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Resumo

O Padel, desporto conhecido pelo seu crescimento explosivo e jogabilidade emocionante,

está à beira de uma revolução tecnológica. Com o objetivo de transformar o jogo de Padel

através do uso criativo de técnicas de deteção de objetos e Deep Learning, esta dissertação de

mestrado investiga a junção da Inteligência Arti�cial (IA) e do Padel. O principal objetivo é

usar a IA para produzir estatísticas em tempo real que darão aos jogadores, treinadores e fãs

um melhor conhecimento das complexidades do Padel e dos meios para levar o jogo a novos

patamares.

Esta dissertação explora a monitorização e localização em tempo real dos jogadores e

da bola dentro do campo, através de algoritmos de visão computacional. As Redes Neu-

ronais de Convolução (RNC), um tipo de modelo de Deep Learning, são essenciais para o

reconhecimento preciso de eventos e ações importantes durante o jogo.

A criação de um sistema baseado em IA que produz dados instantâneos para partidas de

Padel é a inovação central desta dissertação. Estas estatísticas oferecem uma visão analítica

e detalhada de cada jogo, tendo em consideração os movimentos dos jogadores, as trajetórias

da bola e a dinâmica do jogo. Esta dissertação não promove apenas o Padel, mas também

cria novas oportunidades para a utilização de IA em outros desportos.

Palavras Chave: Inteligência Arti�cial, Redes Neuronais de Convolução, Padel
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Abstract

The sport of Padel, known for its explosive growth and exciting gameplay, is on the verge

of a technological revolution. With the goal of transforming the game of Padel through the

creative use of object detection and deep learning techniques, this master's thesis investi-

gates the junction of Arti�cial Intelligence (AI) and Padel. The main goal is to use AI to

produce real-time statistics that will give players, coaches and fans a better knowledge of the

complexities of Padel and the means to take the game to new heights.

This dissertation explores the real-time tracking and localization of players and the ball

within the court by utilizing cutting-edge computer vision algorithms. Convolution Neural

Networks (CNN), one type of deep learning model, are essential for the precise recognition

of important gaming events and actions.

The creation of an AI-driven system that produces in-the-moment data for Padel matches

is the central innovation of this dissertation. These statistics o�er a detailed and analytical

view of each game by taking into account player movements, ball trajectories, and game

dynamics. This dissertation not only advances the sport of Padel but also creates new op-

portunities for the use of AI in other sports analytics.

Key Words: Arti�cial Intelligence, Convolution Neural Networks, Padel
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1 Introduction

Padel, a sport that combines squash and tennis, has seen a spectacular rise in popularity in

recent years. Padel, which had its beginnings in Mexico in the late 1960s, has grown into

a global sensation with millions of fans, a professional tournament circuit, and a network of

courts that is quickly developing. Padel is unique not just because it is accessible and open

to anyone, but also because it has a wealth of technology integration possibilities, notably in

the area of AI. Like many sports, Padel is a complex dynamic activity that produces a ton

of data while being played.

AI o�ers a variety of chances to take Padel to new heights, from real-time player tracking

and performance enhancement to automated game analysis and fan involvement. This is

possible through machine learning (ML) approaches, using data collected in a controlled

environment. The challenge lies in identifying key moments of the game, for example: how

to detect in real-time when the ball hits the net and scores a point for team A? How to

identify the di�erent types of shots during a point in order to create statistics related to the

type of shot per player with the highest point conversion? By employing approaches that

enable the identi�cation of these important game moments, through rules or ML models

that identify the court boundaries, the ball and player coordinates, it is possible to integrate

all these components and create a set of policies that allows the generation of real-time

statistics based on them. In this context, AI is this system that identi�es key parts of the

game, understand its meaning and consequently is capable of generating real-time game

statistics by itself. With AI technology's further development, important insights might

be unlocked, player abilities could be improved, and spectators could enjoy a richer, more

immersive experience.

Padel and AI together o�er not only a technological improvement but also a conceptual

shift in how people view and interact with sports.

1.1 Motivation

This master's thesis was inspired by the fusion of two powerful forces: the passionate and

vibrant world of Padel and the revolutionary potential of AI and its techniques. While AI has

been incorporated into a number of industries, including autonomous driving and healthcare,

Padel remains one of the sports where its potential has not yet been fully realized. The

motivation for this study stems from the desire to create a world where real-time generation

of statistics provides players with a better understanding of their performance during the

game, enabling them to take actions to improve highlighted aspects based on these statistics.
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1.2 Structure and Organization

The dissertation is organized into �ve chapters. Chapter 1 presents a comprehensive literature

review on the integration of AI and provides an introduction to Padel sports and outlines

the objectives of the study. Chapter 2 outlines relevant applications for the dissertation

development. Chapter 3 discusses the methodologies employed in this research, including

data collection techniques and AI model implementations. Chapter 4 presents the results

and �ndings obtained from the analysis of AI applications in Padel sports. Finally, Chapter

5 concludes the thesis with a summary of the key insights and proposes future directions for

research.

1.3 Sport of Padel

Padel, the sport that arouses passions all over the world, continues to grow in popularity

worldwide and is one of the fastest-growing sports in terms of numbers playing. Its unique

characteristics and gameplay mechanics present a lot of interest as a participation sport and,

according to the International Padel Federation (FIP), there are currently about 25 million

players worldwide, with nations like Mexico, Argentina, and Spain seeing huge popularity

among amateur and professional players.

This chapter explores the sports of Padel, with a particular focus on its history, rules and

popularity.

1.3.1 History and Evolution

Although Padel is a relatively new activity, its roots can be found in the racket sports

with the longest histories, like tennis or badminton. Two stories exist regarding the ori-

gin of the Padel. The �rst edition discusses the history of Padel with other racket sports

like badminton or tennis, as well as its shared French Jeu de Paume ancestry. Later, two

games named Paddle Tennis and Platform Tennis began to be played in the United States

[González-Carvajal, 2006]. These are scaled-down versions of tennis, but they share a lot in

common with Padel. According to the International Padel Federation's recognized second

version, the sport was developed in Mexico in 1969 by Enrique Corcuera.

Historical Background

The sport of Padel tennis is a member of the ball and Padel game family. Although its

modern origins may be traced to the turn of the 20th century, its earliest precedents may be

found in the "Jeu du Paume" around the end of the 13th century, illustrated in Figure 1.1

[González-Carvajal, 2006].
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Figure 1.1: Jeu de Paume on XVI century [Ferreira, 2004].

This practice, which has its own rules, laws, and statutes, �rst appeared in France and

distinguished between two sorts of games based on whether the ball was struck with bats

and sticks, pushed with small instruments, or thrown by hand. The second variety is more

widely played since it requires less room for play and allows for longer game times because

it is simpler to maintain the ball in play without it touching the ground [Gillmeister, 2008,

Almendros, 2009].

The "loungue paume" (long palm), which was played outdoors, and the "courte paume"

(short palm), which was played in enclosed areas and is more akin to the Padel of today,

were the two modalities used in the game, which was played by three or more opponents on

each side [Gillmeister, 2008].

In the 19th century, di�erent sources a�rm the existence of a sport similar to Padel in

the basements of English ships, using oars to hit the ball and allowing bouncing o� the walls

of the ship due to the limited playing surface. This game achieved great popularity as a

pastime for sailors and passengers [Gillmeister, 2008, Almendros, 2009].

Paddle Tennis

Later, in 1898, the American Reverend Frank Beal of Albion (Michigan) modi�ed a tennis

court to teach play to young children by halving its size, replacing the ball with a di�erent

foam rubber one, and replacing the racket with a wooden paddle similar to those they used

to play with on the beach [Almonacid-Cruz, 2011].

This method attained great popularity in Michigan. It started to spread to the entire
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population, especially in the most underprivileged areas with a lack of land because tennis

was only accessible to the wealthiest. By doing this, Frank Beal was able to persuade the city

parks and recreation department, which chose to create many courts for this brand-new sport

known as "Paddle Tennis" and disseminate it throughout the entire New York metropolitan

region on his instructions [Almonacid-Cruz, 2011].

The �rst paddle tennis tournament was held in 1922, using the rules that the American

Paddle Tennis Association would later approve. Since then, paddle tennis has been played in

more than 500 cities across the nation and has become one of the most well-liked recreational

activities, in addition to being a part of physical education programs in schools. It also serves

as the foundation for developing skills and abilities in the early stages of learning tennis due

to its simplicity [Almonacid-Cruz, 2011].

Platform Tennis

In 1928, when paddle tennis was becoming more popular, Freseddenn Blanchardy and

James Cogswell developed several improvements to their technique to practice it in the winter.

The modi�cations were made to allow tennis players who lacked access to indoor facilities to

practice during the winter. To this end, they built a wooden platform that would allow snow

to accumulate on top of it easily and stay above ground level, allowing for outdoor play even

after a snowfall [Sánchez-Alcaraz Martínez, 2013].

Later, a fence and an enclosure were added to the track to stop balls from leaving the

court's boundaries. Blanchardy and Cogswell decided to play the game in pairs, permit the

ball to bounce after it bounced on the fence, and substitute rubber balls and smaller paddles

for the tennis ball. These decisions served as a model for the early stages of Padel tennis

[Sánchez-Alcaraz Martínez, 2013].

Platform tennis had a very di�cult time growing in the beginning, but evolution and

changes were made, such as replacing the mesh wire with a metal structure and adding sand

to the platform so that it could be played in the rain [Sánchez-Alcaraz Martínez, 2013].

As a result, in the beginning of the 1930s, this new sport modality became very well-liked

in New York, New Jersey, Connecticut, and Washington, D.C., taking the place of tennis in

the fall and winter [Hernández Vázquez, 1998].

The Existing Padel

The most recent version of this sport, which is the most similar to the current one and which

has recently been the version accepted by the FIP, claims that Padel tennis was invented in

Acapulco (Mexico), in 1969, when Enrique Corcuera, using a wall on his property, installed

some walls in the background and in the sides of a court with 20 meters long and 10 meters

13



wide so that the vegetation would not invade the land. The creation of this new sport, now

known as Padel tennis, was made possible by these walls, which were 2 meters high on the

sides and 3 meters high at the bottom, together with the installation of a net in the middle

of the court, illustrated in Figure 1.2 [Castellote, 2012].

Later, because of the intense heat they experienced in Mexico, it was decided to lower

the side wall's height and cover it with a wire mesh similar to what is today permitted. The

game's scoring and ball rules were identical to those of tennis, with the exception that if

the ball bounced o� the walls after �rst hitting the ground, the play could continue. The

rackets used were identical to those used in the United States for "Platform Tennis," which

are shorter and have no ropes [Sánchez-Alcaraz Martínez, 2013].

Padel tennis was introduced to Argentina in 1975 by Argentine millionaire Julio Men-

ditengui, a frequent visitor to Marbella. Within a few years, it had grown to be the second

most popular sport there, with more than 4 million players and 10,000 courts, and had spread

to other nearby nations like Brazil, Uruguay, Chile, and Paraguay [Almonacid-Cruz, 2011].

Figure 1.2: Recent padel [RoyalNorwich, 2022].

In the subsequent decades, Padel continued to escalate across Europe and Latin America,

having countries like Portugal, Italy, France and Brazil welcoming the sport. In 2005, The

World Padel Tour, an international professional Padel circuit, was founded and boosted the
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sports visibility and captivated top players from around the world. The key factor for Padel's

growth is its accessibility. Generally, since it is played in a smaller court, surrounded by walls

and with the use of hard paddles, it is considered to be easier to snatch up for beginners

when compared to tennis. Being considered simpler to play was a reason to an increase in

the number of participants. In the past few years, Padel has grown into one of the fastest-

growing sports in the world. As more people discover the excitement and fun of Padel, its

global reach continues to expand, making it an ideal candidate for exploring the integration

of arti�cial intelligence to enhance various aspects of the sport.

1.3.2 Rules and Gameplay

The Padel court is an intriguing fusion of the squash court's tight constraints and the tennis

court's spacious openness. Its precise proportions of 20 meters in length and 10 meters in

width encourage close player contact and quick exchanges. A net that rises 0.88 meters tall

stands in the center of this rectangular court, neatly dividing it in half.

The service lines, which are placed at a distance of 6.95 meters on either side of the net,

serve as the starting point of the game and invite strategic serves that establish the tone for

each point. The Padel court is a compact but lively area that o�ers a middle ground between

squash's snug setting and tennis' outdoor setting [IPF, 2017].

The court is encased and encircled by glass and metal mach walls. Wall areas surrounded

by the glass material, as shown in Figure 1.3 in light blue, must be built using materials that

allow for a consistent ball bounce and the remaining parts of the walls have to be built using

materials that do not [IPF, 2017].
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Figure 1.3: Padel court dimensions [PadelLab, 2023].

Due to the sport's heritage in racquet games, tennis and Padel's scoring systems are very

similar to one another. In both Padel and tennis, a match is normally played to a certain

number of games within a set, and to win a game, a player or team must hold a two-point

lead. Similarly, a team will often win a set if they win six games, again with a two-game

advantage. A tiebreaker is frequently used to decide who wins a set when the score is tied

6-6 [RookieRoad, 2023].

Every point begins with service. If the �rst service is invalid, the server may supply a

second one. The player serving must begin the service by standing behind the service line,

between the sidewall (service box) and the imagined extension of the central line of serve, and

must remain there until the ball is served. To complete the serve, the server must bounce the

ball on the ground inside the service box where they are standing [IPF, 2017]. The server's

feet are not allowed to contact either the central line or the service line. At the time the

ball is hit, the height of the ball being served must be at or below waist level, and the player

must have at least one foot on the ground. The serving player should place the ball in the

receiving box of service on the right side of the court, diagonally across the net. It must

bounce inside the lines de�ning this box's boundaries.

When one side wins the point, it is time for the next service, and the ball must go into

the receiver's box placed on his right side, and so on alternately. The �rst serve must go into

the receiver's box located on his left side [IPF, 2017].

The service will be considered "net" if the ball served during a service touches the net

or the supporting posts before landing in the receiver's service box and does not touch the
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metallic fence before the second bounce. If the ball strikes a player or an object being carried

or worn after touching the net or posts (if they are inside the game area), the service will

also be considered "net."

Padel players can outmaneuver their opponents using a variety of motions and strategies

in addition to the key serving component. According to [AllForPadel, 2023], these consist of:

� Forehand: Executed with the dominant side of the body, typically employing an open

stance and aiming to control the direction and pace of the ball;

� Backhand: Executed with the non-dominant side of the body, involving a lateral swing

that aims to return the ball to the opponent's side of the court;

� Volleys: Played close to the net and include striking the ball as it is in mid-air, just

before it bounces on the court. Players utilize volleys to precisely place the ball and

manage the game's tempo;

� Smashes: High-bouncing balls are taken advantage of with strong overhead shots, or

smashes, that propel the ball down onto the opponent's court quickly and forcefully;

� Lobs: Lobs are high, arching shots designed to send the ball over the opponent's head,

giving players the chance to alter the tempo of the game and tactically position their

opponents;

� Drives: Drives are used to keep control of the net and apply pressure to the opposing

team. Drives are �at, low shots aimed at the opponent's feet;

� Drop Shots: Drop shots are used to delicately deposit the ball just beyond the net with

�nesse and placement, frequently catching opponents o� guard and motivating them

to advance;

� Defensive Shots: When playing defense, athletes use moves like the "bandeja" and

"vibora" to block di�cult shots and keep their position on the court;

� Rally Play: Players must have rapid footwork and agile court coverage due to the fast-

paced nature of Padel, moving both laterally and vertically in response to the �ight of

the ball.

The dynamic nature of Padel movements not only demands agility and �nesse but also

highlights the sport's blend of strategy and athleticism.

Each stroke is a careful balancing act between accuracy and planning. The right strokes

can build up winning plays, yet even the smallest deviation from the ideal might lead to a

mistake or fault which results in a lost point. A lost point happens when:
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� During the service, the ball bounces outside of the service box of the receiver;

� During the service, the server, his partner, or any object they are wearing or carrying

are struck by the ball;

� During the service, the ball makes two bounces in the receiver's service box before

touching the court's metal fence;

� During the service, the ball bounces in the receiver's service box before bouncing out

of the court via the court's gates without a safety zone and any legal out-of-court play;

� Before being returned, the ball bounces once more;

� If the athlete strikes the ball before it crosses the net;

� If a player returns the ball, either directly or by hitting it o� the walls of their court,

and it strikes the walls, the iron fence, or any other object not connected to or situated

on the ground of the opponent's court without �rst bouncing;

� If a player returns a ball straight or o� the walls of their court, and the ball touches

the net or net posts before landing directly on one of the walls, the fence, or any other

object that is not a part of or situated on the opponents court;

� If a participant strikes the ball twice (double hit);

� If a player strikes the ball and it makes contact with the metal fence, any area of the

court's own side, or any object not intended for use on the court that is situated there

[IPF, 2017].

In conclusion, the rules and gameplay of Padel create an exciting and dynamic sport that

combines elements from tennis and squash while incorporating the unique use of walls. The

emphasis on strategy, quick re�exes, and teamwork makes Padel an attractive sport for players

of all ages and skill levels. With the growing interest in arti�cial intelligence applications

in sports, the integration of AI in Padel presents promising opportunities to enhance player

performance analysis, game strategy optimization, and overall player experience on the court.
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1.4 AI

The cutting edge of technological development, AI, is reshaping how the interaction with

technologies and the environment is done. At its heart, AI is a multidisciplinary science

that aims to develop intelligent agents with human-like perception, reasoning, learning, and

decision-making abilities. From its beginnings as a speculative quest into a transformational

force with signi�cant rami�cations for many industries and facets of our daily lives, this

discipline has experienced extraordinary growth.

The goal of AI is to create computers and algorithms that can carry out tasks that

traditionally require human intelligence. These jobs cover a broad range, from language

translation to picture identi�cation, playing video games and making complicated decisions

in industries like healthcare, �nance, and autonomous systems. The adaptability of AI,

which learns from data and experience to continuously improve performance, is one of its key

characteristics. AI is a key and dynamic force in contemporary society because, at its core,

it is about utilizing computer power and data to enhance human skills.

This section explores the types of AI, with a particular focus on its history and applica-

tions.

1.4.1 History and Evolution

The �eld of AI may be traced back to the middle of the 20th century when computer scientists

and mathematicians started investigating the idea of building robots that might mimic human

intelligence. The creation of the "Turing Test" in 1950 was one of the early signi�cant

achievements in AI [Turing, 1950].

This ground-breaking idea paved the way for determining if a machine can demonstrate

intellect comparable to that of a human. The Dartmouth Workshop, which was put on by

John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon in 1956, saw

the beginning of AI as a discipline, with participants hoping to �nd solutions to issues like

problem-solving and natural language understanding [McCarthy et al., 2006].

Signi�cant symbolic AI advancements were made in the 1960s and 1970s when systems like

the GPS and expert systems dominated [Newell et al., 1972]. There were "AI Winters" dur-

ing this period, nevertheless, marked by unrealistic expectations and ensuing disappointments

in AI's capabilities [Russell, 2016]. Despite obstacles, AI researchers persisted in seeking out

fresh ideas.

The development of expert systems and neural networks in the middle of the 1980s rekin-

dled interest in AI research. Geo�rey Hinton made a key advancement in machine learning by

creating backpropagation for training arti�cial neural networks, which served as the basis for
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contemporary deep learning [Rumelhart et al., 1986]. This innovation was crucial in getting

over the constraints of early AI systems.

From the beginning of AI to the present, it has had a spectacular journey of technological

development and interdisciplinary cooperation. AI research branched out into several related

topics throughout the 1990s and the early 2000s, including computer vision, robotics, and

natural language processing. In the latter half of the 20th century, probabilistic graphical

models and Bayesian networks were developed, which made it possible for AI systems to

perform more complex pattern recognition and reasoning [Pearl, 1988].

However, since the 2010s was when AI saw a signi�cant rebirth, largely because of ad-

vances in deep learning and the accessibility of enormous datasets and computer capacity.

Recurrent Neural Networks (RNN) for sequential data and Convulotional Neural Networks

(CNN) for image recognition have both made signi�cant advances in computer vision, speech

recognition, and natural language processing [LeCun et al., 2015]. Applications of AI started

to spread across many sectors, from banking to healthcare, altering how we approach issues

and jobs.

AI is currently at the vanguard of technological advancement, with uses in everything

from driverless automobiles to medical diagnostics. The fusion of AI with big data, cloud

computing, and the Internet of Things (IoT) has driven the �eld to previously unheard-of

heights, revolutionizing global economies and society. The development of AI throughout

history is evidence of human creativity and our constant ambition to build intelligent devices

that can complement our abilities and improve our understanding of the world.

1.4.2 Types

AI is divided into several categories that include a variety of talents and goals. These cate-

gories are frequently referred to as speci�c or weak AI and general or strong AI. Weak AI,

is created to thrive in a limited set of tasks or domains without having general intelligence

or cognitive capabilities similar to those of humans. These extremely specialized AI systems

are used often in many real-world contexts. Expert systems, which use predetermined rules

and knowledge bases to make decisions and solve issues in particular domains like healthcare

diagnosis or �nancial analysis, are examples of weak AI [Russell, 2010].

The goal of general AI, is to acquire an intellect level that is comparable to that of a

human. This class of AI is capable of comprehending, learning, and adapting to a variety of

tasks and domains while displaying cognitive skills that are similar to those of humans, such

as reasoning, problem-solving, and self-awareness [Boström, 2014].

Additionally, supervised, unsupervised, and reinforcement learning are essential paradigms

in machine learning, a branch of AI, as shown in Figure 1.4. An algorithm learns to translate
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input data to predetermined output labels through supervised learning, which entails train-

ing AI models on labeled datasets. Regression analysis, natural language processing, and

picture classi�cation are just a few of the frequently used tasks.

While dealing with unlabeled data, unsupervised learning aims to identify patterns, corre-

lations, or structures in the data. Unsupervised learning methods are often used for clustering

and dimension reduction. In the third category, reinforcement learning, agents make decisions

sequentially in an environment to maximize a cumulative reward. This paradigm is frequently

applied in robotic autonomy and recommendation systems [Sutton and Barto, 2018].

1.4.3 Techniques and Algorithms

AI is a rapidly evolving �eld that includes a wide range of methods and algorithms intended

to give machines the ability to carry out tasks that ordinarily require human intelligence.

This subsection presents an overview of important AI methods and techniques, explaining

how they function and outlining real-world uses for them.

� Machine Learning: A key component of AI is machine learning, which enables systems

to learn from data and make predictions or judgments without having to be explic-

itly programmed. It consists of reinforcement learning, where agents learn by making

mistakes, unsupervised learning, where patterns are found in unlabeled data, and su-

pervised learning where models are trained on labeled data. Applications ranging from

image identi�cation to �nancial forecasting use machine learning methods like decision

trees, support vector machines, and random forests [James et al., 2013].

� Deep Learning: Deep learning is a branch of machine learning that centers on deep

neural networks, which are arti�cial neural networks with several layers. These networks

are particularly good at tasks like audio and picture recognition, natural language

processing, and autonomous driving because of their mastery of feature extraction and

hierarchical learning. Among the structures frequently employed in deep learning are

CNN and RNN [Goodfellow et al., 2016].

� Neural Networks: Neural networks are computerized representations of the brain. They

are made up of interconnected nodes or neurons arranged in layers, with each layer

processing and sending information to the one below it. Since they are adaptable,

neural networks can be used in a variety of �elds, such as recommendation systems,

autonomous robotics, and speech and picture recognition [Haykin, 2009].

� Natural Language Processing (NLP): The interaction between computers and human

language is the focus of the specialist �eld of NLP, which is part of AI. Machines can
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comprehend, interpret, and produce human language thanks to NLP approaches. Chat-

bots for customer support, sentiment analysis in social media, machine translation, and

speech recognition are examples of practical applications [Jurafsky and Martin, 2020].

Figure 1.4: AI components.

When using machine learning techniques, massive datasets are used to train models to

�nd patterns and relationships in the data. Machine learning algorithms, for instance, can

examine patient data to forecast disease risk in medical diagnostics [Rajkomar et al., 2019].

To automatically extract complicated features from data, deep learning uses deep neural

networks. Deep learning, for instance, assists autonomous vehicles in recognizing objects and

making decisions about where to go in real time [Bojarski et al., 2016]. Neural networks can

be used for image identi�cation tasks, such as facial recognition in security systems or object

detection in autonomous drones [LeCun et al., 2015]. They imitate the neural connections

in the brain.
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To process and comprehend text and speech, NLP approaches rely on algorithms like

RNN and transformers. For the creation and understanding of natural language, they are

used in virtual assistants like Siri and Google Assistant [Vaswani et al., 2017].

1.4.4 Data and AI

Data is the lifeblood of AI, enabling applications to function powerfully and e�ectively. Data

is the primary building block upon which AI systems are constructed, trained, and improved.

The sheer amount, variety, and quality of data have a crucial impact on the e�ectiveness and

dependability of AI systems. The proverb "garbage in, garbage out" succinctly illustrates

the signi�cance of data in AI. In essence, the caliber of the AI output is directly in�uenced

by the caliber and relevance of the data employed.

The data-to-insight pipeline's �rst phase, data gathering, is of utmost importance. In or-

der to complete this process, data must be gathered from a variety of sources, including sen-

sors, social media sites, databases, and even user-generated material. The speci�c AI applica-

tion and its goals will have a big impact on the data sources that are selected. In autonomous

vehicles, data may originate from sensors, cameras, and GPS systems, but in healthcare AI,

data may be gathered from patient records and medical devices [Goodfellow et al., 2016].

Data preprocessing, which entails preparing the obtained data for AI model training by

cleaning, modifying, and arranging it, is also crucial. The performance of AI models can

be negatively impacted by problems like missing values, outliers, and inconsistencies, which

are mitigated through data pretreatment. To improve the quality and usability of the data,

methods including feature engineering, data augmentation, and data standardization are

frequently used in this phase [Goodfellow et al., 2016].

It is impossible to overestimate the quality of the dataset itself. Because an AI model

can only be as good as the data it is trained on, employing incomplete or erroneous data can

have unfavorable outcomes. Rigorous data validation, veri�cation, and cleaning procedures

are required to ensure data quality. Additionally, as biased datasets can reinforce and even

exaggerate preexisting societal biases when used in AI applications, it is necessary to eliminate

any potential biases in the data [Goodfellow et al., 2016].

In conclusion, it can not be overstated that data is the foundation of AI applications. To

ensure the success and moral application of AI technologies, data collection, preparation, and

maintenance of high-quality datasets are crucial. Since careful data management is necessary

to fully utilize AI, it is an important subject for investigation and development in the �eld

of arti�cial intelligence.

To review, the section developed by o�ering a fascinating look into the development and

history of AI, demonstrating how it went from a theoretical idea to an ever-present force
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in�uencing our digital age. AI was divided into its various subtypes, from speci�c AI to

the aspirational broad AI. The power these tools o�er for sensing, learning, reasoning, and

decision-making were observed as the way through the complex maze of AI approaches and

algorithms was made. Additionally, the crucial signi�cance of data was emphasized, which

serves as AI's lifeblood and is fundamentally linked to the techniques and technology that

power AI's astounding powers.

1.5 Questions and Research Goals

The incorporation of AI presents a wide range of opportunities and problems in the world of

Padel, a sport known for its dynamic nature and rising global appeal. The major objectives

of this master's dissertation are to use AI to improve several parts of sport, from player

performance enhancement to game analysis and audience engagement.

How AI technologies can be used to improve player performance in Padel is the main

inquiry guiding this project. The analysis of Padel games should be automated. How can

AI speed up the game analysis process, giving coaches and players tactical insights in real

time? This research aims are centered on this subject as tools that provide precise and useful

feedback are created, ultimately enhancing gameplay tactics.

An important area of investigation is the use of computer vision and data analytics in

comprehending the nuances of Padel gameplay. How are players and the ball to be accu-

rately and instantly tracked by computer vision technologies? How do data reveal previously

hidden patterns and trends? These inquiries direct this study as creative answers that o�er

a thorough understanding of Padel pairings are created.
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2 State of the art

With its ability to model and solve complicated problems, deep learning, a sub�eld of ma-

chine learning and a potent tool in AI, is transforming several industries. Deep learning

trains models with good precision by using neural networks and complex algorithms, which

are inspired by the structure and operation of the human brain. Deep learning, as opposed

to traditional machine learning, does not require a lot of pre-processing to handle unstruc-

tured input, such as text and images. Deep learning algorithms continuously adapt and �t

themselves to enhance accuracy by automating feature extraction and making use of meth-

ods like gradient descent and backpropagation. This versatility, along with its capacity to

conduct supervised, unsupervised, and reinforcement learning, establishes deep learning as a

cutting-edge technology with a wide range of uses in industries like speech recognition, image

recognition, targeted advertising, and weather prediction.

2.1 CNN

CNN have emerged as a groundbreaking class of deep learning models revolutionizing various

domains, including computer vision, natural language processing, and even audio analysis.

CNN are specially designed to extract meaningful patterns and features from input data,

making them particularly e�ective in image recognition, object detection, and image genera-

tion tasks. This section delves into the fundamentals of CNN, their architecture and training

process.

Tensor

Knowing tensors is essential to understanding CNN because deep learning uses tensors as

its primary data structure. A multi-dimensional array called a tensor may store complicated

data, such as pictures or sequences.

To represent a vector, a symbol in boldface is used, e.g., x ∈ Rd is a column vector with

d elements. Capital letter is used to denote a matrix, e.g., X ∈ Rh×w is a matrix with h rows

and w columns. These concepts can be generalized to a higher-order matrices, i.e., tensor.

For example, X ∈ Rh×w×d is an order 3 tensor [Wu, 2017].

Tensors are employed in CNN to represent model parameters, intermediate feature maps,

and input data. The fundamental function of CNN is the convolution operation, which works

with tensors to enable the network to extract pertinent features from the input data.

Convolution Layer

The architecture of a CNN is speci�cally made to handle data that has a grid-like layout,
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like images. It has a hierarchical structure made up of several layers that gradually pick up

increasingly sophisticated features from the input data. Convolution layers, the fundamental

components of a CNN, operate locally on the input data by applying tiny �lters to extract

signi�cant characteristics. Then, pooling layers, which lower the spatial dimensions of the

data and aid in capturing invariant features. Lastly, predictions based on the learned features

are produced using fully connected layers.

A kernel is a small matrix used for the convolution operation, detecting speci�c patterns

or features within input data. A kernel bank refers to a collection of multiple kernels in a

single layer, each responsible for learning di�erent features, enabling the network to extract

complex representations from the input. The output of a convolution layer in a CNN is

a set of feature maps, signaling certain features contained in the input image. The input

image is convolved with one or more �lters during the forward run of a CNN, leading to the

production of numerous feature maps. Each one represents a di�erent �lter and contains the

�lter's response to the input image. Each feature map element represents the activation level

of a given neuron in the network, with its value signifying the extent to which the relevant

feature is detected in the input image [Murugan, 2017, Sakib et al., 2019].

For example, feature maps in the earliest layers of a CNN may capture low-level character-

istics such as edges, lines, and corners. Deeper layers of the network may portray increasingly

sophisticated elements such as forms, textures, or even full objects as the network evolves.

The number of feature maps in a convolution layer is a hyperparameter that can be

changed during network building. Increasing the number of feature maps makes it easier to

learn more detailed and abstract features, but it boosts computing costs and may lead to

over�tting if the network becomes too large [Murugan, 2017].

Figure 2.1 illustrates an example of a 3×3 �lter (shown in green) applied to a 5×5 input

matrix, resulting in a 3 × 3 feature map. The �lter is placed over the top-left corner of the

input matrix (highlighted in yellow) to compute the dot product for the �rst feature map

element. The �lter is then dragged to the right by one pixel to calculate the next element,

and so on until all nine elements of the feature map are computed.
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Figure 2.1: CNN Feature Map.

Convolution layers are made up of parallel feature maps that are produced by computing

the element-wise dot product after moving di�erent kernels, or feature detectors, across an

input picture [Krizhevsky et al., 2012].

Smaller-sized kernel banks overlap on the input image during this sliding procedure,

known as stride Zs. The feature maps' dimensions are in�uenced by this overlap, which

makes it easier for neighboring pixels in the image to share attributes like weight and bias.

However, the e�cacy of the learning method is limited because the usage of small kernels

frequently results in inaccurate overlays. To overcome this constraint, the size of the input

image is usually controlled using a Zero Padding Zp procedure. By adding zeros to the

input symmetrically, zero padding separately modi�es the size of feature maps and kernels

[Goodfellow et al., 2016].

Let H,W and C respectively correspond to the width, height and channel of an image

and k1, k2 and c respectively correspond to the width, height and depth of a convolution

kernel.

A �xed-size input picture is slid over by a bank of kernel �lters, or �lter bank, with

dimensions (k1, k2, c), during algorithm training. Stride and zero padding are important

parameters to regulate convolution layer dimensions. As a result, stacked feature maps are

created to create the convolution layers.

Let H1 be the height of the convolution layer, W1 the width of convolution layer, D1

the depth of convolution layer and KD the number of the kernel. The convolution layer's
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dimension is:

Dimc(H1,W1, D1) = ((H + 2Zp − k1)/Zs + 1), ((W + 2Zp − k2)/Zs + 1), KD.

Activation Functions

Through the processing of a collection of inputs, the activation function determines the

output of a neuron. The activation function performs a non-linear change on the weighted

sum of the linear net input values. A standard activation function produces an output of

one or zero. It produces one, allowing the information to move on to the following layers,

when the net input information exceeds the threshold value. The information is not delivered

and the output is zero if the net input is less than the threshold. The activation function

determines whether a neuron should �re by separating pertinent information from irrelevant

data. Greater activation is correlated with a higher net input value [Murugan, 2017].

Many di�erent kinds of activation functions have been created and utilized for various

purposes. Some of the most popular ones are included in Table 2.1. The Recti�ed Linear

Unit (ReLU), which replaces all negative values with zero and retains positive values, is the

most often used activation function in a CNN. According to [Wu, 2017], enhancing the non

linearity of a CNN is the aim of the ReLU function. Pixel values and semantic information

have a very nonlinear relationship in computer vision tasks like item or scene recognition in

images. It is also needed the CNN's transition from input to output to be very nonlinear to

properly capture and depict this nonlinear mapping. The ReLU function is a vital component

in bringing non linearity into the CNN architecture, despite its apparent simplicity. However,

there are some issues with this activation function. The "dead ReLU" issue refers to a prob-

lem that can occur when using ReLU activation functions in neural networks, particularly

deep neural networks. This problem arises when a ReLU neuron consistently outputs zero

for all inputs during training and fails to update its weights during backpropagation. This

can happen if the neuron's weights are initialized in such a way that it consistently produces

negative outputs for all inputs. As a result, the gradient of the loss function with respect

to the neuron's weights remains zero, preventing the weights from being updated during

training. Consequently, the neuron remains "dead" and does not contribute to the learn-

ing process, leading to ine�cient training and degraded performance of the neural network

[Murugan, 2017].

The dead ReLU issue can negatively impact the convergence and e�ectiveness of the neural

network, particularly in deep networks with many layers. To mitigate this problem, various

strategies can be employed, such as using di�erent activation functions like, for example the

Leaky ReLU.
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Table 2.1: Non-linear activation functions.

Name Function Derivative Figure

Sigmoid σ(x) = 1
1+e−x f ′(x) = f(x)(1− f(x))2

tanh σ(x) = ex−e−x

ex+e−x f ′(x) = 1− f(x)2

ReLU f(x) =

{
0 , x < 0

x , x ≥ 0
f ′(x) =

{
0 , x < 0

1 , x ≥ 0

Leaky ReLU f(x) =

{
0.01x , x < 0

x , x ≥ 0
f ′(x) =

{
0.01 , x < 0

1 , x ≥ 0

Softmax f(xi) =
exi∑n

j=1 e
xj f ′(xi) =

exi∑n
j=1 e

xj − (exi )2

(
∑n

j=1 e
xj )2

Pooling Layer

Down sampling is done by the pooling layer, which combines the output of neuron clusters

from one layer into a single neuron in the following layer. To minimize data points and avoid

over�tting, these actions take place following the non-linear activation. Furthermore, pooling

eliminates undesired noise by acting as a smoothing procedure. The most popular operation

is max pooling, which selects the maximum value of the correspondent cluster of neurons,

while the other values are discarded [Murugan, 2017].

Let H2 be the height of the pooling layer, W2 the width of pooling layer, D2 the depth of

pooling layer and k the width and height of the pooling layer kernel. The dimension of the

pooling layer can be computed as follows when pooling layers are created with DN kernel

windows.

Dimc(H2,W2, D2) = ((H1 − k)/Zs + 1), ((W1 − k)/Zs + 1), DN

Fully Connected Layer

The pixels in the pooling layers that come after are stretched into a single-column vector.

For classi�cation, these vectorized and concatenated data points are subsequently fed into
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dense layers, called fully connected layers [Ciresan et al., 2011]. In the domain of picture

classi�cation challenges, this limited design appears to be highly e�ective, beating standard

machine learning methods [Schmidhuber, 2015].

Loss Function

A loss function gives an event involving one or more variables a real value that represents

a cost. It measures the di�erence between the expected value ŷL+1
i and the actual value yi,

acting as a statistic to assess the model's performance. As the loss function value drops, the

model becomes more e�ective [Murugan, 2017]. According to [Murugan, 2017], several loss

functions have been developed to suit to various purposes.

Mean Squared Error The Mean Squared Error (MSE), commonly known as the

Quadratic Loss Function, is largely used in linear regression models to evaluate performance.

The MSE is derived using the computed output value ŷi
L+1 for the i-th training sample and

the labeled value yi and it is given by,

L
(
ŷL+1, y

)
=

1

t

t∑
i=1

(
yi − ŷi

L+1
)2

with t equal to the total number of training samples.

One disadvantage of MSE is its tendency to demonstrate slow learning speed (slow con-

vergence) when combined with the Sigmoid activation function.

Mean Squared Logarithmic Function

L
(
ŷL+1, y

)
=

1

t

t∑
i=1

(
log(yi + 1)− log(ŷi

L+1 − 1
)2

L2 Loss Function The L2 loss function is the square root of the L2 norm, which

represents the di�erence between the real labeled value and the computed value based on the

net input. This is expressed as follows,

L
(
ŷL+1, y

)
=

t∑
i=1

(
yi − ŷi

L+1
)2

L1 Loss Function The L1 loss function denotes the sum of absolute errors, which are

the absolute discrepancies between the real labeled value and the computed value generated
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from the net input. The mathematical expression is as follows,

L
(
ŷL+1, y

)
=

t∑
i=1

| yi − ŷi
L+1 |

Mean Absolute Error Mean Absolute Error measures the similarity between pre-

dicted and actual values, as represented by,

L
(
ŷL+1, y

)
=

1

t

t∑
i=1

| yi − ŷi
L+1 |

Mean Absolute Percentage Error

L
(
ŷL+1, y

)
=

1

t

t∑
i=1

|
(
yi − ŷi

L+1

yi

)
| ×100

Cross Entrophy The Cross Entropy loss function is the most commonly used, and it

is given below,

L
(
ŷL+1, y

)
= −1

t

t∑
i=1

(
(yi) log

(
ŷi

L+1
)
+ (1− yi) log

(
1− ŷi

L+1
))

. (2.1)

Forward Propagation

Forward propagation is the process through which input data is passed through a neural

network, layer by layer, to compute its output. In forward propagation, the input values

are multiplied by randomly initialized weights, and then each neuron's connection's ran-

domly initialized bias values are added. The total of the products from all of the neurons

comes next. The net input value is then transformed using non-linear activation functions

[Murugan, 2017].

Let m and n indices represent spatial coordinates in a color channel c and let u and v be

the pixels of a kernel. Let p and q represent the number of the convolution kernel and the

number of convolution layer, respectively. Over the image Im,n, a kernel bank, represented

as kp,q
u,v, is slid with a stride value of 1 and a zero padding value of 0. This is called the

convolution operation and can be represented as follows:

(I ⊗K)ij =
m∑
i=1

n∑
j=1

Km,nIi+m,j+n.
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A non-linear activation function, represented by the symbol σv, is then applied to these feature

maps adding a bias value b to the convoluted part. The following equation can be used to

compute the feature maps of the convolution layer Cp,q
m,n:

Cp,q
m,n = σ

(
m∑
i=1

n∑
j=1

I(i−u,j−v).k
p,q
u,v + bp,q

)
.

The pooling layer P p,q
m,n, is created by taking, for example, the maximum-valued pixels (m

and n) out of the convolution layers. The following expression can be used to express the

pooling layer calculation:

P p,q = max
(
Cp,q

m,n

)
. (2.2)

Then the pooling layer P p,q results are concatenated in an extended vector with length

p × q. For classi�cation, this vector is subsequently fed into fully connected dense layers.

Afterward, the al−1
i layer's vectorized data points are represented by:

al−1 = f (P p,q) .

The extended vector is input into a sequence of fully connected layers and stretch from

the lth layer to the (L+ 1)th layer. These are built with L layers and n neurons each, where

l is the �rst layer, L is the last layer, and (L+ 1) is the classi�cation layer, as illustrated in

Figure 2.2 [Murugan, 2017].

Figure 2.2: CNN Architecture.
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In the forward run, the layer progression is stated as follows:

zl1 = wl
11a

l−1
1 + wl

12a
l−1
2 + ...+ wl

1ja
l−1
j + ...+ blj

zl2 = wl
21a

l−1
1 + wl

22a
l−1
2 + ...+ wl

2ja
l−1
j + ...+ blj

zli = wl
i1a

l−1
1 + wl

i2a
l−1
2 + ...+ wl

ija
l−1
j + ...+ blj


zl1
...

zli
...

 =


wl

11 wl
12 wl

13 ... wl
1n

...
...

...
...

...

wl
11 wl

12 wl
13 wl

in
...

...
...

. . .
...




al−1
1
...

al−1
i
...

+


bl1
...

bli
...

 .

For example, consider a single neuron (j) that is located in a fully connected layer at

layer l. Weights wi,j and bias values blj, respectively, are used to multiply and add the input

values, which are denoted as al−1
i .

zlj = wl
1ja

l−1
1 + wl

2ja
l−1
2 + . . .+ wl

ija
l−1
i + . . . bij

=
n∑

i=1

wl
ija

l−1
i + blj.

Thereafter, a non-linear activation function σ is applied to the net input value zli. This

procedure then determines the lth output layer value for the neuron j, alj:

alj = σ

(
n∑

i=1

wl
ija

l−1
i + blj

)
.

Thus, the lth layer has output equal to:

al = σ
((

W l
)T

al−1 + bl
)

= σ
(
zl
)

al =


al1
...

ali
...

 =


σ
(
zl1
)

...

σ
(
zli
)

...


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W l =


wl

1j
...

wl
ij
...

 .

Likewise, the output value of the �nal layerL is determined by the following expression:

aL = σ
((

WL
)T

aL−1 + bL
)

= σ
(
zL
)

aL =


aL1
...

aLi
...

 =


σ
(
zL1
)

...

σ
(
zLi
)

...

 .

Extending this concept to classi�cation layers, the ultimate predicted output value ŷi
L+1

for the neuron (i) at the L+ 1 layer can be articulated as:

ŷi
L+1 = σ

(
WL . . . . . . σ

(
W 2σ(W 1a1 + b1

)
+ b2) . . . . . .+ bL

)
.

Let t be the total number of training samples. According to [Murugan, 2017], having the

predicted value denoted as ŷi
L+1 and the actual labeled value yi, the model's performance

can be evaluated using the cross-entropy loss function, as expressed in Equation 2.1:

L
(
ŷi

L+1, yi
)
= −1

t

t∑
i=1

(
yilog

(
ŷi

L+1
)
+ (1− yi) log

(
1− ŷi

L+1
))

.

Backward Run And Parameter Updates

During the backward run in the training of a neural network, both the weights and biases

are updated based on the computed gradients of the loss function with respect to these pa-

rameters. This process involves propagating the error gradients of the loss function backward

through the network, from the output layer to the input layer, and using these gradients to

adjust the weights and biases in each layer. Importantly, reusing partial derivatives between

layers via the chain rule improves the computational e�ciency of gradient calculation at

each layer. This all adds to the goal of minimizing the loss function [Rumelhart et al., 1986,

Pineda, 1987, LeCun et al., 1998]. Parameters such as WL+1, bL+1,W l, bl, kp,q and bp,q must
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be updated during this procedure in order to iteratively reduce the cost function.

The derivative of the loss function for the ith neuron at the (L + 1)th classi�cation layer

concerning the predicted values ŷi
L+1 is expressed as:

∂L
(
ŷi

L+1, yi
)

∂ŷi
L+1

= −1

t

t∑
i=1

∂
(
yilog

(
ŷi

L+1
)
+ (1− yi) log

(
1− ŷi

L+1
))

∂ŷi
L+1

=
1

t

t∑
i=1

∂
(
−1
(
yilog

(
ŷi

L+1
)
+ (1− yi) log

(
1− ŷi

L+1
)))

∂ŷi
L+1

=
1

t

t∑
i=1

−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

.

The derivative of the loss function for all neuron at the (L + 1)th classi�cation layer

concerning the predicted values ŷi
L+1 is expressed as:

∂L(ŷ1L+1,y1)
∂ŷ1

L+1

∂L(ŷ2L+1,y2)
∂ŷ2

L+1

...
∂L(ŷiL+1,yi)

∂ŷi
L+1

...


=



1
t

∑t
i=1

−y1
ŷ1

L+1 +
1−y1

1−ŷ1
L+1

1
t

∑t
i=1

−y2
ŷ2

L+1 +
1−y2

1−ŷ2
L+1

1
t

∑t
i=1

−yi
ŷi

L+1 +
1−yi

1−ŷi
L+1


.

The derivative of the loss function for the ith neuron at the Lth classi�cation layer con-

cerning the weight wL
i is expressed as:

∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

t∑
i=1

∂L
(
ŷi

L+1, yi
)

∂ŷi
L+1

∂ŷi
L+1

∂wL
i

∂L
(
ŷi

L+1, yi
)

∂wL
i

∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)(
∂ŷi

L+1

∂wL
i

)
∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)(
∂aL+1

i

∂wL
i

)
∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)(
∂σ
(
zL+1
i

)
∂wL

i

)
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∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

i∑
t=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
σ′ (zL+1

i

)
∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
σ′

(
i∑
1

wia
L−1 + bL

)
. (2.3)

In the �nal layer L, a sigmoid activation function is employed for nonlinear transformation.

As indicated in Table 2.1, the sigmoid activation function is denoted as:

σ
(
zL+1
i

)
=

1

1 + e−zL+1
i

∂σ
(
zL+1
i

)
∂zL+1

i

= σ
(
zL+1
i

) (
1− σ

(
zL+1
i

))
. (2.4)

By substituting the Equation (2.4) in Equation (2.3) the following is obtained:

∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)(
σ

(
i∑
1

wia
L−1 + bL

))
(
1− σ

(
i∑
1

wia
L−1 + bL

))

ŷi
L+1 = aL+1

i = σ
(
zL+1
i

)
(2.5)

∂L
(
ŷi

L+1, yi
)

∂wL
i

=
1

t

i∑
t=1

 −yi

ŷi
L+1

+
1− yi

1− σ
(∑i

1wiaL−1 + bL
)
(σ( i∑

1

wia
L−1 + bL

))
(
1− σ

(
i∑
1

wia
L−1 + bL

))
=

1

t

i∑
t=1

ŷi
L+1

(
σ

(
i∑
1

wia
L−1 + bL − yi

))
.

Thus, the partial derivative of the loss function with respect to the weights of every neuron
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in the Lth layer is formulated as:

∂L
(
ŷL+1, y

)
∂wL

i

=



∂L(ŷ1L+1,y1)
∂wL

1

∂L(ŷ2L+1,y2)
∂wL

2
...

∂L(ŷiL+1,yi)
∂wL

i
...


=



1
t

∑t
i=1 ŷ1

L+1
(
σ
(
zL+1
1 − yi

))
1
t

∑t
i=1 ŷ2

L+1
(
σ
(
zL+1
2 − yi

))
...

1
t

∑t
i=1 ŷi

L+1
(
σ
(
zL+1
i − yi

))
...


.

The partial derivative of the loss function for the ith neuron at the Lth classi�cation layer

concerning the bias bLi is expressed as:

∂L
(
ŷi

L+1, yi
)

∂bLi
=

1

t

t∑
i=1

∂L
(
ŷi

L+1, yi
)

∂ŷi
L+1

∂ŷi
L+1

∂bLi

= σ
(
zL+1
i

)
− yi.

Therefore, the partial derivative of the cost function with respect to the bias of every

neuron at layer L is expressed as:

bL =



∂L(ŷ1L+1,y1)
∂bL1

∂L(ŷ2L+1,y2)
∂bL2
...

∂L(ŷiL+1,yi)
∂bLi
...


=



σ
(
zL+1
1

)
− y1

σ
(
zL+1
2

)
− y2

...

σ
(
zL+1
i

)
− yi

...


.

Similarly, the partial derivatives of the loss function with respect to all hidden neurons and

hidden layers can be computed. ReLU is employed across all hidden layers from l− 1 to L1.

The partial derivative of the loss function with respect to the weight of the ith neuron in the

�rst layer l of the fully connected dense layer is:

∂L
(
ŷi

L+1, yi
)

∂wl
i

=
∂L
(
ŷi

L+1, yi
)

∂ŷi
L+1

∂ŷi
L+1

∂wl
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
σ′

(
t∑

i=1

wia
l−1 + bl

)
.
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Since the derivative of the ReLU function is de�ned as:

σ′(x) =

0 , x < 0

1 , x ≥ 0

and in the case when z > 0:

∂L
(
ŷi

L+1, yi
)

∂wl
i

=
yi − zli

zli
(
1− zli

) .
Thus, the partial derivative of the loss function with respect to the weights of every neuron

in the l layer is formulated as:

W l =



∂L(ŷ1L+1,y1)
∂wl

1

∂L(ŷ2L+1,y2)
∂wl

2
...

∂L(ŷiL+1,yi)
∂wl

i
...


=



y1−zl1
zl1(1−zl1)
y2−zli

zl2(1−zl2)
...

yi−zli
zli(1−zli)

...


.

The partial derivative of the loss function for the ith neuron at the l classi�cation layer

concerning the bias bli is expressed as:

∂L
(
ŷi

L+1, yi
)

∂bli
=

∂L
(
ŷi

L+1, yi
)

∂ŷi
L+1

∂ŷi
L+1

∂bli

= σ
(
zl−1

)
− yi

where σ is the ReLU function, thus, if zi > 0 then:

∂L
(
ŷi

L+1, yi
)

∂bli
= zl−1

i − yi.

Therefore, the partial derivative of the cost function with respect to the bias of every neuron
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at layer l is expressed as:

bl =



∂L(ŷ1L+1,y1)
∂bl1

∂L(ŷ2L+1,y2)
∂bl2
...

∂L(ŷiL+1,yi)
∂bli
...


=



zl−1
1 − y1

zl−1
2 − y2

...

zl−1
i − yi

...


.

To conclude the learning process of CNN, updating the weights of the kernel bank and bias

values is essential not only in convolution layers but also in pooling layers. The partial

derivative of the loss function with respect to the input value al−1
i is:

∂L
(
ŷi

L+1, yi
)

∂al−1
i

=
∂L
(
ŷi

L+1, yi
)

∂ŷi
L+1

∂ŷi
L+1

∂al−1
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
∂ŷi

L+1

∂al−1
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
∂
(
wL

i a
L + bL

)
∂al−1

i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
wl

i.

At (l − 1)thlayer for all input values al−1,

∂L
(
ŷi

L+1, yi
)

∂al−1
i

=
1

t

t∑
i=1

(
−yi

ŷi
L+1

+
1− yi

1− ŷi
L+1

)
WL.

Recon�guring the long vector
∂L(ŷiL+1,yi)

∂al−1
i

,

P p,q =
∂L
(
ŷi

L+1, yi
)

∂al−1
i

.

The main purpose of a pooling layer is to decrease the number of parameters and mitigate

over�tting in the model. Consequently, pooling layers do not contribute to the learning

process. The error in the pooling layer is determined by selecting the winning unit, which

comprises a single value. Due to the absence of parameters that require updating in the
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pooling layer, upsampling can be performed to retrieve

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

= P p,q.

The partial derivative of the loss function concerning the convolution kernel kp,q
u,v is expressed

as:
∂L
(
ŷi

L+1, yi
)

∂kp,q
u,v

=
m∑
i=1

n∑
j=1

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

∂Cp,q
m,n

∂kp,q
u,v

∂L
(
ŷi

L+1, yi
)

∂kp,q
u,v

=
m∑
i=1

n∑
j=1

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

∂
(∑u

1

∑v
1 Ii−u,j−vk

p,q
u,v + bp,q

)
∂kp,q

u,v

=
m∑
i=1

n∑
j=1

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

Im−u,j−v.

The partial derivative of the loss function concerning the bias bp,q of the convolution kernel

is expressed as:
∂L
(
ŷi

L+1, yi
)

∂bp,q
=

m∑
i=1

n∑
j=1

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

∂Cp,q
m,n

∂bp,q

=
m∑
i=1

n∑
j=1

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

∂
(∑u

1

∑v
1 Ii−u,j−vk

p,q
u,v + bp,q

)
∂bp,q

=
m∑
i=1

n∑
j=1

∂L
(
ŷi

L+1, yi
)

∂Cp,q
m,n

.

To minimize the loss function, the learning parameters must be updated at each iteration

using gradient descent. The weight and bias update for the fully connected layer L + 1 is

represented as follows:

WL+1 = WL+1 − α
∂L
(
ŷL+1, y

)
∂WL

bL+1 = bL+1 − α
∂L
(
ŷL+1, y

)
∂bL

.
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The weight and bias update for the fully connected layer l is represented as follows:

W l = W l − α
∂L
(
ŷL+1, y

)
∂W l

bl = bl − α
∂L
(
ŷL+1, y

)
∂bl

.

The weight and bias update for the convolution kernel l is represented as follows:

kp,q = kp,q − α
∂L
(
ŷL+1, y

)
∂kp,q

u,v

bp,q = α
∂L
(
ŷL+1, y

)
∂bp,q

.

By iteratively performing forward and backward passes through the network and adjusting

the weights and biases accordingly, the network learns to better approximate the desired

output for a given input. This iterative process continues until the network converges to a set

of weights and biases that minimize the loss function and result in satisfactory performance

on the training data.

2.2 YOLO Object Detection Model

Object detection is a computer vision task that involves �nding and identifying things of

interest in pictures or videos. Technology for object detection has advanced signi�cantly.

The You Only Look Once (YOLO) algorithms have gained popularity in computer vision.

Their appeal lies in their high accuracy and small model size. YOLO models can be trained

on a single GPU, making them accessible to a wide range of developers. From the ground-

breaking real-time detection capabilities of YOLOv1 to YOLOv8, each iteration has improved

upon the accuracy and addressed the shortcomings of its forerunners. With its cutting-edge

methods and performance enhancements, YOLOv4 stood out as a crucial turning point in

the YOLO series. The latest version, YOLOv8, developed by Ultralytics, o�ers advanced

features for object identi�cation, image categorization, and segmentation. This cutting-edge

object identi�cation model is capable of real-time performance and great accuracy. Due

to its high e�ciency, YOLO is a strong option for applications where real-time speed is

important. YOLO remains at the vanguard of object detection as it develops, pushing the

limits of accurate and real-time object recognition. This chapter delves into the fundamentals

of YOLO versions and their architecture.
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History and Evolution

The YOLO model revolutionized object detection by enabling real-time detection. It was

created to solve the shortcomings of current object detection techniques, such as their long

processing times and poor accuracy. By utilizing a single neural network to simultaneously

forecast bounding boxes and class probabilities, YOLO sought to enable real-time object de-

tection. This method generated impressive speed increases while eliminating the requirement

for region proposal models [Redmon et al., 2016]. It emphasizes the necessity of quick and

precise object detection for uses in robotics, surveillance, and autonomous driving.

YOLO is able to complete the detection task with a single network pass, in contrast to

earlier methods that either used sliding windows followed by a classi�er that had to be run

hundreds or thousands of times per image, or the more sophisticated approaches that split the

task into two steps, where the �rst step detects potential regions with object or region propos-

als and the second step runs a classi�er on the proposals [Terven and Cordova-Esparza, 2023].

YOLO has gone through multiple versions since its beginning, as shown in Figure 2.3,

each with its developments and enhancements. By examining the development and variations

across many YOLO iterations, this analysis hopes to give information on the advancements

made in object-detecting technologies [Terven and Cordova-Esparza, 2023].

Figure 2.3: YOLO object detection models timeline [LearnOpenCV, 2023].

� YOLOv1: According to [Hussain, 2023], the algorithm's �rst iteration, which was re-

leased in 2015, was known as YOLOv1. To directly predict bounding boxes and class

probabilities, it used a single CNN. Although YOLOv1 was renowned for its excellent

real-time detection speed, its coarse feature maps made it ine�ective at detecting small
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objects. It did, however, set the stage for further iterations to overcome these short-

comings.

YOLOv1 uni�ed the object detection procedures by detecting all the bounding boxes

concurrently. To accomplish this, YOLO divides the input image into a S × S grid

and predicts B bounding boxes of the same class, along with its con�dence for C dif-

ferent classes per grid element. Each bounding box prediction consists of �ve values:

PC , bx, by, bh, bw where PC is the con�dence score for the box that shows how con�dent

the model is that the box contains an object and how accurate the box is. The bx and

by coordinates are the centroid of the box concerning the grid cell, while bh and bw are

the height and width of the box related to the complete image. YOLO returns a tensor

of S × S × (B × 5 + C) [Terven and Cordova-Esparza, 2023].

Figure 2.4 depicts a simpli�ed output vector for eight values using a three-by-three

grid, S = 3, three classes, C = 3, and one bounding box, B = 1. In this simpli�ed

scenario, YOLO's output would be 3× 3× 8.

Figure 2.4: YOLO prediction example [Terven and Cordova-Esparza, 2023].

The YOLOv1 architecture is made up of 24 convolution layers, which are followed by two

fully connected layers that predict the bounding box coordinates and probabilities. Except

for the �nal layer, which utilized a linear activation function, all layers used Leaky ReLU

[Maas et al., 2013].

� YOLOv2: Introduced in 2016 by [Redmon and Farhadi, 2017], YOLOv2 addressed the

problem of small item identi�cation by utilizing anchor boxes. This version maintained
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real-time detection speed while achieving cutting-edge performance. Additionally, the

YOLOv2 o�ered multi-scale training, enabling the accurate recognition of objects at

various scales.

According to [Terven and Cordova-Esparza, 2023], some of the improvements over the

original YOLO were the following:

1. Batch normalization enhanced convergence and functions as a regularizer to reduce

over�tting.

2. Classi�er with high resolution. Pre-trained the model with ImageNet (a large visual

database designed for use in visual object recognition software research) at 224× 224,

much like YOLOv1. They �netuned the model for ten epochs on ImageNet with a

resolution of 448× 448, boosting network performance on higher resolution input.

3. Fully convolution Removed the dense layers in favor of a completely convolution archi-

tecture.

4. Training on multiple scales. Because YOLOv2 does not employ fully connected layers,

the inputs can be of varying sizes. To make YOLOv2 resistant to multiple input sizes,

the authors trained the model at random, increasing the input size from 320 × 320 to

608× 608 every 10 batches.

With all of these enhancements, YOLOv2 obtained an average precision (AP) of 78.6% on

the PASCAL VOC2007 dataset [Everingham et al., ], compared to 63.4% for YOLOv1.

YOLOv2's backbone architecture consists of 19 convolution layers and �ve max-pooling

layers. The last four convolution layers are replaced by a single convolution layer with

1000 �lters, followed by a global average pooling layer in the object classi�cation head

[Terven and Cordova-Esparza, 2023].

� YOLOv3: With the introduction of various architectural enhancements, YOLOv3, re-

leased in 2018, greatly improved object detection accuracy. The model can now detect

objects of varied sizes thanks to the three alternative detection scales introduced in

YOLOv3.

It used strided convolutions to replace all max-pooling layers and added residual con-

nections. It has a total of 53 convolution layers [Terven and Cordova-Esparza, 2023].

Aside from a broader architecture, multi-scale predictions, or forecasts at several grid

sizes, are an important aspect of YOLOv3. This aided in obtaining better detailed boxes

and considerably improved the prediction of small items, which was one of YOLO's key

�aws in previous versions. [Terven and Cordova-Esparza, 2023].
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Object detector architecture began to be de�ned in three components at this time: the

backbone, the neck, and the head. Figure 2.5 depicts a high-level schematic of the backbone,

neck, and head. The backbone is in charge of retrieving meaningful information from the

input image.

Figure 2.5: YOLOv3 Multi-scale detection architecture [Terven and Cordova-Esparza, 2023].

A CNN trained on a large-scale image classi�cation task is frequently used. Lower-level

features (edges and textures) are extracted in the earlier levels, whereas higher-level features

(object pieces and semantic information) are extracted in the deeper layers. The neck is a

connecting piece that connects the backbone to the head. It combines and re�nes the features

retrieved by the backbone, frequently focused on improving spatial and semantic information

at various scales. To increase feature representation, the neck may comprise extra convolution

layers. The head is the �nal component of an object detector. It is responsible for formulating

predictions based on the backbone and neck's attributes. It is often composed of one or more

task-speci�c subnetworks that conduct categorization, localization, instance segmentation

and pose estimation. The features provided by the neck are processed by the head, which

generates predictions for each object candidate. Finally, a post-processing step, such as

non-maximum suppression (NMS), removes overlapping predictions and keeps only the most

con�dent detections [Terven and Cordova-Esparza, 2023].

� YOLOv4: There was no new YOLO version until 2020, when Bochkovskiy et al. pub-

lished the paper for YOLOv4 in ArXiv [Bochkovskiy et al., 2020]. The authors explored

numerous backbone architectures in their experimentation. The objective of this iter-

ation was to maintain real-time detection speed while achieving state-of-the-art per-
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formance. YOLOv4 represents a signi�cant advancement in real-time object detection,

aiming to overcome the limitations of previous YOLO versions like YOLOv3 and other

object detection models. Unlike conventional CNN based object detectors, YOLOv4

is not only suitable for recommendation systems but also for standalone process man-

agement and reducing human input. Its compatibility with conventional graphics pro-

cessing units (GPUs) allows for widespread adoption at an a�ordable cost, and it is

optimized to operate in real-time on a single GPU during both training and inference

[Ultralytics, 2023].

� YOLOv5: Glen Jocher, creator and CEO of Ultralytics, launched YOLOv5 a few

months following YOLOv4 in 2020. Many of the enhancements discussed in the YOLOv4

are used. It uses a stridden convolution layer and a large window size to reduce memory

and computational expenses [Terven and Cordova-Esparza, 2023].

� YOLOv6: This model pioneers several signi�cant enhancements to its architecture and

training methodology, featuring the incorporation of a Bi-directional Concatenation

module, an anchor-aided training strategy, and re�ned backbone and neck designs to

achieve unparalleled accuracy on the COCO dataset [Ultralytics, 2023].

� YOLOv7: It introduces a novel re-parameterized model, designed to be adaptable across

layers in various networks, with a focus on gradient propagation pathways. In address-

ing the challenge of training models with multiple output layers, YOLOv7 tackles the

question of assigning dynamic targets to outputs from di�erent branches. To over-

come this, it introduces a novel label assignment approach termed "coarse-to-�ne lead

guided label assignment." Additionally, YOLOv7 proposes innovative methods such as

"extend" and "compound scaling" to enhance the e�ciency of real-time object detection

systems, e�ectively leveraging parameters and computational resources. With regards

to e�ciency, YOLOv7's approach demonstrates signi�cant gains, achieving approxi-

mately 40% reduction in parameters and 50% reduction in computation. Furthermore,

it o�ers faster inference speeds and higher detection accuracy [Ultralytics, 2023].

� YOLOv8:Released in January 2023 by Ultralytics, the same company behind the de-

velopment of YOLOv5, YOLOv8 introduced �ve scaled versions: YOLOv8n (nano),

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x. Utilizing

a similar backbone as YOLOv5, YOLOv8 adopts an anchor-free model with a decoupled

head, allowing for independent processing of objectness, classi�cation, and regression

tasks. Leveraging state-of-the-art backbone and neck architectures, YOLOv8 enhances

feature extraction and object detection performance. With a variety of pre-trained
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models available, YOLOv8 caters to diverse tasks and performance requirements, sim-

plifying the selection process for users seeking the ideal model for their speci�c needs

[Ultralytics, 2023].

This design allows each branch to focus on its task and improves the model's overall ac-

curacy. YOLOv8 uses IoU loss function for bounding box loss and binary cross-entropy

for classi�cation loss. These losses have improved object detection performance, par-

ticularly when dealing with smaller objects.

YOLOv8 has a number of advantages for object recognition. It makes fewer pre-

dictions, which speeds up inference time without sacri�cing accuracy. Furthermore,

YOLOv8 adds a quicker NMS procedure, which e�ectively removes extraneous bound-

ing boxes. These developments help the YOLOv8 model run more quickly and e�ec-

tively [Terven and Cordova-Esparza, 2023].

Despite its advantages, YOLOv8 has numerous drawbacks. Due to its anchor-free de-

sign, one disadvantage is that it might have trouble recognizing small objects. It may

result in false positives in busy settings, which is another drawback

[Terven and Cordova-Esparza, 2023].

Technology for object detection has advanced signi�cantly as YOLO has evolved. From the

ground-breaking real-time detection capabilities of YOLOv1 to the lightweight and mobile-

friendly design of YOLOv8, each iteration has improved upon the accuracy and addressed the

shortcomings of its forerunners, with performance metrics playing a crucial role in objectively

evaluating these advancements and guiding further enhancements.

Object Detection Metrics

Performance metrics are crucial in evaluating object detection models as they provide

quantitative measures of model e�ectiveness and e�ciency, enabling researchers to objec-

tively compare di�erent models, track progress in the �eld, identify weaknesses, and guide

hyperparameter tuning. These metrics also help in understanding trade-o�s between ac-

curacy, speed, and resource usage, facilitating informed decisions for model deployment.

Additionally, performance metrics serve as benchmarks for communicating research �ndings

and ensuring quality assurance in real-world applications, contributing to the continual im-

provement and optimization of object detection algorithms.

Confusion matrices help in computing performance metrics by providing a detailed break-

down of true positive, true negative, false positive, and false negative predictions, enabling

the calculation of metrics such as precision, recall and accuracy which are essential for evalu-

ating the e�ectiveness and robustness of object detection models. To construct a Confusion

Matrix for a speci�c class, we need to consider four key components: True Positive (TP )
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which occurs when the model correctly predicts the class, aligning with the actual ground

truth label; True Negative (TN) when the model correctly predicts the absence of the class,

and this aligns with the ground truth label as well; False Positive (FP ) when the model in-

correctly predicts the presence of the class, while the ground truth label indicates its absence;

False Negative (FN) when the model incorrectly predicts the absence of the class, while the

ground truth label indicates its presence. Confusion matrices play a crucial role by o�ering a

detailed breakdown of TP, TN, FP, and FN predictions, which are fundamental for assessing

metrics such as accuracy, precision, and recall, essential for evaluating the robustness and

reliability of these models.

Accuracy refers to the proportion of correctly classi�ed instances among all instances.

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.6)

This an important metric because it provides a comprehensive understanding of the model's

overall correctness in predicting di�erent classes. By considering both true positives and

true negatives, accuracy o�ers a balanced assessment of the model's performance across all

classes. However, accuracy alone may not be su�cient when classes are imbalanced or when

di�erent types of errors have varying degrees of importance. Therefore, while accuracy is

valuable, it is essential to consider additional metrics such as precision and recall.

Precision refers to the ratio of correctly predicted positive instances (TP ) to the total

number of positive predictions made by the model, providing a measure of the model's ability

to accurately identify relevant objects without falsely including irrelevant ones,

Precision =
TP

TP + FP
=

TP

Total Predicted Positive
. (2.7)

This measure becomes crucial when misidentifying positive cases has signi�cant consequences.

Precision can be treated as the accuracy of your positive predictions. It is especially important

when false positives are costly, helping to focus on the true positives that matter most.

Recall, also known as sensitivity or true positive rate, measures the proportion of actual

positive cases that were correctly identi�ed by the model, indicating its ability to correctly

detect all relevant instances of a class within a dataset.

Recall =
TP

TP + FN
=

TP

Total Actual Positive
. (2.8)

A model with a high recall catches all positives, but might also include many false positives.

In some cases, aggressively striving for high recall can lead to over�tting, where the model

performs well on the training data but fails to generalize to new unseen data. This can result
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in unreliable performance in real-world applications. Precision and recall are frequently

traded o�, for example, increasing the number of detected objects (higher recall) can result

in more false positives (lower precision).

The Mean Average Precision mAP , is a popular metric for assessing the e�ectiveness

of object identi�cation models. It calculates the average precision across all categories and

provides a single �gure with which to compare alternative models. The mAP metric is

built on precision-recall metrics, and it handles numerous object categories while de�ning a

positive prediction:

mAP =
1

C

C∑
k=!

APk. (2.9)

Object detection strives to accurately pinpoint items in images by estimating bounding

boxes. To assess the quality of the predicted bounding boxes, the Intersection over Union

(IoU) measure is used. IoU is a metric used to evaluate the accuracy of object detection

models by measuring the overlap between the predicted bounding box and the ground truth

bounding box, calculated as the ratio of the intersection area to the union area of the two

boxes, as shown in Figure 2.6.

Figure 2.6: a) IoC Formula; b) 3 examples of IoC values for di�erent box predictions
[Terven and Cordova-Esparza, 2023].

2.3 Transfer Learning

A signi�cant area of machine learning and AI research is transfer learning. Its major objective

is to use knowledge from one �eld or work to enhance performance in another one. Transfer

learning has drawn a lot of interest since it can solve the issue of little labeled data and lower

the computational expense of developing deep learning models. It has uses in many �elds,

such as recommendation systems, natural language processing, and computer vision. Transfer
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learning's importance rests in its capacity to improve the generalization and e�ectiveness of

machine learning models, enabling them to function well even with constrained resources.

Fundamentals

Fundamentally, transfer learning is the practice of using the information and skills acquired

from one activity or area to improve performance on a related or even unrelated task, as

illustrated in Figure 2.7. Transfer learning essentially embodies the core ideas of reuse and

adaptability. It recognizes that the information gained from resolving one issue can be

extremely helpful when tackling an unrelated but yet related one. This idea bridges the

gap between traditional machine learning and AI systems that can display some level of

"intelligence" or adaptability taking into account human capacity to generalize and apply

previously learned knowledge to new, unknown contexts. Transfer learning holds the potential

of e�ciency, scalability, and improved performance in a variety of AI applications when used

e�ectively [Pan and Yang, 2009].

Figure 2.7: Transfer Learning between tasks [NLP, 2019].

Transfer learning includes a variety of tactics, each of which is catered to particular situ-

ations and di�culties. Domain adaptation stands out among them as a noteworthy method.

It handles the situation where the source domain, from which information is transferred, and

the target domain, in which the model must perform e�ectively, diverge greatly. Another

popular technique, �ne-tuning, enables pre-trained models to be modi�ed or improved on

a speci�ed job, concentrating their knowledge on certain applications. On the other hand,
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multi-task learning incorporates a model that is trained to do several tasks concurrently,

where the shared information between di�erent tasks improves performance. A cornerstone

in the e�ort to create more e�ective and capable machine learning models, these various

transfer learning strategies enable AI systems to adapt and generalize [Ruder, 2017].

Approaches

Transfer learning provides a �exible range of methods for applying knowledge from one

area to new tasks. These methods improve model performance while simultaneously speeding

up the training process and conserving computational resources.

The foundation of transfer learning is pre-trained models, which re�ect neural networks

that have been previously trained on massive datasets for certain tasks. When applied

to jobs outside of their original scope, these models' performance can be considerably im-

proved by utilizing the features they learn [Simonyan and Zisserman, 2014, He et al., 2016,

Devlin et al., 2018]. This method takes advantage of the notion that lower-level features, such

as edges or textures, frequently have universal value across a variety of domains, expediting

learning and �ne-tuning for new goals.

For higher level features, �ne tuning, which enables practitioners to modify previously

learned models to �t particular tasks, is a good approach. The earliest layers, which have

already recorded general traits, are kept in this process, and the subsequent layers are either

replaced or modi�ed to �t the new task [Yosinski et al., 2014]. The di�cult balancing act

of �ne-tuning involves taking into account the speci�cs of the target domain while keeping

knowledge from the source domain. When the target task and the original job are comparable,

like in picture classi�cation tasks where the object categories overlap, it is very e�ective

[Sharif Razavian et al., 2014].

A di�erent method within transfer learning is feature extraction, which enables the use

of lower-level characteristics derived from previously trained models as inputs for new tasks.

Researchers can avoid having to retrain the entire model by using these extracted charac-

teristics, which reduces computing overhead [Donahue et al., 2014]. When computational

resources are scarce or the target job only requires a portion of the knowledge recorded in

the pre-trained model, this strategy is useful.

Techniques for domain adaptation are essential for overcoming the di�culty of transfer-

ring knowledge between several domains. Domain adaptation approaches try to align these

distributions when the source and target domains have di�erent data distributions, which

improves knowledge transfer [Ganin et al., 2016]. By incorporating a domain classi�er that

promotes the model to create features that are domain-agnostic and facilitate greater per-

formance on the target domain, techniques like adversarial domain adaptation have become
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more popular [Tzeng et al., 2017].

Challenges and Considerations

When the data distribution in the source and destination domains di�ers, transfer learning

frequently faces the signi�cant obstacle of domain shift. When applied to target data with

di�ering features, the pre-trained models may have trouble. The prevention of domain shift is

essential for transfer learning to be successful. Domain adaptation techniques, which align the

feature distributions between domains, have become e�ective approaches [Dimitriou, 2021].

Furthermore, �ne-tuning the pre-trained model on a constrained target dataset aids in its

adaptation to the speci�cs of the new domain [Shazeer, 2020]. These techniques are essen-

tial for bridging the divide between the source and destination domains and enabling more

e�cient knowledge transfer.

Robust data preprocessing techniques, such as noise reduction and outlier detection, can

increase the dependability of the target data when data quality is an issue. For optimal

transfer learning outcomes, it is crucial to strike a balance between data size and quality.

To summarize, transfer learning is more than just a tool, it is a strategic necessity in the

dynamic world of deep learning. Its signi�cance stems from its capacity to e�ectively apply

previously acquired information from one �eld or job to another, bringing about several

compelling bene�ts. Transfer learning is perhaps most notable for its time-saving beacon

function, which signi�cantly speeds up the tedious process of training deep neural networks

from the beginning. By using pre-trained models as potent starting points, it conserves

precious computing resources. Transfer learning has also shown to be a potent ally in the

�ght against data scarcity.

2.4 Pose Estimation

By carefully monitoring critical spots on the human body, Open Pose, a computer vision

technology, plays a crucial role in the �eld of AI in sports by providing a thorough analysis

of posture and biomechanics. Open Pose is used by coaches and sports scientists to acquire

insightful information about how athletes move, enabling accurate evaluation of technique,

posture, and motion patterns. Through the analysis of biomechanical data and in addition

to identifying movements in the case of Padel, pose estimation capabilities extend to injury

prevention and recovery, assisting trainers in developing individualized plans to reduce risks

and hasten recovery.

Background

Open Pose has created new opportunities for performance monitoring by allowing coaches
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to precisely gauge vital stats like joint angles, speed, and power. These developments

have revolutionized how athletes practice and get ready for competitions, ultimately im-

proving their performance as a whole. While Open Pose technology has many bene�ts, it

also has certain drawbacks. The need for superior imaging technology to accurately cap-

ture body movements is one restriction [Wei et al., 2021]. In real-time sports situations

when athletes are moving, this can be di�cult. Furthermore, Open Pose could have trou-

ble correctly identifying poses in complicated movements or obscured body components

[Badiola-Bengoa and Mendez-Zorrilla, 2021]. Despite these drawbacks, continued research

and improvements in AI algorithms keep Open Pose technology's accuracy and robustness

in sports training from declining.

Methodology

A multi-step process combining computer vision techniques, machine learning algorithms,

and real-time analysis is used to deploy Open Pose in sports training. The �rst step in the

process is gathering high-quality data using various image devices, like cameras or depth

sensors. Advanced computer vision techniques are then used to process this data in order to

precisely recognize and monitor human body motions. The Open stance algorithm estimates

a person's stance in real time by combining body part localization and part a�nity �elds

[Cao et al., 2017]. CNN is a popular approach for creating Open Pose and have demonstrated

outstanding performance in image identi�cation tests. The CNN learns to recognize and

locate important human joints, as shown in Figure 2.8, and limbs after being trained on a

sizable collection of annotated images. The whole body pose can then be estimated using

this information. Depending on the exact requirements and resources available, Open Pose

model can be implemented using a variety of CNN architectures [Newell et al., 2016].
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Figure 2.8: Keypoints of the skeleton [in OpenCV using OpenPose, 2018].

Video or depth maps of athletes doing di�erent actions are commonly used in the data-

collecting procedure for human pose estimation in sports training. The models are trained

using this data as the source of reality. High-resolution cameras are typically used to record

the video, which are placed in strategic locations to capture the motions of the athletes from

various angles. To measure the separation between the sensor and the subject, depth sensors

or structured light cameras can produce depth maps. Key body joint positions must be

added to the data once it has been obtained [Gkioxari and Malik, 2015]. Each frame of the

video or depth map is manually annotated to indicate where joints like the shoulders, elbows,

knees, and ankles are located. The mode is then trained to recognize and properly predict

human poses using this annotated data. Several strategies are used to infer human poses from

the gathered data. Based on color, texture, or depth information, these algorithms examine

the video frames or depth maps to identify and locate important body joints. After being

trained on the annotated data, a CNN can reliably estimate poses since they have learned

the correlation between image attributes and body joint locations [P�ster et al., 2015].
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(a) Open Pose nose - neck matching points candidates. (b) Open Pose skeleton detection.

Figure 2.9: Open Pose skeleton detection example [in OpenCV using OpenPose, 2018].

The 2D joint locations, illustrated in Figure 2.8, of the input images are directly regressed

using a CNN, as shown in the example of the Figure 2.9. Particularly in di�cult situations

with occlusions or complex movements, this model has demonstrated excellent accuracy in

estimating human positions. To understand the intricate connections between image elements

and human poses, these AI algorithms and models are trained on enormous datasets that

have been annotated. They can properly estimate the positions of bodily joints by evaluating

the input data [Wei et al., 2016].

In conclusion, the integration of OpenPose model into an AI system for Padel sports rep-

resents a signi�cant advancement, by tracking players' movements and gestures on the Padel

court in real-time accurately. This not only enables comprehensive analysis of player tech-

niques but also facilitates the identi�cation of the movement itself. Furthermore, after having

a movement classi�cation, understanding the player positioning on a Padel court is crucial for

executing precise analysis and statistics generation, making it essential to accurately identify

the court boundaries to facilitate optimal gameplay and strategic decision-making.

2.5 Court Detection

Canny Edge

Edge detection is a key idea in computer vision that is essential to processing and an-

alyzing images. It entails locating and extracting the edges or borders of items contained

inside an image. These margins, which signify notable variations in brightness or hue, reveal

important details about the composition and subject matter of the image. Edge detection

has value in computer vision because it makes image comprehension, object recognition, and

segmentation jobs easier. Computer vision systems can perform object tracking, extract

useful characteristics, and enable a variety of applications like scene interpretation, image-
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based navigation, and visual inspection by precisely detecting edges. Sports-related tasks

like player tracking, shot analysis, and tactical decision-making depend on the precise recog-

nition and localization of the Padel court within an image or video frame. Coaches, players,

and analysts can bene�t from the automated extraction of pertinent data from video footage

thanks to court detection. It makes it possible to recognize court lines, the position of the

net, and other court markers, simplifying advanced sports analytics and improving overall

game comprehension.

The Canny edge detection algorithm is one of the most well-known algorithms in the

enormous body of literature on edge detection methods. John Canny developed the Canny

algorithm, which has been widely used because of its accuracy and robustness in recognizing

edges. The Gaussian smoothing, gradient computation, NMS, and hysteresis thresholding

are some of the crucial elements that make up the Canny algorithm [Canny, 1986]. Together,

these actions enable the detection and highlighting of image edges while reducing noise and

erroneous detections. The algorithm's performance depends on its capacity to generate nar-

row, well-connected edge outlines and detect edges properly with low error rates.

Implementation

The Canny edge detection technique contains numerous crucial steps and is a multi-step

procedure [Canny, 1986]. In order to use the Canny edge detection algorithm on images or

videos of Padel courts, the �rst step should be starting by loading the Padel court image or

video frame and perform image preprocessing. Then, since edge detection mostly relies on

intensity variations, converting the image to grayscale is the next step. Afterwards, comes

the application of a Gaussian blur to the grayscale image to lessen noise and minute inten-

sity variations. Subsequently, methods like Sobel �lters to determine the gradient of the

blurred image are employed [Canny, 1986]. This phase reveals areas with sudden variations

in intensity, which frequently coincide with edges. Thereafter, locate regional gradient mag-

nitude maxima at the boundaries. This eliminates edges that are unnecessary. Posteriorly,

apply dual thresholding by establishing a high and a low threshold for thresholding. Strong

edge pixels are those with gradients above the high threshold, whereas weak edge pixels are

those with gradients between the low and high thresholds. Thereupon, extend strong edges

and reduce the weak ones, while using edge tracking and connectivity analysis. Then, to

create the �nal edge map, combine the strong and extended weak edges and play back the

generated edge map to see the edges that were picked out in the Padel court output image

[Canny, 1986]. Figure 2.10 illustrates the application of Canny Edge to an image of the Padel

court.
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Figure 2.10: Canny Edge application example.

In some instances, further sharpening the edges that have been detected can improve

the precision and quality of the outcomes. There are numerous post-processing techniques

available as edge smoothing, which uses morphological processes like dilation and erosion to

link and smooth out disjointed edges, resulting in a more cohesive representation. Another

technique is noise reduction, which uses methods for suppressing isolated noisy pixels that

may have been mistaken for edges, such as median or bilateral �ltering. Also, the Hough

transform can be used to �nd and represent lines or curves inside of edges that have been

recognized. This might help locating particular aspects of the image.

Hough Lines

The Hough Transform overcomes the constraints of gradient-based edge detectors to enable

the extraction of lines from images. The Hough Transform o�ers a sophisticated answer to

the problem of line detection, even in the presence of noise and gaps, by converting the spatial

domain of lines in Cartesian coordinates to the parameter space of lines.

The Hough Transform's theoretical underpinnings stem from its capacity to solve the

issue of line detection in an image space, permitting the representation of lines in parameter

spaces. The Hough Transform is a key technique in computer vision and image analysis that

was �rst presented by Paul Hough in the 1960s for the detection of lines in particle tracks

within bubble chamber pictures [Hough, 1962]. The core concept of the Hough Transform

is its ability to convert an image's Cartesian representation of lines into a parameter space

where lines are expressed as points, making it easier to locate and analyze these lines.

Lines can be represented mathematically in several ways, including the standard slope-

intercept form

y = mx+ b, (2.10)

the normal form

xcos(θ) + ysin(θ) = ρ, (2.11)

57



and the parametric form

ρ = xcos(θ) + ysin(θ). (2.12)

The parametric form is used by the Hough Transform because it is straightforward and

�exible [Duda and Hart, 1972]. The quality of parameter discretization and the thresholding

method used to identify signi�cant peaks determine how well the Hough Transform performs

[Ballard, 1981].

In conclusion, the theoretical foundation of the Hough Transform has made it possible for

it to be widely used in applications ranging from robotics to medical image analysis. It is a

�exible tool for computer vision and pattern recognition since it provides a reliable method

for identifying not only straight lines but also other shapes that can be speci�ed.

Improved Hough Transform Techniques

The Probabilistic Hough Transform (PHT) and the Randomized Hough Transform (RHT),

two well-known versions, have come to light as signi�cant alternatives to the Standard Hough

Transform that o�er notable advancements in both accuracy and e�ectiveness.

By addressing the computational ine�ciencies of the Standard Hough Transform, the

PHT represents a substantial advancement. By randomly choosing some edge points and

aggregating votes just for those points, it drastically decreases the processing time when a

subset of the edge points is su�cient to detect the lines of interest. With a high likelihood of

�nding the desired lines, this method signi�cantly increases e�ciency. Due to its ability to

achieve a compromise between accuracy and processing speed, the methodology, which was

�rst presented by [Matas et al., 2000], has subsequently become a crucial technique in line

identi�cation algorithms.

Another invention that promises gains in precision and e�ectiveness is the RHT, which

deliberately chooses a subset of edge points and uses their data to establish the parameters

of the lines. It was �rst proposed by [Yuen et al., 1990]. The method is suited for real-

time applications or situations with constrained computer resources because of this selection

process, which lowers the computational complexity. The RHT provides accuracy comparable

to the Standard Hough Transform while drastically decreasing the computational load by

e�ectively sampling the parameter space.

These Hough Transform variants include adjustments and improvements that address the

drawbacks of the Standard Hough Transform. When processing images with plenty of edges,

the Probabilistic Hough Transform accelerates the procedure by concentrating computation

on important edge points. The RHT, on the other hand, strikes a balance between accuracy

and e�ectiveness by carefully choosing representative sites for parameter estimation. These

methods address a variety of application scenarios and address the problems the original
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method had with computational complexity. The trade-o�s between e�ciency and accuracy

are crucial factors to take into account while using these upgraded procedures. The Standard

Hough Transform ensures accuracy but frequently comes at the expense of longer computation

times. While obtaining a similar level of accuracy, the PHT and RHT thrive in situations

when computational e�ectiveness is crucial. These trade-o�s demonstrate the adaptability of

the improved Hough Transform variations, allowing to select the most appropriate technique

in accordance with their unique needs and limitations.

Challenges and Strategies

To provide accurate and trustworthy �ndings, some issues must be resolved when utilizing

the Hough Transform to detect lines in images.

Accurate line identi�cation requires addressing the drawbacks and shortcomings of the

Hough Transform. The algorithm's susceptibility to noise in the input image is one of the

main causes of concern. The accumulation of votes in the Hough space may be wrong because

noise can produce erroneous edge points. The detection of lines with particular orientations

and positions can also be impacted by errors in parameter selection, such as the granularity

of discretization [Duda and Hart, 1972].

To mitigate noise-related problems, it is essential to use noise reduction methods and

smoothing �lters [Gonzalez and Woods, 2008]. Beyond noise, several intersecting lines in

an image can make the detecting process more challenging. [Ballard, 1981] illustrates how

intersecting lines might result in several local maxima in the Hough space, which can make

peak detection more di�cult. To distinguish between overlapping lines and precisely calculate

their properties, we need sophisticated techniques. Additionally, choosing the right peak

detection thresholds can a�ect the results. These di�culties emphasize the signi�cance of

reliable thresholding methods that can adjust to various image situations.

Post-processing techniques and adaptive thresholding approaches are methods for over-

coming these di�culties [Sonka et al., 2014]. Following peak recognition, a geometric con-

nection analysis of the lines found can con�rm their existence and eliminate extraneous or

erroneous lines. Adaptive thresholding enables the threshold values to be changed by lo-

cal picture features. This �exibility increases the algorithm's resistance to changes in noise

intensity and image quality [Gonzalez and Woods, 2008].

To sum up, the Hough Line detection method is a key component of computer vision ap-

plications. Due to its skill at identifying lines in images, it has enabled vital applications such

as shape identi�cation, text extraction from documents, and lane detection in autonomous

vehicles. It cannot be stressed how important the Hough Transform is to image process-

ing, analysis, and machine vision as it continues to in�uence the �eld of computer vision
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applications [Sonka et al., 2014]. The Hough Transform continues to make signi�cant con-

tributions that highlight its signi�cance in computer vision and indicate its lasting in�uence

on upcoming technological developments.

2.6 Ball Detection

A crucial task in computer vision is object detection, which enables computers to recog-

nize and locate things in pictures or video frames. In this area, Kernelized Correlation

Filters (KCF) have become a notable approach, providing creative answers to the problems

of real-time object tracking and recognition. To build reliable and e�ective object detec-

tion models, KCF combines kernel approaches with the capability of correlation �ltering

[Bolme et al., 2010].

KCF has become a well-known and e�ective real-time tracking technique in recent years.

KCF stands noteworthy for its capacity to carry out reliable tracking even in di�cult condi-

tions such as occlusion, scale variation, and sudden changes in motion.

KCF

Kernel-based correlation �ltering, a potent method that enables reliable and e�ective object

tracking and detection, is at the heart of KCF. This method is based on the idea of kernel

functions, which take input data and transform it into a higher-dimensional space where linear

correlations between features can be successfully exploited. This modi�cation is essential to

KCF's object identi�cation method since it makes it easier to track and localize objects in

images and videos. KCF is especially well-suited for dynamic real-world applications because

it can adapt to changes in object appearance and scale by cross-correlating a template patch

with the target region using kernel functions [Bolme et al., 2010].

KCF stands out among other object identi�cation and tracking methods thanks to several

compelling features it provides. Its resistance to changes in appearance may be one of its

most notable bene�ts. KCF excels in situations when object appearances �uctuate as a

result of elements like lighting, partial occlusions, or shifting viewpoints, as shown in Figure

2.11. The tracked object will always be recognizable thanks to KCF's usage of kernel-based

correlation �lters, which can successfully mimic these appearance �uctuations. Additionally,

KCF shows astounding e�ciency, especially in real-time tracking applications. Due to its

fast processing speed, it can process video feeds in real time while maintaining high tracking

accuracy, which is essential in applications like surveillance, robotics, and autonomous cars

[Henriques et al., 2014, Bolme et al., 2010].
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Figure 2.11: KCF occlusion example [Mehmood et al., 2021].

The pipeline used by KCF, which includes many stages of object identi�cation, is the

foundation of the system. The initialization step, when the object of interest is chosen or

given as a reference region, is the core of this process. KCF makes use of kernel-based

correlation �ltering to examine the visual features in this reference region and identify the

de�ning traits of the item. In essence, during this stage, a �lter that captures the object's

look is trained, making it ready for tracking to come later. Once the �lter has been initialized,

the tracking phase begins, during which all of the image or video frames are convolved with

the �lter. Real-time tracking is made possible by the peak response of this convolution,

which identi�es the object's position in each frame. Additionally, KCF has localization

features that enable it to precisely determine the bounding box coordinates of the object

[Henriques et al., 2014, Bolme et al., 2010].

KCF stands out as a unique approach with its own set of strengths and weaknesses when

compared to other widely used techniques in the constantly changing �eld of object recogni-

tion. When contrasting KCF with well-known object identi�cation techniques like YOLO, a

clear contrast is revealed. One standout characteristic is its deftness in handling items and

scenes that are constantly changing. Although KCF can be modi�ed for detection tasks, its

primary focus is tracking, therefore in dense detection cases where precise object localiza-

tion is crucial, it might not equal the precision of YOLO. These additional methods were

developed speci�cally to detect objects, frequently by utilizing deep learning architectures.

For instance, YOLO has remarkable object identi�cation speed and accuracy, but it might

fall short of KCF's tracking capability in real-time applications. KCF's main advantages for

tracking are its e�ectiveness and adaptability, whereas YOLO is superior for complex object

recognition tasks [Redmon et al., 2016, Ren et al., 2015, Wu et al., 2017].

In conclusion, KCF is a �exible method that excels in object tracking and detection by

utilizing kernel-based correlation �ltering. Furthermore, KCF is a useful tool for applications
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that require low-latency object detection because of its high computational e�ciency.
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3 Research Methodology

3.1 Research Design

Several methods, including pose estimation, image annotation and �ne-tuning of the YOLO

model, were employed to construct an AI system that understands key points and moments

of the Padel game and is capable of generating statistics by itself.

Good data quality is one of the core components of an accurate and trustworthy AI

system. Without adequate data, models rely on incorrect patterns to categorize what is

required, which produces incorrect statistics.

After the frames were gathered and arranged according to movement, the order of the

procedures is the following, as illustrated in Figure 3.1. Pose estimation was carried out

gradually for each player on the Padel court. To more accurately determine which movement

is conducted in each frame, the movement classi�er model makes use of the estimation of

the body skeleton as a feature. Following this, each frame that had a pose estimation was

labeled.

The obtained frames and respective labels were organized in order to be used by YOLO

to perform �ne tuning with the new movement classes. The data is separated into three

groups: train, test and validation. The model can be trained using a balanced sample of

the data when the data is structured as described above. Data is then prepared to feed the

YOLO model.

The presence of the Padel court boundaries is still another crucial aspect of the procedure.

The frames must be free of distortion to distinguish the �eld's lines, and, since the camera

used at Quinta do Padel contains distortion, this needs to be taken into consideration. The

Padel court's lines and bounds are then determined using Canny Edge and Hough Lines

approaches.

The positions of the ball during the game must be saved, together with its trajectory, to

produce statistics about important points of the game.
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Figure 3.1: Methodology procedures' architecture.

The aforementioned procedures give the system access to the movement identi�ed in each

frame in relation to the court and ball coordinates. This enables the system to provide

statistics like movement with more points collected, the most accurate player and others by

creating a table with the game's timeline. All of these factors work together to create a

system that enhances performance monitoring and Padel statistics creation.

3.2 Methodology

The methodological part of this master's dissertation takes center stage in the quest to

improve performance and strategic decision-making in the world of Padel. The foundation

of our investigation into how to apply AI principles to the realm of Padel is provided by this

chapter. The methodical process used to design, create, and assess AI-driven solutions for

Padel game analysis and player support will be covered in detail in the pages that follow. To

prepare for a thorough analysis of how AI can change the game of Padel, this methodology

section will carefully lay out the research strategy, data gathering, AI model selection, and

evaluation criteria.

3.2.1 Movement Classi�cation

Data Collection

One of the most important components of an accurate and trustworthy AI system is high

data quality. In the absence of proper data, models rely on inaccurate patterns to identify

what is necessary, resulting in incorrect statistics. Therefore, choosing quality data to feed

the models was a point to consider.

For this, 4 players were chosen to play at Quinta do Padel's court following speci�c rules
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so that the selection of the movements to send to the model was made easier. For this

selection, it was decided that for every 5 minutes one of the teams would only perform one

speci�c movement. This way, when selecting frames for a speci�c movement, the parts of the

video where it was performed were already known.

Quinta do Padel's court has two cameras, each one is disposed in each part of the �eld, as

shown in Figure 3.2. Since two cameras are available, every movement was recorded twice,

once for each side of the court and consequently for di�erent players.

Figure 3.2: Cameras distribution in Quinta do Padel's court.

Having the same movement made by di�erent players in di�erent angles is going to be

extremely positive to help the model learning the movement's patterns more accurately. The

entire recorded video on this session was then separated by movement and camera.

For this speci�c work and for a matter of investigation, the focus was only on two move-

ments, Backhand and Forehand.

Data preprocessing

A preliminary method for training the movement categorization model, without using a

skeleton, was developed. The model had di�culty distinguishing between some game-related

irrelevant body motions and the precise movement that executed a hit on the ball, hence the

results were not as good as expected.

Figure 3.3 shows the di�erence between the images that were �rst used and the images

containing the pose estimation. The e�ectiveness of a movement classi�cation model is

greatly improved by the precise posture estimation of players.
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(a) Frame without skeleton.

(b) Frame with skeleton.

Figure 3.3: Example of application of Pose Estimation to Quinta do Padel court game.

The system receives a precise depiction of the players' body locations and movements on

the court from accurate pose estimation. This knowledge is essential for identifying minute
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variations in player behavior, such as various stroke types, footwork patterns, and player

interactions. The movement classi�cation model can distinguish between these subtle moves

by accurately tracking player stances, which eventually enhances the model's capacity to

decipher and categorize the players' on-court actions.

To better comprehend the distinction between irrelevant and relevant movements, pose

estimation was added to the frames as a new feature of the model, as exempli�ed in Figure

3.3b. Open Pose approach was used to apply pose estimation on the players to each frame of

the video to have the players' skeletons in the frames. Upon data collection, the subsequent

procedure entails labeling the data to facilitate the model's understanding of the distinctive

characteristics associated with each movement.

Labeling

Image labels are important for several reasons, one of which is that supervised learning, the

process through which an AI model learns patterns and features related to several classes or

categories, is made possible. The model may develop relationships between visual traits and

the matching class labels through labeled samples, basically learning what each element looks

like. Without image labels, the model is unable to make an appropriate distinction between

these elements. The model can e�ectively generalize its knowledge from labeled examples to

correctly categorize new, unlabeled images seen during gaming since image labels give it a

reference point.

Identifying which movement the player is making is crucial in the context of this Padel

game investigation. To annotate the player who is executing the movement and label the

movement a tool called CVAT was used. Each frame was given a class that was chosen along

with the appropriate position skeleton, as shown in Figure 3.4.
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Figure 3.4: Example of a CVAT annotation of a Forehand movement.

Following the collection and labeling of data, the subsequent step entails providing it as

input to the utilized model, which is going to provide the classi�cation of the movements.

YOLO

The choices about the base structure and architecture is crucial in the e�ort to create

a model that can recognize objects and anticipate Padel movements, shown in Figure 3.5.

Due to its powerful object identi�cation capabilities and versatility for unique applications,

YOLOv8 stands out as a desirable candidate.

Figure 3.5: Movement classi�er structure.
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The YOLOv8 model can be initiated with pre-trained weights from massive datasets,

thereby enhancing its capacity for object recognition and detection in this domain through

transfer learning, which imbues the model with prior knowledge encompassing a diverse range

of entities.

It needs to be �ne-tuned for Padel object detection in the following stage. The process

of �ne-tuning is how the model learns to modify its feature representations and weights to

the unique properties of the Padel movement dataset.

In order to assess the precision of bounding box predictions, IoU is used. It measures

the amount of overlap between an object's ground truth bounding box and the expected

bounding box for that object within an image. The amount of overlap between the two

bounding boxes is divided by the size of their union to determine the IoU,

IoU =
Area of Intersection

Area of Union
.

The resulting IoU value is a percentage-based indicator of how closely the projected bounding

box matches the actual object's position and dimensions. A better match is indicated by a

greater IoU.

In addition to employing this metric for assessing the model's pro�ciency in projecting

a bounding box, it is imperative to assess the model's performance in predicting the corre-

sponding label associated with its bounding box, indicative of the movement executed within

that frame. YOLO uses the Cross Entrophy loss function, Equation (2.1). This loss function

is intended to maximize the model's capacity to correctly categorize the movements.

Beyond the movements, the Padel court needs to be identi�ed so that the position of the

players can be then compared to the �eld.

3.2.2 Padel Court Identi�cation

The examination of Padel games using AI shows that the detection of lines inside a Padel

court is a vital and important component. In the �rst place, it delineates the playing �eld,

de�ning player limits and creating rules for the scoring procedure. Second, the lines are

crucial for enforcing the rules because they specify where the ball must land during play and

where it should be served. Therefore, it is crucial to correctly identify these lines to follow the

ball's trajectory, and players' movements. Figure 3.6 illustrates the strategy used to identify

the court boundaries.
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Figure 3.6: Court boundaries identi�cation structure.

Court boundaries detection acts as the stage on which later analyses are constructed. This

covers player positioning, ball tracking, and shot trajectory prediction, all of which largely

rely on having a perfect understanding of where the lines are. Without this vital data, the

automatic analysis of the game dynamics in Padel, such as shot accuracy, player performance

metrics, and tactical insights, can be threaten.

A frame of an empty court was chosen as a reference for court detection to identify the

Padel court boundaries, as shown in Figure 3.7.

Figure 3.7: Frame of the empty court.

This reference image is important since it depicts a clear, unhindered perspective of the
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court's layout that is devoid of any players or equipment.

Canny Edge

The frame is converted into a grayscale image using a conversion process. Reducing the

image to a single grayscale channel works well for highlighting the lines on the Padel court,

which are the most important visual components. Additionally, grayscale conversion makes

it easier to eliminate excessive noise and unwanted elements that could be present in color

photographs. This noise reduction is especially important when working with low-quality

video or under di�cult lighting conditions, which are both common in Padel court situations

and it is also helpful to reduce the complexity of the image making it easier to process.

The Canny edge detection algorithm is then applied to the frame to �nd image edges,

as represented in Figure 3.8. In this procedure, the background image is transformed into a

binary representation, where pixels that are part of an edge are given a binary value of 255,

which represents the color white, and pixels that are not part of an edge are given a binary

value of 0, which represents black.

Figure 3.8: Frame of the court after applying the canny edge detector.

The Canny edge detector uses a threshold range to identify which pixels are edges, with

a lower threshold of 50 and an upper threshold of 100. The white pixels are subjected to

a dilation operation after the image has been translated to binary representation and all

of the edges have been located. This dilation improves their visibility, makes them more

recognizable, and makes them simpler to �nd in further study, as shown in Figure 3.9.
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Figure 3.9: Dilated Result of the canny edge detection.

Hough Lines

To �nd all relevant lines in the binary Canny image, a probabilistic Hough lines transform

algorithm is used, as represented in Figure 3.10.

Figure 3.10: Detected court lines.

Vertical lines and horizontal lines are the two separate groups created from the lines

produced by the probabilistic Hough lines algorithm. This classi�cation is essential since only

horizontal lines contain the important areas of interest, whereas vertical lines are unnecessary
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and are therefore not included. Both of each line's ends, (x1, x2) and (y1, y2), are evaluated

as part of the sorting process. The line is referred to as horizontal if the distance along the

x-axis di�erence is greater than twice the distance along the y-axis di�erence, according to

the following condition:

| (x2 − x1) |> 2× | (y2 − y1) | .

In contrast, the line is classi�ed as vertical if this requirement is not met. It is crucial

to combine these smaller lines that represent the same line segment since the probabilistic

Hough lines method frequently �nds many smaller lines that together represent a bigger

line within the frame. To enable the accurate identi�cation of the major endpoints of the

lines, this consolidation phase is essential. An e�ective �ltering process is used to remove

unnecessary data before merging all of the lines. Based on a length threshold of 100 pixels,

this �ltering process removes shorter, irrelevant lines, streamlining the dataset and getting

rid of super�uous data. A pairwise comparison strategy is used to consolidate horizontal

lines, where two lines are analyzed at once and combined based on their pixel locations

along the y-axis. The lines are merged if the di�erence in their y-coordinates is less than 10

pixels, indicating that they can be viewed as parts of a single line, according to the following

condition:

| (y2 − y1) |> 10.

The output of the above conditions met together can be seen in Figure 3.11.

Figure 3.11: Detected court horizontal lines.

All relevant lines are anticipated to exceed this pixel length criterion after merging, thus
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any lines with a length of less than 200 pixels are disregarded. Based on their y-values, the

remaining collection of lines is then further re�ned. The array is shifted so that the line

with the lowest y-value is at the front and the line with the highest y-value is at the back.

The �rst and last lines in the array are selected as the four critical locations necessary for

computing the homography transformation thanks to these operations.

Homography

Homography, also known as a perspective transformation, is a mathematical process that

maps points from one image onto their corresponding places within another image of the

same subject, even though it was taken from a di�erent angle. Points in the �rst image are

precisely transposed to line up with their counterparts in the second image. It is feasible

to compute the homography matrix using corresponding points as references given a pair

of photos showing the same scene from di�erent perspectives. Any point within one of the

images can be e�ortlessly transferred to its equivalent position within the other image after

this matrix has been formed, making it easier to align and compare visual data from various

points of view.

The line coordinates in the retrieved frame are then determined using the homography

matrix. This is accomplished by multiplying each line's coordinate points in the court's

reference image by the matrix, which results in the lines' corresponding coordinates in the

extracted frame. To determine the appropriate position in the perspective of the extracted

frame, a point in the reference court image represented as a homogeneous (x, y) coordinate

is multiplied by the homography matrix.

The next step is to indicate the court on the extracted frame by drawing these lines at

the determined line coordinates in the viewpoint of the extracted frame.

From Figure 3.12, the lines representation in the left image should have been obtained.
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Figure 3.12: The extracted frame's four points are shown in the left image, while the reference
court image and corresponding points are shown in the right image.

However, the cameras used for this Padel court analysis contains �sheye distortion, which

makes it di�cult to precisely de�ne the court's lines and borders. Fisheye distortion might

result in inaccurately drawn lines inside the court because it makes straight lines appear

curved. This distortion not only distorts how the court appears visually but also reduces the

accuracy needed for line detection and subsequent ball detection algorithms.

3.2.3 Ball Position and Trajectory

The location of the ball serves as the foundation for many game-related analysis and in-

sights. A promising and e�cient method for ball detection in Padel is KCF object detection

algorithm since it is known for its real-time tracking capabilities.

One of KCF's advantages is its e�ective ability to keep track of an item across multiple

frames. KCF should be a great choice for ball tracking because of its ability to adjust to

changes in object appearance, scale, and orientation in Padel, where the ball's movement

is dynamic and unpredictable. Further enhancing KCF's viability for this application is its

resilience in handling partial occlusion, which occurs frequently in Padel when players mo-

mentarily block the ball. To precisely map the ball's trajectory and calculate crucial metrics

like ball speed, trajectory analysis, and point-winning probabilities, KCF continuously up-

dates the object's position. Furthermore, KCF's real-time capabilities �t with the need for

prompt decision-making and analysis in the Padel game.

Despite having promising real-time tracking capabilities, the application of KCF object

detection algorithm for Padel ball detection ultimately encountered insurmountable di�cul-

ties due to the inherent properties of the Padel ball and the environment in which it operates.
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A signi�cant barrier to the success of the KCF-based strategy was the size of the ball and

also the resolution of the frames recorded during a Padel match.

Padel balls can seem like mere pixels in the low-resolution frames that are typically

accessible in ordinary video recordings of Padel games since they are relatively small. The

ability of KCF to track an object depends on the object's ability to be seen clearly and

consistently throughout its journey.

In the case of Padel ball identi�cation, KCF found it di�cult to reliably identify and

track the ball's position precisely due to the scant spatial information o�ered by the frames.

When the ball traveled quickly or when player interactions caused partial occlusions, it was

challenging for KCF to maintain robust tracking since the ball frequently appeared as a tiny,

intermittent blip within the frames.

The ball's size in relation to the frame resolution continued to negatively impact KCF's

performance despite meticulous parameter adjustment and optimization attempts. To escape

this problem, a YOLO approach was tried. YOLO has a tennis ball trained class, however

the issue remained. The ball appears too small in the frames and with low resolution, making

the used approaches to fail.

3.2.4 Components Integration

Integrating various components to build a comprehensive AI system for optimizing statistics

and player performance insights in Padel involves orchestrating a series of interconnected

processes. The key to this AI system's success lies in the seamless integration of these

components, which �ow is represented in Figure 3.13.

Figure 3.13: AI System's �ow representation.
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First, movement categorization entails tracking and identifying players' movements and

court positions in real time. Ball positioning is established concurrently by monitoring the

trajectory, speed, and bounce of the ball. By combining these two elements, it is possible to

analyze player tactics and performance in greater detail, gaining insights into shot accuracy,

rally dynamics, and player cooperation. Furthermore, contextualizing player motions and

ball placement depends on the concurrent computation of the Padel court boundaries. The

AI technology makes sure that all player and ball movements stay inside the bounds of the

court by precisely recognizing and tracking those boundaries. This data is crucial for deter-

mining whether shots are legal, �nding errors, and giving a complete picture of games. The

simultaneous analysis of these three elements opens the door to a wide range of applications,

from automatic game statistics creation to real-time coaching feedback, ultimately improving

the entire player experience and advancing the Padel sport.

3.2.5 Statistics

Building an AI system for game analysis and statistics production requires creating a complete

table that contains data from each frame of the Padel play. The system's foundation is this

table, called "frame log", illustrated in the Table 3.1, which enables the automatic creation

of thorough statistics.

The timestamp at the start of each row in the table shows when the frame was taken.

This timestamp serves as a benchmark for following the game's chronological development.

The system logs the players' sensed motions for each frame. This could include details like

player identi�cation, their locations on the court, and the movements they made (such as

running, forehands, and backhands). The ball's exact coordinates within the frame are listed

in the table. The camera's perspective and the usual Padel court coordinates are taken into

account when recording these coordinates. This enables the charting of ball trajectories,

speed estimations, and knowledge of the location of each shot on the court.

The table can have annotations or event markers to draw attention to particular game-

related happenings. For instance, timestamps are recorded for occurrences such when a point

is scored, a player serves, or a rally is over.
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Table 3.1: Example of a failed service executed by player 2 in the frame logs table.

When a player loses a point in Padel, it can be a crucial time in the match. Typically, this

happens when the served ball makes contact with the net. In the example of the Table 3.1,

the exact moment the service was started is recorded in the frame log together with the frame

timestamp, ball locations, and player movements. It captures the trajectory of the ball as it

moves toward the net and, most importantly, as it hits the net. This occurrence is accurately

logged within the context of the Padel court limits thanks to the synchronized time. The

moment the system is able to detect that the ball hit the net, it generates statistics regarding

the movement that was performed previously. This illustration demonstrates how interesting

statistics and insights can be produced automatically from the extensive data in the table.

In this example, the AI system can help players and coaches improve their performance in

future games by identifying times when service points are lost due to net contact and helping

to develop players and strategy. The structured table's ability to support such �ne-grained

event recording is essential for the pursuit of data-driven advancements in the Padel sport.
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4 Results Analysis

4.1 Movements Classi�cation Model

4.1.1 Metrics

The assessment and testing phase is a crucial stage in verifying the model's performance and

its capacity to generalize to new data while training a �ne-tuned YOLOv8 model for Padel

movement prediction.

To measure the model performance, the following metrics are used:

� Accuracy measures the general correctness of a model's predictions. It is the proportion

of cases in the dataset that were successfully predicted to all other instances.

� Recall assesses the model's ability to correctly identify all relevant instances. It is

the ratio of true positives (correctly predicted positive instances) to the sum of true

positives and false negatives (missed positive instances).

� Precision evaluates the model's ability to minimize false alarms. It is the ratio of true

positives to the sum of true positives and false positives (incorrectly predicted positive

instances).

Common measures like mAP are also used to measure the model's item detection ability.

mAP assesses the accuracy and recall of the model's forecasts at various con�dence levels.

Greater accuracy in localizing objects and separating true positives from false positives is

indicated by a higher mAP score.

� mAP: calculates the accuracy and recall values for each con�dence threshold and the

average precision (AP) for each class. To get the overall mAP, it then calculates the

mean AP for all classes.

� mAP50-95: uses a prede�ned set of IoU thresholds, typically ranging from 0.5 to 0.95

in steps of 0.05, to determine the Average Precision (AP) for each class independently.

The average of these AP scores across all classes is then used to calculate the mAP50-95.

In summary, mAP50-95 focuses on a certain set of IoU thresholds, often incorporating tougher

criteria for object detection, whereas mAP gives a thorough evaluation over all con�dence

levels.
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4.1.2 Results

In order to gain a clear and concise insight into the model's classi�cation performance for

this classi�cation task, a 3x3 confusion matrix representing two distinct classes (Backhand

and Forehand) was constructed, Figure 4.1.

Figure 4.1: YOLO confusion matrix.

The class �Backhand� had 83.3% accuracy, 93.8% recall and 88.2% precision performance

whereas �Forehand� had 78.6% accuracy, 96.5% recall and 80.9% precision.

The mAP50-95 was 87.7% for Backhand and 74.4% for Forehand. Overall, the mAP50-95

of the model was 81.1%.
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4.1.3 Discussion

An interesting observation is that Forehand Class had a higher recall than Backhand Class

when also having lower accuracy and precision. Having a higher recall is explained by the

fact that the model predicted a high number of true positives. Having lower accuracy and

precision is explained by the number of Forehand predictions done by the model when in fact

it was a Background. Hence, even though the model had a high number of true positives for

Forehand class, it also predicted Forehand when it was nothing in fact a couple of times.

A reason to justify not so consistent metrics is because of the amplitude of the labeled

movements that were given as input to the model. The model results show that having a

higher amplitude of movements is not good because it might teach the model that potential

irrelevant movements might be relevant hits, when it is not true. To �x this, a suggestion

would be to remake the labeling reducing the hit movement amplitude up to 3 frames. Also,

having a higher amount of labels would be an advantage to improve generalization and

consequently model results.

4.2 Discussion

4.2.1 Research Limitations and Future Works

This master's thesis has explored the use of AI techniques to improve various game elements,

from real-time event detection to player performance monitoring, in the dynamic and devel-

oping world of AI in Padel. However, there is still a long way to go before AI in Padel is

fully utilized. It is critical to recognize as this thesis comes to a close that the topic of AI in

Padel o�ers a broad canvas for further investigation and invention.

The prompt and precise labeling of images used for training and evaluation is a crucial

factor. The image identi�cation process must be carried either faster or across fewer frames

of the same movement sequence to improve the model's capacity to recognize and categorize

Padel movements. This method has the advantage of promoting a higher level of analysis

granularity as well as ensuring that the model is trained on temporally coherent and consistent

movement patterns. The model gets a more speci�c understanding of the minute details that

distinguish one movement from another by categorizing motions inside a condensed temporal

window, ultimately leading to a more accurate and re�ned movement classi�er. This method

not only makes the model's training process more e�cient, but it also puts it in a position

to shine in situations requiring quick and accurate decision-making, which are critical in the

fast-paced game of Padel.

For more precise court recognition and subsequent analysis, improving the camera con-

�guration is a key factor. Delineating the court's boundaries precisely is di�cult due to the

81



Fisheye distortion inherent in the current camera setup. Therefore, it is essential to look into

methods for either moving the cameras to reduce distortion or applying advanced distortion

correction methods. The precision and quality of the input data play a crucial role in how

well AI algorithms perform, especially in the areas of object tracking and game analysis.

The detection of the ball inside the frames taken from video recordings was unquestionably

one of the major di�culties encountered in this master's thesis. Accurate ball detection

proved to be a di�cult task given the Padel ball's naturally modest size in relation to the

frame's resolution. It is advised that future research projects look into stereo vision systems,

in which two cameras are placed carefully in the same plane to take pictures of the Padel court

from slightly di�erent angles. A stereo pair of images would result from this con�guration,

allowing for the estimation of depth information and giving a more thorough perspective

of the scene. The restrictions caused by the ball's small size in individual frames could

be overcome by using stereo vision to more precisely estimate the ball's position in three-

dimensional space. This method has the potential to increase tracking accuracy and ball

trajectory prediction in addition to ball detection.
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5 Conclusion

This research has delved into the world of Padel, a sport that is quickly gaining popularity

across the globe, amid the dynamic and changing �eld of AI applications in sports analytics.

The goal to use AI to provide real-time statistics that can improve both player performance

and the viewing experience was the driving force behind this work.

To comprehend the complex gameplay that distinguishes Padel, this trip started by inves-

tigating the sport. This was done by charting its development across time. The comprehen-

sive examination of the literature then went into the fascinating background and development

of AI, the numerous subtypes of AI, the methodologies and algorithms advancing AI, and

the crucial role of data in AI applications.

Understanding deep and machine learning techniques, such as a CNN, the YOLO object

identi�cation model, transfer learning, position estimation, court detection, and ball detec-

tion, laid a crucial basis. The resources needed to address the di�culties of Padel analytics

were made available by these technologies.

This study's successful application of movement categorization algorithms was one of its

main accomplishments. Results from the analysis of player movement patterns are encour-

aging. However, the results would be better if the amplitude of the labeled movements were

smaller, giving a better understanding of each movement to the movement identi�cation

model.

Although our e�ort to locate and monitor Padel court boundaries has shown promise, it

is important to note that this task is still not �nished. The intricacies of the Padel court

setting, including the camera perspective and �sh eye e�ect, provided di�culties that call for

more investigation. This �nding of our study emphasizes the necessity for continued research

and the possibilities for improving the precision of court border detection with a suggestion

of using �sh eye distortion techniques in future initiatives.

Despite the best e�orts, ball location and trajectory analysis remained a topic under

investigation that could not be fully resolved because of the obstacles faced. The ball ap-

pearing too small in the captured frames and in some of them appearing with blurred e�ect

did not help with its identi�cation process. These restrictions might be because of camera

resolution. A good approach would be using stereo vision and exploring other ways of dis-

tributing the cameras along the court. More work needs to be done to give comprehensive

real-time statistics, even though this component of our research has signi�cantly increased

our understanding of the challenges of tracking swiftly moving objects.

Despite being well planned and in progress, two essential parts, Padel court recognition

and ball location and trajectory tracking, remain un�nished. These elements have made it
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extremely di�cult for our AI system to be fully integrated.

Although these parts are still under construction, the groundwork has been done and

improvements have been made. By overcoming these obstacles, this AI system will generate

real-time statistics with signi�cantly more accuracy and e�ectiveness, giving players, coaches,

and enthusiasts alike insightful data.

The foundation of this thesis is based on a strong methodology and a distinct future

vision, even though the integration of these elements has not yet been fully realized. This is

only a key turning point in the ongoing development of AI applications in Padel sports.
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