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Abstract

We construct numerical integrators for Hamiltonian profdehat may advan-
tageously replace the standard Verlet time-stepper witlgiorid Monte Carlo and
related simulations. Past attempts have often aimed atihgase order of ac-
curacy of the integrator and/or reducing the size of itsrecamstants; order and
error constant are relevant concepts in the limit of vanigtstep-length. We pro-
pose an alternative methodology based on the performartbe aftegrator when
sampling from Gaussian distributions with not necessarityall step-lengths. We
construct new splitting formulae that require two, thredour force evaluations
per time-step. Limited, proof-of-concept numerical expents suggest that the
new integrators may provide an improvement on the efficierfitiye standard Ver-
let method, especially in problems with high dimensiowalit
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1 Introduction

The present paper constructs numerical integrators forilttaman problems that may
advantageously replace the standard Verlet time-stepjteinwHybrid Monte Carlo

(HMC) and related simulations. HMC, introduced in the phgditerature by Duane et
al. [9], is a Markov Chain Monte Carlo methdd [24] that haspb&ential of combining

global moves with high acceptance rates, thus improvindtenrative techniques that
use random walk proposals[22]] [3]. Itis widely used in salareas, including quan-
tum chromodynamic$[14].[29], and is becoming increasipglpular in the statistics
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literature as a tool for Bayesian inference (see €.d. [2ZR]hnger list of references to
various application areas may be seeriin [3]. At each stefpeofitarkov chain, HMC
requires the numerical integration of a Hamiltonian systérdifferential equations;
typically, the familiar Verlet algorithni[28] has been ugedtarry out such an integra-
tion. Since the bulk of the computational effort in HMC ligsthe simulation of the
Hamiltonian dynamics, it is of clear interest to investeahether the simple Verlet al-
gorithm may be replaced by more sophisticated and efficiggrtnatives. In particular
better integrators may reduce the number of rejectionsesiing valuable in applica-
tions such as molecular dynamics where discarding a cordpraiectory may be seen
as a significant ‘waste’ of computational time. Although fiteysics literature is not
lacking in efforts to construct new integrators (see €.4],[[29] and their references),
the fact is that Verlet remains the integrator of choice.

Past attempts to build integrators to improve on Verlet hgpecally started from
the consideration of families of split-step methods witle @n several free parameters;
the values of those parameters are then adjusted to boastdaeof accuracy and/or
to reduce the size of the error constants. We shall arguethatrseuch a methodology,
while well-established in numerical analysis, cannot bgeeted to be fruitful within
the HMC context. In fact, order of accuracy and error cortstare notions that pro-
vide information on the behavior of an integrator as the-sieph approaches 0 and
in HMC simulations useful integrators operate with modeiat even large values of
h. In an alternative approach, we begin by associating with @americal integrator a
quantityp(h) that governs its behavior in simulations of Gaussian distidons (Propo-
sition[3 and Section 41.2). More precisel§f) provides an upper bound for the energy
error when integrating the standard harmonic oscillatariamelevant to all multivari-
ate Gaussian targets. We then choose the values of the fiagi@rs to minimize the
size ofp(h) ash ranges over an interval< h < h, whereh is sufficiently IargeEl Nu-
merical experiments show that the new approach does praatieggators that provide
substantial improvements on the Verlet scheme. On the b#med, when integrators
derived by optimizing error constants and Verlet are useld siep-lengths that equal-
ize work, the energy errors of the former typically improvetbose of Verlet only for
step-sizes so unrealistically small that the acceptartecfoa Verlet is (very close to)
100%.

After submitting the first version of the present work, wedbhecome aware of two
additional references, [23] and [15], that are relevanhtoissues discussed here. The
paper [28] considers integrators for Hamiltonian dynanaied, just as in the present
work, tunes the coefficients of the methods so as to ensugt@owservation of energy
properties in linear problems; furthermore|[23] discugbesreasons the relevance of
linear models as guides to nonlinear situations. Howewepftimization criterion of
[23] differs from ours, as it is based on maximizing the léngf the stability inter-
val, subject to the annihilation of some error constantg1§j the authors deal with
Langevin integrators and demonstrate methods which haaet sampling for Gaus-
sian distributions.

Sections 2 and 5 provide the necessary background on HMCpdittthg integra-
tors respectively; in order to cater for readers with déferbackgrounds the exposition

1This approach is somewhat reminiscent of the techniquesingdé] and [5].



there is rather leisurely. Section 3 studies a number of ggities of the numerical
integration of Hamiltonian systenspecific to the HMC scenaridVe point out that the
average size of the energy error is actually much smaller ¢ime would first believe.
In such a scenario the optimal stability property of Verletkas the construction of a
more efficient integrator a rather demanding challenge.nathodology for determin-
ing the free parameters in families of integrators is base@aussian model problems;
such models are studied in Section 4. We show in particusr tbr Gaussian targets
and if the dimensionality is not extremely large, the Vedkigorithm performs well
with values of the step-lengththat are moderate or large. Section 6 presents our ap-
proach to the choice of free parameters. It also containspbes of methods with two,
three or four force evaluations per time-step derived blp¥ahg the new methodol-
ogy. The new methods clearly outperform the Verlet integygiarticularly so if the
dimensionality of the problem is high. Section 7 reports samamerical comparisons
in a simple molecular example and the final Section 8 is deMmteonclusions.

2 The hybrid Monte Carlo method

The aim of the HMC algorithm is to obtain a Markov chainl[24]gample from a
probability distribution inR¢ with density function of the form

7(q) o< exp(—=V (q)). 1)

The algorithm introduces an auxiliary variablec R?, calledmomentumand works
in the phase spac®2? of the variablesq, p), where one considers ldamiltonian
function H (energy)

H(q,p) = %pTM‘lp +V(g) )

(M is a symmetric, positive definite matrix chosen by the used)aprobability den-
sity function

I(q,p) < exp (— H(q,p)) = exp (— %pTM‘lp) exp (= V(q)). 3)

Thusq andp are stochastically independeaqis distributed according to the targEt (1)
andp has a GaussialV (0, M) distribution.

The algorithm uses transitions in phase sga&e, p(™) — (¢*, p*) = ¥ (¢, p™)
obtained through a mapping : R2¢ — R2¢ that isvolume preserving,

det(¥'(¢,p)) = 1 4)
(¥’ is the Jacobian matrix oF), andreversible(see Fig[1L),
V(g,p) = (¢",p") & ¥(¢",—p") = (¢, —p). (5)

If S denotes the mapping in phase sp&¢e, p) = (¢, —p) (momentum flip), then the
reversibility requirement reads

PoSoW =79
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Figure 1: The level setd1 = 2 and H = —1/8 in the phase planéq, p) when

V(q) = ¢* — ¢*. The target distributionr(¢) has modes af = ++/2/2. A reversible
transformation¥ that mapgq, p) into (¢*, p*) must magdq*, —p*) into (¢, —p). Here
the move fronig, p) into (¢*, p*) increases the value @f and the move frorfy*, —p*)
to (¢, —p) decreased{ by the same amount.

Giveng(® € R4, N > 1, setn = 0.
1. Drawp(™ ~ N(0, M). Compute(q*, p*) = ¥ (g™, p(™)) (¢* is the proposal).
2. Calculate:(™ = min (1, exp(H (¢, p™) — H(q*,p*))).

3. Drawu(™ ~ U(0,1). If /™ > u(™), setq®*t!) = ¢* (acceptance); otherwise
setqg(" D) = ¢(") (rejection).

4. Setn =n + 1. If n = N stop; otherwise go to step 1.

Table 1:Basic HMC algorithm.M and W are respectively a positive definite matrix
and a volume-preserving and reversible transformationhiage space; both are cho-

sen by the user. The functidii is given in [2). The algorithm generates a Markov
chaing® — ¢ — ... — ¢ reversible with respect to the target probability
distribution [3).



(o denotes composition of mappings, i(€.0c¥)(q,p) = S(\Il(q,p))), or,sinceS—! =
S!
Ul=8S0WoSs. (6)

Table[ describes the basic HMC procedure. A proof of thetfettthe algorithm
generates a Markov chain reversible with respect to theetgngbability distribution
(@ may be seen in[17] of [25] (see also Section 2.27n [8],clhiontains additional
references). HMC is of potential interest because by cingosi appropriately it is
possible to have a proposal far away from the current locatiofi™ while at the
same time having a large probabilitf of the proposal being accepted; that is not
the case for the random walk proposal in the standard Melisoxalgorithm. (In Fig[1,
if the circle and the star correspond(g™,p(™) and(¢*, p*) respectively, then the
current location is in the neighborhood of the mode at —+/2/2 and the proposal is
close to the other mode.)

Itis in order to recall that the reversibility of a Markov ¢havith respect to a target
distribution is not by itself sufficient to ensure the ergotdehavior that is required
for the chain to yield trajectories that may be successfuslgd to compute averages:
additional properties like irreducibility are necessarige discussion of these issues is
outside the scope of the present work and the interesteéreadkferred e.g. td [8] or
[27].

Many variants and extension of the procedure in Table 1 haea Isuggested in
the literature, see, among othefs, [1], [4].][11].][12].]i22& is not our purpose here
to compare the merit of the different variants of HMC or to gare HMC with other
sampling techniques.

2.1 Using Hamiltonian dynamics

A potentially interesting choice of transformatiéqi‘, p*) = ¥ (¢, p(™)) would be
obtained by fixing a numbef > 0 and settingg* = ¢(T), p* = p(T), where
(q(t), p(t)) is the solution of the system of differential equations

d
—q=V,H(q,p),

7 —V4H(q,p) (7

al =
with initial conditiong(0) = ¢, p(0) = p(™. In more technical words, in this choice,
W coincides with thel-flow p of the Hamiltonian systeni(7)][2]. [10]. [16]. [26].
By selectingl” suitably large, one then obtains a paigt, p*) = ¢4 (¢, p(™)) away
from (¢, p(™). Furthermore[{7) implies

d

S H(a(®),p(t)) =0

(conservation of energy), so thatin step 2 of the algorifim™), p™)) — H(¢*, p*) =
0 and, accordingly, the probability of acceptance® = 1.

It is important to note here that, for each choicelof¥ = ¢ satisfies the re-
quirements in TablEl1. In fact, the preservation of voluména@) is a well-known
result of the Hamiltonian formalism, see eld. [2].][10].][28loreover the transforma-
tion U = ol is reversible as ir{5); this is checked by observing taét), p(t)) =



(q(T—t),—p(T—t)) is the solution off{I7) with initial conditiog(0) = ¢*, p(0) = —p*
and that(q(T), p(T)) = (¢, —p™).

Unfortunately the choic& = (X is unfeasible: in cases of practical interést (7)
cannot be integrated in closed form and it is not possibleotaputes (¢, p(™).
HMC then resorts to transformatiofisthatapproximatethe true flowZ!; more pre-
cisely (¢*,p*) is obtained by integrating(7) with initial conditicfg™), p(™)) with a
suitable numerical method. Not all methods can be congidebehas to satisfy the
requirementd (4) andl(5). The well-known Verlet methodt the describe next, is at
present the method of choice.

2.2 The Verlet integrator

If h > 0andl > 1 denote respectively the step-size and the number of tiefessta
velocity Verleintegration starting fronfgo, po) may be represented as

Y (q0,p0) = (q1,pr1) (8)

where(q;, pr) is the result of the time-stepping iteration:

h
Dit1/2 = Di— quV(Qi)v
Giv1 = G+hM 'pii,
h .
Pi+1 = pi+1/2_§qu(qi+1)a 220711"'11_1' (9)

For our purposes, the velocity Verlet algorithm is best seseasplitting algorithm
(see[[20] and[]7]), where the Hamiltonidd (2) (total enerigyritten as a sunif =
A + B of two partial Hamiltonian functions,

A=1/2p"M 'p, B=V(q) (10)

that correspond to the kinetic and potential energies rtspdy. The Hamiltonian
systems corresponding to the Hamiltonian functighsB are given respectively by

(cf. @)

d . d
i VpA(q,p) = M~ "p, P = —V,A(g,p) =0

and

=V,pB(g,p) =0, =—-VyB(g,p) = —V,V(q),

at? at’
and may be integrated in closed form. Their solution flowsr@spectively given by

(q(t),p(t)) = ©;*(q(0),p(0)),  q(t) = q(0) +tM~'p(0), p(t) = p(0),

(a(t),p(t)) = ¢ (q(0),p(0)),  q(t) =q(0),  p(t)=p(0) —tV,V(q(0)).



Giveng™ p(™) e R* T >1,h > 0.

1. Setg = ¢, p=p™,i=0.

2. Evaluatev,V (q) and sepp = p — (h/2)V,V (q).
3. Setg=q+hM p,i=1i+1.
4

. If i < I, evaluateV,V (¢) and sep = p — hV,V (¢), go to step 3. Otherwise
go to step 5.

5. Setg* = ¢, evaluateV,V (q), setp* = p — (h/2)V,V (¢) and stop.

Table 2:Velocity Verlet algorithm to findg*, p*) = ¥ (¢, p(™)) in Table1.

Thus the Verlet time-str(qi,pl-) — (qi+1, pir1) in @) corresponds to a transforma-
tion in phase spacgy; 1, pi+1) = ¥n(gi, p:) with

Ph = Phya © Ph © Pl (11)

and the transformatiolt = ¥, ; over! time-steps (se€8)) to be used in the algorithm
in Table[1 is given by the composition

I times

V=V,r=1v¢p0po---01y. (12)

Here ¢;, is volume-preserving as a composition of volume-presgr¥iamiltonian
flows. Furthermore);, is reversible becaue.,e,’f(2 andy7 are both reversiblandthe
6)

right-hand side of (11) is a palindrome (sgk (6)):
_ —1 _ _
Uit = (o) o (en) o (er)
(Socpf/QoS) o (SOSD‘}?OS)O (Socpf/QoS)
= SopobS.

It then follows thatW;, ; is volume-preserving and reversible. Note thgf; is an
approximation to the true solution flow at tinié: W, ; ~ ¥ . Sincep? preserves
energy exactly, the transformatidn, ; may be expected to preserve energy approxi-
mately, so that in Tabld I (¢, p™)) — H(¢*, p*) ~ 0 leading to large acceptance
probabilities.

Alternatively, the roles ofy andp and those of the potential and kinetic energies

2In the numerical analysis literature it is customary to evtittep’ rather than ‘time-step’. Here we use
‘step’ to refer to the Markov chain transitions and ‘timeystto refer to the integration. Steps are indexed
by the superindex. and time-steps by the subindex



may be replaced, to obtain tesition Verletime-stepping[[28] (cf.[(9)):

h
Giv1/2 = ¢+ §M 'pi,
Pit1 = Pi— thv(%ﬂ/z),
h_ .
dit1 = Qi+1/2+§M "Pit1, i=0,1,...,7 -1

This is obviously a splitting integrator:

Uh = Phsa © Ph © Phya- (13)

The bulk of the work required to implement the Verlet velpat position algo-
rithms comes from the evaluation of the gradi&fl’. In this connection it should
be noted that the valu¥,V (¢;+1) in (@) coincides with the value to be used at the
beginning of the subsequeit- 1 — ¢ + 2 time-step. Thus both the velocity and po-
sition versions require essentially one evaluatiofvgi” per time-step. In fact, in the
velocity or position version, it is possible to merge the Esbstep of theé — ¢ + 1
time-step;i = 1,...,I — 1 with the first substep of the subsequent time-step. This is
illustrated in Tabl€ for the velocity algorithm.

There is a feature of the velocity or position Verlet algarits that, while not being
essential for the validity of the algorithm in Talble 1 (basedoreservation of volumen
and reversibility), plays an important rolsymplecticnesf2], [10], [16], [26]. When
d = 1 symplecticness is equivalent to preservation of volunee ¢ planar area); when
d > 1itis a stronger property. The symplecticness of the Vetbtgrgthm is a direct
consequence of two facts: (i) Hamiltonian flows like¢' and¢? are automatically
symplectic and (ii) the composition of symplectic transfiations is symplectic. It is
well known that symplectic algorithms typically lead to egeerrors smaller than its
non-symplectic counterparts.

3 Integrating the equations of motion: guidelines

The aim of this paper is to ascertain whether there existratve integrators that
improve on the performance of the Verlet algoritlnithin HMC and related simula-
tions We limit our attention to one-step integrators where thgraximation at time
(i + 1)h is recursively computed %;+1,pi+1) = ¥n(qi, p:). Then the transforma-
tion required by the algorithm is given by performifgime-steps as if(12). if;, is
volume-preserving (reversible), th@n, will also be volume-preserving (reversible).
The following considerations give some guidelines for theice of integrator:

1. In‘general purpose’ integrations, the error aftéime-steps (global error)

Un,1(q,p) — 15 (q:p) (14)

is of paramount importance. Here we are interestezhigrgy errord

A(g,p) = H(Yp1(q,p)) — H(efh(q,p))

SWhile A depends o andI, this dependence is not incorporated to the notation tadasainbersome
formulae.




or, by conservation of energy,

Alg,p) = H(Wn,1(q,p)) — H(q,p), (15)
as only these determine the acceptance probability.

2. Thesignof the energy error matterg\(¢(™, p(») < 0 always leads to accep-
tance of the proposal.

In connection with the second item, it is remarkable thae (Bey.[1) if ¥ is a
reversible transformation an, p) is a point in phase space with an enenggrease
A(g,p) = H(Y(q,p)) — H(q,p) > 0, then the poin{¢*, —p*) obtained by flipping
the momentum inP' (¢, p) leads adecreasef the same magnitude

A(g", —p*) = H(¥(¢",—p")) — H(¢", —p") = —A(g,p) < 0.

Applying this argument to each point of a domdmwe see that if the transformation
is also volume-preserving, to each domairwith A > 0 there corresponds a domain
S(¥ (D)) of the same volumeith A < 0. The conclusion is that, speaking informally,
for the algorithm in TablE]1 the phase space will always baldiyinto two regions ‘of
the same volume’, one withh > 0 and the other withA < 0 (and hence leading to
acceptance).

It would be wrong to infer from here that the acceptance rataikl always be
at least 50%. In fact, the standard volume (Lebesgue measyiease space) is of
little relevance and we are rather interested in the medsure(3), as this gives the
distribution of (4™, p(™)) at stationarity of the Markov chain. Note in F[d. 1, that a
domainD with AH > 0 as above has lower values Bfand carries more probability
underII than the correspondingy( ¥ (D)); therefore when averaginyy with respect to
IT the symmetry of the roles of the domains with positive andatieg A will not be
complete.

More precisely if

E(A)= | Ag,p)exp(— H(q,p))dgdp
R2d
denotes the average energy error, in Eig. 1 we may observe
E(A) =— | Alg,p)exp (= H(¥(q,p))) dgdp
R2

(an analytic proof is provided in[3]). Thus

E(A) = % RMA(qm)[exp(—H(q,p)) —exp(—H(‘If(q,p)))} dq dp
= % Alq,p) [1 —exp(—A(q,p))} exp (— H(q,p)) dgdp
R2d

and from here one may prove [3]

0<E(A)< [ A(q,p)* exp (— H(q,p)) dq dp.
R2



This is a rigorous bound very relevant to our aims. It shovet the average en-
ergy errorE(A) is of the order ofA? and not of the order of\, as one may first
have guessed; the result holds under the only hypothesethth&ransformation

is volume-preserving and reversible. ¥f = W, ; corresponds to an integrator of
orderv , then the global errof’{14) and the energy erfad (15) may hendbed as
O(h") provided thatV” is smooth and’. remains bounded above and, accordingly,
E(A) = O(h*) (see [3] for technical details)for our purposes the order of the
method is doubledReversible integrators have necessarily an even ordégrlet has

v = 2 andE(A) = O(h'); a fourth-order integrator would had&(A) = O(h®).
To sum up: due to the symmetries inbuilt in the situatiaveragesize of A will be
smaller than one would have first anticipated (see the naaleliustrations at the end
of the next section).

4 Integrating the equations of motion: the model prob-
lem

A traditional approach in the analysis of integrators csissin the detailed study of
the application of the numerical method to the model scat@ar equationly/dt =
Ay. The conclusions are then easily extended, via diagonlizato general linear,
constant coefficient problems and it is hoped that they abs3¢ss some relevance in
nonlinear situations. From a negative point of view: methtitht are not successful
for the model equation cannot be recommended for real prhle

4.1 The univariate case

In our setting, a similar approach leads us to consider iategs as applied to the
harmonic oscillator with Hamiltonian

1
H=35@+4¢"), apeR (16)
and equations of motion
d d
—q= —p=—q. 17
71=P P =q 17)

From the sampling point of view, this corresponds to stugyie case where the target
(@ is the standard univariate Gaussian distribution, tlssmmatrix isM = 1 and
@) is a bivariate Gaussian with zero mean and unit covaeianatrixfd We remark
that the relevance of this simple model problem to realtptiantum chromodynamics
computations has been discussed in [14].

In matrix form, the solution flow of{17) is given by

R e L Wik 18)

“We emphasize that it makes no practical sense to use a Mahikiv algorithm to sample from a Gaus-
sian distribution, just as it makes no sense to integrateenicaily the equatiorly /dt = Ay. In both cases
it is a matter of considering simple problems as a guide t@é#trmance of the algorithms in more realistic
circumstances.

10



For all integrators of practical interest, a time-step;1, pi+1) = ¥n(qi, p;) may be
expressed as

qi+1 - |4 ~ An By
=M M, = 19
|:pi+1:| g [pz] ’ " |:Ch Dh] (19)
for suitable method-dependent coefficients, By, Cn, D;, and the evolution over
time-steps is then given by
q; “ri |40
=M ) 20
M " {po} (20)
For a method of order,
My, = My, + O(h¥+1), h — 0, (21)

S0 thatM,iL = M, + O(h¥), ash — 0 with ¢h bounded above.

We restrict our interest hereafter to integrators that ath beversible and volume-
preserving (symplectic since hede= 1). For the model problem[6) leads t, =
Dy, and [4) impliesA, Dy, — B, Cj, = 1. It is well known that then there are four
possibilities:

1. his such thgtAh| > 1. In that case\;, has spectral radius 1 and therefore
the powers)/; grow exponentially with. For those values of the method is
unstableand does not yield meaningful results.

2. hissuch thatA,| < 1. In that case)M;, has complex conjugate eigenvalues of
unit modulus and the powerd;, i = 0, 1,... remain bounded. The integration
is then said to betable

3. A, = +1and|By| + |Ch| > 0. Then the powersZ; grow linearly withi (weak
instability).

4. A, = +1,B), = C), = 0, i.e. M), = £ (stability).

For a consistent method,, = 1 — h?/2 + O(h?), ash — 0, and therefore Case 2
above holds for positive and sufficiently small. Th&tability intervalof the method
is defined as the largest intervd, h,,.x) such that the method is stable for edgh
0 < h < hpmax-

For h such thai 4, | < 1, is expedient to introduc®, € R such thatd;, = D), =
cos By, For|A| < 1, we havesin 0, # 0 and we may define

Xh = Bh/sin Gh. (22)

In terms of¢;, andy},, the matrices in(19) an@ (R0) are then

- cos by, Xh Sin 0y,
My = [—Xhl sinf,  coséy } (23)

and

i cos(ibp) Xn sin(ify,)
M= [_Xhl Siﬂ?wh) zos(it?h)}l ] ' (24)

11



In the (stable) casd;, = +1, B, = C), = 0, one hasin #;, = 0 and the matrix\/;, is
of the form [23) for arbitrary, [

From [21) it is easily concluded that, for a method of ordeg, = 1 + O(hY),
0, = h + O(h**') ash — 0. By comparing the numerical/; in (24) with the true
M, in (I8), one sees that a method with= h would have no phase error: the angular
frequency of the rotation of the numerical solution wouléheide with the true angular
rotation of the harmonic oscillator. On the other hand a wethith y;, = 1 would
have no energy error: the numerical solution would remaithercorrect level curve of
the Hamiltonian[(16), i.e. on the circlé + ¢*> = p2 +¢2. These considerations may be
made somewhat more precise with the help of the followind-Webwn proposition
(cf. Example 10.1 in[[26]), whose proof is a simple exercisé will not be given.

Proposition 1 Consider a (reversible, volume-preserving) integra{o8)(and used

with a stablevalue ofh so that)M);, may be written in the forni.(23). Themn, = (thh',
where )
7 h 2 Ly
H, = — —
h=5p (th + th )
is the so-called modified (or shadow) Hamiltonian. In othe@rdg, one time-step of
length/ of the numerical integrator coincides with the exact salnflow attimet = A
of the Hamiltonian system with Hamiltonian functiéi .
As a consequencetime-steps of length coincide with the exact solution flow at
timet = i¢h of the Hamiltonian system with Hamiltonian functiéfy .

Remark. The existence of a modified Hamiltonian is not restricted donfonic
problems: symplectic integrators possess modified Hamdtes such that the numer-
ical solution (almost) coincides with the true solution bétmodified Hamiltonian
system, see e.g. the discussionin [26], Chapter 10.

The preceding result implies that, for each fixed initialrdigo, po), the points
(¢i,pi),i=1,2,... obtained by iterating the integratQt; 1, pi+1) = ¥n(q:, pi), lie
on the level set},(q, p) = Hy(qo, po), i-e. on the ellipse

2 1 2 2 1 2
XnP~ + —q = XaPy + — - (25)
Xh Xh

Proposition 2 In the situation of the preceding proposition, for a traiwit over /

time-stepgqs, pr) = ¥n,1(qo, po), the energy errorA(qo, po) = H (qr, pr)—H (qo, po),
may be bounded as

1
A(qo,po) < E(X;QL - 1)pg
if x2 >1oras
1/1 )
A(qo;po) < 3 (X—2 - 1> 9o

if x,% <1.

STypically, it is still possible to define;, uniquelyby continuity, i.e. by taking limits ag — 0 in
Xhte = Bhie/sinbp.. Asimilar remark applies to the quantip(h) defined later, se€(26). Sectich 6
contains several examples of such a definition by continuity
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Proof. We only deal with the first item; the other is similar. The gk [25) has its
major axis along the co-ordinate axis= 0 of the (¢, p) plane. Henc&H (¢,p) =
p? + ¢ attains its maximum on that ellipsezif= 0 which impliesg® = ¢2 + x?p2. If
(¢r, pr) happens to be at that maximuga (go, po) = (g5 + xip5) — (45 + 5)-

Proposition 3 In the situation of the preceding propositions, assume thatpo) is a
random vector with distributio {3)_(16). Then the expéotaof the random variable

A(qo, po) is given by

where
(h) = !
PRI =5

and accordingly
0 < E(A) < p(h).

Proof. With the shorthand = cos(16},), s = sin(16},), we may write

2
1 2
2A(qo, po) = (——Xh sqo + Cpo> + (cqo + xnspo)” — (P + @3)

or
2 (1 2 1 2/ 2 2
2A(qo,po) =5 | = — 1) a5+ 2¢s [ xn — — ) qopo + s (x5 — 1) pg-
Xh Xh

SinceE(q3) = E(p3) = 1 andE(qopo) = 0, the proof is ready.

A trivial computation shows that, fa,;, | < 1,

(By, + Cp,)?

p(h) = ma (26)

a formula that will be used repeatedly in Secfidon 6.

Remark.It is relevant to note that in the last two propositions therms depend
on h but do not grow with the numbelr of time-steps. It is typical of symplectic
integration that the energy error does not grow unboundasityincreases, seé [1L0],

28],

Let usillustrate the preceding results in the case of thieVertegrator. The veloc-
ity version hasd;, = 1 — h?/2, B;, = h; therefore the stability interval 8 < h < 2
(which is well known to be optimally long, see Section]5.20v8land, for those values

of h,
h? 1
2
Xh = 5 = 2 > 1.
h2 _ hZ
(-5 I-h

The bound in Proposition 2 reads

A(qo,po) < ==~ Po- (27)



Forh =1, A(qo,po) < p2/6; therefore, if—2 < py < 2 (an event that for a standard
normal distribution has probability 95%), thenA(qo, po) < 2/3 which results in a
probability of acceptance 51%, regardless of the numbérof time-steps.

The position Verlet integrator hag. = 1 — h?/4 < 1 provided that) < h < 2.
Proposition 2 yields

A(qo, <—r
((JO pO)_S(l—%) q0

(as one may have guessed frdm] (27)).
From Proposition 3, for both the velocity and the positiorsians,

h4

R0

(28)

(Note the exponent 4 in the numerator in agreement with eudsion in the preceding
section.) Forh = 1 the expected energy erroris1/24. Halvingh to h = 1/2, leads
to an expected energy errgr1/480.

Remark A comparison of a given integratdr (19) wifh {18) shows that

Gi+1| _ 7 |G - | An —Ch
Pt R P R & A

i =By Dy
is a second integrator of the same order of accuracy. Thgraters[(IP) and (29) share
the same interval of stability and the safg The functiony; of (29) is obtained
by changing the sign of the reciprocal of the functign of (I8). Accordingly, [IP)
and [29) share a commaith). The velocity Verlet algorithm and the position Verlet
algorithm provide an example of this kind of pair of integnat

4.2 The multivariate case

We now consider general Gaussian targets
1 _
7(g) o exp (—iqTC 1q>

(C'is a symmetric, positive-definité x d matrix of covariances). Elementary results on
the simultaneous diagonalization of two quadratic formvstitat there is a canonical
linear change of variables= LQ, p = L~"(Q that brings the Hamiltonian

1 1
H=-p'Mp+-¢"C'q
2 2
to the format )
5PTP +Q'DQ,
whereD is a diagonal matrix with positive diagonal entrie%. Itis clear that in the
new variables the equations of motion are uncoupled:

d

d ) ,
790 =Fy,  ZPp=-wiQy, J=L....4

dt
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in fact this uncoupling is standard in the classical thedrgmall oscillations around
stable equilibria of mechanical systerns [2].

The scaled variable§;) = P, Q(j) = w;Q; are uncorrelated and possess
standard normal distributions. For these variables, thiagons of motion read:

d .
T = —wiQq)- (30)

d - _
790 = wily),
Now for all integrators of practical interest, the changesariables above com-
mute with the time-integration, i.e. the application of tteange of variables to the
numerically computed, p vectors yields the same results as the numerical integratio
of the differential system written in the ne, P, variables. Integrating thgoscillator
in (30) with time-step length is equivalent to integrating the standard oscillaot (17)
with time-step lengtlu; . Furthermore in the variabl&$, P the value of the original

energyH is simply
> 5 (R +at)
~ 2 \" ) ()
J

Therefore, by applying Proposition 3 to each of the indigichscillators and then sum-
ming overj, we conclude that, at stationarity, the error in the totargy H satisfies,
for stablenh,

d
0 <E(A) <) plwsh). (31)
j=1

Thus the functiorp(h), defined in the context of the standar harmonic oscillator is
really relevant to simulations of all Gaussian measuregandess of the choice of
(symmetric, positive-definite) mass matrix.

4.3 Numerical illustration

We have implemented the HMC algorithm based on the positeneVintegrator for
the target given by

d
1 .
& eXp 52212‘1@)
j=1

for eleven choices of the number of variates- 1,2,4,...,1024. (This distribution
arises by truncating a well-known Gaussian distributioradtilbert space, see details
in [4].) The mass matrix was chosen to be the identity so thaftequencies in the
harmonic oscillators are; = j and stability requires that the step-length be chosen
< 2/d. The chain was started wii®) at stationarity andV = 5000 samples;("™)
were generated. lall experiments in this paper, the step-length was randomizibe a
beginning of each Markov step by allowiag20% variations around a mean valhg

h = (1+ u)hy, u~U(-0.2,0.2);

among other benefits, this recipe—taken fréni [22]— ensuraisthe observed results
are not contingent on a special choice of time-step lengtke fivgt sethy = 1/d
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Figure 2: Position Verlet algorithm. The time-step length is randoedi with mean
ho = 1/d (stars) orhy = 1/(2d) (squares). On the left the observed fraction of
accepted steps as a function of the number of varidtes 1,2,...,1024. On the
right the time-average of the energy increment as a funabio. The straight line
corresponds to an increase proportionaldo

(half the maximum allowed by stability). The number of tisteps was chosen as
I = 2d so thatl' = Ih = 2, a reasonable value to uncorrelate succesive samples of
the ‘slowest’ variatey;). The results are displayed in Fig. 2. The left panel presents
the observed fraction of accepted steps; as expected geapthenergy error grow
with the number of degrees of freedom) the fraction decieasé increases and for
d = 1024 is ~ 20%. (Let us observe that, according to Talble 1, with an energyrer
A(q™, p(™) = 1 the proposad* will be accepted with probabilityxp(—1) > 36%.)
The figure shows that choosing to ensure stable integrations is not enough to achieve
high rates of acceptance when the dimensionality of thelpnolis large. The choice
ho = 1/d works very well in this example faf less than, say, 50.

The right panel displays

1 N-1

~ 2 A™.p™)

n=0

i.e. the observetime-averagef the energy error; this is seen to grow linearly with
in agreement with the behavior of tegpectationn (31):

d d

> plito) = o ptifd)~d [ ple)as

J=1 J=1
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in the language of statistical physics, the time-averagitla@ ensemble average coin-
cide, i.e. the behavior of the chain is ergodic.

Next we halved the time-step size to make it a quarter of themmam allowed by
stability (ho = 1/(2d), I = 4d). The Verlet integrator works well (acceptance above
70%) with as many as 1,000 variates.

The right panel in the figure very clearly bears out tjebehavior of the average
energy error. Accordinghhalving the value ofy, makes it possible to multiply by
16 the number of variatesThe conclusion is that, for the problem at hand and if the
dimensionality is not exceptionally higthe Verlet integrator may operate well even if
the scaled (nondimensional) time-stéps ; are not much smaller than the upper limit
imposed by stabilitysay if the maximum ovey of how; is betweerl /2 and1).

5 Splitting methods

In this paper we try to replace the Verlet formulgel (11)[af) (@8 more sophisticated
palindromic compositions such as:

A A A
U :@lﬁhO@alhowghowazhO@ghowalhowﬁha (32)
or
A A A A
¥n :<Pa1h°<ﬂz];31h°‘ﬁa2h°‘ﬁghO‘Pa2h°‘ﬂﬁho<ﬂalh (33)
(a; andb; are real parameters). For the reasons outlined in Sectithe 3jngle time-

step mappings, in (32) or [33) are volume-preserving, reversible and syuipd. In
order to simplify the notation, we shall use the symbols

(b1,a1,b2,a2,b2,a1,b1)

and
(a1,b1,a2,b2,a2,b1,a1)

to refer to [32) and(33) respectively.
With a similar notation, one may considestage compositions,= 1,2,...:

2r+1 letters

(b17a17b27---7a17b1) (34)

or
2r+1 letters

(al,bl,ag,...,bl,al). (35)

Obviously [35) requires evaluations ofv,V at each time-step. The same is essen-
tially true for (34), because, as discussed for the velodiylet algorithm, the last
evaluation ofV, V" at the current time-step is re-used at the next time-stegin Ase
Verlet algorithms, botH{34) and (B35) are best implementeddmbining the last sub-
step of the current time-step with the first substep of thessgbent time-step.
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5.1 Taylor expansion of the energy error

The Lie bracket of vector fields plays an important role in #malysis of splitting
integrators (se€[20] andl[7]). In the Hamiltonian contéxg, vector-valued Lie bracket
may be advantageously replaced by the real-valued Poisaokéi of the Hamiltonian
functions; recall that i andG are smooth real-valued functions in phase space, their
Poisson bracket is, by definition, the function [2].][26]

d
oF 0G oF 0G
{F’G}:Z(a S OpGgy Opgy O )
=1 \94G) 9Pi) P() 94)

(as beforeq(;y andp; are the scalar components of the vecipamidp). The proper-
ties of [34) or[(3b) are encapsulated in the correspondirdjfied Hamiltonian, which,
for consistent methods and in the limit— 0, has an expansion

Hy, = H+h%*k31{A, A B} +h%k;2{B, A, B}
+htks1{A, A, A, A, B} + h*ks 2{B, A, A, A, B}
+h4k5,3{Aa A7 37 37 A} + h4k5,4{B7 37 Aa A7 B} + O(h6)1 (36)

wherek, ,,, are polynomials in the coefficients, b; and expressions likéA, A, B}
(or{A, A, A, A, B}) are abbreviationsto refer to iterated Poisson brackét§ A, B} }
(or {A,{A,{A {A, B}}}}) B Orderv > 4is then equivalent to the conditioks ; =
k3 2 = 0, while orderv > 6 would require, in additiorks | = ks 2 = k5.3 = ks 4 = 0.

By using the Lie formalism, the Taylor expansion of the egexfjer one time-step
is found to be ([26], Section 12.2)

H(giv1,pi+1) = exp(=hLg, )H(qi,pi)

1
H(gi,pi) — hLy, H(qi, pi) + ihzﬁéhﬂ(%l’i) +o

whereL ; is the Lie operatoL z, (1) = {Hy,-}. Atrite computation then yields
Algi,pi) = B’ks1{A, A, A, B} + 1 (ks + ks 2){A, B, A, B} + O(h*)  (37)

(the iterated brackets in the right-hand side are evaluattég, p;)). Thus, whem is
small, E* = k3, + (ks,1 + ks,2)* is a measure of energy errors. The velocity Verlet
integrator has a value @&* larger than that of its position counterpart.

5.2 Optimal stability of the Verlet integrator

The application of a method of the form {34) br35) to the dtad harmonic oscillator
(I6) results in a recursion of the form {19) (of course= Dy, A? — B,Cj, = 1 dueto
reversibility and volume preservation). Additionally, is a polynomial of degreg r

SHere we have used thdiB, B, A, B} = 0, a condition that is implied by the fact that is quadratic
in the momentuny (see [[I0)). For splittings wit B, B, A, B} # 0 there are six0(h*) terms in the
expansion ofH,.
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in ¢ = h? and, for consistent methods;, = 1 — h2?/2 + O(h*) ash — 0. By using
well-known properties of the Chebyshev polynomials it i$ difficult to prove that a
polynomial P(¢) of degree< r subject to the requiremeni¥0) = 1, P'(0) = —1/2
cannot satisfy-1 < P(¢) < 1for0 < ¢ < (max if Gmax > 472. This proves that there
is no choice of coefficients for which the stability interyal ii.,,.,) of (34) or [3%) has
hmax > 2r (see [[IS]ﬂ Furthermore since the velocity Verlet algorithm has sigbil
interval0 < / < 2, the concatenatiott, = 1,51V o --- 0 )5V" of r time-steps
of lengthh/r is a method of the forni(34) that attains the optimal valyg, = 2r;
similarly ther-fold concatenationy;, = 1/),1?75\/01“ o-- -ow}j;’jwr is a method of the form
(35) with optimal stability interval.

When comparing the size of stability intervals the compaietl effort has to be
taken into account: with a given amount of computationally@mn integrator with
fewer function evaluations per time-step may take shoitee-steps to span a given
time interval0 < ¢ < T'. Itis therefore a standard practiceriormalizethe length
hmax Of the stability interval of explicit integrators by diviay by the number of force
evaluations per time-step. According to the precedingudision, the (position or ve-
locity) Verlet algorithm and its concatenations have arimak normalized stability
interval of length 2. Integrators with short normalizecbdity intervals are of no inter-
est here as they cannot compete with the Verlet scheme (s@etitlusion at the end
of the preceding section). In particular and as we shall s, Ihigh-order methods
proposed in the literature have stability intervals far $hort and cannot compete in
practice with the performance of the Verlet scheme in HMCOuations.

6 Choice of coefficients

In this section we address the question of how best to chbesaimber of stagesand
the coefficients;; andb; in (34) or [35). In the derivation of numerical integratdrsth

for general and HMC use (see elg.][29]), it is customary todiesermine- to achieve

a target order of accuraeyand to then use any remaining free parameters to minimize
the error constants. In the Hamiltonian scenario a stanglaydf minimizing the error
constants is to reduce the coefficients of the modified Hamidin [36). For instance,
for a method of second order, one would try to minimize somernof the vector
(ks,1, ks2). However the ideas of order of accuracy and local error @mtsboth refer

to the asymptotic behavior of the integrator’as+ 0 and we have seen in Sectidds 3
and[4 that the Verlet integrator is capable of performing weHMC simulations for
rather large values of the time-stepAccordingly, we shall determing a; andb; by
means of a different strategy based on Gaussian modelsn Gifemily of methods,
we shall express the quantityh) defined in Propositioinl 3 as a function of the method

7 By arguing as in[27], the conclusidnnmax < 2r also follows from the well-known Courant-Friedrichs-
Lewy restriction for the integration of hyperbolic partd@ifferential equations. Consider the familiar wave
equationd;:Q(z,t) = P(z,t), 0:P(z,t) = 02Q(z,t) with periodic boundary conditions and discretize
the space variable by standard central differences. The highest frequenay is 2/Ax. A consistent,
explicit, one-step integrator usingforce evaluations per time-step with stability intervahder than2r
would yield a convergent approximation to the wave problemif/Az > r and this violates the CFL
restriction.
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coefficients and then we shall choose these coefficientsriomze

lollry = max p(h),
0<h<h

whereh is a suitable maximum time-step. (It is tacitly understobatf is smaller
than the maximum step-size allowed by stability.) More @&y, since in Section
[4 we saw that, for the standard harmonic oscillator, theeterlethod is capable of
performing well in HMC simulations wheh = 1, an efficient--stage method should
be able to operate well with ~ r (if that were not the case, use of the Verlet method
with time-steph /r would outperform the more complex integrator with timepstg.
Following this rationale, we sét = r and us€| ||, as a metric for the quality of an
integrator within the HMC algorithf.

6.1 Two-stage methods(ay, by, as, by, ay)

We start by discussing in detail methods of the fam, b1, az, b1, a1). Consistent
integrators have to satishy = 1/2, as = 1 — 2a; and this leaves the one-parameter
family

(a1,1/2,1—2a1,1/2,a1). (38)

The choicesi; = 0 anda; = 1/2 are singular; for them the integrator reduces to the
velocity Verlet and position Verlet algorithm respectizeFurthermore for; = 1/4
one time-step), of (38) coincides with the concatenatigy 5"" o ¢ %3V*" of two
time-steps of length /2 of the position Verlet integrator. A standard computatisey(
using the Baker—CampbeII—HausdrM)rmuIa [26]) yields

12a% —12a1 + 2 —6a1 + 1

kj =
3,1 24 )

Since no choice of; leads toks ; = k3 2 = 0, no method of the family achieves order
4, see[(36). The expressidn = k%yl + k3% , that measures the leading error terms
turns out to be a convex function of the free parameteand has a minimum value
E ~7x107°ata; ~ 0.1932, as first observed by McLachlan [18].

For comparisory; = 1/4, which is equivalent to the standard position Verlet inte-
grator, yields a much worse ~ 9 x 10~3. Therefore the choice; ~ 0.193 has been
recommended in the HMC cont@ﬂﬂ] (this paper and [18] give a representation of
ap in terms of surdsiﬂ

8ltis clear that it is also possible to consider alternatiakigs ofh or norms different from the maximum
norm. Such a fine tuning will not be undertaken here.

9The use of the BCH formula to analyze splitting algorithmsyrha bypassed by following the approach
in [21].

10The paper([29] does not cite McLachlan [18] and attributesrttethod to later papers by Omelyan and
his coworkers.

11The expansion[{37) may suggest to minimigé = k§,1 + (k3,1 + k3,2)%. This leads taa; =
0.1956 . . .. We shall not be concerned with this valueagf, as the method is very similar to the one derived
via minimization ofE.
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As discussed above, we here follow a different strategyedas Gaussian models.
We first find from [26)

h*(202(1/2 — a1)h? + 4a2 — 6a; +1)°
8(2—a1h?)(2—(1/2 — a1)h?) (1 — a1(1/2 — a1)h?)’

p(h) = (39)

Stability is equivalent to the positivity of the denominatdote thatfora, = 0 ora; =
1/2 the quotient[(39) reduces 10 (28), as it should. Wher< 0 ora; > 1/2, ks 1 and

ks o are too large and the stability interval too small. Therefarseful methods have
0 < a1 < 1/2. In this parameter range, the stability interval is

0<h<min{\/2/a1,\/2/(1/2—a1)}, (40)

providedthata; # 1/4. Whena, = 1/4, the produc{(2 — a1 h?) (2 — (1/2 — a1)h?)
in the denominator of (39) is a factor of the numerator andrgpkfication takes place:
the fraction reduces t&_(28) with replaced by /2 and the stability interval i§ <
h < 4 in lieu of the shorter intervad < h < 2v/2 in @0). This corresponds to the

earlier observation that far; = 1/4, the method coincides with the concatenation

PosVer PosVer
1/1}1/2 Owh/2 .

The next task is to determing to minimize||p|(2). This yieldsa; = 0.21178. ..
but, to avoid cumbersome decimal expressions, we shafladstise the approximate

valuE V3
3—3
6

a; = ~ 0.21132 (41)
which gives||p||(2) &~ 5 x 10~*. For comparisong; = 1/4 has a substantially larger
pll(2) = 4 x 102 and the method of McLachlan with minimum error constant has
[pll(2) = 2 x 1072, Thus, when usingp||») as a metric, the minimum error-constant
method provides only a marginal improvement on Verlet. .[Bi we see that, while
the minimum error constant method leads to the smallesesadip(h) for h < 1, the
choice [41) ensures a much better behavior over the targeva0 < h < 2.

We have considered again the experiment in Se€fidn 4.3tithéscomparing the
position Verlet algorithm withhy = 1/d andI = 2d (i.e. the parameters for the run
marked by stars in Figl 2) with members of the fanilyl(38) with= 2/d, I = d, so as
to equalize work. The results are shown in Elg. 4. In this fmeithe minimum error-
constant method provides an improvement on Verlet, butatfopmance is markedly
worse than that of the method with the vallie] (41) suggestesl M¢hile the advantage
of the method[(41) over Verlet in Fif] 4 occurs for all valuésipit becomes more
prominent agl increases.

A comparison of Figd]2 arfld 4 shows that the fraction of aezkpteps is larger
for the two-stage methof (#1) withy = 2/d (diamonds) than for the Verlet algorithm
with hy = 1/(2d) (squares) (the latter simulation is twice as costly).

12For this choice of11, k3,1 = 0, so that the literaturé [19] has suggested this value feescahere in
(38) {A, A, B} is much larger thad B, A, B}.
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Figure 3:p(h) as a function ofi, 0 < h < 2, for three members of the famify{38):
a1 = 0.25 (equivalent to the position Verlet algorithmy; with mimimum error co-
efficientE (a1 =~ 0.1932) and a; in @1). Witha; = 0.25, p(h) T co ash — 4;
for the other two choices the vertical asymptote is locatiell & 2.55 andh ~ 2.63
respectively. The right pannel, with an enlarged vertiaals,0 < p < 0.001, shows
the superiority of the minimum error coefficient method foa$ /.
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Figure 4:Observed fraction of accepted steps as a function of the auofbvariates
d = 1,2,...,1024. Stars: position Verlet with (average) step-size = 1/d. Cir-

cles: two-stage method with minimum error constant, aversigp-sizé,, = 2/d.

Diamonds: suggested two-stage mettod (41), (averagepsstep, = 2/d.
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6.2 Two-stage methods(by, ay, b, aq,by)

Let us now turn the attention to the forn{at, a1, b2, a1, b1). By the remark at the end

of Sectiori 4.1l the functiop(h) of such a method coincides with that of the method of
the format(a, b1, az, b1, a1) based on the same sequence of numerical values of the
coefficients. This leads to the integrator

b1:3_6\/§, a1:a2:1/2, b2:1/2—b1,
that has
6N —1 —12X2 + 18\ -3 3—-3
k31 = o1 ksq+kso = 51 , A= i
For (38) witha; given in [@23
—12X% + 18\ — 3

k31 =0, k31 + k3o =

24 '

we find no reason to prefer in this context tfbe, a1, b2, a1, b1) sequence, since both
methods share the value bf 1 + k32 and|ks 1| is smaller for thg(ay, b1, az, b1, a1)
format.

For reasons of brevity we shall not consider again in whaved formats begin-
ning with the letten.

6.3 Three stages

For the three-stage forméd, b1, az, ba, as, b1, a1), consistency requires, = 1/2 —
a1, bo = 1 — 2b; and therefore we have to consider the two-parameter family

(al,b1,1/2 —al,l — 2b1,1/2 —al,bl,al).

The choicea; = (1/2)(2 — 2Y/3)~1, by = 2a, leads to a fourth-order integrator
(k3,1 = k32 = 0) that goes back to Suzuki, Yoshida and others, seele.lg.(2@lpter
13. Its stability interval isvery short: approximately) < h < 1.573. In the HMC
context, this fourth order integrator has been consideyetthd physics literature, see
e.g. [14], [29]; the former reference notes the poor stgtjilioperties.

According to our methodology, we choose the free paramstees to minimize
the maximum ofp(h) over the interval) < h < 3. The situation is somewhat delicate,
as we shall explain presently. Let us first consider the &wic= 1/6, b; = 1/3,
leading to the concaten:’;ltiqu;’gVcr o q/;}f;)g"cf o 1/),1?75‘/“, that as discussed in Section
possesses optimal stability interyél 6). At h = 3, this method hasl;, = —1,
B = Cy, = 0. Furthermoreh = 3 is a simple root of the equatior’s;, = 0 and
Cj, = 0 and adoubleroot of the equatiom;,, = —1. By the implicit function theorem,

13The lack of symmetry of théa1, b1, a2, b1, a1) and(by, a1, ba, a1, b1) formats is due to the fact that
(37) is not symmetric iM and B, which in turn is a consequence of the fact that, B, A, B} = 0 while
nothing can be said in general abdut, A, B, A}.

23



when the coefficients; andb, are perturbed away from; = 1/6, by = 1/3, the
rooth = 3 of the equationB, = 0 moves to a locatiohz(a1,b1) ~ 3. In a similar
manner, the root of’;, = 0 moves to a locatiorh¢(a1,b1) =~ 3, that, generically,
doesnot coincide withhg(ai, by). Now, the relationd? = 1 + B,C}, that follows
from conservation of volume, ensures that bbath and h are roots ofd;, = —1.
In other words, perturbations generically change the doutbth = 3 of 4, = —1
present in the concatenated Verlet method into teal simple rootshg, h¢; in the
neighborhood of such simple roafls, cannot remair> —1 and we conclude that, for
generic perturbations, the integrator is unstable hear3.

In order to identify integrators (not necessarily closeltte toncatenated Verlet
method) that do not turn unstable for~ 3 due toA; becoming< —1 we proceed as
follows. We write A;,, By, C), in terms of the parametets, b, (the expressions are
cumbersome and will not be reproduced here), fix a valaad consider the system of
two (nonlinear) equations

Ay = —1, B; +C; =0, (42)

for the two unknownsi;, b;. When these relations hold, fr01zt1}2I — BpLCp = 1, we
infer thatB; = C; = 0 andh is a stable value. Furthermore’, denotes differentiation

with respect tar,
24,4}, — B,,Cr, — Br,Cr =0

and therefore% = 0, so that4;, will have a minimum ath = A and thus remain

> —1in the neighborhood of.. Note also that in(26), the zero of the denominator at
h=nh may be simplified with the corresponding zero of the numer@o occurrence
we already found when discussirig(39) and entails an ‘eafaemt’ of the stability
interval).

We solve the system of equatiofsl(42) and find the followimgilfaof integrators
parameterized by the locatidnof the double root ofd), = —1:

1 3 9 12 3 9 12 .
alz——,\—j:,\i, blz,\—:t,\i, 0<h§3 (43)
2 2 h2 h2 h2

Forh = 3, the integrator is the concatenation of three Verlet sytsstiiscussed above.
Forh = 21/2 and the positive value of the square root, we find= 0, b; = 1/4
and the integrator ig 7,V o wX/e;V‘”, with stability intervald < h < 4. The negative
value of the square rootleadsdp = 1/4,b; = 1/2 (b = 0), i.e. tow}jj’gvcrou;}f;);"“,
whose stability interval is agaih< h < 44

Finally we determing: in (@3) by minimizing||p||(3). This yields the parameter
values

a1 = 0.11888010966548, b1 = 0.29619504261126, (44)

with [|p[|3y = 7 x 107° and stability interval of length= 4.67 (the double root is
located ath ~ 2.98)

14Not all members of the family of methods {43) are stable fovalues ofh, 0 < h < 3, as instability
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Figure 5:Observed fraction of accepted steps as a function of the auofbvariates
d = 2,4,...,1024. Stars: position Verlet algorithm with (average) stepesig =
1/d. Triangles: three-stage methdd {44) with = 3/d.

An illustration of the performance of the new integrator rbayseen in Fid.l5 which
refers again to the experiment in Secfion 4.3. The positene¥algorithm is run with
ho = 1/d (as in Figs[2 anfl4) and, in order to equalize work, the tistage method
(@4) was used witthg = 3/d. The number of time-steps was taken to be (the integer
closest to}2d/3 for (@4) and thrice that number for Verlet, so that the (agejdinal
time isT = 2 and both methods use the same number of force evaluatiorsadvan-
tage of the three-stage method over both Verlet and the @th®-stage integrator is
clearly felt.

It is of interest to point out that with the present choige = 3/d the fourth-
order, three-stage integrator is unstable; in factvould have to be halved to barely
ensure stability. However, when the step-length is halvedget delivers satisfactory
acceptance rates as we saw in Eig. 2. We conclude that théitserfénigh order only
take place wheny is too small for the goals of the integration.

6.4 Four stages

With four stagesaa, b1, as, b2, as, ba, as, b1, a1 ), by using a similar procedure we find
the method, with|p|| (1) = 7 x 1077,

a; = 0.071353913450279725904,
az = 0.268548791161230105820,
by = 0.191667800000000000000 (45)

may also occur byl;, becoming larger than 1.
15The perturbation argument presented above for the coratatéVerlet method applies to perturbations
of any member of the family{43): generic perturbations ttv@ double root into two simple real roots,

which leads to instability nedt.
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(the remaining parameter values are determined by consistee.bs = 1/2 — by,

az = 1 — 2a; — 2a2). The method has a stability interval of length 5.35 (the
equationd;, = —1 possesses a double rootmat3.04). For the target in Sectidn 4.3
with hg = 4/dandl = d/2 (which involves the same computational effort as the Verlet
runs marked by stars in Figs. 2 dnd 4) the observed fractiacedpted steps remains
above9s% for all values ofd = 2,22, ...,2'°. Such large acceptance rates would be
most welcome in variants of HMC, including the generalized @ of Horowitz [11],

[], where rejections are particularly troublesome.

7 A small molecule

A detailed benchmarking of the various integrators in défe application examples
will be considered elsewhere and is not within the scope ofamrk here. However,
since our methodology is based on a Gaussian model probtampf clear inter-
est to run some proof-of-concept experiments with non-Ganstargets. We have
used as a test problem the Boltzmann distribution of a pentaolecule, as in the
numerical comparisons in][8]. The model has fifteen degrééedom (the carte-
sian coordinates of the five carbon atoms); it includes vagng forces associated
with the carbon-carbon covalent bond length, softer foesesciated with the bond
and dihedral angles and also Van der Waals interactions.n@ih&er of vibrational
degrees of freedom, nine as there are six correspondingitbbsody motions, is mod-
est and therefore we may expect that the Verlet algorithm beagble to work with
step-sizes not much smaller than the maximum allowed bylisgakhus the choice of
problem may be considered to be biased in favor of Verlet. Mbkecule has several
stable configurations (minima of the potential energy) dreddfore the target distri-
bution is multimodal; the highly nonlinear Hamiltonian dymics moves the molecule
among the different configurational energy basins. Somesgsgf freedom (i.e. bond
lengths) have very small variances, other (such as dihesgles) vary by substan-
tial amounts. We set the molecule parameters aslin [8] ancethéts reported here
correspond to an inverse temperatgre= 1/2. The simulation starts from the most
stable configuration and from there takes 200 Markov buddNC steps to bring the
chain to stationarity; after that, samples are taken freem#xt 512 Markov steps. Five
integrations are considered:

e Position Verlet integratoh, = 0.02, [ = 24.

e Minimum error-constant two-stage integratbr= 0.04 , I = 12.
e Two-stage integratof (41), = 0.04, I = 12.

e Three-stage integratdr (44),= 0.06, I = 8.

e Four-stage integratdr (#5),= 0.08, I = 6.

The valuegy = 0.02, I = 24 were tuned to provide a good performance of the Verlet
algorithm (performance was measured by the efficiency inpzding the probabilities
that the molecule is in its different configurational basifjter that, the values of
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Integrator 1 o
(One-stage) Verlet 85% | 2.0%
Two-stage minimum error-constant’s0% | 1.9%
Two-stage minimunp (41) 92% | 1.2%
Three-stage minimum (44) 97% | 0.7%
Four-stage minimurp (@3) 97% | 0.8%

Table 3:Pentane molecule. Mean value and standard deviation, o®@rdalizations
of the Markov chain, of the observed acceptance ratio.

and/ for the other integrators were determined to ensure thant@{rations share a
common computational effort.

For each integrator we computed 100 realizations of the Madhain; Tablé 13
displays the mean value (over the 100 samples) of the erapaaceptance rate (af-
ter burn-in) and the associated standard deviation. It pegnt in Tabl€13 that the
performance of the minimum error constant integrator issedghan that of the Verlet
algorithm. No doubt this is due to the fact that the time stizes involved are too
large for the Taylor expansiors (36) ahdl(37) to be meanlirfgfithe problem under
consideration. In fact, additional experiments with th@tpaee molecule prove that
when the integrator with minimum error constant and Ventetiesed with step-lengths
that equalize work, the energy errors of the former impravéhmse of Verlet only for
step-sizes so small that the acceptance rate for Verletysapproximately 100%. On
the other hand, Tabld 3 reveals that the two-stage intagsaggested here does im-
prove on the Verlet integrator. The most efficient integnagiare afforded by the three
and four stage schemes, even though, as pointed out bdferlew-dimensionality of
the problem biases this model problem against the more stigdted integrators.

8 Conclusions

We have suggested a methodology for constructing efficiethods for the numeri-
cal integration of the Hamiltonian differential equatidhat arise in HMC and related
algorithms. The new approach is based on optimizing thevbehaf a functionp(h)
over a relevant range of values of the step-lerigttVe have constructed new split-step
integrators with two, three or four function evaluations fme-step. Unlike integra-
tors derived by minimizing the size of error constants, ti@teng formulae suggested
here are more efficient than the standard Verlet method,iaped the number of
dimensions is high.

The detailed benchmarking of the new integrators will besthigect of subsequent
work.
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