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Abstract 

The Hidden Layer Learning Vector Quantization (HLVQ), a recent algorithm for training 

neural networks, is used to correct the output of traditional MultiLayer Preceptrons 

(MLP) in estimating the probability of company bankruptcy. It is shown that this method 

improves the results of traditional neural networks and outperforms substantially the 

discriminant analysis in predicting one-year advance bankruptcy. We also studied the 

effect of using unbalanced samples of healthy and bankrupted firms.  

The database used was Diane, which contains financial accounts of French 

firms. The sample is composed of all 583 industrial bankruptcies found in the database 

with more than 35 employees, that occurred in the 1999-2000 period. For the 

classification models we considered 30 financial ratios published by Coface1 available 

from Diane database, and additionally the Beaver (1966) ratio of Cash Earnings to 

Total Debt, the 5 ratios of Altman (1968) used in his Z-model and the size of the firms 

measured by the logarithm of sales. Attention was given to variable selection, data pre-

processing and feature selection to reduce the dimensionality of the problem. 
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1. Introduction 

Financial distress prediction is of extreme importance for banks, insurance firms, 

creditors, and investors. The problem is stated as follows: given a set of parameters, 

mainly of financial nature, which describes the situation of a company over a given 

period, and eventually some macro-economic indicators, how can we predict if a 

company may become bankrupt during the following year? 

Since the work of Beaver (1967) and Altman (1968) there has been 

considerable interest in using financial ratios for predicting financial distress in 

companies. Using univariate analysis, Beaver concluded that Cash Earnings to Total 

Debt was the best ratio for signalling bankruptcy and Altman (1968, 1977) pioneered 

the use of multiple discriminant analysis in predicting bankruptcy. Since then, 

discriminant analysis has become a standard approach for predicting financial distress. 

However, it has been criticised due to its restrictive assumptions (Eisenbeis, 1977; 

Altman and Eisenbeis, 1978; Scott, 1978; Karels and Prakash, 1987) as it requires a 

linear separation between the distressed and healthy firms and the ratios are treated as 

independent variables.  

Non-linear models, such as the logit (Martin, 1977; Zavgren, 1985) and the 

probit (Amemiya and Powell,1983),  were used not only for classification but also for 

estimating the probability of bankruptcy (McFaden 1976; Press and Wilson, 1978; 

Ohlson, 1980 and Lo, 1986). However, these models also contain several limitations. 

First the choice of the regression function is a strong bias that restricts the outcome. 

Second, these methods are very sensitive to exceptions, which are very common in 

bankruptcy prediction with atypical firms seriously compromising the predictions. Third, 

most of the conclusions, like the confidence intervals, have an implicit Gaussian 

distribution, which does not hold for many cases. Although these methods may achieve 

low errors on the training data, they perform badly on generalization. 
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Non-parametric models (Stein e Ziegler, 1984 and Srinivasan and Kim, 1987) or 

linear programming (Gupta, Rao and Bagchi, 1990) have also been applied for 

bankruptcy classification, while a more recent avenue of research is the use of neural 

networks. Marose (1990), Barker (1990) and Berry and Trigueiros (1990) show that 

neural network is a complementary tool for the credit risk classification problem. Udo 

(1993) and Tsukuda and Baba (1994) show a higher overall efficiency of artificial 

neural networks (ANN). However, they did not present any statistical test for the 

predicted accuracy. Several authors (Coats and Fant, 1993; Wilson and Sharda, 1994; 

Yang, 1999; Tan and Dihardjo, 2001) found that ANN is a promising and robust 

technique that outperforms discriminant analysis in bankruptcy prediction. Results are 

however not conclusive as Altman, Marco and Varetto (1994) conclude that neural 

networks have lower generalization capability compared with traditional discriminant 

analysis, even if they are more effective at the end of learning cycle. All authors agree 

on the need for further research on new network topologies, training algorithms, 

learning methods, and combining techniques to achieve higher predictive capabilities.  

In this work we present a modification of a recent neural network method, 

Hidden Layer Learning Vector Quantization (HLVQ), and analyze its efficiency against 

traditional neural network methods and discriminant analysis models, using a sample of 

French companies. This database is larger than most used in previous studies, which 

is a factor for improving the results. 

The next section describes artificial neural networks in general and Section 3 

presents the HLVQ method and how it is used to correct the output of a multilayer 

preceptron. Section 4 discusses the methods used for assessing the predictive 

capabilities of neural network and introduces a modification of the performance 

measure to evaluate the efficiency of early warning models proposed by Korobow and 

Sthur (1985). This section also describes the methods and criteria used on the multiple 

discriminant analysis that serves as a benchmarking for efficiency of ANN in general, 
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and HLVQ in particular, for the classification of the sample firms. Section 5 describes 

the data used in the research, Section 6 presents the results, and finally Section 7 

contains the conclusions. 

 

2. Artificial Neural Networks  

Artificial Neural Networks (ANN’s) are a set of algorithms inspired by the human brain’s 

distributed architectures and parallel processing capabilities. ANN’s are essentially 

multiple regression machines capable of learning directly from examples, requiring 

almost no prior knowledge of the problem. Data classification can be considered a 

regression problem, finding a function that maps an input into the corresponding class 

that minimises the misclassification rate. ANN’s have intrinsic non-linear regression 

capabilities that make them highly competitive on difficult classification problems 

(Bishop, 1996). 

 The main advantage of ANN for the analyst is the reduction in unnecessary 

specification of the functional relation between variables. They are connectionist-

learning machines where knowledge is imbedded in a set of weights connecting arrays 

of simple processing nodes called neurons. While ANN requires little knowledge of the 

problem, it is crucial to have large sets of “good quality” examples to properly train the 

network, i.e., representative and error-free data. 

 Classification of high dimensional data is a difficult task for statistical techniques, 

and for ANN as well, due to the well-known curse of dimensionality. The cause of this 

problem is due to data sparseness as the dimensionality of search space increases. If, 

for instance, a data point is characterized by 10 variables, each quantized in 10 states, 

the number of possible configurations of the input state is 1010 and a large set of 

training data will be necessary to cover this huge search space. Every time a new 

variable is added, the size of the search space grows by a factor of ten. Of course this 
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is a pessimistic estimate as most variables are correlated and the regression functions 

are smooth enough so that a reasonable estimate can be achieved from few points.  

 In general, training a network requires very large data samples, which may be 

difficult to obtain for the bankruptcy problem. For the bankruptcy prediction problem it is 

dubious to extract conclusions from a neural network trained with one or two hundred 

observations, as was reported by some authors previous mentioned in the literature 

review. As a rule of thumb the neural network should have a number of connection 

weights not much higher than 1/10 of the sample size available for training. In this work 

we use between 1 000 and 2 000 cases corresponding to 100 and 200 weights.  

 Learning can be either supervised or unsupervised. Although the former is always 

preferable, sometimes the latter is used as a clustering algorithm to reduce the 

complexity of the problem. In neural networks supervised learning is usually performed 

by Multi-Layer Preceptrons (MLP) with a single hidden layer. The most common 

method of training is back-propagation with a momentum term. Although other training 

algorithms are available, in most situations the results are hardly distinguishable. 

 The error function used is the Sum of Square Error (SSE):  
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unipolar activation function was used for the output. 
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where 1 means a bankrupted and 0 a healthy firm.  

There are two types of errors in classification problems. Type I error is the 

number of cases classified as healthy when they are observed to be bankrupted (N10), 

divided by the number of bankrupted companies (N1):  

1

10

N
N

eI = . 
 

(1) 

Type II error is the number of companies classified as bankrupted when they 

are observed to be healthy (N10), divided by the total number of healthy (N0):  

0

01

N
N

eII = . 
(2) 

 If the output node has a sigmoid transfer function and the error function is the 

sum of square errors, the output of the neural network can be directly assigned to a 

membership probability (Bishop, 1996). Note however, that this interpretation is only 

valid in the context of an infinite number of training data. In general the outputs of the 

neural network cannot be used as a reliable estimator of the true class membership 

probability, particularly when data is scarce. 

 

3. HLVQ – Hidden Layer Vector Quantization 

In classification problems, when categories are too similar, both Learning Vector 

Quantization (LVQ) and Multi Layer Perceptrons (MLP) have weak performance 

(Michie et al., 1994). The Hidden Layer Learning Vector Quantization (HLVQ) algorithm 

was recently proposed to address this problem (Vieira and Barradas, 2003). In this 

method LVQ is applied to the hidden layer of a MLP, thus combining the merits of both 

approaches. HLVQ is particularly suitable for classification of high dimensional data. 

 The method is implemented in three steps. First, a specific MLP for the problem 

at hand is trained. Second, supervised Learning Vector Quantization is applied to 
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extract code-vectors icw  corresponding to each class ci in which data are to be 

classified. These code-vectors are built using the outputs of the last hidden layer of the 

trained MLP. Each example, ix , is classified as belonging to the class ck with the 

smallest Euclidian distance to the respective code-vector:  

)(min xhwk jc
j

−=  (3)

where h is the output of the hidden layer and ⋅  denotes the usual Euclidian distance.  

 The third step consists of retraining the MLP with two important differences. 

First the error correction is applied not to the output layer but directly to the last hidden 

layer, thus ignoring from now on the output layer. The second difference is that the 

error applied is a function of the difference between )(xh  and the code-vector, kcw , of 

the respective class ck to which the input pattern x  belongs. We used the generalized 

error function: 

( )∑ −=
i

ikc xhwE
β

β
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(4)

The parameter β  may be set to small values to reduce the contribution of outliers. 

 After training a new set of code-vectors,  

icic
new
c www i ∆+=   (5)

is obtained according to the following training scheme:  

))(( icic wxtw −=∆ α  if x  ∈ class ci ,     

0=∆ icw                   if x ∉class ci
(6)

The parameterα (t) is the learning rate, which should decrease with iteration t to 

guarantee convergence. Steps two and three are repeated following an iterative 
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process. The method stops when a minimum classification error is found on the test 

set.  

The distance of given example x to each class prototype is obtained by: 

ici wxhd −= )(   (7)

 HLVQ was applied with success in classification problems with high 

dimensional data, like Rutherford BackScattering data analysis (Vieira and Barradas, 

2003).  

 

MLP output correction using HLVQ 

One of the major drawbacks of MLP’s is their poor out-of-sample performance in 

regions not covered by the training data, particularly frequent in high dimensional data. 

In order to alleviate this situation we propose the following method to correct the MLP 

output for out-of-sample or test set data. 

 Each example to be tested, xi, is included in the training set and the neural 

network retrained. Since the real situation of the company is unknown, we first consider 

it as class 0 (healthy) and determine the corresponding output ii yxy 00 )( =v  as well as 

the respective distances to each class prototype obtained by HLVQ, 

))(,)((),( 1000
1
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 Then the network is retrained considering now the test example as class 1 

(bankrupted). The new output ii yxy 11 )( =v  and the respective distances to the 

prototypes are then obtained: 
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 The correct output is chosen following a heuristic rule:  

  if  ii yy 0= 1
0

0
0

cc dd <

  if . ii yy 1= 0
1

1
1

cc dd <

 We call this method HLVQ-C. If the example is a clearly bankrupted or healthy 

company the neural network output is a value close to 1 or to 0, respectively and in 

both cases the correction applied after retraining is small. However, when the output is 

close to 0.5 large corrections may occur. The most important corrections to the MLP 

output correspond to companies with uncommon financial records for which the training 

set contains few similar situations. Through a detailed analysis we found that the 

majority of corrections are consistent with the most relevant ratios. 

 

4. Assessment of predictive capabilities of ANN 

The quality of a neural network is measured by its generalization capability and 

robustness. To avoid the serious problem of over-fitting and validate the results of the 

network on the out-of-sample data, several procedures were implemented. 

 

Weight averaging  

As training evolves, the network weights converge to a set of values that minimizes the 

classification error. However, if data is insufficient to encompass the weights, 

oscillations may occur and the training may stop in a local minimum. To circumvent this 

problem, instead of using the final set of weights, we used the average of the last 5 

best training epochs. This simple procedure proved to be effective to avoid errors on 

the test set due to the presence of uncharacteristic cases, i.e., companies with a set of 

parameters very different from the average of their classes. 
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Generalization  

Generalization is a measure of the performance of the network on unobserved cases. 

The generalization capability of a neural network is often estimated by separating the 

dataset into two groups: a training set and a test set. The network is trained with data 

from the training set and its performance tested on unused data from the test set. Over-

fitting is avoided by stopping the training upon reaching a minimum error on the test 

set.  

 Although for large datasets this procedure is adequate, when data is scarce the 

test set may not be representative. In these cases, the most adequate procedure to 

evaluate the generalization capabilities of the network is to use ten fold cross 

validation. This consists of dividing the dataset into ten sets (A1,...,  A10), using nine of 

them (A2 ,..., A10) for training and the remaining A1 for testing. When training is 

completed the test error e1 is recorded, and the process is repeated: train with (A1, 

A3,…,A10), test with A2 and record test error e2. After completion of the ten cycles, the 

generalization error, or cross validation error, eCV, is calculated as the average of test 

set errors: 

10/
10

1
∑
=

=
i

iCV ee  
(10)

 Note that the test set error is defined as: 

01

1001

NN
NNei +

+
=  

(11)

This estimation of the generalization capabilities of the network is unbiased. 

 

 

Sensitivity
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In highly dimensional data some variables have little or no discriminatory capabilities or 

may be strongly correlated. These variables should not be included in order to reduce 

the complexity of the problem and improve the generalization capabilities of the 

network. To detect some of these variables we compute the sensitivity defined as:  
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−∆+
=

N

j i

j
N

j
i

jjj
Ni

j
i

jj

i

xxxxyxxxxy
N

S
1

),...,...,,(),...,...,,(1 2121

ε
ε

 
(12)

where the sum is over each j point of the database jxr , and ii σε 1.0=∆  is the 

perturbation introduced as 10% of the corresponding standard deviation. Variables with 

small S are eliminated. 

 A similar quantity to measure the stability of the result when noise is added to 

the output is the robustness, defined as:  

δ
δ )()( +−

=
txytxy

R  
(13)

where )( txy  is the output given the input x an a target t , and  δ  is a small quantity.  

 

Benchmarking

In order to benchmark the predictive capabilities of our neural network model we 

compare it with traditional neural networks and discriminant analysis.  

The linear discriminant function was obtained applying a stepwise method using 

a Wilk’s Lambda and F value of 3.84 for entry variables and 2.71 for their removal. 

After the selection of variables we chose the five best discriminators and ran a Multiple 

Discriminant Analysis (MDA) with a leave one out classification. We also used the 

direct method with the 5 variables of the Altman (1968) Z-score model.  We decided to 

use only five of the eleven ratios selected by the stepwise method, as the remaining six 

variables offered negligible incremental gains. 
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A typical problem of classification models in bankruptcy prediction is the 

unbalanced number of distressed firms compared with healthy firms. The use of 

balanced samples is common to overcome this problem. Wilson and Sharda (1994) 

studied three samples with variable proportions of healthy / bankrupted cases: 50/50, 

80/20 and 90/10. They concluded that neural networks outperformed discriminant 

analysis in overall classification but did not analyze the effect of type I error and type II 

error in the overall classification efficiency.  

A type I error in credit analysis implies a loss of capital loans and interest 

associated with a client that goes bust, when it was predicted to be healthy. Type II 

error leads to a loss of business with an existing or potential healthy customer that was 

classified as risky. Consequently, type I error may have higher costs for banks than 

type II error, as supported by Altman et al. (1977) who found that costs of type I error 

were 35 times higher for banks than error type II. This is not the same for other market 

players. For example, Neves and Andrade (1999) found for the Portuguese Social 

Security that the creation of a public earlier warning system, would have higher error 

type II costs for the economy as a whole than error type I, which leaded to the abortion 

of implementation of such a system. If a healthy company was classified and publicly 

announced to be at risk of bankruptcy, it would give a wrong signal for the market, that 

may induce a disruption in the economic relationships of the firm with its suppliers and 

customers thus pushing the firm further into a financial distress situation. Unfortunately 

misclassification costs are not sufficiently documented in the literature of financial 

distress and they remain largely unknown. As a consequence, we cannot use this 

perspective to analyze the efficiency of the classification models. 

A common measure of the classification performance is the overall percentage 

of observations correctly classified - Equation 11. However, this measure is not 

adequate to evaluate the efficiency of classification since it blends the two types of 

errors. For instance, if for a sample of 70 healthy firms and 30 distressed firms the 
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model classifies all firms as healthy, the overall classification would be 70%, despite 

the fact that it was unable to identify one single bankruptcy.  

We will use a Weighted Efficiency measure that takes into consideration the two 

error types, independent of cost to the creditor, defined by: 

BPCBCOCWE ⋅⋅= . (14)

The OC is the Overall Classification defined as 

10

1100

NN
NNOC

+
+

=  
(15)

where N0 is the total number healthy companies, N1 the total number bankrupt 

companies, N00 is the number of healthy companies correctly classified and N11 the 

number of distress companies correctly classified.  

 The BC is the Bankruptcy Classification, i.e. the percentage of bankrupted firms 

correctly classified: 

1

11

N
NBC =  

(16)

BPC is the Bankruptcy Prediction Classification defined as the number of 

bankrupted firms to the total of predicted bankruptcies: 

1101

11

NN
NBPC
+

=  
(17)

where N01 is the number of healthy companies classified as bankrupt. 

 This is a modification of the measure of efficiency presented by Korobow and 

Stuhr (1985) and is sensitive not only to the overall classification but also to errors of 

type I and type II. For perfect classification all components are 1 and the efficiency is 

100%. The square root was used since the three ratios were not independent. 
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Consider, for instance, a balanced database with type I error equal to type II and where 

N01 is small. In this case N1 = N0 = N/2 and xNN == 0011 , thus  

N
x

N
x

x
x

N
x

N
xWE 22
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2 2

=⎟
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⎜
⎝
⎛== , 

which is now a linear function of the error x/N. 

 

5. Data and Sample 

The sample was obtained from Diane, a database containing about 780,000 financial 

statements of French companies and their foreign subsidiaries. The initial sample 

consisted of financial ratios on 2,800 non-financial French companies, for the years of 

1999 and 2000, with at least 35 employees. From these companies, 311 were declared 

bankrupt in year 2000 and 272 presented a restructuring plan (“Plan de redressement”) 

to the court for creditors approval. We decided not to distinguish these two categories 

as both signal companies in financial distress. As a consequence the sample has 583 

financial distressed firms, most of them small to medium size, from 35 to 400 

employees.  

 The inputs used in this study are presented in Table 1, consisting of 30 financial 

ratios published by Coface1, which are available from Diane database.  

 

(Table 1) 

 

                                                 

1 Coface is a credit risk provider in France that offers the Conan-Holder bankruptcy score, a score based 

on a discriminant analysis developed by the authors (CONAN D., HOLDER M., 1979). 
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Additionally we consider the ratio of Cash Earnings to Total Debt that Beaver (1966) 

found to be the best single discriminator of bankruptcy, the 5 ratios used by Altman 

(1968) in his Z-score model, which is a standard in bankruptcy, and the size, measured 

by the logarithm of sales assuming that smaller firms may be more prone to bankruptcy 

than larger firms. 

 For cases of negative equity, the return on equity could not be calculated and a 

negative return of 150 percent was used instead. 

As the number of healthier firms is higher than financially distressed, we 

randomly excluded some healthier cases in order to get the following ratios of 

bankrupted to healthy firms: 50/50, 36/64 and 28/72. It is known that lower ratios put 

stronger bias towards healthy firms, deteriorating the generalization capabilities of the 

network and increasing type II error. 

 

Input selection 

The number of inputs considered in this work is much larger than those used in 

previous works, which usually employ no more than ten variables. Although some of 

these inputs have small discriminatory capability in linear models, our neural network 

method is capable of extracting information and improving the classification accuracy 

without compromising generalization.  

 To select the inputs we used two procedures: elimination of highly correlated 

ratios and ratios with small sensitivities, or with a wrong sign according to economic 

analysis. We eliminated thirteen inputs (4, 6, 8, 9, 14, 16, 17, 22, 26, 27, 28, 29 and 30) 

described in Table 1 and retained the remaining seventeen. 

 In many cases, some ratios present high variance from one year to another, 

especially when firms are in financial distress. As a consequence, it is hard to predict 

bankruptcy based on single year information. In order to include relevant knowledge 
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from a previous year, without overloading the neural network input with excessive 

dimension, we decided to include one-year incremental absolute value of the following 

ratios: Debt Ratio, Percentage of Value Added to Employees and the Margin Before 

Extra Items and Taxes (or Ordinary Margin). Thus we end up with a complete set of 20 

inputs.  

 All inputs were normalized in the usual way 

k

kk
k xx

σ
µ−

='  

where µk is the mean and σk is the standard deviation of input element k. 

 

6. Results 

We tested several neural networks using from 5 to 20 hidden nodes. Although smaller 

networks achieve slightly lower generalization errors, HLVQ-C performs better on a 

hidden layer of a large size. Then, we chose a hidden layer of 15 neurons, a learning 

rate of 0.1, and a momentum term of 0.25. For the HLVQ method we set β = 1.5.  

 Some firms in the database have a financial record that clearly contradicts their 

actual financial status. For these evident cases, we decided to artificially invert their 

output state. Companies with negative equity were always assigned to financial 

distress category, independently of their originally category. Although this accounts for 

less than 3% of bankruptcies some improvements were achieved on the training and 

testing error. 

 Table 2 shows the results obtained on balanced and unbalanced data sets for 

the year 1999, approximately one year prior to the announcement of bankruptcy. The 

training error is considerably smaller than the generalization error indicating that 

training data is insufficient. As expected, type II error is higher than type I error since 

distressed companies are more heterogeneous and harder to identify. Our study clearly 
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indicates that it is not advisable to use unbalanced samples since type II error 

increases considerably while type I error has only a slight improvement. 

 (Table 2) 

 

In Table 3 we compare the weighted efficiency obtained by each of the four 

methods. Balanced samples are more appropriate for all the classification methods 

used while our method (HLVQ-C), clearly outperforms all others including discriminant 

analysis and non-corrected MLP (traditional ANN) for all types of samples. Discriminant 

analysis drops more in efficiency with unbalanced samples than neural networks. 

HLVQ-C is the technique that shows lower loses.    

(Table 3) 

 

We repeated the analysis for 1998, which is approximately two years prior to 

the bankruptcy announcement (Table 4). As expected all models show less predictive 

power than one year prior to the financial distress announcement. Concerning the use 

of unbalanced databases the same conclusions as 1999 apply.  

(Table 4) 

Again HLVQ-C performs much better than traditional neural networks – Table 5. 

Moreover the difference between traditional neural networks and discriminant analysis 

for balanced samples does not look significant. 

(Table 5) 

HLVQ-C also performs better for error I using balanced samples (Table 6). For 

unbalanced samples, both neural networks have a better performance but present 

worse type I errors. This indicates that they are less biased than discriminant analysis 

on unbalanced samples with too many healthy cases. 
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(Table 6) 

 

We also compared the efficiency of the Neural Network with the five ratios used in the 

discriminant model (Debt Ratio, Logarithm of Sales, Value Added per Employee, 

Cumulated Depreciation Ratio and Return on Assets), with a neural network of only 5 

hidden nodes – Table 7. The generalization error, as expected, is slightly higher than 

with the full 20 inputs. However, HLVQ-C was unable to correct efficiently these errors 

since it does not have enough degrees of freedom. 

(Table 7) 

 

 Sensitivity analysis from neural networks shows that the most significant ratios 

for driving a company to financial distress (positive sensitivities) are: Debt Ratio, 

Percentage of Value Added for Employees and one-year absolute variation of the Debt 

Ratio. The most relevant ratios to characterize a healthy company (negative 

sensitivities) are: Valued Added per Employee, Margin Before Extra Items and Taxes 

and Cumulated Earnings to Assets.  

 

7. Conclusions 

We have applied neural networks to the problem of bankruptcy prediction using a new 

technique to correct the generalization errors, called HLVQ-C. In contrast with 

discriminant analysis and traditional neural networks, this technique allows the use of 

larger set of inputs without compromising generalization.  

A modified measure of classification efficiency used by Korobow and Stuhr 

(1985) was introduced to evaluate the performance of the method. We found that 

HLVQ-C is the more efficient for this problem and clearly outperforms linear 
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discriminant analysis and traditional MLP in detecting distressed companies both one 

and two years prior to bankruptcy.   

We also studied the effect of unbalanced samples and found that the best 

performance is obtained with a balanced dataset containing the same number of 

healthy and distressed companies. Unbalanced database should be avoided as type I 

errors, which have higher costs for banks, may be too high.  

These results could eventually be improved if we had the identification of the 

industrial sector for each company, as some ratios may only be meaningful for some 

sectors. 
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Table 1: Mean values and standard deviation of all indicators for bankrupt and healthy 
companies in the year of 1999 

Bankrupted Healthy Ratio Definition 

iix σ,  iix σ,  

1 Number of employees 55.3, 82.0 86.2, 157.3
2 Financial equilibrium ratio 1.2, 2.1 1.4, 2.2
3 Equity to Stable Funds 19.9, 27.1 39.4, 19.3
4 Debt to Stable Funds 18.9, 77.3 10.8, 13.0
5 Financial autonomy 13.3, 32.4 37.6, 19.8
6 Cumulated depreciation rate (%) 69.4, 19.6 70.3, 14.5
7 Current ratio 1.1,0.6 1.6, 1.4
8 Quick ratio 0.8, 0.5 1.2, 1.3
9 Inventory days of sales 45.5, 66.8 45, 66.5
10 Collection period 56.0, 42.6 75, 32.8
11 Interest to sales (%) 1.2, 5.3 0.8, 2.8
12 Debt ratio 83.2, 32.3 59.0, 18.9
13 Financial Debt to Cash earnings 6.5,111.3 6.6, 119.1
14 Cash earnings to sales (%) 2.1, 13.0 4.4, 6.7
15 Working capital in sales days 20.4, 76.5 64.5, 86.3
16 Working capital requirements in sales days 16.1, 76.2 50.6, 70.2
17 Exportation (%) 3.9, 24.2 9.0, 21.1 
18 Value added per employee  32.3, 15.3 44.6, 29.05
19 Value added to assets 0.5, 49.7 0.4, 0.2
20 EBITDA margin 3.3, 13.5 6.8, 7.6
21 Margin before extra items and taxes 0.3, 2.54 3.2, 3.4
22 Net margin 0.5, 18.6 1.2, 7.8
23 Return on equity -11.4, 116.3 8.9, 38.4
24 Value added margin 41.2, 19.5 38.3, 15.6
25 Percentage of value added to employees 86.1, 103.8 75.7, 35.2
26 Sales (kEuro) 9093, 17350 25217, 40412
27 Working capital to current assets 0.04, 0.53 0,36, 0.27
28 Payment period 89.0, 120.3 76.9, 31.4
29 Debt in sales days 208.4, 192.2 145.8, 76.3
30 Return on equity before extra items & taxes -36.1, 137.4 21.4, 54.7
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Table 2: Results for a set of balanced and unbalanced data for the year of 1999.  HLVQ-C 
means the output of the MLP are corrected by the method using HLVQ distances. 

Training error Generalization error  Bankrupt / 
Healthy  Type I error Type II error  Type I error Type II error 

50/50 
MLP 
HLVQ-C 

 
10.6  
8.2 

  
15.9 
10.1 

 
13.1   
10.6 

 
25.7  
11.1 

36/64 
MLP 
HLVQ-C 

 
4.6 
2.1 

 
13.8 
 5.8 

 
8.8 
7.3  

 
30.9 
18.7  

28/72 
MLP 
HLVQ-C 

 
2.6 
1.8 

 
14.2 
11.2 

 
7.1 
6.3 

 
35.8 
29.0 

 

 

Table 3: Weighted efficiency for the year of 1999  

Sample: 50/50 36/64 28/72 
Discriminant:    
   Best discriminant variables 66.1% 60.2% 59.3% 
   Z-score variables 62.7% 52.1% 47.5% 
Neural Networks:    
   MLP 71.4% 68.5% 65.0% 
   HLVQ-C 84.1% 78.9% 71.0% 

 

Table 4: Weighted efficiency for the year of 1998 

Sample: 50/50 36/64 28/72 
Discriminant:       
Best discriminant variables 66.4% 59.5% 47.3% 
Z-score variables 61.1% 50.9% 32.0% 
Neural Networks:       
Traditional 67.7% 69.5% 60.1% 
HLVQ-C 76.5% 74.3% 69.5% 

 

Table 5 – Type error II for unbalanced samples 

Sample 50/50 Sample 36/64 Sample 28/72 
  1998 1999 1998 1999 1998 1999 

Discriminant:             
Best discriminant variables 24.9% 26.4% 44.5% 44.6% 68.4% 51.5%
Z-score variables 31.6% 26.8% 57.1% 54.5% 83.2% 66.0%

Neural Networks:             
Traditional 24.9% 25.7% 30.9% 30.9% 44.9% 35.8%
HLVQ-C 16.0% 11.1% 16.0% 18.7% 27.8% 29.0%
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Table 6 - Type error I for unbalanced samples 

Sample 50/50 Sample 36/64 Sample 28/72 

  1998 1999 1998 1999 1998 1999 

Discriminant:             

Best discriminant variables 22.4% 21.0% 7.6% 6.8% 1.5% 2.9%

Z-score variables 22.8% 26.8% 6.1% 7.0% 1.3% 2.6%

Neural Networks:             

Traditional 20.2% 13.1% 7.9% 8.8% 5.8% 7.1%

HLVQ-C 16.8% 10.6% 12.8% 7.3% 8.2% 6.3%
 

Table 7: Neural Networks trained with the five inputs chosen by the discriminant 
analysis, in the year 1999 using the balanced database. 

 Training error Generalization error  

  Type I error Type II error  Type I error Type II error 

MLP 
HLVQ-C 

15.6 
10.5 

20.1 
14.3 

17.1 
14.8 

25.3 
23.7  
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