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ABSTRACT 22	  

Omeprazole is one of the world-wide most consumed pharmaceuticals for treatment 23	  

of gastric diseases. As opposed to other frequently used pharmaceuticals, omeprazole is 24	  

scarcely detected in urban wastewaters and environmental waters. This was 25	  

corroborated in a previous research, where parent omeprazole was not detected while 26	  

four transformation products (TPs), mainly resulting from hydrolysis, were found in 27	  

effluent wastewaters and surface waters. However, the low abundance of omeprazole 28	  

TPs in the water samples together with the fact that omeprazole suffers an extensive 29	  

metabolism, with a wide range of excretion rates (between 0.01-30%), suggests that 30	  

human urinary metabolites should be investigated in the water environment. In this 31	  

work, the results obtained in excretion tests after administration of a 40 mg omeprazole 32	  

dose in three healthy volunteers are reported. Analysis by liquid chromatography 33	  

coupled to hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF MS) 34	  

reported low concentrations of omeprazole in urine. Up to twenty-four omeprazole 35	  

metabolites (OMs) were detected and tentatively elucidated. The most relevant OM was 36	  

an omeprazole isomer, which obviously presented the same exact mass (m/z 346.1225), 37	  

but also shared a major common fragment at m/z 198.0589. Subsequent analyses of 38	  

surface water and effluent wastewater samples by both LC-QTOF MS and LC-MS/MS 39	  

with triple quadrupole revealed that this metabolite (named as OM10) was the 40	  

compound most frequently detected in water samples, followed by OM14a and OM14b. 41	  

Up to our knowledge, OM10 had not been used before as urinary biomarker of 42	  

omeprazole in waters. On the contrary, parent omeprazole was never detected in any of 43	  

the water samples. After this research, it seems clear that monitoring the presence of 44	  

omeprazole in the aquatic environment should be focused on the OMs suggested in this 45	  

article instead of the parent compound.  46	  
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1. INTRODUCTION 51	  

Environmental contamination by pharmaceuticals (both human and veterinary 52	  

medicines) is an issue of general concern. They are emerging pollutants widely 53	  

distributed in the environment, which can enter through different routes (Zuccato et al. 54	  

2005). Once a pharmaceutical is administered, it can be excreted unchanged or as 55	  

metabolites in the urine or faeces, reaching the aquatic environment commonly 56	  

throughout sewage waters (Besse et al. 2012; González Alonso et al. 2010; Ortiz de 57	  

García et al. 2013).  58	  

Omeprazole is one of the most frequently prescribed and administered 59	  

pharmaceuticals in humans for proton pump inhibition (Andersson et al. 1993; Bruni 60	  

and Ferreira. 2008; José Gómez et al. 2007; Ortiz de García et al. 2013). As an example, 61	  

51,874,630 packages, under prescription, were dispensed in Spain in 2010 62	  

(http://www.msssi.gob.es/biblioPublic/publicaciones/recursos_propios/infMedic/docs/S63	  

ubgruposATCvol35n4.pdf). It is known to act by irreversibly blocking the terminal 64	  

stage of gastric acid secretion in the gut. This compound is reported to be metabolized 65	  

by the enzyme CYP2C19 to form the 5-hydroxy metabolite whereas CYP3A4 catalyzes 66	  

the sulfone formation (Kanazawa et al. 2002; Rost et al. 1995). About 80% of orally 67	  

administered omeprazole dose is excreted in urine as metabolites, whereas the 68	  

remainder is excreted in the faeces, mainly from biliary secretion (Andersson et al. 69	  

1993). Different percentages of omeprazole excretion (as intact parent) can be found in 70	  

the literature, ranging from 0.01% (Besse et al. 2008) to 5% (Hernando et al. 2007), or 71	  

even up to 30% (Ortiz de García et al. 2013). This variation has been justified based on 72	  

the different enzymatic activity of each individual. Sulfonated and 5-hydroxylated 73	  

compound are the major omeprazole metabolites (OMs) found in plasma (Espinosa 74	  

Bosch et al. 2007; Song and Naidong. 2006), whereas in urine the 5-hydroxylated OM 75	  
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is the predominant one (Petsalo et al. 2008) (Figure 1). The concentration of 76	  

omeprazole sulfide, another OM reported in the literature, is usually too low to be 77	  

determined in plasma, and it is also negligible in urine (Rezk et al. 2006). 78	  

Several analytical methods have been reported for determination of omeprazole in 79	  

plasma (Kanazawa et al. 2002; Macek et al. 2007; Rost et al. 1995; Song and Naidong. 80	  

2006) while only a few articles deal with analysis of urine samples. Petsalo et al. 81	  

(Petsalo et al. 2008), focused on the determination of the 3-hydroxy-, 5-hydroxy-, 82	  

demethyl-, and sulfone-OMs and omeprazole itself in urine. It was not possible to detect 83	  

3-hydroxy OM, and the concentrations of omeprazole and its sulfone OM were very 84	  

low. Chung et al. (Chung et al. 2004), reported the detection of four unconjugated and 85	  

two conjugated OMs in horse urine by LC-MS. 86	  

The available literature on omeprazole determination highlights the application of 87	  

liquid chromatography (LC) as the most appropriate analytical tool for this compound 88	  

(Kanazawa et al. 2002; Petsalo et al. 2008; Song and Naidong. 2006; Ternes et al. 89	  

2001). Although some methods have made use of UV as detection technique (Rezk et 90	  

al. 2006), currently mass spectrometry (MS) is the technique of choice for 91	  

determination of omeprazole, particularly LC coupled to tandem MS (MS/MS), the 92	  

advantages of which, short analytical run time as well as excellent selectivity and 93	  

sensitivity, are widely recognized (Espinosa Bosch et al. 2007). While LC-MS/MS with 94	  

triple quadrupole (QqQ) analyzer is the workhorse for quantitative analysis of 95	  

pharmaceuticals, omeprazole included, in the aquatic environment (Castiglioni et al. 96	  

2004; Gracia-Lor et al. 2010; Van Nuijs et al. 2010; Zuccato et al. 2005), LC coupled to 97	  

high resolution mass spectrometry (HRMS) such as Orbitrap (Calza et al. 2012; Thevis 98	  

et al. 2011), FTMS (Awasthi et al. 2012) or time-of-flight MS (Ibáñez et al. 2004; 99	  

Ibáñez et al. 2006) is a powerful analytical tool for investigation of metabolites and/or 100	  
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transformation products (TPs) in water. These HR MS techniques are also appropriate 101	  

to perform metabolism studies of pharmaceuticals within the biomedical field (Corcoran 102	  

et al. 2000; Hopfgartner et al. 1999) due to the accurate-mass full-spectrum acquisitions 103	  

provided by these analyzers. 104	  

Considering the high consumption of omeprazole and the reported excretion rates of 105	  

up to 20% as intact omeprazole, one might expect to find this compound in urban 106	  

wastewater, or even in environmental waters. Nevertheless, its detection in water 107	  

samples is rarely reported. Additionally, in our previous study on omeprazole 108	  

degradation (Boix et al. 2013), only four low-abundant TPs were rarely found in water 109	  

samples, with omeprazole sulfide the most frequently detected. The initial hypothesis on 110	  

a possible degradation of omeprazole in waters was thus discarded and a detailed study 111	  

on human urinary metabolites of omeprazole was initiated. This paper pursues the 112	  

detection and elucidation of urinary OMs making use of LC-QTOF MS. Subsequently, 113	  

27 surface water (SW) and 25 wastewater (WW) samples have been analyzed by LC-114	  

QTOF MS and LC-MS/MS QqQ to investigate the presence of OMs.  115	  

 116	  

2. EXPERIMENTAL 117	  

2.1 Reagents and chemicals  118	  

See Supplementary Information (SI). 119	  

2.2 Instrumentation 120	  

UHPLC-QTOF MS 121	  

A Waters Acquity UPLC system (Waters, Milford, MA, USA) was interfaced to 122	  

a hybrid quadrupole–orthogonal acceleration-TOF mass spectrometer (Q-oaTOF 123	  
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Premier, Waters Micromass, Manchester, UK), using an orthogonal Z-spray 124	  

electrospray ionization (ESI) interface operating in positive and negative ion modes 125	  

(For further details, see SI). 126	  

QTOF data were acquired under MSE mode, an approach that enables the 127	  

simultaneous acquisition of both parent protonated molecules and fragment ions in a 128	  

single injection. So, two acquisition functions with different collision energies were 129	  

created. The first one, the low energy (LE) function, selecting a collision energy of 4 130	  

eV, and the second one, the high energy (HE) function, with a collision energy ramp 131	  

ranging from 15 eV to 40 eV (Díaz et al. 2011; Hernández et al. 2011a; Hernández et al. 132	  

2011b; Plumb et al. 2006).  133	  

UHPLC-MS/MS QqQ 134	  

A Waters Acquity UPLC system was interfaced to a triple quadrupole mass 135	  

spectrometer (TQD, Waters) with an orthogonal Z-spray-ESI interface. Capillary 136	  

voltages of 3.5 and -3.0 kV were used in positive and negative ionization mode, 137	  

respectively (For further details, see SI). 138	  

2.3 Analysis of metabolites excreted in urine 139	  

Urine samples were collected from three healthy volunteers with different gender (1 140	  

male, 2 females) and origins (2 Europeans and 1 Latin-American, all living in Europe). 141	  

Each volunteer ingested an oral dose of 40 mg omeprazole (i.e., two 20 mg capsules). 142	  

Urine samples were collected before ingestion of the drug (control sample), and after 15 143	  

minutes, 1, 3.5, 6.5, 9, 12 and 24 hours of drug administration. Polyethylene bottles 144	  

were used for collecting samples, which were immediately stored at –18 ºC until 145	  

analysis. The study protocol was approved by an ethical committee (University Jaume I, 146	  

Spain). 147	  
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For analysis of urine, 1 mL of sample previously centrifuged (10,000 r.p.m., 10 148	  

minutes), was two-fold diluted with Milli-Q water. After that, 50 µL were directly 149	  

injected in the UHPLC-QTOF MS system.  150	  

For the determination of metabolites released from glucuronide conjugates, 1 mL of 151	  

centrifuged urine was buffered with 50 µL acetic acid/ammonium acetate (pH 5.5). 152	  

After being hydrolyzed overnight with 200 units of β-D-glucuronidase at 37 ºC, 50 µL 153	  

of the hydrolyzed mixture were injected in the UHPLC-QTOF MS system (Hernández 154	  

et al. 2004). 155	  

2.4 Retrospective QTOF MS analysis of water samples 156	  

25 wastewater samples (15 influents and 10 effluents) were collected from three 157	  

different wastewater treatment plants (WWTPs) of the Valencian region (Eastern 158	  

Spain), whose anonymity must be respected, from June 2008 to December 2010. 27 159	  

surface waters were also sampled from several points located in the same area in 160	  

October 2010. All these samples had been used previously in different studies 161	  

performed at our lab using UHPLC-QTOF MS for their analysis. 162	  

2.5 Data processing 163	  

QTOF MS data were processed using MetaboLynx XS and ChromaLynx XS 164	  

application managers (Waters Micromass vs 4.1). Regarding data from triple 165	  

quadrupole, TargetLynx software (also from Waters) was used (More details in ref. 166	  

(Boix et al. 2013)). 167	  

 168	  

3. RESULTS AND DISCUSSION 169	  

3.1 Urinary excretion of parent omeprazole 170	  
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Omeprazole was detected at low concentration levels (not quantified) in non-171	  

hydrolyzed urine from the two European volunteers approximately between 1 and 3 172	  

hours after administration of the drug. In the third volunteer (Latin American female), 173	  

the drug was not detected in any of the urine samples collected. This would be in 174	  

accordance with the scientific literature where different levels of excretion for 175	  

omeprazole have been reported (Besse et al. 2008; Hernando et al. 2007; Ortiz de 176	  

García et al. 2013; Zuccato et al. 2005). 177	  

Interestingly, the narrow window eXtracted Ion Chromatogram (nw-XIC, 0.02Da) at 178	  

the exact mass of omeprazole ([M+H]+ m/z 346.1225), showed a highly abundant peak 179	  

at different retention time (5.88 min for omeprazole, 4.91 min for this compound, 180	  

OM11a) (Figure S1a). Although HE MS spectra of both compounds were quite 181	  

different (e.g. specific fragment ions: m/z 136 and 151 for omeprazole; m/z 138 and 149 182	  

for OM11a, Figures S1b,c), they shared an important common fragment at m/z 183	  

198.0589. This fact cannot be neglected, as it might lead to a false positive of 184	  

omeprazole even by LC-MS/MS if only the transition 346.1>198.1 (the most commonly 185	  

reported in the literature) is acquired (Petsalo et al. 2008; Macek et al. 2007; Song and 186	  

Naidong. 2006), without sufficient chromatographic separation. This is of relevance 187	  

taking into account the high abundance of this metabolite.  188	  

3.2 Elucidation of metabolites 189	  

Table 1 shows the elemental composition, mass errors of the (de)protonated 190	  

molecule and fragments ions, and retention time for omeprazole and twenty-four OMs 191	  

detected in hydrolyzed and non-hydrolyzed urine. Figure 1 shows the structures 192	  

suggested for the main fragment ions together with the omeprazole metabolites reported 193	  

in the literature. Tentative structure proposals for OMs identified in this work are given 194	  
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in Figure 2. All metabolites were detected in positive-ion mode except for the OM12, 195	  

which was only detected in negative-ion mode.  196	  

Different conjugated metabolites, as cysteine (OM1), glucuronides (OM2a, OM2b, 197	  

and OM2c) and sulfates (OM5 and OM12) were directly detected (Figure 2) in the non-198	  

hydrolyzed urine. After hydrolysis, a decrease of cysteine and glucuronide conjugates 199	  

was observed, as well as the corresponding increase in abundance of the OM11a and 200	  

OM7d. Additionally, a new peak appeared, corresponding to [C17H20N3O3S]+ (OM11b) 201	  

(m/z 346.1225, Δ = 1.5 mDa), with the same elemental composition as omeprazole and 202	  

its isomeric metabolite OM11a, but eluting even earlier (4.52 min). With these data, it 203	  

seems that OM7d and OM11a are partly conjugated while OM11b is fully conjugated 204	  

prior to urinary excretion. Based on similarities in their fragmentation, OM11a and 205	  

OM11b would correspond to the free forms of OM2(b,c) and OM2a, respectively. 206	  

The compound OM4 [C16H18N3O3S]+, m/z 332.1069 (Δ = 0.7 mDa; 3.73 min), has 207	  

the same exact mass as the reported demethyl-OM (Kanazawa et al. 2002; Petsalo et al. 208	  

2008; Rost et al. 1995). However, OM4 was not considered to match demethyl-OM, as 209	  

the spectrum of OM4 shows the specific loss of m/z 32.9799 ([●SH]) related to the 210	  

reduction of the sulfoxide group. 211	  

The loss of the thiol radical [●SH] from the protonated molecule was observed in 212	  

ESI positive for all OMs when the sulfoxide moiety was converted into a sulfide. 213	  

Initially, cyclation of omeprazole molecule rendering a terminal thiol group was 214	  

considered, as reported to occur under acidic conditions (Bruni and Ferreira. 2008; 215	  

DellaGreca et al. 2006; Weidolf and Castagnoli. 2001). However, in the MS/MS 216	  

spectrum of the 4-hydroxy omeprazole sulfide reference standard (C16H18N3O2S+, m/z 217	  

316.1120), the loss of the thiol radical [●SH] was also observed (Figure S2a). 218	  

Therefore, the initial hypothesis of cyclisation was rejected. The [●SH] loss (32.9799 219	  
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Da) from the thioether group could be explained from a homolytic cleavage and 220	  

intermediate binding to the hydrogen at the imidazolyl-N to form [●SH] (Figure S2b). 221	  

Although the mass error was relatively high (around 4 mDa), other elemental 222	  

compositions could not be assigned. A subsequent homolytic cleavage, involving the 223	  

loss of a methyl radical [●CH3] is observed as well (see Figure S2c). The [●SH] loss 224	  

observed for many OMs suggested the reduction of the sulfoxide group to sulfide.  225	  

Regarding the position at which hydroxylation has occurred (for OM4 but also for 226	  

OM3, OM7abe, OM8abc, OM10 and OM11a), it was justified according to the 227	  

fragment ions observed in their spectra. So, two fragments ions at m/z 149.0715 228	  

(C8H9N2O+) and 135.0558 (C7H7N2O+) (see Table 1 and Figure 1a) correspond to the 229	  

benzimidazole ring of the original omeprazole molecule and to its demethylated 230	  

fragment ion, respectively. The presence of one of these fragment ions would therefore 231	  

imply that hydroxylation has taken place in the other side of the molecule, i.e., in the 232	  

pyridine ring. 233	  

In the case of OM6 (and also OM11b), the hydroxylation was located in the 234	  

benzimidazole ring based on the presence of the fragment ions at m/z 195.0770 235	  

(C9H11N2O3
+) and 150.0919 (C9H12NO+), respectively (see Table 1 and Figure 1a). 236	  

Five di-oxygenated OM7s [C17H20N3O5S]+ (m/z 378.1124) and three mono-237	  

oxygenated OM8s [C17H20N3O4S]+ (m/z 362.1175) were also observed (Figure 2). 238	  

However, it was not possible to predict at which position the hydroxylations occurred, 239	  

as the fragment ions did not provide enough information. The SO2 loss observed for 240	  

OM7b-7e indicates the presence of the sulfone group in the molecule. Regarding OM7a, 241	  

the sulfoxide group was maintained (SO2 loss not observed) therefore suggesting a 242	  

double hydroxylation. A previously searched metabolite (omeprazole sulfone-N-oxide, 243	  

[C17H20N3O5S]+) (Hernández et al. 2011b) might also be one of the OM7s. However, no 244	  
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characteristic fragmentation from an N-oxide (involving losses of O, OH● and H2O) was 245	  

observed (Chen et al. 2005).  246	  

Other reported OMs, like 5-hydroxy omeprazole (Hernández et al. 2011b; Kanazawa 247	  

et al. 2002; Petsalo et al. 2008; Rezk et al. 2006; Rost et al. 1995; Song and Naidong. 248	  

2006), 3-hydroxy omeprazole (Kanazawa et al. 2002; Petsalo et al. 2008) and 249	  

omeprazole sulfone (Kanazawa et al. 2002; Petsalo et al. 2008; Rezk et al. 2006; Rost et 250	  

al. 1995) matched with the exact mass of metabolites 8 (a, b,c). Based on the structure 251	  

proposed for these metabolites according to the observed fragmentation, none of them 252	  

could be assigned to omeprazole-sulfone (OM8a,b are sulfides and OM8c is a 253	  

sulfoxide). Moreover, 3- and 5- hydroxy omeprazole could only be related with OM8c. 254	  

However, after injecting the 5-hydroxy omeprazole reference standard, its retention time 255	  

and mass spectra were not in agreement with OM8c. Therefore, omeprazole-sulfone and 256	  

5-hydroxy omeprazole were discarded as candidates for the group of OM8 metabolites, 257	  

while 3-hydroxy omeprazole could still be a plausible candidate for OM8c. 258	  

It is worth to mention the detection of OM13 [C16H16N3O4S]+ (m/z 346.0862, 259	  

ΔmDa= 1.3). This compound shared the same nominal mass than omeprazole (346) and 260	  

its isomers OM11a and OM11b, but it had different exact mass and retention time. The 261	  

potential of HR MS allowed differentiating these compounds with different elemental 262	  

compositions. In this case, the elemental composition for OM13 suggested a 263	  

demethylation (fragment ion at m/z 135.0558), sulfoxide-reduction (loss of m/z 32.9799, 264	  

[●SH]) and subsequent hydroxylation and oxidation (fragment ions at m/z 212.0381 and 265	  

150.0555) from parent omeprazole (Table 1, Figure 2). 266	  

Two isomers, OM14a and OM14b ([C16H18N3O2S]+, m/z 316.1220), eluting at 4.52 267	  

and 5.01 min, respectively, are the result of sulfoxide reduction (loss of m/z 32.9799, 268	  

[●SH]) and demethylation reactions in the omeprazole structure. OM14b presented two 269	  
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fragment ions at m/z 136.0762 (C8H11NO+) and 149.0715 (C8H9N2O+) showing that 270	  

demethylathion occurred in the pyridine ring. The metabolite OM14b corresponds to the 271	  

already reported 4-hydroxy omeprazole sulfide (Hernández et al. 2011b), and the 272	  

identity was confirmed with the reference standard available at our laboratory. 273	  

Regarding the metabolite OM14a, the fragment ions at m/z 135.0558 (C7H7N2O+) and 274	  

150.0919 (C9H12NO+) indicated that the compound was demethylated at the 275	  

benzimidazole group. 276	  

As illustrative example, the elucidation process for the two most abundant 277	  

metabolites, OM10 and OM11a, is discussed in detail in SI. 278	  

Up to our knowledge, some of the metabolites reported in this paper have never 279	  

been investigated in water samples. Reference standards are not commercially available 280	  

for most of these compounds and therefore their identity, although strongly supported 281	  

by our QTOF MS accurate-mass data, could not be unequivocally confirmed.  282	  

3.3 Retrospective analysis of water samples by UHPLC-QTOF MS 283	  

After the study performed on urinary metabolites of omeprazole, the presence of the 284	  

24 identified metabolites was investigated in water samples (Table S1). To this aim, a 285	  

total of 52 samples (15 influent wastewater (IWW), 10 effluent wastewater (EWW) and 286	  

27 surface water (SW)) previously analyzed by UHPLC-QTOF MS were 287	  

retrospectively re-examined, this is, without the need of additional sample injections. 288	  

Retrospective analysis was made by performing eXtract Ion Chromatograms using 289	  

narrow mass windows (± 10 mDa) at the metabolites exact m/z-values (nwXICs). 290	  

Confirmation of the identity of the compounds detected was based on the accurate m/z 291	  

of the (de)protonated molecule and at least two fragment ions, together with the 292	  

agreement in retention time (deviation lower than ±2.5%). Both the fragment ions and 293	  
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retention times, used as references were derived from the metabolism experiments. Up 294	  

to nine OMs were detected in the water samples, oppositely to parent omeprazole that 295	  

was not found in any of the samples (Table 2). OM10 was the most frequently detected 296	  

compound, as it was present in 21 out of 25 WW, and in 11 out of 27 SW samples 297	  

analyzed. OM7c, OM7d, OM11a, OM13, OM14a, and OM14b were also found in all 298	  

types of water matrices, while OM5 was only detected in SW (21%) and EWW (10%) 299	  

samples. Finally, OM7e was found in 3 SW samples (11%).  300	  

3.4 UHPLC-MS/MS analysis 301	  

In order to confirm the presence of OMs in the water samples, the same water 302	  

extracts were re-analyzed by UHPLC-(ESI)-MS/MS with triple quadrupole, applying 303	  

the same LC conditions used in the UHPLC-QTOF measurements in metabolism 304	  

experiments. The higher sensitivity of triple quadrupole was expected to facilitate the 305	  

detection of those OMs that were present at low concentrations in the water samples. 306	  

The 24 OMs resulting from the metabolism study and parent omeprazole were included 307	  

in the method. For each compound, two transitions were selected based on fragment 308	  

ions observed in the QTOF experiments (Table S1). Apart from the presence of a 309	  

chromatographic peak at the two transitions acquired, the identity of the findings was 310	  

confirmed by calculating the peak area ratio between the quantification “Q” and the 311	  

confirmation “q” transitions, which was compared with that of the “reference 312	  

compound” (urine vials with the highest concentration of the OM). A finding was 313	  

considered positive when experimental ion ratios were within the tolerance range 314	  

(Commission Decision 2002). The agreement in retention time (deviation lower than 315	  

±2.5%) with the “reference compound” was also required. 316	  

Up to 14 OMs were detected and their identity confirmed by QqQ (Table 2). Eleven 317	  

of these OMs (OM4, OM5, OM7c, OM7d, OM7e, OM8b, OM10, OM11a, OM13, 318	  
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OM14a, and OM14b) were found in all types of water matrices analyzed. Similar to 319	  

QTOF analysis, unchanged omeprazole was not found in any sample. Nevertheless, it is 320	  

interesting to note that one of its isomers, OM11a, was detected in 80% IWW, 90% 321	  

EWW and 30% SW samples. This fact reveals the importance of good chromatographic 322	  

separation to avoid confusion between these two compounds as they share one of the 323	  

transitions (346.1 > 198.1). Therefore, in order to reduce false positives of omeprazole 324	  

the acquisition of additional specific transitions for each compound (see Table S1) and 325	  

satisfactory chromatographic separation is of high relevance. This compound might be 326	  

the same detected in wastewater by (Gomez-Ramos et al. 2011), after performing a XIC 327	  

at the exact mass of omeprazole. OM10 was the most abundant in terms of MS arbitrary 328	  

units, being consistent with the results of QTOF analysis. This compound was the most 329	  

frequently detected metabolite in WW (100%) and SW (48%). Five of the OMs (OM3, 330	  

OM4, OM8a, OM8b, and OM8c) were only found by LC-MS/MS analysis, due to its 331	  

higher sensitivity compared to QTOF. 332	  

It is noteworthy that up to eight OMs were detected in 90-100% of effluent 333	  

wastewater samples. These OMs were also present in influent wastewater, although 334	  

some of them at lower frequency. Surely, the higher complexity and strong signal 335	  

suppression due to matrix effects in the influent made the detection of OMs more 336	  

problematic in comparison with effluent wastewater. It is also relevant the detection of 337	  

up to seven OMs in around 30% of the surface water samples.   338	  

As an illustrative example, Figure 3 shows selected UHPLC-MS/MS 339	  

chromatograms for the most abundant OMs (OM5, OM10, OM7c,d,e, OM14a,b) 340	  

detected in an effluent wastewater. As can be seen, experimental ion ratios did not 341	  

exceed the maximum deviation allowed for any of the OMs detected, with all deviations 342	  

being below 15%. OM10 and OM14b presented the highest responses, with average 343	  
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areas of 10,000 and 8,000 a.u., respectively. This might reveal that they were the most 344	  

relevant compounds in terms of concentration, but however quantification could not be 345	  

performed due to the lack of reference standards.  346	  

 347	  

CONCLUSIONS 348	  

In this work, urinary omeprazole metabolites have been investigated by UHPLC-349	  

QTOF MS. A total of twenty-four OMs were identified in urine samples of three 350	  

volunteers who participated in this study, while parent omeprazole was present only at 351	  

very low concentrations. OM11a was the most abundant compound. This OM is an 352	  

omeprazole isomer and shares the fragment ion at m/z 198.0589 commonly used for the 353	  

determination of omeprazole in LC-MS/MS methods. The loss of [●SH] radical 354	  

deduced by TOF MS spectra in most of the OMs detected, has been crucial for 355	  

justifying and suggesting possible chemical structures.  356	  

After UHPLC-QTOF MS analysis of 52 water samples, nine OMs were detected in 357	  

surface water and wastewater samples, with OM10 being the most frequently found in 358	  

wastewater (84% of the samples) and in surface water (41%). The results were 359	  

confirmed by UHPLC-MS/MS analysis using a triple quadrupole analyzer, which 360	  

superior sensitivity allowed to detect up to fourteen OMs. Unchanged omeprazole was 361	  

not found in any sample; nevertheless, its isomer OM11a was detected in several 362	  

samples.  363	  

In the light of the results obtained in the present work, it seems evident that 364	  

monitoring unchanged omeprazole is not the best option to investigate the impact of this 365	  

widely consumed pharmaceutical in the aquatic ecosystem. Instead, it is recommended 366	  

to focus the research on the most abundant OMs identified in this work, i.e., those 367	  
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named as OM5, OM7c, OM7d, OM10, OM11a, OM14a, and OM14b, when monitoring 368	  

omeprazole in urban wastewater and also in surface water. Obviously, it would be 369	  

necessary to perform absolute configuration on the relevant compounds by NMR to 370	  

subsequently enable synthesis of reference compounds to perform quantitative studies, 371	  

but that is beyond the present study. In addition to the OMs proposed in this paper, 372	  

omeprazole sulfide -a transformation product resulting from hydrolysis of omeprazole 373	  

that has been previously reported (Boix et al. 2013)- should also be included to have a 374	  

realistic overview of the omeprazole impact on the aquatic ecosystem.  375	  
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FIGURE CAPTIONS 525	  

Figure 1. (a) Structure of omeprazole and some important fragment ions (b) 526	  

Omeprazole metabolites reported in the literature 527	  

Figure 2. Suggested structures for urinary OMs detected by UHPLC-QTOF MS after 528	  

omeprazole oral administration 529	  

Figure 3. UHPLC-MS/MS chromatograms for the omeprazole metabolites (a) OM5, (b) 530	  

OM10, (c) OM7c-7e, (d) OM14a, and (e) OM14b, in effluent wastewater 531	  
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