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Abstract 
 

Pavlovian conditioning tunes the motivational drive of drug-associated stimuli, fostering the 

probability of those environmental stimuli to promote and trigger drug seeking and taking. 

Interestingly, different areas in the cerebellum are involved in the formation and long-

lasting storage of Pavlovian emotional memory. Very recently, we have shown that 

conditioned preference for an odour associated with cocaine was directly correlated with 

cFOS expression in cells at the dorsal region of the granule cell layer of the cerebellar 

vermis. The main goal of the current investigation was to further extend the description of 

cFOS-IR patterns in cerebellar circuitry after training mice in a cocaine-odour Pavlovian 

conditioning procedure, including now the major inputs (the inferior olive and pontine 

nuclei) and one of the output nuclei (the medial deep nucleus) of the cerebellum. The results 

showed that the cerebellar hallmark of preference towards an odour cue associated to 

cocaine is an increase in cFOS expression in the dorsal part of the granule cell layer.  cFOS-

IR levels expressed in the granule cell layer of mice that did not show cocaine conditioned 

preference did not differ from the basal levels. Remarkably, mice subjected to a random 

cocaine-odour pairing procedure (the unpaired group) exhibited higher cFOS-IR in the 

inferior olive, the pontine nuclei and in the deep medial nucleus. Therefore, our findings 

suggest that inputs and the output of cerebellar circuitry are enhanced when 

contingency between the CS+ and cocaine is lacking. 

 
Keywords: cocaine, cerebellum, mice, Pavlovian conditioning, cFOS.  
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1.Introduction 

Long-lasting storage of drug related memories have been revealed as one of the key processes 

that contribute to orienting the organism response towards drug-related stimuli [1–4].  

Particularly, Pavlovian conditioning tunes the motivational drive of drug-associated stimuli, 

fostering the probability of those environmental stimuli to promote and trigger drug seeking and 

taking [1]. Previous studies have strongly suggested that drug-cue associative memories are 

stored and reactivated by dopamine-glutamate interactions in the basal ganglia, basolateral 

amygdala, hippocampus and prefrontal cortex [5,6]. Interestingly, different areas in the 

cerebellum are involved in the formation and long-lasting storage of Pavlovian emotional 

memory [7,8]. 

Remarkably, increasing evidence has demonstrated close anatomical and functional 

relationships between the cerebellum and the prefrontal-striatal-limbic networks [9–18]. Both 

cerebellar-striatal and cerebellar-prefrontal connectivity are bidirectional, forming reciprocal 

prefrontal-midbrain-cerebellar loops. Importantly, dopamine-glutamate interactions have also 

been described in the cerebellum [9,10,13,15,19,20]. Recently, we have shown that conditioned 

preference towards an odour associated with cocaine was directly correlated with cFOS 

expression in cells at the dorsal region of the granule cell layer of the cerebellar vermis [21]. 

These findings are coincident with those of some clinical reports. In human cocaine addicts, 

cerebellar activations during exposure to drug-associated cues have been found [22–26]. These 

findings challenge the conventional perspective of the cerebellum as a subcortical isolated 

motor structure and they would suggest its involvement in functional networks affected by 

addictive drugs [27]. 

In the present study, we aimed at further extending our previous description of neuronal activity 

patterns in cerebellar circuitry (through cFOS-IR) after training mice in a cocaine-associated 

odour cue conditioning. Thus, in this case we included the two major inputs to the cerebellum 

(the olivary complex and pontine nuclei) and the output of the vermis (the deep medial nucleus) 

in order to suggest an initial picture of the cerebellar hallmarks of conditioned preference for 

cocaine. 
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2.Methods 

2.1.Subjects 

Three-week-old Swiss male mice were purchased from Janvier (ST Berthevin Cedex, France) 

and maintained in the colony room (Universitat Jaume I, Spain) for 30 days prior to experiments. 

Handling was carried out daily for 5 minutes before experiments began. The colony room was 

kept at 22 + 2ºC with lights on from 08:00 to 20:00 hours. Animals were housed in standard 

conditions with laboratory rodent chow and tap water ad libitum. At the age of 7 weeks, 

experimental procedures began. Behavioural tests were conducted within the first 5 hours of the 

light cycle. All animal procedures were performed in accordance with the European Community 

Council directive (86/609/ECC), Real Decreto 1201/2005 and the local directive DOGV 

13/2007. Of the total number of 51 mice involved in the behavioural protocols 21 were 

used for the purposes of determining cFOS activity in the cerebellum.  

 

 

2.2.Pharmacological agents 

All drugs were administered intraperitoneally (i.p.). Cocaine hydrochloride (Alcaliber S.A., 

Madrid, Spain) was dissolved in 0.9% (w/v) saline (2mg/ml) and injected immediately before 

each conditioning trial. Saline solution 0.9% (w/v) was used as the vehicle control.   

 

2.3.Behavioural procedures and experimental design 

Two equally preferred odours (lavender and strawberry) [21] were used as conditioned stimuli 

in the present study. A gauze was scented with four drops of lavender or strawberry fragrance 

and presented inside a steel ball with holes, which overhung on one of the maze arms walls. 

One of the odours acted as CS+ and was associated to cocaine (20 mg/kg, IP). On alternate days, 

mice were exposed to the other odour (CS-) and received saline injections. These pairing 

sessions lasted for 15 minutes and took place in a specific conditioning environment (a 

rectangular plastic box of 30 x 15 x 20 cm). A total of 8 cocaine-paired sessions were conducted 
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using an ABAB design and the odours used as CS+ and CS- were counterbalanced between 

animals. Additionally, we included two control groups: The so-called “unpaired group”, which 

was composed of animals receiving the same number of cocaine injections but randomly 

associated to the odours and the “saline group” including mice that were subjected to the same 

conditioning sessions but received saline in all of them. Preference was evaluated 48 hours after 

the last cocaine administration in a 30-minute drug-free test using a T-maze in which CS+ and 

CS- odours were present simultaneously but in opposite arms. Time spent in each arm was 

automatically registered. All test sessions were videotaped and the time spent (TS) in each arm 

of the maze was registered manually from the recorded test sessions during the last 20 minutes 

by a blind observer. Preference score was calculated as [TS in CS+/(TS in CS++TS in CS-)] x 

100.  

 

2.4.Perfusion protocol and tissue sections 

Animals were deeply anesthetized with sodium pentobarbital (30mg/kg) 70 minutes following 

the preference test and perfused transcardially, first with 0.9% saline solution and then with 4% 

paraformaldehyde. After perfusion, the brainstem and the cerebellum were quickly dissected 

and placed in a container with 4% paraformaldehyde for 24 hours. After this time, tissue was 

cryoprotected in 30% sucrose solution until complete immersion. 

Brain tissue was rapidly frozen by immersion in liquid nitrogen and sections were performed at 

40 µm with a cryostat microtome (Microm HM560, Thermo Fisher Scientific, Barcelona, 

Spain). Six series of tissue sections were collected and stored at -80oC in cryoprotectant solution. 

Sagittal sections of the cerebellum and the brainstem were selected according to the lateral 

coordinates from -0.04 mm to 0.72 mm, comprising the vermis cerebellum, the medial 

cerebellar nucleus, the inferior olive and the pontine nuclei [28].  

 

2.5.cFOS Immunohistochemistry 

Immunohistochemistry was performed on free-floating sections. For peroxidative 

immunostaining, tissue peroxidases were eliminated with 0.3% of H2O2 and methanol 20%, 
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during a period of 30 minutes. Tissue was incubated for 48 hours with a polyclonal primary 

antibody, rabbit anti-cFOS (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) in smooth 

agitation at 4ºC. In a second step, sections were exposed to an affinity-purified secondary 

biotinylated antibody, donkey anti-rabbit (1:400; BA-2000; Vector Laboratories, Inc., 

Burlingame, CA, USA) for 120 minutes at room temperature. For magnification, we used 

preassembled biotin-avidin peroxidase complex according to the Vector Labs recommendations 

(ABC Elite; Vector Laboratories). Sections were exposed to DAB solution free of nickel 

component until the tissue developed an intense brown staining, then the tissue was rinsed and 

mounted.  

 

2.6.Immunostaining Analysis 

Images were captured in an optic microscope (Nikon E-800, Izasa Werfen Group, Valencia, 

Spain) with 20x or 40x lenses. We considered cFOS+ those cells exhibiting a uniform and 

constant brown labelling in the nucleus (see Figure 1, 2).  

We counted the first plane of three sagittal sections at the granule cell layer of the vermis 

cerebellum (L -0.04 to 0.72 mm) at the dorsal and medial zone of each cerebellar lobule [28], in 

selected regions of interest (ROIs) of 20,000 µm2 for a total area of 40,000 µm2 per lobule. 

Purkinje neurons were estimated in an area of 80,000 µm2 in the dorsal and ventral regions, for a 

total area of 160,000 µm2 per lobule. The ROI for the medial nucleus was 80,000 µm2. 

For the olivary complex, ROIs were 20,000 µm2 of the dorsal, ventral and medial parts for a 

total area of 60,000 µm2. cFOS+ neurons in the pontine nuclei were considered in an area of 40 

000 µm2. Cell count was performed automatically with FIJI (1.47h; NIH) software by properly 

identifying every cFOS+ cell.  
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Figure 1. Representative microphotographs of cFOS-IR in mice from the saline, conditioned 

and unpaired groups. The medial nucleus of the cerebellum (A, B, C); the pontine nucleus (D, E, 

F); the Inferior Olive (G, H, I) and the cerebellar cortex (J, K, L). Arrows indicate examples of 

cFOS+ cells. ML: molecular layer; PurK: Purkinje neurons; GCL: granule cell layer. Scale bar: 

50µ. 
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Figure 2. Representative microphotographs of cFOS-IR from the conditioned and non-

conditioned mice. The granule cell layer (A, B); the medial nucleus of the cerebellum (C, D); 

the pontine nucleus (E, F) and the Inferior Olive (G, H). ML: molecular layer; PurK: Purkinje 

neurons; GCL: granule cell layer; WM: white matter. Scale bar: 50µ.  

 

2.7.Statistics 

Data presented as mean + SEM were analysed by one-way ANOVAs or Student t-tests using 

the treatment group as the comparison factor. Follow-up comparisons if necessary were 

conducted by Fisher’s LSD tests. Statistical level of significance was set at p<0.05.  

Although it is not a common practice in this kind of studies, by calculating the Cohen’s d 

statistic (and corresponding confidence intervals), we estimated the effect size for each and 

every dyadic comparison of means that yielded statistical significance. The reporting of effect 

sizes facilitates the interpretation of the substantive, as opposed to the statistical significance of 

empirical results, then complementing the conclusions drawn from inferential statistics based on 

the rejection of the null hypothesis at a particular p value [29]. In this way, we were able to 

provide information about the magnitude of the effects of interest as well as about the precision 

on these estimates. Finally, we analysed the pattern of intercorrelations among the cFOS levels 

at different cerebellar anatomical sites of interest. These correlations were calculated on the 

percentual increases/ decreases on cFOS levels over saline and estimated by means of the non-
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parametric Spearman’s Rho index, which does not incorporates an a priori assumption of a 

linear (but just a monotonic) relationship between the variables of interest. 

 

3.Results 

3.1.Preference for cocaine-paired odour cue 

A one-way ANOVA comparing the preference for the CS+ yielded a significant effect for the 

experimental group  (F2,18=7,44, p<0.01) . As revealed by subsequent posthoc comparisons the 

contingently trained group (the paired group) (n=10) exhibited significantly higher preference 

(p< 0.01 in both cases) for the maze arm containing the CS+ than the unpaired (n=6) and saline 

(n=5) groups, which did not differ among them (Figure 3A). 

 

Figure 3. (A) Scatterplot of cocaine-induced odour preference score in the three experimental 

groups. (B) Percentage of preference for cocaine-associated odour-cue on the test day in 

thesaline, conditioned and unpaired groups. (C) Percentage of preference for cocaine-associated 

odour-cue in the conditioned and non-conditioned groups. Data are shown as mean±(SEM) of 

preference on the test day in each treatment group. Capital letters indicate a significant 
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difference (p<0.01) towards the saline (A), unpaired group (C) or non-conditioned (D), 

respectively.  

However, as it can be observed in the scatterplot (Figure 3A), not all subjects receiving cocaine 

injections paired with the CS+ exhibited a preference score higher than the indifference point 

(50%). Therefore, we used an arbitrary cut-off preference score of 60% to split this group into 

two subgroups “conditioned” (n=5) and “non-conditioned” (n=5). Then in a first step, we 

accomplished comparisons between the saline, conditioned and unpaired groups. As expected, a 

new one-way ANOVA yielded a significant effect of the experimental group (F2,13=8.24, 

p<0.01). Post-hoc based tests revealed that the conditioned group exhibited a higher preference 

for the arm containing the CS+ than the unpaired and saline groups (p< 0.01 in both cases). 

These results are displayed in Figures 3A, B.  

As there was a subgroup of animals that in spite of being trained under contingent odour-

cocaine associations never developed preference for CS+, in a second step we addressed the 

comparison between these two groups (the conditioned and non-conditioned group) by means of 

Student t-test for independent samples. As expected, the Student t-test showed a significant 

higher preference score in the conditioned group as compared to the non-conditioned group 

(T8=4.80, p<0.02) (Figure 3C).  

We also addressed a one-way ANOVA to evaluate to what extent locomotion displayed during 

the preference test could be one of the relevant variables in order to explain between-group 

differences. Any of the four groups differed significantly from each other (F3,17= 0.18; p=0.47). 

Mean and standard error of cm in 30 minutes were as follow: the saline group = 12472+2691; 

the conditioned group = 8276+2105; the non-conditioned group = 8861+795; the unpaired 

group = 9851+1718. 

 

3.2.cFOS-IR in the granule cell layer  

First, we examined cFOS expression in several cerebellar regions of the three experimental 

groups. We were able to replicate our previous findings [21] indicating selective changes on the 

level of cFOS-IR in the dorsal and the ventral regions of the granule cell layer of the vermis 
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cerebellum (see Figure 4A, B, D, E, G, H) (tables 1 and 2 for further details). More specifically, 

a series of one-way ANOVAs confirmed a group effect on the number of cFOS+ cells in the 

dorsal region of all lobules (p<0.01 in all cases, see table 1 for further details). As expected, 

post-hoc comparisons revealed that this effect was driven by a significant increase in cFOS 

staining levels in the conditioned group as compared to the saline and unpaired groups, which 

had a similar number of cFOS+ cells (p<0.01 in all cases). In lobes VII and VIII, differences 

between the conditioned and the unpaired group were additionally boosted by a statistically 

significant reduction on cFOS expression in the unpaired group, falling below that of the saline 

group (p<0.05 in both cases). On the other hand, a second series of one-way ANOVAs 

demonstrated a group effect on the cFOS-IR in the ventral region of all vermal lobules. In this 

case, between-group differences were achieved by a generalized reduction of cFOS levels in the 

unpaired group, which was statistically significant (p<0.01) in all lobules except in lobule V 

(p>0.05 in this case). Also in this lobule, the conditioned group exhibited a significant increase 

in cFOS+ cells towards the saline group (p<0.05). 
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Figure 4. cFOS-IR in different areas of the cerebellar cortex Lobules III (A, B, C), VIII (D, E, 

F) and IX (G, H, I) of the saline, conditioned and unpaired groups. Panels depict mean±(SEM) 

of the number of cFOS+ neurons in the dorsal (A, D, G) and ventral (B, E, H) regions of the 

granule cell layer. Panels (C, F, I) represent mean±(SEM) of cFOS+ Purkinje cells. Capital 

letters indicate a significant difference (p<0.01) towards the saline (A), conditioned (B), or 

unpaired group (C), respectively. Minor letters indicate a significant difference (p<0.05) 

towards the saline (a), conditioned (c) or unpaired group (c), respectively.   

 

Next, we addressed a further exploration into the cerebellar signatures of drug-induced 

preference memory by assessing cFOS expression in conditioned animals as compared to non-

conditioned ones (Figure 5). When conditioned preference for cocaine was not expressed, the 

dorsal region of the granule cell layer showed significant lower cFOS-IR levels in lobules II 

(T8=3.00, p<0.02); III (T8=4.06, p<0.005); V (T8=3.96, p<0.006); VI (T8=3.26, p<0.02); VIII 

(T8=3.38, p<0.02); IX (T8=2.86, p<0.03); X (T8=3.49; p<0.02). Rather, in the ventral region of 

the granule cell layer cFOS expression was similar in either of two groups trained under 

contingency.  

Therefore, it appears that at the level of the granular layer the signature of conditioned 

preference for cocaine is a higher activity in those neurons in the dorsal region. As we also 

showed in a previous study [21], ventral regions of the granular layer seem to represent 

contingency between stimuli rather than emotional memory associated to the drug, because it is 

the unpaired group which are those exhibiting less activity.  



	
   13	
  

 

Figure 5. cFOS-IR in lobules III (A, B, C), VIII (D, E, F) and IX (G, H, I) of the conditioned 

and non-conditioned groups. Panels showed mean±(SEM) of the number of cFOS+ neurons in 

the dorsal (A, D, G) and medial (B, E, H) regions of the granule cell layer. Panels (C, F, I) 

represent mean±(SEM) of cFOS+ Purkinje cells. Capital letters indicate a significant difference 

(p<0.01) towards the conditioned group (B). Minor letters indicate a significant difference 

(p<0.05) towards the conditioned group (b).   

 

3.3.cFOS-IR in Purkinje cells  

cFOS staining in Purkinje cells, the main target of the granule cell output through the parallel 

fibers, was initially evaluated by comparing the three experimental groups. A series of 

ANOVAs revealed a group effect that was restricted to the posterior lobules VIII, IX and X, 

each one of them displaying a characteristic pattern of results. Thus, in lobule VIII, the group 

effect [F2,13= 7.02, p<0.01] was mainly the result of a reduction in the number of cFOS+ 

neurons in the unpaired group (mean ± SEM: 3.16 ±1.49),  which was lower than that observed 

in the conditioned (11.80 ± 2.45, p< 0.01) and saline (9.06 ± 0.80, p<0.05) groups. On the other 

hand, in lobule IX the group effect [F2,13= 4.21, p<0.05] was due to a significant increase in the 
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number of cFOS+ neurons in the conditioned group (7.60 + 1.39) as compared to the unpaired 

(3.83 ± 1.10) and saline (3.75 ± 1.11) groups (Figure 4C, F, I). Finally, in lobule X, the group 

effect [F2,13= 13.51, p<0.01] was probably a consequence of cocaine treatment, as it reflected a 

significant (p<0.01) increase in cFOS staining levels for the unpaired (13.38 ± 2.32) and 

conditioned (11.20 ± 1.38) groups versus those observed in the saline-treated mice (1.25 ± 0.73).  

In a second stage, we estimated cFOS-IR in Purkinje neurons in the conditioned and non-

conditioned groups (Figure 5C, F, I). We did not observe any difference in Purkinje cells apart 

from lobule VII (T8=-2.69, p<0.05), where non-conditioned animals showed higher number of 

cFOS+ Purkinje cells.  

 

3.4.cFOS-IR in the olivary complex, pontine nuclei and the medial nucleus of the 

cerebellum 

Having confirmed the existence of a different pattern of cFOS expression in the conditioned and 

unpaired groups, we extended our cFOS analysis to the brainstem nuclei that involve the two 

major input sources to the parallel fiber-Purkinje ensemble (Figure 6). Thus, we included the 

pontine nuclei (Figure 6A, D) (which is the origin of the mossy fibers providing excitatory input 

to the granule cells) and the olivary complex (Figure 6B, E) (source of climbing fibers 

excitatory inputs reaching Purkinje cells). Also, we assessed cFOS-IR in the medial nucleus 

(Figure 6C, F) considered the main destination of Purkinje cells’ axons in the vermis and 

reciprocally connected to the pontine and olivary nuclei. As summarized in table 3, separate 

ANOVAs revealed the existence of statistically significant differences between groups in all 

these structures. More specifically, we observed that the unpaired group exhibited a significant 

increase in the number of cFOS+ cells as compared to the conditioned and saline groups 

(p<0.01 in all cases).  

cFOS expression in the mossy and climbing fiber inputs to the cerebellum as well as in the 

medial nucleus was similar in the conditioned and the non-conditioned groups. No significant 

differences arose from Student t-test when comparing these two groups. 
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Figure 6. cFOS-IR in the pontine nucleus (A, D); the olivary complex (B, E) and the medial 

nucleus (C, F). Panels A, B and C depict the results in the saline, conditioned and unpaired 

groups. Panels D, E and F showed cFOS expression in the conditioned and non-conditioned 

groups. Data are expressed as mean±(SEM) of the number of cFOS+ neurons in the ROIs 

evaluated. Capital letters indicate a significant difference (p<0.01) towards the saline (A), or 

conditioned (B), respectively. 

 
3.5.Effect sizes 

Trying to sort out everything between group differences by their relative relevance, we decided 

to calculate their respective effect sizes by means of the Cohen’s d statistic. The results of these 

estimations are summarized in table 4, 5, 6 and 7. Of note, in almost all cases analysed, d values 

were higher than /2/ for those effects showing significant differences. In this regard, according 

to Cohen’s own proposal [28], d values higher than 0.8 (or lower than -0.8) are considered as 

“large effects”, although this and other similar benchmarks must be viewed with caution [29]. 

To obtain a valid indication of the precision of these estimates, we also calculated the standard 

errors and 95% confidence intervals (CI) corresponding to each one of these effects. 

Remarkably, in several cases, the lower limit of the 95% CI corresponding to positive 

differences (increases) or the upper limit of the 95% CI corresponding to negative differences 
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(decreases) still yielded d values > 0.8 or <-0.8, respectively. That is, a substantial proportion of 

the between-groups differences identified in the present study should be considered as “large 

effects” even though we used a more conservative estimation of the effect size.  

 

3.6.Correlational analysis 

Interestingly, most of the largest d estimates were found on the comparisons involving the 

lobules III, VIII and IX, in particular at the level of the dorsal and ventral regions of the granule 

cell layer. As this and other observations seem to point out these lobules as especially relevant 

for reacting to cocaine-paired cues, we decided to investigate the reciprocal correlations 

between the levels of cFOS-IR observed in the different cerebellar regions. Thus, coupling the 

known anatomical connections and the obtained correlational values, we built up three separate 

working models that summarize the interrelationships between all the components of this 

cerebellar circuit as well as towards the preference for the cocaine-paired odour. These models 

are displayed in the Figures 7 and 8 commented on in further detail in the discussion section.   
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Figure 7. Correlation matrices among the levels of cFOS-IR found in different regions of the 

cerebellar cortex in lobule III (A); lobule VIII (B); lobule IX (C) and other anatomical regions 

of interest (ROIs). Dotted lines connect pairs of ROIs in which correlation was analysed 

through the Spearman’s Rho index (black lines p<0.05, grey lines p>0.05).  
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4.Discussion  

Our earlier findings involved the vermis cerebellum in the preference memory towards an 

odour-cue paired with repeated cocaine administrations [21]. Here, we extend the analysis to 

inputs and outputs of the vermis circuitry in order to draw a wider picture of the involvement of 

the cerebellum in preference towards a cue that predicts availability of cocaine. 

Meaningfully, preference towards a cocaine-paired odour and contingency during training 

induced a different pattern of cFOS-IR (Figure 9). As we previously observed [21], the 

cerebellar signature of conditioned preference was an increased expression of cFOS in the 

dorsal region of the granule cell layer of the cerebellar vermis. This enhanced cFOS expression 

was not seen when contingent training was provided to animals that did not become conditioned 

(the non-conditioned group). Neither was it seen when odour-cocaine pairings were not 

contingent as both stimuli were randomly presented (the unpaired group). Moreover, the lack of 

a contingent relationship between CS and US was specifically associated to a reduced 

expression of cFOS in the dorsal and ventral regions of the granule cell layer in several lobules, 

including the lobules VIII and IX. Therefore, a reduction in the neuronal activity of the 

granule cell layer may be tentatively regarded as a part of the hallmarks associated with 

lack of contingency in the relationship between CS-US.  

Less clear is the association between the expression of preference towards a cocaine-associated 

cue and the cFOS-IR in Purkinje cells. Nevertheless, such association was seen in lobule VIII. It 

is also in this lobule where we observed a significant correlation between cFOS expression at 

the granule cell layer and that observed in Purkinje neurons. Furthermore, the number of 

activated Purkinje cells in lobule VIII was inversely correlated with that at the medial deep 

nucleus, supporting an inhibitory Purkinje modulation over the deep cerebellar neurons (Figure 

7B).  
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Figure 8. Panels A, B and C show correlations between the levels of cFOS-IR observed in the 

granule cell layer and the preference exhibited for the CS+ on the test day. Panels D and E 

depict correlation matrices among the levels of cFOS-IR found in the anatomical regions of 

interest (ROIs) and the preference exhibited for CS+ on the test day. Dotted lines were used to 

illustrate each one of the performed correlations using the Spearman’s Rho index (black lines 

p<0.05, grey lines p>0.05).  

 

Extending our assessment to an unprecedented analysis, we observed that cFOS levels at the 

olivary complex and pontine nuclei (which provide the principal inputs to the cerebellum) were 

raised in the unpaired group. Interestingly, the same result was found in the medial nucleus, the 

main cerebellar output from the vermis. As a matter of fact, cFOS expression levels at these 

three cerebellar areas were highly inter-correlated. The results suggest that neurons in the input 

and output nuclei of the cerebellum increase their activity when contingency between cues and 

cocaine is lacking and, therefore, the appropriate behavioural alternative for the on-going 
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contextual situation is uncertain. This suggestion seems to be coherent with the role of the 

cerebellum in prediction about internal events related to external cues [31–33]. The cerebellum 

accomplishes prediction in order to trigger preparatory actions that involve neuronal readiness 

of the brain networks that are going to be needed for the upcoming events. It is a probabilistic 

task that requires previous learning [32]. Thus, it could be expected that as the relationship 

between external cues and internal events become more and more predictable, and behavioural 

reactions are progressively more properly tuned to environmental demands, the inputs might be 

progressively suppressed. It is known that deep nuclear neurons are able to induce a powerful 

GABAergic inhibition over the olivary complex [34–36], so climbing fibers could be inhibited 

once learning has been optimised and behaviour tuned to environmental demands [31]. 

In previous studies addressing the cerebellar role in conditioning, it has been established that 

conditioned (CS) and unconditioned stimuli (US) reach the cerebellum by two separate 

pathways [for a review, 8,37,38]. CS information arrives at the granule cell layer from cerebral 

cortices and other brain areas via mossy fibers originated in the pontine nuclei. In turn, granule 

cells send information to Purkinje dendrites via parallel fibers. Also, climbing fibers projecting 

from the inferior olive convey US information to Purkinje dendrites. In addition, climbing and 

mossy fibers send direct excitatory inputs to the deep nuclear neurons [39,40]. In the present 

protocol, we used two odours as CS. The vermis cerebellum has been found consistently 

activated during odour perception tasks [41–44]. It is known that an extended prefrontal-

limbic network sustains olfactory processing and memory [45] so odour information may 

reach the cerebellum throughout the pontine nuclei via mossy fibers. Unconditioned 

effects of cocaine are a more complex configuration of interoceptive and central stimuli. 

Thus, during conditioning US information could arrive at the cerebellum from both the 

pontine nuclei and the inferior olivary complex. Importantly, the cerebellum connects 

anatomically and functionally to the circuitry responsible for acquiring, maintaining and 

expressing drug induced conditioned memories [14, 18,19, 20, 46, 48]. Specifically, the 

posterior vermis has been identified as the “limbic cerebellum” acting as an interface area 

between sensorimotor circuitry and emotional neural systems [8, 18, 20, 47] 



	
   21	
  

Moreover, cocaine may act locally in the cerebellum and trigger in situ aberrant plasticity [27]. 

Indeed, dopamine transporter (DAT) and receptors have been repeatedly described in the 

cerebellar cortex and deep nuclei [9,10,13,15,20]. As a further matter, we previously observed 

enhanced DAT levels in the granule cell layer of the animals exhibiting preference for cocaine-

paired cues [21].  

Overall, the differences seen when comparing the three cocaine-treated groups lead us to 

suggest that the observed cerebellar pattern of neuronal activity resulted from plasticity 

reorganization in the cerebellar circuitry associated with memory induced by cocaine. Herein, 

although highly speculative at the moment, our findings point to the possibility that the dorsal 

region of the granule cell layer is the possible locus for the storage of conditioned emotional 

memory induced by cocaine. Notwithstanding, future causal research will be essential to 

elucidate the role of cerebellar areas in alterations leading to addiction-like behaviour as 

the present approach using c-FOS expression is not more than a correlational marker of 

neuronal activity. 
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Figure 9. Working models depicting the present findings. (A) The lack of a contingent 

relationship between CS and US was associated with increased excitatory inputs to the 

cerebellum (climbing and mossy fibers) (black diagrams). In turn, this could lead to higher 

activity in the medial cerebellar nucleus. Also, the lack of contingency was featured by a 

reduced expression of cFOS in the dorsal and ventral regions of the granule cell layer (white 

diagrams). After contingent training (B), the hallmark of preference towards a cue paired with 

cocaine was a higher activity in neurons located at the dorsal region of the granule cell layer 

(black diagrams). In lobule VIII, in addition, cocaine-induced learning appeared to also be 

related to higher activity in Purkinje cells (black diagrams), which could induce an inhibitory 

control onto the medial nucleus activity. Despite contingent cue-cocaine associative training, 

there is a subgroup of animals that did not express preference for the cue paired with cocaine 

(C). In this case, we did not observe any of the signatures of cocaine-induced preference. Non-

conditioned animals neither exhibited higher activity in the granule cell layer nor in Purkinje 

neurons. However, activity in the climbing and mossy excitatory inputs and in the deep medial 

nucleus remained similar to that of the group that develop preference for cocaine-associated cue. 
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Tables 
 
 
 

 
Saline Conditioned Unpaired F2,13 p 

 
Lobule II 

 
15.20 + 2.81 32.56 + 3.87A,C 12.17 + 4.51  7.71 <0.006 

 
Lobule III 

 
11.60 + 3.17 40.33 + 5.80 A,C 13.00 + 5.28 10.22 <0.002 

 
Lobule V 

 
14.80 + 3.33 36.60 + 4.78 A,C 12.33 + 5.76 7.20 <0.007 

 
Lobule VI 

 
16.60 + 2.50 39.20 + 4.74 A,C 9.69+ 4.09 15.19 <0.001 

 
Lobule VII 

 
18.20 + 4.77 36.20 + 3.00 A,C 6.50+ 3.10a 17.01 <0.001 

 
Lobule VIII 

 
17.20 + 3.29 43.34 + 5.48 A,C 4.33+ 1.54 a 30.87 <0.001 

 
Lobule IX 

 
16.80 + 3.15 34.79 + 5.91 

A,C 
5.09+ 2.22 14.84 <0.001 

 
Lobule X 

 
12.00 + 1.79 37.23 + 5.41 A,C 7.67+ 3.49 17.08 <0.001 

 
Table 1.- Descriptive statistics (mean+ SEM) and main outcomes of univariate 
ANOVAs assessing the levels of the c-Fos+ staining at the dorsal region of the granule 
cell layer in each cerebellar lobule. As can be seen, the treatment group factor had a 
significant effect on the number of c-Fos positive neurons in all. Capital letters indicate 
a significant difference (p<0.01) towards the saline (A), conditioned (B) or unpaired 
group (C). Lowercase letters indicate a significant difference (p<0.01) towards the 
saline (a), conditioned (b) or unpaired group (c). 
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Saline Conditioned Unpaired F2,13 p 
 

Lobule II 
 

26.4+ 4.08 30.03+ 4.56 10.16+ 3.22 A,B 15.60 <0.001 

 
Lobule III 

 
28.60+ 3.04 30.18+ 5.07 9.00+ 5.07 A,B 7.67 <0.006 

 
Lobule V 

 
19.6+ 2.37 33.33+ 4.73 a 9.00+ 4.73B 9.03 <0.003 

 
Lobule VI 

 
25.8+ 1.93 33.56+ 4.47 5.92+ 2.24 A,B 23.53 <0.001 

 
Lobule VII 

 
30.20+ 4.45 35.48+ 6.03 2.59+ 1.17 A,B 19.49 <0.001 

 
Lobule VIII 

 
27.80+ 6.46 26.67+ 5.15 1.66+ 0.91 A,B 11.48 <0.001 

 
Lobule IX 

 
21.40+ 4.14 30.50+ 3.22 3.33+ 1.80 A,B 21.32 <0.001 

 
Lobule X 

 
23.00+ 1.22 24.40+ 5.40 6.83+ 3.09 A,B 7.71 <0.006 

 
Table 2.- Descriptive statistics (mean+ SEM) and main outcomes of univariate 
ANOVAs assessing the levels of the c-Fos+ staining at the ventral region of the granule 
cell layer in each cerebellar lobule. As can be seen, the treatment group factor had a 
significant effect on the number of c-Fos positive neurons in all. Capital letters indicate 
a significant difference (p<0.01) towards the saline (A), conditioned (B) or unpaired 
group (C). Lowercase letters indicate a significant difference (p<0.01) towards the 
saline (a), conditioned (b) or unpaired group (c). 
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Saline Conditioned Unpaired F2,13 p 

 
Pontine N 

 
44.37+ 5.05 68.00+ 11.81 199.83+ 56.66 A,B 5.14 <0.02 

 
I. Olive 

 
28.60+ 3.04 23.40+ 5.28 45.69+ 18.65 A,B 10.63 <0.001 

 
Medial N 

 
25.50+ 5.48 27.80+ 6.52 74.83+ 10.01 A,B 12.70 <0.001 

 
Table 3.- Descriptive statistics (mean+ SEM) and main outcomes of univariate 
ANOVAs assessing the levels of the c-Fos+ staining in the brainstem nuclei and the 
medial deep nucleus. As can be seen, the treatment group factor had a significant effect 
on the number of c-Fos positive neurons in all of them. Capital letters indicate a 
significant difference (p<0.01) towards the saline (A), conditioned (B) or unpaired 
group (C). 
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DORSAL 
Cohen’s d 

 
SE 

 
96%CI 

lower bound 

96%CI 
upper 
bound 

Lob II. Conditioned vs. Unpaired 2.25 0.77 0.73 3.76 
Lob II. Conditioned vs. Saline 1.91 0.76 0.42 3.41 

Lob III. Conditioned vs. Unpaired 2.38 0.79 0.83 3.93 
Lob III. Conditioned vs. Saline 2.50 0.84 0.85 4.16 

Lob V. Conditioned vs. Unpaired 2.14 0.76 0.65 3.62 
Lob V. Conditioned vs. Saline 1.92 0.76 0.42 3.42 

Lob VI. Conditioned vs. Unpaired 3.24 0.92 1.44 5.04 
Lob VI. Conditioned vs. Saline 2.48 0.84 0.83 4.13 

Lob VII. Conditioned vs. Unpaired 3.52 0.96 1.63 5.42 
Lob VII. Conditioned vs. Saline 2.14 0.76 0.65 3.62 

Lob VII. Unpaired vs. Saline -1.39 0.67 -2.71 -0.07 
Lob VIII. Conditioned vs. Unpaired 4.71 1.17 2.41 7.01 

Lob VIII. Conditioned vs. Saline 3.16 0.95 1.30 5.02 
Lob VIII. Unpaired vs. Saline -1.55 0.69 -2.91 -0.20 

Lob IX. Conditioned vs. Unpaired 3.29 0.93 1.47 5.11 
Lob IX. Conditioned vs. Saline 1.99 0.77 0.48 3.51 

Lob X. Conditioned vs. Unpaired 3.35 0.94 1.51 5.18 
Lob X. Conditioned vs. Saline 2.85 0.90 1.09 4.62 

VENTRAL  
Lob II. Unpaired vs. Conditioned -2.23 0.77 -3.74 -0.72 

Lob II. Unpaired vs. Saline -1.80 0.72 -3.20 -0.39 
Lob III. Unpaired vs. Conditioned -2.28 0.78 -3.80 -0.75 

Lob III. Unpaired vs. Saline -2.11 0.75 -3.58 -0.63 
Lob V. Unpaired vs. Conditioned -2.55 0.81 -4.14 -0.95 

Lob V. Conditioned vs. Saline 1.44 0.71 0.05 2.83 
Lob VI. Unpaired vs. Conditioned -3.98 1.04 -6.03 -1.94 

Lob VI. Unpaired vs. Saline -2.86 0.86 -4.55 -1.18 
Lob VII. Unpaired vs. Conditioned -3.47 0.96 -5.35 -1.60 

Lob VII. Unpaired vs. Saline -2.45 0.80 -4.02 -0.88 
Lob VIII. Unpaired vs. Conditioned -2.42 0.80 -3.98 -0.86 

Lob VIII. Unpaired vs. Saline -2.53 0.81 -4.12 -0.94 
Lob IX. Unpaired vs. Conditioned -3.85 1.02 -5.85 -1.85 

Lob IX. Unpaired vs. Saline -2.56 0.82 -4.16 -0.96 
Lob X. Unpaired vs. Conditioned -2.11 0.75 -3.59 -0.63 

Lob X. Unpaired vs. Saline -1.94 0.73 -3.38 -0.50 
 

Table 4.- Effect sizes of between-group differences found at the dorsal and ventral 
areas of the granular cell layer. Cohen’s d statistics, with its corresponding standard 
error (SE) and 96% confidence intervals (CI) are provided. According to Cohen’s own 
proposal, d values higher than 0.8 (or lower than -0.8) are considered as “large effects”. 
Cases in which the lower limit of the 95% CI corresponding to positive differences 
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(increases) or the upper limit of the 95% CI corresponding to negative differences 
(decreases) yielded d values >0.8 or <-0.8 are highlighted (see text for further details). 
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Cohen’s d 

 
SE 

 

96%C
I 

lower 
bound 

96%CI 
upper 
bound 

PURKINJE     
Lob VIII. Conditioned vs. Unpaired 2.20 0.77 0.70 3.70 

Lob VIII. Unpaired vs. Saline -1.50 0.68 -2.84 -0.16 
Lob IX. Conditioned vs. Unpaired 1.36 0.67 0.04 2.67 

Lob IX. Conditioned vs. Saline 1.38 0.70 0.00 2.76 
Lob X. Conditioned vs. Saline 2.47 0.84 0.82 4.11 

Lob X. Unpaired vs. Saline 3.13 0.90 1.37 4.90 
BRAINSTEM INPUTS AND 

MEDIAL NUCLEUS     
N.Pontine. Unpaired vs. 

Conditioned 1.51 0.69 0.16 2.85 
Pontine N. Unpaired vs. Saline 1.78 0.71 0.38 3.18 

Olive N. Unpaired vs. Conditioned 2.13 0.76 0.65 3.62 
Olive N. Unpaired vs. Saline 1.95 0.73 0.51 3.39 

Medial N. Unpaired vs. Conditioned 2.74 0.84 1.09 4.38 
Medial N. Unpaired vs. Saline 2.87 0.86 1.18 4.56 

 
Table 5.- Effect sizes of between-group differences found at Purkinje, cerebellar inputs 
and the medial nucleus. Cohen’s d statistics, with its corresponding standard error (SE) 
and 96% confidence intervals (CI) are provided. According to Cohen’s own proposal, d 
values higher than 0.8 (or lower than -0.8) are considered as “large effects”. Cases in 
which the lower limit of the 95% CI corresponding to positive differences (increases) or 
the upper limit of the 95% CI corresponding to negative differences (decreases) yielded 
d values >0.8 or <-0.8 are highlighted. 
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DORSAL 
Cohen’s d 

 
SE 

 
96%CI 

lower bound 
96%CI    upper 

bound 
Lob II. Conditioned vs. Non-

conditioned      2.08 
 

    0.78 
 

0.54 
 

	
  
3.62 

 

Lob III. Conditioned vs. Non-
conditioned 2.88     0.90 

 

  1.11 4.65 
Lob V. Conditioned vs. Non-

conditioned 2.74 0.88   1.02 4.47 
Lob VI. Conditioned vs. Non-

conditioned 1.53 0.71   0.12 2.94 
Lob VII. Conditioned vs. Non-

conditioned 1.32 0.69  -0.04 2.69 
Lob VIII. Conditioned vs. Non-

conditioned 2.36 0.82   0.75 3.98 
Lob IX. Conditioned vs. Non-

conditioned 2.03 0.77  0.50 3.55 
Lob X. Conditioned vs. Non-

conditioned 2.48 0.84  0.83 4.13 
 

MEDIAL  
Lob II. Conditioned vs. Non-

conditioned       0.10 
 

  0.63 
 

      -1.34 
 

	
  
1.13 

 

Lob III. Conditioned vs. Non-
conditioned 0.37 0.63 -0.87 1.62 

Lob V. Conditioned vs. Non-
conditioned 0.42 0.63 -0.83 1.67 

Lob VI. Conditioned vs. Non-
conditioned 0.54    0.64 

 

-0.71 1.80 
Lob VII. Conditioned vs. Non-

conditioned 0.42    0.63 
 

-0.82 1.67 
Lob VIII. Conditioned vs. Non-

conditioned 0.15 0.63 -1.09 1.39 
Lob IX. Conditioned vs. Non-

conditioned 0.23 0.63 -1.00 1.47 
Lob X. Conditioned vs. Non-

conditioned      0.01 
 

0.63 -1.24 1.23 
 

Table 6.- Effect sizes of between-group differences found at the dorsal and ventral 
areas of the granular cell layer when comparing the conditioned to the non-conditioned 
group. Cohen’s d statistics, with its corresponding standard error (SE) and 96% 
confidence intervals (CI) are provided. According to Cohen’s own proposal, d values 
higher than 0.8 (or lower than -0.8) are considered as “large effects”. Cases in which the 
lower limit of the 95% CI corresponding to positive differences (increases) or the upper 
limit of the 95% CI corresponding to negative differences (decreases) yielded d values 
>0.8 or <-0.8 are highlighted.  
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Cohen’s d 

 
SE 

 

96%CI 
lower 
bound 

96%CI 
upper 
bound 

PURKINJE     
Lob II. Conditioned vs.  Non-

conditioned 
-0.29 

 
0.63 

 
-1.54 

 
0.95 

 
Lob III. Conditioned vs Non-

conditioned 
-1.15 

 
0.68 

 
-2.49 

 
0.18 

 
Lob V. Conditioned vs. Non-

conditioned 
-0.84 

 
0.66 

 
-2.14 

 
0.44 

 
Lob VI. Conditioned vs. Non-

conditioned 
-0.34 

 
0.63 

 
-1.58 

 
0.90 

 
Lob VII. Conditioned vs. Non-

conditioned 
-1.70 

 
0.73 

 
-3.15 

 
-0.25 

 
Lob VIII. Conditioned vs Non-

conditioned 
-1.18 

 
0.68 

 
-2.53 

 
0.15 

 
Lob IX. Conditioned vs Non-

conditioned 
-1.30 

 
0.69 

 
-2.66 

 
0.06 

 
Lob X. Conditioned vs Non-

conditioned 
-0.41 

 
0.63 

 
-1.66 

 
0.84 

 
BRAINSTEM INPUTS AND 

MEDIAL NUCLEUS     
N.Pontine.. Conditioned vs Non-

conditioned 
-0.08 

 
0.63 

 
-1.32 

 
1.15 

 
Olive N. Conditioned vs Non-

conditioned 
-0.68 

 
0.65 

 
-1.95 

 
0.59 

 
Medial N. Conditioned vs Non-

conditioned 
0.75 

 
0.65 

 
-0.52 

 
2.03 

 
 
 

Table 7.- Effect sizes of between-group differences found at Purkinje, cerebellar inputs 
and the medial nucleus when comparing the conditioned to the non-conditioned group. 
Cohen’s d statistics, with its corresponding standard error (SE) and 96% confidence 
intervals (CI) are provided. According to Cohen’s own proposal, d values higher than 
0.8 (or lower than -0.8) are considered as “large effects”. Cases in which the lower limit 
of the 95% CI corresponding to positive differences (increases) or the upper limit of the 
95% CI corresponding to negative differences (decreases) yielded d values >0.8 or <-
0.8 are highlighted in bold. 
 

 


