result follows trivially from

the fact that, by Definition 3.2, Q(ll)(t) = 0 and Q(lq)(t) =
(
Q(ql)(t)

)>
= 0 for all t. For a

quadratic factor we need to study Q(qq) and g(q). Since Q(qq) is nonnegative definite, Z
(q)
∗

is the minimum of the polynomial Z
(q)>
η Q(qq)Z

(q)
η + g(q)>Z

(q)
η , and hence 1

2g(q)>Z
(q)
η∗ + f ≥ 0

guarantees nonnegativity. ¥

Typically, shot-noise processes are not Markovian. Still, from a computational point of view
Markovianity could be preferable. We provide a clear classification.

Proposition 3.4. Assume that for all x ∈ [0,∞) h(x) 6= 0. Then the process (Jt)t≥0 is
Markovian, if and only if h is of the form h(t) = ae−bt. In this case (J, η) is Markovian.

Proof. It is clear that for b = 0 the process is Markovian, so we need to consider the case
where h is not constant. Assume w.l.o.g. that h(0) = 1. To show that J is Markovian we
compute the conditional expectation. Consider s < t and recall FJ

t := σ{Js : s ≤ t}. Then

8We use the symbolic notation Z̄(q) = Z(q) ∪ Z
(q)
η and Z̄(l) = Z(l) ∩ Z

(l)
η , whenever the factors must be

ordered according to both their impact on r and on η.

9Here we use the following symbolic notation for g and Q: g =

(
g(q)

g(l)

)
, Q =

(
Q(qq) Q(ql)

Q(lq) Q(ll)

)
.
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EQ
[
Jt|FJ

s

]
=

Ñs∑

i=1

Yih(t− τ̃i) + EQ
[ Ñt−Ñs+Ñs∑

i=Ñs+1

Yih(t− τ̃i)
∣∣∣FJ

s

]
. (9)

As Ñ has independent increments and the Yi are identically distributed, we obtain

EQ
[∑Ñt−Ñs+j

i=j+1 Yih (t− τ̃i)
∣∣ Ñs = j

]
= EQ

[∑Ñt−s

i=1 Yih (t− τ̃i)
]

=: f(s, t).

Hence (9) =
∑Ñs

i=1 Yih(t− τ̃i)+f(s, t). As f(s, t) is deterministic, necessary for Markovianity
is that there exists a (measurable) function F (t, s, x), such that

∑Ñs

i=1 Yih(t− τ̃i) = F (t, s, Js) = F
(
t, s,

∑Ñs

i=1 Yih(s− τ̃i)
)

. (10)

Note that each Yi is independent of all the other appearing terms. We will exploit this
property to analyze the behavior of F . Fix j and consider (10) on the set {Ñt > j}. Taking
the conditional expectation of (10) w.r.t. Yj = y gives

EQ
(
yh(t− τ̃j) +

∑Ñs

i=1,i6=j Yih(t− τ̃i)
)

= EQ
(
F

(
t, s, yh(s− τ̃j) +

∑Ñs

i=1,i 6=j Yih(s− τ̃i)
))

.

Deriving w.r.t. y shows that

EQ
(
h(t− τ̃j)

)
= EQ

[
Fx

(
t, s, yh(s− τ̃j) +

∑Ñs

i=1,i 6=j Yih(s− τ̃i)
)
h(s− τ̃j)

]
,

where we denoted the partial derivative of F w.r.t. x by Fx. As the l.h.s. does not depend
on y, Fx(t, s, x) must be constant in x, and thus F must be of the form α(t, s) + β(t, s)x.
Examining F on the set {Ñt = 0}, we see that α(t, s) must necessarily be 0. In the next
step we determine β. From Equation (10) we obtain, for any i, h(t− τ̃i) = β(s, t)h(s− τ̃i).
Hence, β(s, t) = h(t − y)/h(s − y) for any y ≥ 0, and so b(s, t) = h(t)/h(s). From this
we have h(t − y)/h(s − y) = h(t)/h(s), for all t, s, y ≥ 0. By letting s = y we obtain
that h(t − y) = h(0)h(t)/h(y) and so h(t + y) = h(t)h(y)/h(0). We conclude h′(y) =
h′(0)h(y)/h(0). Therefore h is of the form ae−by.
For the converse, note that for h(y) = e−by,

∑Ñt

i=1 Yih(t − τ̃i) = h(t)
∑Ñt

i=1 Yih(−τ̃i), and
hence J is Markovian. Finally, independence of J and η implies Markovianity of (J, η). ¥

It is clear that Markovianity of µ itself only holds in very special cases. One well-known
case is, when η is affine, has mean reversion speed b and h(t) = exp(−bt).

Remark 3.5. In the Markovian case the terms in (7)-(8) simplify considerably. For h(x) =
e−bx we have that H(x) = 1

b

(
1− e−bx

)
. Thus, H(T − τ̃i)−H(t− τ̃i) = h(t− τ̃i)H(T − t),

as well as J̃t − J̃(t, T ) = −H(T − t) Jt.

3.2 Building blocks

In this section we give analytical expressions, up to the solution of ODE systems, of what
we consider key building blocks of credit risk models. We start with an important Lemma.

Lemma 3.6. Consider smooth G, F : R+ × Rm 7→ R where F (t, z) = φ1(t) + φ>2 (t)z +
z>φ3(t)z. Then,

EQ
[
G(ZT , T )e−

∫ T
t

F (s,Zs)ds|Ft

]
= g(t, Zt, T )eA(t,T )+B>(t,T )Zt+Z>t C(t,T )Zt , (11)
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where (A,B, C, φ1, φ2, φ3) solve the basic ODE system of Definition 2.3 and g the PDE




∂g

∂t
+

∑

i

∂g

∂zi
αi +

1
2

∑

ij

(
∂2g

∂zi∂zj
+

∂g

∂zi

∂h

∂zj
+

∂g

∂zj

∂h

∂zi

)
σiσj = 0

g(T, z, T ) = G(z, T ) .

Proof. Let y(t, Zt, T ) = EQ
[
G(T, ZT , T ) exp

(
− ∫ T

t
F (s, Zs)ds

)
|Ft

]
. Then{

∂y
∂t +

∑
i

∂y
∂z αi + 1

2

∑
ij

∂2y
∂zi∂zj

σiσj = Fy

y(T, z, T ) = G(z, T )
(12)

where all partial derivatives should be evaluated at (t, T ) and α and σ are the drift and
diffusion Z as defined in (2). Note that, if the above expectation is of the form y(t, z, T ) =
g(t, z, T )eA(t,T )+B>(t,T )z+z>C(t,T )z = g(t, z, T )eh(t,z,T ), z ∈ Rm, we have the following par-
tial derivatives

∂y
∂t = ∂g

∂t · eh + ∂h
∂t · g · eh = ∂g

∂t · eh + ∂h
∂t · y, ∂y

∂zi
= ∂g

∂zi
eh + g · ∂h

∂zi
· eh = ∂g

∂zi
eh + ∂h

∂zi
· y

∂2y
∂zi∂zj

=
[

∂2g
∂zi∂zj

· eh + ∂g
∂zi

∂h
∂zj

· eh + ∂g
∂zj

∂h
∂zi

eh + g
(

∂2h
∂zi∂zj

· eh + ∂h
∂zi

∂h
∂zj

· eh
)]

= ∂2g
∂zi∂zj

· eh + ∂g
∂zi

∂h
∂zj

· eh + ∂g
∂zj

∂h
∂zi

· eh + ∂2h
∂zi∂zj

· y + ∂h
∂zi

∂h
∂zj

· y

and (12) =





∂g
∂t · eh + ∂h

∂t · y +
∑

i

(
∂g
∂zi

eh + ∂h
∂zi

· y
)

αi+
1
2

∑
ij

(
∂2g

∂zi∂zj
· eh + ∂g

∂zi

∂h
∂zj

· eh + ∂g
∂zj

∂h
∂zi

· eh
)

σiσj

+ 1
2

∑
ij

(
∂2h

∂zi∂zj
· y + ∂h

∂zi

∂h
∂zj

· y
)

σiσj = Fy

y(T, z, T ) = G(z, T ).
By separation of variables (in eh and h terms) the above PDE is equivalent to the system{

∂h
∂t +

∑
i

∂h
∂zi

αi + 1
2

∑
ij

(
∂2h

∂zi∂zj
+ ∂h

∂zi

∂h
∂zj

)
σiσj = F

h(T, z, T ) = 0
(13)

{
∂g
∂t +

∑
i

∂g
∂zi

αi + 1
2

∑
ij

(
∂2g

∂zi∂zj
+ ∂g

∂zi

∂h
∂zj

+ ∂g
∂zj

∂h
∂zi

)
σiσj = 0

g(T, z, T ) = G(z, T )

To prove the result it remains to show that h(t, z, T ) = A(t, T )+B>(t, T )z+z>(t, T )z, with
A, B and C from the basic ODE system of Definition 2.3, solves the PDE (13). This follows

from ∂h
∂t = ∂Ā

∂t + ∂B̄
∂t

>
z + z> ∂C̄

∂t z, ∂h
∂zi

=
(
B̄i + 2C̄iz

)
, ∂2h

∂zi∂zj
= 2C̄ij and the fact that the

PDE (13) becomes a separable equation equivalent to the basic ODE system. ¥
We introduce the notion of an interlinked ODE system.

Definition 3.7. (Interlinked ODE system) Consider smooth functions a, b, c, B,C on
T with values in R, Rm,Rm×m, Rm and Rm×m, and smooth functions φ1, φ2 and φ3 on R+

with values in R, Rm and Rm×m respectively. We say that (a, b, c, B, C, φ1, φ2, φ3) solves
the interlinked ODE system if it solves

∂a

∂t
+ d>(t)b + B>k0(t)b + tr {ck0(t)} = 0 (14)

∂b

∂t
+ E>(t)b + 2cd(t) +

1
2
B̃>k0(t)b + 2ck0(t)B + 2Ck0(t)b = 0 (15)

∂c

∂t
+ cE(t) + E>(t)c + 4Ck0(t)c +

1
2
B̃>G(t)b̃ = 0 (16)
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subject to the boundary conditions a(T, T ) = φ1(T ), b(T, T ) = φ2(T ), c(T, T ) = φ3(T ).
a, b, c and B, C should always be evaluated at (t, T ). E, d, k0, are the functions from (2)
while B̃, K ∈ Rm2×m and G ∈ Rm2×m2

are as in (4).
The following theorem gives the building blocks for pricing credit derivatives in our setup.

Theorem 3.8. Let x = T − t and consider r as in (3), J as in (6), η as in (5) and
θ ∈ R. For (ii) we also require existence of D(θ, x) and for (v) that D is bounded in some
neighborhood of x. Then,

(i) Sη(θ, t, T ) := EQ
[
e−

∫ T
t

θηsds|FW
t

]

= exp
(
A(θ, t, T ) + B>(θ, t, T )Zt + Z>t C(θ, t, T )Zt

)

(ii) SJ(θ, t, T ) := EQ
[
e−

∫ T
t

θJsds|FJ
t

]
= exp

(
θ(J̃t − J̃(t, T )) + lx[D(θ, x)− 1]

)

(iii) S̄η(θ, t, T ) := EQ
[
e−

∫ T
t

rs+θηsds|FW
t

]

= exp
(
Ā(θ, t, T ) + B̄>(θ, t, T )Zt + Z>(t)C̄(θ, t, T )Zt

)

(iv) Γη(θ, t, T ) := EQ
[
θηT e−

∫ T
t

θηsds|FW
t

]

=
(
a(θ, t, T ) + b>(θ, t, T )Zt + Z>t c(θ, t, T )Zt

)
Sη(θ, t, T )

(v) ΓJ(θ, t, T ) := EQ
[
θJT e−

∫ T
t

θJsds|FJ
t

]

= SJ (θ, t, T )
{

θJ(t, T )− l ·
[
D(θ, x)(1− x)− 1 + xϕY

(
θH(x)

)]}

(vi) Γ̄η(θ, t, T ) := EQ
[
θηT e−

∫ T
t

rs+θηsds|FW
t

]

=
(
ā(θ, t, T ) + b̄>(θ, t, T )Zt + Z>t c̄(θ, t, T )Zt

) · S̄η(θ, t, T )

where (A, B, C, θf, θg, θQ) and (Ā, B̄, C̄, f + θf, g + θg, Q + θQ) solve the basic ODE
system of Definition 2.3, while (a, b, c, B, C, θf, θg, θQ) and (ā, b̄, c̄, B̄, C̄, θf, θg, θQ)
solve the interlinked system of Definition (3.7). Furthermore,

(vii) S(θ, t, T ) := EQ
[
e−

∫ T
t

θµsds|Ft

]
= Sη(θ, t, T )SJ(θ, t, T )

(viii) S̄(θ, t, T ) := EQ
[
e−

∫ T
t

rs+θµsds|Ft

]
= S̄η(θ, t, T )SJ(θ, t, T )

(ix) Γ(θ, t, T ) := EQ
[
θµT e−

∫ T
t

θµsds|Ft

]
= Γη(θ, t, T )SJ(θ, t, T ) + ΓJ(θ, t, T )Sη(θ, t, T )

(x) Γ̄(θ, t, T ) := EQ
[
θµT e−

∫ T
t

rs+θµsds|Ft

]
= Γ̄η(θ, t, T )SJ(θ, t, T ) + ΓJ(θ, t, T )S̄η(θ, t, T )

For the case θ = 1 we define the shorter notation, Sη(t, T ) := Sη(1, t, T ) and similarly for
all the other terms.

Proof. Note that (i) follows from (iii) and (iv) follows from (vi), taking f(t) = 0, g(t) =
0, Q(t) = 0 for all t, i.e. taking r to be identical zero.

(ii). Recall the notation of J̃ from (8). By definition,

SJ (θ, t, T ) = eθ(J̃t−J̃(t,T ))EQ
[
exp

(
−∑

τ̃i∈(t,T ] θYi

∫ T

t
1{τ̃i≤u}h(u− τ̃i) du

)
|FJ

t

]
. (17)
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Recall (7) and observe that EQ
[
exp

(−Y1θH
(
x(1− η1)

))]
=

∫ 1

0
ϕY

(
θH(x(1 − u))

)
du =

D(θ, x). The result follows noting that the expectation in (17) computes to

e−lx +
∞∑

k=1

e−lx (lx)k

k!
EQ

[
exp

(
−

k∑

i=1

YiθH
(
x(1− ηi)

)
)]

= elx(D(θ,x)−1). (18)

(iii). Again, by definition

S̄(θ, t, T ) = EQ
[
e−

∫ T
t (Z>s (Q+θQc(s))Zs+(g+θgc(s))>Zs+(f+θfc(s)) ds)|FW

t

]

= exp
{
Ā(θ, t, T ) + B̄>(θ, t, T )Zt + Z>t C̄(θ, t, T )Zt

}
.

From Result 2.4 it follows that (Ā, B̄, C̄, f + θf, g + θg, Q + θQ) solve the basic system of
ODEs from Definition 2.3.

(v). Recall the notations for J̃(t, T ) and J(t, T ) introduced in (8). Then

ΓJ (θ, t, T ) = EQ
[
θ
( ∑

τ̃i≤t Yih(T − τ̃i) +
∑

τ̃i∈(t,T ] Yih(T − τ̃i)
)
e−

∫ T
t

θJs ds
∣∣∣FJ

t

]

= θJ(t, T )SJ(θ, t, T ) + eθ(J̃t−J̃(t,T ))EQ
[
θ
∑

τ̃i∈(t,T ] Yih(T − τ̃i)e
−θ

∫ T
t

∑
τ̃i∈(t,s] YiH(s−τ̃i) ds

∣∣∣FJ
t

]

Letting J̃ t(s) :=
∑

τ̃i∈(t,s] Yih(s− τ̃i), we obtain that

EQ
[ ∑

τ̃i∈(t,T ] Yih(T − τ̃i)e
−θ

∫ T
t

∑
τ̃i∈(t,s] YiH(s−τ̃i) ds

∣∣∣FJ
t

]
= EQ

[
J̃ t(T )e−θ

∫ T
t

J̃t(s) ds
∣∣∣FJ

t

]
.

Note that H is continuous and recall (18). As D(θ, x) is bounded in a neighborhood of x,

we obtain ∂
∂xelx

(
D̃(θ,x)−1

)
= ∂

∂xE
Q
(
e−

∫ T
t

θJ̃t(s) ds
∣∣FJ

t

)
= −EQ

(
θJ̃ t

T · e−
∫ T

t
θJ̃t(s) ds

∣∣FJ
t

)
.

Using (7) we have ∂
∂xD(θ, x) =

∫ 1

0
ϕ′Y

(
θH(xu)

) ·θh(xu) ·u du = ϕY

(
θH(x)

)−D(θ, x). Thus,
∂
∂xelx

(
D(θ,x)−1

)
= elx

(
D(θ,x)−1

)
· l ·

[
D(θ, x)(1−x)−1+xϕY

(
θH(x)

)]
. Finally noticing that

e{θ(J̃t−J̃(t,T )}e{lx(D̃(θ,x)−1)} = SJ(θ, t, T ), we conclude.

(vi). Applying Lemma 3.6 with y(t, T ) = EQ
[
θηT e−

∫ T
t

ru+θηudu|FW
t

]
and G(T, z) =

θη(T, z) leads to EQ
[
G(ZT , T )e−

∫ T
t

rs+µsds|Gt

]
= g(t, Zt, T ) eĀ(t,T )+B̄>(t,T )Zt+Z>t C̄(t,T )Zt︸ ︷︷ ︸

S̄η(θ,t,T )

where g solves

{
∂g
∂t +

∑
i

∂g
∂zi

αi + 1
2

∑
ij

(
∂2g

∂zi∂zj
+ ∂g

∂zi

∂h
∂zj

+ ∂g
∂zj

∂h
∂zi

)
σiσj = 0

g(T, z, T ) = η(T, z).

It remains to show that g(t, z, T ) = ā(θ, t, T ) + b̄>(θ, t, T )z + z>c̄(θ, t, T )z solves the inter-
linked ODE system with (ā, b̄, c̄, B̄, C̄, f + θf, f + θf, f + θf). To see this, simply compute
∂g
∂t = ∂ā

∂t + ∂b̄
∂t z + z> ∂c̄

∂t z , ∂g
∂zi

= b̄i + 2c̄iz , ∂2g
∂zi∂zj

= 2c̄ij .
Then, replacing all these partial derivatives and using equations (5) and (2) for η, α and
σσ>, we get an equivalent PDE, which in vector notation becomes10




∂ā
∂t + ∂b̄

∂t z + z> ∂c̄
∂t z + d>b̄ +

(
E∗b̄

)
z + (2c̄d) z + 1

2

[
B̄>k0b + 2 tr {c̄K0}+

(
˜̄B>Kb̄

)
z
]

+z> (c̄E) z + z> (E∗c̄) z + 1
2

[(
2C̄k0b̄ + 2c̄k0B̄

)
z + z>

(
4C̄k0c̄

)
z + z>

(
˜̄BG˜̄b

)
z
]

= 0
g(T, z, T ) = θη(T, z)

10Terms of order higher than two are omitted from the equation since the final solution must set those
terms equal to zero and they are hard to write in vector notation.
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This PDE is separable into terms independent of z, linear in z and quadratic in z and is
equivalent to the interlinked ODE system of Definition 3.7. For the boundary conditions,
we note g(T, z, T ) = θη(T, z), thus ā(θ, T, T ) + b̄>(θ, T, T )z + z>c̄(θ, T, T )z = z>Q(T )z +
g>(T )z+ f(T ) and this implies ā(θ, T, T ) = θf(T ), b̄(θ, T, T ) = θg(T ) and c̄(θ, T, T ) = θQ(t).
we conclude with Γ̄(θ, t, T ) =

(
ā(θ, t, T ) + b̄>(θ, t, T )z + z>c̄(θ, t, T )z

) · S̄η(θ, t, T ).
(vii)− (x) follow from (i)− (vi) by independence of W and FJ and with µ = η + J . ¥

The up to now computed expressions were of general interest and may be applied to any
term structure. For example, it is now straightforward to compute bond prices in a (risk-
free) quadratic shot noise term structure model. However, the next section applies Theorem
3.8 to credit risk, which has been the paper’s main motivation.

4 Applications to the pricing of credit risk

4.1 Single name issues

Based on the building blocks of the previous section we are able to obtain a number of
formulas relevant for pricing credit risk:

Survival probabilities. The survival probabilities are the key ingredient for pricing sev-
eral credit risky securities. On {τ > t}, they equal

Q [τ > T |Gt] = EQ
[
exp(−

∫ T

t

ηu + Ju du)
∣∣∣Ft

]
= Sη(t, T )SJ(t, T ) = S(t, T ). (19)

Defaultable bond prices under zero recovery. The price of zero coupon bond under
zero recovery computes similarly. On {τ > t} it equals

p̄0(t, T ) := EQ
[
exp

(
−

∫ T

t

ru + ηu + Judu
)∣∣∣Ft

]
= S̄η(t, T )SJ(t, T ) = S̄(t, T ).

Default digital payoffs. Evaluating a payment directly at τ typically involves computing

e(t, T ) := EQ
[
µT e−

∫ T
t

ru+µudu|Ft

]
= Γ̄(t, T ).

Note also that e(t, T ) = EQ
[
µT e−

∫ T
t

ru+µudu|Gt

]
= p̄0(t, T )ĒT [µT |Gt] where ĒT is the

expectation under the T -survival measure. Furthermore, the expected value of the intensity
under the T -survival measure computes to

ĒT
(
µT |Ft

)
=

Γ̄(t, T )
p̄0(t, T )

=
Γ̄η(t, T )SJ (t, T ) + ΓJ(t, T )S̄η(t, T )

S̄η(t, T )Sj(t, T )
.

Recovery. With the survival probability at hand it is easy to consider bond prices under
recovery of treasury or similar schemes. Here, we therefore concentrate on recovery of market
value (RMV). It is well known, that a T -defaultable asset X under RMV has the price

π̄RMV (t) = 1{τ>t}EQ
[
e−

∫ T
t

rs+qµsdsX|Ft

]
+ 1{τ≤t}e

∫ t
τ

rs ds (1− q) π̄RMV (τ−),

11



where q is the loss quote and π̄RMV (τ−) is its pre-default value. The expectation equals

EQ
[
e−

∫ T
t

rs+qµsds|Ft

]
= S̄η(q, t, T )SJ(q, t, T ) = S̄(q, t, T ).

If we would like to include random recovery, independent of all the other factors, the result
holds with EQ(q) instead of q.

As a next step we consider default digital puts (DDP) and credit default swaps (CDS). The
CDS is the most liquid credit risky product, so pricing formulas are necessary for calibration
to real data. For further examples we refer to Gaspar (2006).

Default Digital put. A DDP pays 1 directly at default if default happens before or at
T . Its value at time t (given no previous default) is

EQ
[
e−

∫ τ
t

ru du1{τ<T}
∣∣Gt

]
= EQ

[ ∫ T

t

exp
(
−

∫ s

t

ru + µu du
)
µs ds

∣∣∣Ft

]
=

∫ T

t

Γ̄(t, s)ds .

Credit Default Swap. Entering a CDS obliges to the exchange of the following payments
at the payment dates T1 < T2 < · · · < TN :

- Fixed leg: pays s̄ · (Ti − Ti−1) if there was no default in (Ti−1 − Ti] (and previously)

- Floating leg: pays11 the difference between the nominal value and the recovery value
if default occurred in (Ti−1, Ti].

At the contract time t, the spread s̄(t) of the CDS is determined in such a way that the
initial value of the CDS is zero. The spread remains fixed such that as time passes by the
value of the CDS is typically not zero. For simplicity, we take the nominal value to be 1.
The value at time t of the fixed leg is then s̄

∑N
i=1(Ti − Ti−1)p̄0(t, Ti) .

To compute the floating leg, we need the value of 1 unit of money payed at Tn if default
happens in (Ti−1, Ti], which we denote by e∗(t, Ti−1, Ti). Although e∗(t, Ti−1, Ti) is not one
of the building blocks, it is closely related to e:

e(t, Ti) = lim
Ti−1→Ti

1
Ti − Ti−1

e∗(t, Ti−1, Ti).

A generalization of Theorem 3.8 gives e∗(t, Ti−1, Ti) explicitly (see Proposition A.1 in the
appendix) and the credit spread s̄(t) becomes

s̄(t) = q

( N∑

i=1

e∗(t, Ti−1, Ti)
)( N∑

i=1

(Ti − Ti−1)p̄0(t, Ti)
)−1

. (20)

4.2 Portfolio credit risk

In this section, we consider defaultable securities issued by several companies k = 1, · · · , K̄.
We assume that each company may default at most once and denote the default time of
company k by τk. Set k =

{
1, · · · , K̄

}
.

11Alternatively to paying the default payment at a time Ti (and possibly including accrued interest) one
may consider a payment directly at τ . It is an easy exercise to compute this price using Theorem 3.8.
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Assumption 4.1. Consider i.i.d. processes µi, i ∈ k ∪ {c}, of the form quadratic12 plus
jump, i.e. µi

t = ηi
t + J i

t and

J i
t =

∑

τ̃ i
j≤t

Y i
j hi(t− τ̃ i

j), ηi
t = Z>t Qi(t)Zt + gi(t)>Zt + fi(t).

τk, k = 1, . . . , K̄ are doubly stochastic random times with intensities λk = µk + εkµc with
εk ∈ R+. Furthermore, the risk-free short rate r is independent of any µk but not necessarily
of the common intensity µc.

Incorporating different factors for different sectors is straightforward. We note that in the
multi-firm setup the building blocks will have firm-specific as well as common components.
However, since firm-specific and common factors are, by definition, independent this does
not represent an increase in computational difficulty. The next remark exemplifies, with
survival probabilities, how easy it is.

Remark 4.2. The survival probability of company k equals, on {τ > t},

Q(τ > T |Ft) = EQ

(
exp

[
−

∫ T

t

(µk
s + εkµc

s) ds
]∣∣∣Ft

)

= EQ

(
exp

[
−

∫ T

t

µk
sds

]∣∣∣Ft

)
EQ

(
exp

[
− εk

∫ T

t

µc
s ds

]∣∣∣Ft

)
= Sk(t, T )Sc(εk, t, T ).

The higher εk the bigger is the dependence of company k on the common default risk driver
µc. For intuition take εk ≡ ε. Then, if µc jumps, suddenly the default risk of all companies
increases a lot and we will see numerous defaults. The nature of the shot noise process allows
to pull back the intensity to usual levels quite fast, which will lead to clusters of defaults.
This mimics contagion effects. On the other hand, an effect like this can also be caused
by a rise in the quadratic part to a high level, but then it is more or less predictable in
turn yielding something like a business cycle effect, such that on bad days more companies
default than on good days.

Default Correlation. The quadratic-shot noise model offers more flexibility than Duffie
and Gârleanu (2001). In affine model considered in Duffie and Gârleanu (2001) the mean-
reversion speed applies to the jump and to the diffusive part simultaneously, leading to
either unrealistic high mean-reversion levels or to too low default correlations. In contrast,
the quadratic-shot noise approach allows to address the mean reversion speed separately and
leads to a better empirical fit. As will be shown in the next section, the proposed concrete
model is able to produce realistically high default correlation for reasonable parameter values.
The default correlation of name i and j is defined by ρi,j(t, T ) := corr

(
1{τi≤T},1{τj≤T}|Ft

)
.

From Theorem 3.8 we obtain

ρi,j(t, T ) =

√
Si(t, T )Sj(t, T )

[
Sc(εi + εj , t, T )− Sc(εi, t, T )Sc(εj , t, T )

]
√

(1− Si
D(t, T ))(1− Sj(t, T ))

. (21)

The pricing of portfolio credit derivatives as First-to-Default Swaps and CDOs, using the
above setup, is treated in Gaspar and Schmidt (2008).

12We note that to get indepence of µi we also need, in particular, independence of ηi. Given that we are
dealing with the same Z state variables independence is achieved imposing, for a given i, that if we have
(Qi)j 6= 0 or (gi)j 6= 0, then (Qi)j = 0, (gk)j = 0 for all k 6= i. In words, any element in Z can only appear
in one ηi.
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Calibration issues. Calibrating a portfolio of credit names to market data typically in-
volves calibrating to single name derivatives as well as to portfolio products. Of course,
it is possible to make a full calibration over all prices. However, it might be preferable to
calibrate to single name derivatives first and in a second step fit to the portfolio products.
For example, this allows to test different dependence scenarios, keeping the marginals fixed
and changing the dependence structure. We therefore discuss in detail, how this can be
achieved in our setting. A simple calculation shows that the factor approach is not suitable
for this, as the nonlinearity in D interferes with linear dependence on ε in the other term.
As proposed already in Duffie and Gârleanu (2001), a way out is to consider λk to be a sum
of independent, but not identically distributed quadratic-shot noise models. The main tool
is the following result, which is an extension of Proposition 1 in Duffie and Gârleanu (2001).

We say that the process µ is quadratic-shot noise with parameters (Q, g, f, l, h, FY ) if it is
as in Assumption 3.1; FY denotes the distribution of Y1.

Proposition 4.3. Consider two independent processes µ1 and µ2, both quadratic-shot noise
with parameters (Q1, g1, f1, l1, h, FY1) and (Q2, g2, f2, l2, h, FY1), respectively. Set q := l1(l2 +
l2)−1. Then µ1 + µ2 is also quadratic shot-noise with parameters (Q1 + Q2, g1 + g2, f1 +
f2, l1 + l2, h, qFY1 + (1− q)FY2).

Proof. The result for the quadratic part immediately follows from (5). For the shot noise

part, observe that the shot noise part of µi is
∑Ni

t
j=1 Y i

j h(t − τ i
j). Set J̃t :=

∑N1
t

j=1 Y 1
j h(t −

τ1
j )+

∑N2
t

j=1 Y 2
j h(t−τ2

j ). Then the jump times from J̃ have the same distribution as the jump
times from a Poisson process with intensity l1+l2. Furthermore, the jumps have distribution
FY1 with probability q and FY2 with probability 1 − q, i.e. J̃ has the same distribution as
a process

∑Nt

j=1 Yj(t − τj), where N is a Poisson process with intensity l1 + l2, Yi are i.i.d.
and Q(Y1 ≤ x) = qFY1(x) + (1− q)FY2(x). ¥

With this result at hand, one can choose the parameters in such a way that the marginals
are kept fixed and the dependence structure changes.

For a calibration of this model one therefore may interpolate (for each name) between every
parameter except h. However, in typical cases one would rather leave Q, g, f as well as FY

untouched and vary li to have the largest impact on the default correlation. To illustrate
the concept, we give a more concrete example in the following section.

5 A concrete model

In this section we illustrate the results derived in the previous sections with a concrete
three-factor model. Consider Z =

(
Z1, Z2, r

)> as the state variable with Q-dynamics

dZi
t =

[
βi(t)− αiZ

i
t

]
dt + σidW i

t , i = 1, 2
drt = αr [βr − rt] dt + σr

√
rtdW r

t

where αi, σi, for i = 1, 2, r and βr are constants, while βi(·) are functions of t and W 1, W 2

and W r are independent Q-Wiener processes.

Factor approach. We will analyze two firms, denoted 1 and 2. Each firm’s intensity
is driven by firm-specific as well as common factors in accordance with Assumption 4.1.
Consider ε1, ε2 ∈ R. The default intensity λk of company k, k = 1, 2 is λk

t = µk
t + εkµc

t

14



with µk
t = ηk

t =
(
Zk

t

)2, µc = Jc + δr and Jc
t =

∑
τ̃i<t Yih(t − τ̃i), where Yi ∼ χ2(2),

h(t) = e−bt, b > 0 and τ̃i are jumps of a Poisson process with intensity lc.

Figure 3 shows simulated default times for different choices of εi. The left plot has εi = 0.1
while the right plot has εi = 0.5. Especially the plot on the right hand side shows a strong
dependence of the two default times which is due to the shot-noise part and mimics contagion
effects.

We present all the necessary formulas and refer to Gaspar (2006) for full details. In the
following we have k = 1, 2 and always set x := T − t. We compute all building blocks:

• Sk(θ, t, T ) = Sk
η (θ, t, T ) and

Sk(θ, t, T ) =

√
2γke(γk+αk)x

(γk + αk)(e2γkx − 1) + 2γk
× exp

{
θ
[
1− e2γkx

]

(γk + αk) [e2γkx − 1] + 2γk

(
Zk

t

)2

}

× exp

{
−

∫ T

t

(
βk(s)Bk(θ, s, T ) +

1
2
σ2

k

(Bk(θ, s, T )
)2

)
ds + Bk(θ, t, T )Zk

t

}
,

where γk =
√

α2
k + 2θσ2

k and Bk is

Bk(t, T ) =
[
2(αk + γk)(e2γkx − 1) + 4γk

]1/2σ2
k

∫ T

t

4βk(s)θe
(

αk+ θ
γk−αk

)
(s−t)(1− e2γk(T−s))

[
2(αk + γk)(e2γk(T−s) − 1) + 4γk

]1+ 1
2σ2

k

ds.

•Sc
η(θ, t, T ) =

(
2γ∆e(γ∆+αr) x

2

(αr + γ∆)[eγ∆x − 1] + 2γ∆

)2αrβr

σ2
r exp

{(
2∆ [1− eγ∆x]

(γ∆ + αr) [eγ∆x − 1] + 2γ∆

)
rt

}

where we set γ∆ =
√

α2
r + 2σ2

r∆ and ∆ = θδ. Similarly, S̄c
η is obtained by replacing ∆ by

∆̄ = (1 + θδ) in the above expression.

• For Sc
J(θ, t, T ) we will make use of the Laplace transform of the χ2(ν) distribution13 with

ν = 2. Dc(θ, s) = 1
b+2θ

[
b + 1

s ln
(
1 + 2θ

b (1− e−bs)
)]

and we find

Sc
J (θ, t, T ) =

[
1 +

2θ

b

(
1− e−bx

)] lc

b + 2θ exp
{

Jt

b

(
e−bx − 1

)− 2θx · lc
b + 2θ

}
.

• Γk(θ, t, T ) = Γk
η(θ, t, T ) = Sk

η (θ, t, T ) exp
(
ak(θ, t, T ) + bk(θ, t, T )Zk

t + ck(θ, t, T )
(
Zk

t

)2
)

with

ak(θ, t, T ) = −
∫ T

t

βk(s) + σ2
kBk(s, T )bk + σ2

kck(s, T )ds

bk(θ, t, T ) = −2
∫ T

t

e
∫ s

t
αk−2σ2

kCk(u,T )du
(
βk(s)− σ2Bk(s, T )

)
ck(s, T )ds

ck(θ, t, T ) =
θ [(γk + αk)(eγkx − 1) + 2γk]

γke(γk+3αk)x
,

13Recall that for u ≥ 0 the Laplace transform of random variable which has χ2 distribution with ν degrees

of freedom, equals 14, ϕχ2
ν
(u) = E(e−uχ2

ν ) = (1 + 2u)−ν/2.

15



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Simulated defaults of two companies according to the concrete model. To
compare to copula simulations, the data is transformed to [0, 1] using the marginal dis-
tributions. Parameters are for i = 1, 2: βi = 1, αi = 0.5, σi = 0.2, lc = 2, b = 0.5.
Yi ∼ χ2(2) and r = 0. The left picture if for εi = 0.1, the right εi = 0.5.
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Figure 4: Model parameters:α = 0.5, β = 0.1α, σ = 0.1,b = 0.5. The Graph shows the
correlation for varying ε = ε1 = ε2 (left, lc = 1) and l = lc (right, = ε1 = ε2 = 0.4).

Bk as above and Ck(θ, t, T ) = θ
[
1− e2γkx

] · [(γk + αk)
[
e2γkx − 1

]
+ 2γk

]−1.

• Γc
η(θ, t, T ) = Sc

η(θ, t, T ) exp
{

a(∆, t, T ) +
(

θ[(αr+γ∆)(eγ∆x−1)+2γ∆]

2γ∆e(3αr+γ∆) x
2

)
rt

}
,

where a(∆, t, T ) =
∫ T

t
αrβrb(∆, s, T )ds. Recall that ∆ = θδ and ∆̄ = 1 + θδ. Similar as

above, we obtain Γ̄c
η replacing ∆ by ∆̄.

• Finally, since Jc(t, T ) =
∑

τ̃i≤t Yie
−b(T−τ̃i) we have that Γc

J(θ, t, T ) equals

Sc
J(θ, t, T )

{
θJc(t, T )− lc

[
1

2+bθ

(
b + 1

x ln
(
1 + 2θ

c (1− e−bx
))

(1− x)− 1
]

+ x
1+ 2θ

b (1−e−bx)

}
.

As mentioned before, these building blocks, now computed in closed-form (up to some
numerical integrations) are sufficient to derive all relevant expressions for credit risk: survival
probabilities, prices of credit derivatives, correlations, etc. In Figure 4 we use the above
expressions and Equation (21) to illustrate the default correlation in this concrete model.

Separate calibration of marginals and dependence structure. Alternatively, the
above formulas may be used to separately calibrate marginals and dependence structure,
as mentioned previously. For ease of notation we consider r = 0 and l1 = l2 = l. The
default intensity is λk

t = µ1
t + µ2

t , where µi
t = (Zi

t)
2 + Jc

t + J i
t are quadratic-shot noise,

J i
t =

∑
τ i

j≤t Y i
j h(t − τ i

j), i = 1, 2, c are independent shot noise processes with intensities

li, i = 1, 2, c. The fraction lc/li+lc corresponds to the fraction of common jumps attributed
to obligor i. The key building in this case are obtained similar as above.
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A Appendix: an auxiliary result

Proposition A.1. We have the following

e∗(t, Tn−1, Tn) = p̄o(t, Tn−1)eα(t,Tn−1,Tn)+β>(t,Tn−1,Tn)Zt+Z>t γ(t,Tn−1,Tn)Zt − p̄o(t, Tn),

where α, β and γ are deterministic functions and solve the following system of ODE




∂α

∂t
+ d>(t)β +

1
2
β>k0(t)β + tr γk0(t) + β>k0(t)B̄ = 0

α(Tn−1, Tn−1, Tn) = A(Tn−1, Tn)




∂β

∂t
+ E>(t)β + 2γd(t) +

1
2
β̃>K(t)β + 2γk0(t)β

+2C̄k0(t)β + 2γk0(t)B̄ + β̃>K(t)B̄ = 0

β(Tn−1, Tn−1, Tn) = B(Tn−1, Tn)




∂γ

∂t
+ γE(t) + E>(t)γ + 2γk0(t)γ +

1
2
β̃>G(t)β̃

+4C̄k0(t)γ + ˜̄B>G(t)β̃ = 0

γ(Tn−1, Tn−1, Tn) = C(Tn−1, Tn)

A, B and C are from Result 2.4, while B̄ and C̄ are from Theorem 3.8. α, β, γ should be
evaluated at (t, Tn−1, Tn) and B̄, C̄ at (t, Tn−1).

Proof. The expected discounted value of 1, payed at Tn, if τ ∈ (Tn−1, Tn] is

e∗(t, Tn−1, Tn) = EQ
[
e−

∫ Tn
t

rsds
(
1{τ>Tn−1} − 1{τ>Tn}

)∣∣∣Gt

]

= EQ
[
e−

∫ Tn
t

rsds−∫ Tn−1
t µsds

∣∣∣Ft

]
− p̄0(t, Tn).

Furthermore, for the remaining expectation we have that

EQ
[
e−

∫ Tn
t

rsdse−
∫ Tn−1

t µsds
∣∣∣Ft

]
= EQ

[
e−

∫ Tn−1
t rs+µsdsp(Tn−1, Tn)

∣∣Ft

]

= EQ
[
e−

∫ Tn−1
t rs+ηsdsp(Tn−1, Tn)

∣∣FW
t

]
EQ

[
e−

∫ Tn−1
t Jsds

∣∣FJ
t

]
,

because of the independence between (J) and the other terms. The last expectation was com-
puted in Theorem 3.8. So it remains to show that EQ

[
e−

∫ T1
t rs+ηsdsp(T1, T2)|FW

t

]
=

= eα(t,T1,T2)+β>(t,T1,T2)Zt+Z>t γ(t,T1,T2)Zt · eĀ(t,T1)+B̄>(t,T1)Zt+Z>t C̄(t,T1)Zt .

We imitate the proof of Lemma 3.6 and the notation from therein may be recalled. In
particular, we need to specify G and we use the ansatz y(t, z, T1) = g(t, z, T1)eh(t,z,T1).
From Result 2.4 we have that p(T1, T2) = exp

(
A(T1, T2) + B>(T1, T2)ZT1 + Z>T1

C(T1, T2)
)

thus, we set G(T1, ZT1 , T2) = p(T1, T2). We find that
{

∂g
∂t +

∑
i

∂g
∂zi

αi + 1
2

∑
ij

(
∂2g

∂zi∂zj
+ ∂g

∂zi

∂h
∂zj

+ ∂g
∂zj

∂h
∂zi

)
σiσj = 0

g(T1, z, T1, T2) = G(T1, ZT1 , T2) .

Finally, we note g(T1, z, T2) = exp
(
α(T1, T2) + β>(T1, T2)Zt + Z>t γ(T1, T2)Zt

)
,

∂g
∂t =

(
∂α
∂t + ∂β

∂t z + z> ∂γ
∂t z

)
g, ∂g

∂zi
= (βi + 2γiz) g, ∂2g

∂zi∂zj
= [2γij + (βi + 2γix) (βj + 2γjx)] g .

Replacing these in the above PDE, as well as αi and σiσ
>
j from (2), leaves us with a PDE

which is separable and solves the required ODEs given in the proposition. ¥
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