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Abstract 

Hand movement measurement is important in clinical, ergonomics and biomechanical 

fields. Videogrammetric techniques allow the measurement of hand movement without 

interfering the natural hand behaviour. However, an accurate measurement of the 

hand movement requires the use of a high number of markers, which limits its 

applicability for the clinical practice (60 markers would be needed for hand and wrist). 

In this work, a simple method that uses a reduced number of markers (29), based on a 

simplified kinematic model of the hand, is proposed and evaluated. A set of 

experiments has been performed to evaluate the errors associated to the kinematic 

simplification, together with the evaluation of its accuracy, repeatability and 

reproducibility. The global error attributed to the kinematic simplification was 6.68º. 

The method has small errors in repeatability and reproducibility (3.43º and 4.23º, 

respectively) and shows no statistically significant difference with the use of electronic 

goniometers. The relevance of the work lies in the ability of measuring all degrees of 

freedom of the hand with a reduced number of markers without interfering the natural 

hand behaviour, which makes it suitable for its use in clinical applications, as well as 

for ergonomic and biomechanical purposes. 
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Introduction 

The hand has a great number of bones connected through different joints that allow 

25 degrees of freedom (DoFs) approximately. Its movement is usually described in 

clinical and biomechanical fields by means of a set of physiological joint rotation 

angles (PJRAs): flexion/extension (F/E), abduction/adduction (Ab/Ad) and 

pronation/supination (P/S). As described by Brand and Hollister,1 it is usual to 

consider only one DoFs at all the interphalangeal (IP) joints, corresponding to a F/E 

rotation. Metacarpophalangeal (MCP) joints are usually considered as two DoFs joints, 

corresponding to F/E and Ab/Ad rotations, as only a slight passive P/S rotation is 

allowed. The movement of the carpometacarpal (CMC) joints is more complex, 

combining F/E, Ab/Ad and P/S rotations. Anyway, the thumb CMC joint acts mainly 

with two predominant DoFs, so that commonly only F/E and Ab/Ad rotations are 

considered; no movement at all is usually considered at index and middle CMC joints, 

whereas the movements at the ring and little CMC joints, of small amplitude, are 

usually referred as F/E rotations. 

Hand movement measurement is required in many fields, as in the functional 

evaluation for pathological diagnosis, the follow-up evaluation of rehabilitation, the 

analysis of sportive techniques or the ergonomic evaluation of handheld tools use. 

Different techniques have been used in the past to measure hand movement, such as 

goniometers, instrumented gloves or motion tracking from digital images.2-6 Many of 

these techniques do not allow for the simultaneous measurement of all DoFs or do not 

use the PJRAs to express the angles. Furthermore, it is usually desirable that the 

measuring technique does not interfere with the normal development of the hand 

activities. In this sense, the motion tracking of passive markers from video images 



(videogrammetry) is a good choice,3,7 as although some movement restriction can be 

introduced by using passive markers, it is much lower than using instrumented gloves 

or electronic goniometers. It has been widely used in gait analysis, but its application 

to the hand movement analysis is still scarce.8 Most works in the literature present its 

use only for one finger,9-11 or they consider important kinematical simplifications,12-14 

especially in describing the kinematics of the thumb and in considering the palm as a 

rigid body. In recent works, Cerveri et al.15 and Chang and Pollard16 presented a 

method for the accurate measurement of the thumb CMC joint taking into account the 

real orientation and location of the F/E and Ab/Ad rotation axes. However, this 

accurate measurement for the whole hand movement would require the use of a high 

number of markers, which limits its applicability for the clinical practice (60 markers 

would be needed for hand and wrist). In this work, a simple method that uses a 

reduced number of markers (29), based on a simplified kinematic model of the hand, 

is proposed and evaluated. Although some clinical and research groups have used 

similar methods, the method described in this paper differs not only in the number of 

points used, but also in its completeness regarding the physiological angles measured. 

Furthermore, it provides detailed information about the repeatability, reproducibility 

and accuracy. Thus, we emphasize that the method described in the paper allows for 

the measurement of all hand movements, and that the method is repeatable, 

reproducible and has an acceptable (and known) accuracy. 

 

Methods 

 

Description of the Technique 



The technique consists of the placement of 29 markers on different anatomical hand 

landmarks; the registration of the 3D coordinates of these markers in two static 

reference postures (RPs) to allow the calculation of PJRAs; the registration of the 3D 

coordinates of these markers in any movement, and finally the PJRAs calculation. 

 

Reference Postures. A repeatable neutral posture was used as reference, allowing the 

calculation of PJRAs and the comparison of measures obtained in different sessions 

involving complete markers removal. This RP was the combination of two postures. 

The first one (RP1) was used to define the neutral posture of the fingers and wrist: the 

forearm and hand lay on a flat surface, keeping the fingers close together and with the 

forearm aligned with the middle finger (Figure 1(a)). The second RP (RP2) was used to 

define the thumb neutral posture: the thumb was resting, with the fingers flexed and 

in a relaxed posture, on the lateral side of the middle phalanx of the index finger 

(Figure 1(b)), according to the neutral position of the CMC joint defined by Smutz et 

al.17  

 



 

Figure 1. Postures and markers used: (a) RP1; (b) RP2 and markers for thumb (T); (c) 

OP and markers for index (I), middle (M), ring (R) and little (L) fingers and wrist (W).  

 

Markers. 29 reflective markers (diameter 3 mm) were placed on the hand dorsum, to 

avoid hiding. From the index to little fingers (Figure 1(a)) five markers were placed as 

follows: first marker on the metacarpal base, second marker on the knuckle, third on 

the proximal interphalangeal (PIP) joint, forth on the distal interphalangeal (DIP) joint 

and finally, the fifth marker on the nail. Care was taken so that all markers of each 

finger lay on its sagittal plane when placed with the hand and forearm in the open 

posture (OP) defined as follows: the forearm and hand laying on a flat surface, with the 

phalanges and metacarpals aligned and with the forearm aligned with the middle 

finger (Figure 1(c)). 



For the thumb, first marker was placed on the metacarpal base (T1), second and third 

markers (T2 and T3) on the dorsum and lateral side of the MCP joint, respectively, 

forth on the IP joint (T4) and the fifth marker on the nail (T5). All markers, except the 

third one, lay on the thumb sagittal plane when placed with the thumb in RP2 (Figure 

1(b)). 

Four markers were placed on the wrist, with the forearm and hand in OP (Figure 1(c)). 

The first and second markers were located on the radial and ulnar styloid processes 

(W1 and W2), respectively; and the third and forth markers (W3, W4) were placed 

aligned with the middle finger, on the wrist dorsum and on the forearm, keeping a 

distance of 2.5 cm. 

 

Obtaining the 3D Coordinates of the Markers. The 3D coordinates of the markers were 

registered in both RPs and during the hand movements to be measured using a Vicon 

motion tracking system (Vicon®) consisting of 8 Vicon Bonita cameras. The 8 cameras 

were positioned enveloping the workspace at different heights, so that the markers 

were always visible in at least two cameras, avoiding hiding. All processing and motion 

capture was performed using the Nexus software (Vicon®). The system was calibrated, 

and the Nexus software allowed the automatic markers tracking (link-based model) 

and their 3D coordinates reconstruction. 

 

Simplified kinematic model. Calculation of Physiological Angles of Rotation. To 

decompose the relative orientation between consecutive segments into rotations with 

physiological meaning, it would be necessary to know the exact position and 

orientation of the anatomical rotation axes. In the absence of these data, it is usual to 



consider the kinematic approximation that the F/E axes are perpendicular to the 

segments, and the F/E and Ab/Ad axes in joints with two DoFs are perpendicular 

between them, although this is not strictly true.1 We used this simplification, and 

selected Cartesian coordinate systems with axes coincident with the rotation axes: Z 

axis corresponding to F/E, X axis to Ab/Ad and Y axis corresponding to P/S. As 

recommended by the ISB,18,19 Y axes were defined positive in proximal direction, X 

axes in palmar direction and Z axes in radial direction. 

The rotation angles at each joint were obtained by superposing the proximal 

coordinate systems of the reference and grasping postures, and calculating the 

rotation angles between the distal coordinate systems of the reference and grasping 

postures, according to the Euler convention20 with sequence Z-X-Y-axes. The rotation 

angles computed that did not correspond to PJRAs were considered as residuals 

(Table 1). 

 

  



Table 1. Simplified kinematic model. Angles measured at each joint. 

Joint Z rotation X rotation Y rotation 
Wrist F/E Ab/Ad Residual 
Thumb CMC F/E Ab/Ad Residual 
Thumb MCP F/E Ab/Ad Residual 
Thumb IP F/E Residual Residual 
Index MCP F/E Ab/Ad Residual 
Index PIP F/E Residual Residual 
Index DIP F/E Residual Residual 
Middle MCP F/E Ab/Ad Residual 
Middle PIP F/E Residual Residual 
Middle DIP F/E Residual Residual 
Ring CMC F/E Residual Residual 
Ring MCP F/E Ab/Ad Residual 
Ring PIP F/E Residual Residual 
Ring DIP F/E Residual Residual 
Little CMC F/E Residual Residual 
Little MCP F/E Ab/Ad Residual 
Little PIP F/E Residual Residual 
Little DIP F/E Residual Residual 

 

 

Coordinate Systems. The coordinate systems were defined as follows: 

 Forearm: Y axis was the vector pointing from the distal (W3) to the proximal 

(W4) forearm markers. X axis was perpendicular to the Y axis and to the vector 

linking the styloid processes markers (W1 and W2). The Z axis was the cross 

product between X and Y axes.  

 Finger Metacarpals: Y axes were the vectors pointing from the distal to the 

proximal metacarpal markers. X axes for the index, ring and little fingers, were 

obtained by forcing the markers of the corresponding metacarpal and the 

marker on the knuckle of the middle finger (M2) to lay on the plane X = 0. For 

the metacarpal of the middle finger, the X axis was obtained by forcing the 

markers on the middle finger metacarpal (M1 and M2) and the marker on the 



knuckle of the index finger (I2) to lay on the plane X = 0. And Z axes for the 

metacarpals were the cross products between X and Y axes.  

 Finger Phalanges: Y axes were the vectors pointing from the distal to the 

proximal phalange markers. For the proximal phalanges of the middle, ring 

and little fingers, X axes were obtained considering that the corresponding 

markers on the phalange and the marker on the knuckle of the preceding 

finger lay on the plane X = 0. For the proximal phalange of the index finger, the 

X axis was obtained considering that markers on this phalange and the marker 

on the knuckle of the middle finger lay on the plane X = 0. For all middle and 

distal phalanges of index to little fingers, X axes were calculated considering 

that their Y axes and the Z axis of the corresponding proximal phalanx defined 

the plane X = 0. The Z axes of all phalanges were the cross products between X 

and Y axes.  

 Thumb: Y axes for all segments were the vectors pointing from the distal to the 

proximal segment markers. For the thumb in RP2, the same plane Z = 0 was 

considered for all three segments, obtained by a least squares fitting of a plane 

containing all 4 markers aligned with the thumb (T1, T2, T4 and T5). The X 

axes of all segments were the cross products between Y and Z axes.  

To define the coordinate system of the metacarpal and proximal phalange in 

other postures, two auxiliary vectors were used: a vector from T1 to T3, 

attached to the metacarpal (Aux1), and a vector from T2 to T3, attached to the 

proximal phalange (Aux2). The angle between Aux1 and the metacarpal plane 

X = 0, and between Aux2 and the proximal phalange plane X = 0 were then 

calculated. These angles were used to define the orientation of the axes of the 



metacarpal and proximal phalange, forcing the auxiliary vectors to keep the 

same angles with respect to the planes X = 0 in the new posture. For the distal 

phalange, the markers T2, T4 and T5 were forced to lay on the plane Z = 0, and 

the X axis was the cross product between Y and Z axes. 

The origins of all coordinate systems were on the segment proximal marker. 

 

Validation Experiments  

 

Repeatability. The RPs have to be repeatable to assure the technique reliability. To 

assess their repeatability, the same operator placed the markers to five healthy 

subjects (Table 2) who were asked to repeat the RPs three times. The RPs repeatability 

was analysed in terms of the rotation angles required to transform the coordinate 

systems between adjacent segments. A global repeatability error was computed as the 

root mean squared error (RMSE) in an analysis of variance (ANOVA) on rotation angles 

between adjacent segments with factor ‘subject x joint’. 

 

Table 2. Descriptive data of subjects participating in the experiments 

Subject Sex Age 
(years) 

Hand length 
(mm) 

Hand breadth 
(mm) 

1 Male 43 192 79 
2 Male 47 185 88 
3 Male 24 208 89 
4 Female 25 175 73 
5 Female 43 170 74 

 

The repeatability of the PJRAs obtained from the use of the technique described in 

section II was assessed in a test performed by the same operator to the same five 



subjects. First, the RPs were registered to each subject. Afterwards, the subjects, 

seated at a table, grasped three different objects three times, paying special attention 

so that each subject grasped the objects with the same static posture in the three 

repetitions: 1) A cone (Figure 2(a)): the subjects were asked to grasp it with the fingers 

always at the same cone height, although some small differences may exist; 2) A 

sphere (Figure 2(b)): the subjects were asked to lay their palm on the sphere and then 

grasp it, and raise it; 3) A cylindrical object (Figure 2(c)): the subjects were asked to 

grasp it with their fingers in a pinch grasp, and raise it. The objects were initially 

placed in the same table location in all repetitions. 

 

Figure 2. Grasped objects for the repeatability analysis: a) cone; b) sphere; c) 

cylindrical object. 

 

In a different day, the test was repeated for all the subjects and by the same operator, 

with new markers. The repeatability errors of each PJRA were estimated in two ways21: 

 Intra-session Repeatability Error: a global error was calculated as the RMSE of 

an ANOVA on the PJRAs with factor ‘subject x joint x session’. This variability 

is associated just with the 3 repetitions of the static posture performed in each 

measurement, i.e. the repeatability error of the posture used. In addition, the 



repeatability errors for each joint were calculated from the RMSE of different 

ANOVAs with factor ‘subject x session’. 

 Inter-session Repeatability Error: a global error was calculated as the RMSE of 

an ANOVA on the PJRAs with factor ‘subject x joint’. This variability is due to 

the repetition of the whole process of marker placement and the static grasping 

postures. In addition, the repeatability errors for each joint were calculated 

from the RMSE of different ANOVAs with factor ‘subject’. 

Therefore the difference between both errors can be attributed just to the placement of 

the markers. 

 

Reproducibility. The technique was applied by three different operators to measure the 

static hand posture of subjects #2 and #5 for grasping the cone. First the operator 

placed the markers and registered the subjects’ RPs, and afterwards the operator 

asked the subjects to grasp the cone three times. We assessed the effect of the 

operator comparing the RMSEs of two ANOVAs with PJRAs as dependent variables: 

the first one with factor ‘subject x joint’ and the second one with factors ‘subject x 

joint’ and ‘operator’. The global reproducibility error was calculated as the RMSE of 

the first ANOVA. 

 

Validity and accuracy. We considered as residuals all rotation angles obtained that did 

not correspond to the predominant DoFs of the joints (Table 1). The absolute values of 

these angles at each joint give us an estimation of the error associated to the rotation 

axes selection in that joint. The global error attributed to the rotation axes selection 

was obtained as the mean value of the absolute values of all residual angles. 



In addition, the reliability of the technique was analysed through the comparison with 

the use of standard electronic goniometers (models G35 and M110 of Penny & Giles). 

For subject #5, we measured the PJRAs required for the static grasp of the cone with 

the videogrammetric technique and with the electronic goniometers (Figure 3). It was 

not possible to measure all the angles of this posture simultaneously with the 

goniometers, and the goniometers were too big to measure the angles in DIP joints. 

Therefore, eight repetitions of the posture were required to achieve measuring F/E of 

all joints except DIP joints, and Ab/Ad of the wrist. The entire process was repeated 

three times. The bias between the techniques has been analysed using a pair t-test of 

all the simultaneous measurements. 

 

Figure 3. Hand instrumented with electronic goniometers to measure the posture 

while grasping the cone. 

 

  



Results 

 

Repeatability 

The global repeatability error (RMSE) in the RPs measurement obtained from the 

corresponding ANOVA was 1.48º.  

The global repeatability errors (RMSE) in the measurement of the PJRAs of the 

postures of grasping the cone, the sphere and the cylindrical object within the same 

session and in different sessions were 2.55º and 3.43º, respectively. The repeatability 

errors obtained separately for each object are shown in Table 3. The highest global 

errors were observed for the cylindrical object (2.88º and 3.79º). The errors for F/E 

rotation angles were slightly higher than for Ab/Ad rotation angles, and inter-session 

errors were somewhat bigger than intra-session errors. The highest F/E errors (3.25º 

and 4.22º) were observed for the cylindrical object, whereas the highest Ab/Ad errors 

(1.95º and 2.81º) were observed for the sphere. Table 4 shows the statistics of the 

errors of the PJRAs obtained with joints independently considered. Again, inter-

session errors were somewhat bigger than intra-session ones. The highest errors were 

observed in the thumb IP F/E angles for the cylindrical object and the sphere, 

whereas for the cone the highest values were observed in little DIP F/E and wrist F/E 

angles. The highest errors for Ab/Ad angles in different sessions were observed for the 

thumb CMC joints (3.95º, 3.87º and 3.18º for the cone, sphere and cylindrical object, 

respectively). Taking into account the ranges of movement of the different joints, the 

mean and maximum values of relative intra-session errors were 3.01% and 9.45%, 

respectively; whereas the mean and maximum values of relative inter-session errors 

were 4.46% and 9.03%. 



Table 3. Intra-session and Inter-session Repeatability Errors (RMSE). Errors have 

been also computed separately for F/E and Ab/Ad rotation angles. 

  Within the 
same session 

In different 
sessions 

Cone Global (º) 2.33 3.29 
F/E (º) 2.53 3.56 
Ab/Ad (º) 1.71 2.48 

Sphere Global (º) 2.4 3.18 
F/E (º) 2.35 3.32 
Ab/Ad (º) 1.95 2.81 

Cylindrical 
object 

Global (º) 2.88 3.79 
F/E (º) 3.25 4.22 
Ab/Ad (º) 1.61 2.32 

 

Table 4. Statistics of the Intra-session and Inter-session Repeatability Errors (RMSE) 

with Joints Independently Considered.  

  Cone Sphere Cylindrical 
object 

Same session Mean (º) 2.14 2.26 2.44 
Maximum (º) 5.11 4.06 8.98 
Minimum  (º) 0.94 0.72 0.37 
SD (º) 0.95 0.84 1.57 

Different 
session 

Mean (º) 3.10 3.05 3.48 
Maximum (º) 5.60 4.68 8.58 
Minimum (º) 1.30 1.30 0.97 
SD (º) 1.12 0.94 1.54 

 

 

Reproducibility 

The RMSE calculated from the two ANOVAs performed for studying the reproducibility 

were 4.23º and 4.22º, the first one performed with factor ‘subject x joint’ and the 

second one with factors ‘subject x joint’ and ‘operator’. The factor ‘subject x joint’ was 

found significant (p = 0.000), whereas the factor ‘operator’ was not (p = 0.242). 

 



Validity and accuracy 

The global error attributed to the rotation axes selection (mean value of all residual 

angles) was 6.68º, with 8.04º of standard deviation. 

As expected, the correlation of the angles measured with the electronic goniometers 

and with this technique was high (0.981). Furthermore, no significant differences were 

found for them in the t-test performed (significant level >0.05), with mean and SD of 

differences 5.65º and 2.99º, respectively. 

Finally, Figure 4 illustrates the use of the technique for the dynamic registration of the 

hand movement. In particular, the figure shows the evolution of the PJRAs calculated 

on the index finger joints during one of the cone grasping repetitions by subject #1. No 

filter was applied to the marker data to avoid any additional treatment that might hide 

the method performance. The curve profile is the expected, with the finger starting 

from a neutral posture, getting more flexed until grasping the cone. Also, it is possible 

to observe the expected correlation between flexions. It is important to remark that we 

did not observe any problem regarding marker hiding or in the automatic marker 

tracking in the analysis of any of the movements used for the validation. 



 

Figure 4. Evolution of the raw physiological joint rotation angles calculated on the 

index finger joints during one of the repetitions of grasping the cone for subject #1. 

 

Discussion 

The selected RPs were highly repeatable, with repeatability errors smaller than those 

reported by Carpinella et al,12 Degeorges et al.11 and Dipietro et al.6 The measurement 

process is reliable and not affected by possible differences in the marker placement. 

Moreover, the technique is highly reproducible, not being dependent on the operator 

who performs the measurement, once instructed.  

It is remarkable that the simplified kinematic model used for achieving to measure all 

hand DOFs with only 29 markers has been found to be a reasonable approximation. 

The residual angles used to assess the error attributed to the selection of the rotation 

axes were small. The joint rotation axes considered are, then, an acceptable 

approximation to the real physiological joint rotation axes taking into account that 



finding the location and orientation of the rotation axes would require at least three 

markers per segment and that the problem is highly non-linear and very time 

consuming, as it has been shown at the thumb CMC joint.15  

The technique accuracy is assured from its comparison with electronic goniometers 

(high correlation between both techniques, and small and not statistically significant 

differences). The technique is, then, a good alternative to the use of electronic 

goniometers, less invasive and allowing the simultaneous measurement of rotation 

angles on all hand joints, which is not possible with the electronic goniometers. 

No problems of marker hiding or automatic marker tracking were reported for the 

tasks analysed. However, the use of additional tracking markers may be helpful for 

registering more complex actions. 

One of the disadvantages of using motion tracking of passive markers is that the 

markers location may change because of muscle contraction and skin deformation. To 

minimize this problem, the proposed model uses markers located on areas that are not 

over the hand muscles. Although most of them are located on the joints, where 

significant skin deformation exists, we have shown that this does not affect the 

accuracy of the method. 

The proposed method has avoided the use of floating marker clusters used in other 

works,11 so that the method is simpler and faster, and avoid collision between markers 

of different fingers and with the objects to be grasped. The use of such clusters is 

intended for gaining P/S information at the joints. However, it presents the 

inconvenient that some markers may occlude others from the cameras, and its 

convenience is discussable taking into account that the error introduced by the skin 



deformation is of the same order of magnitude as the P/S rotation angles occurring at 

the hand joints. 

Compared with other existing techniques, the method proposed allows the 

simultaneous measurement of all DoF of the hand, using a reduced number of 

markers. This is not possible using goniometers, because of the space they require for 

their installation. Furthermore, it is also relevant that the proposed technique 

expresses the hand movement using the PJRAs commonly used in clinical and 

biomechanical fields. This is not true when using gloves, especially for the thumb 

CMC joint and the movement of the palm. In addition, the technique is less invasive 

than gloves, which add stiffness to the hand joints, affecting to the hand natural 

behaviour. In this sense, it is also clinically relevant that EMG data registration from 

the hand intrinsic muscles might be performed simultaneously to the movement 

measurement with the proposed technique, which is not possible using gloves; this 

simultaneous measurement can play an important role in the biomedical field, e.g. to 

provide a simultaneous characterization of the hand kinematics and EMG signals to 

be used in the development of control algorithms of dexterous hand prostheses. The 

main drawback of the technique is that the required equipment is more expensive 

than using goniometers or gloves. However, it is more versatile and may be easily 

expanded to the elbow and shoulder. 
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