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IMPROVED ACCURACY AND PARALLELISM FOR MRRR-BASED

EIGENSOLVERS – A MIXED PRECISION APPROACH∗

M. PETSCHOW† , E. S. QUINTANA-ORTÍ‡ , AND P. BIENTINESI†

Abstract. The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations;
it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based
on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations
(MRRR) is among the fastest methods. Although fast, the solvers based on MRRR do not deliver the same accuracy
as competing methods like Divide & Conquer or the QR algorithm. In this paper, we demonstrate that the use of
mixed precisions leads to improved accuracy of MRRR-based eigensolvers with limited or no performance penalty.
As a result, we obtain eigensolvers that are not only equally or more accurate than the best available methods, but
also – under most circumstances – faster and more scalable than the competition.
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1. Introduction. In [21], the authors describe how in libraries the use of “higher internal
precision and mixed input/output types and precisions permits [...] to implement some algorithms
that are simpler, more accurate, and sometimes faster.” In particular, the internal use of higher
precision provides the library developer with extra precision and a wider range of values, which
may benefit the accuracy and robustness of numerical routines. In sharp contrast to software that
uses arbitrary precision to obtain any desired accuracy, the use of higher precision should not lower
performance significantly if at all. In this paper, we employ mixed precisions to improve not only the
accuracy, but also the robustness and scalability of eigensolvers based on the algorithm of Multiple
Relatively Robust Representations (MRRR or MR3 for short) [12, 3, 36, 31, 32, 37].

Direct methods for standard and generalized Hermitian eigenproblems often rely on a reduction
to real symmetric tridiagonal form [5]. Once the problem is transformed, the real symmetric tridi-
agonal eigenproblem (STEP) is the following: Given a tridiagonal matrix T ∈ R

n×n (with T = T ∗,
where T ∗ denotes the transpose of T ), find quantities λ ∈ R and nonzero z ∈ R

n such that the
equation

Tz = λz

holds. Without loss of generality, we assume ‖z‖ = 1 hereafter, where ‖•‖ denotes the 2-norm.
For such a solution, λ is called an eigenvalue (of T ) and z an associated eigenvector ; an eigenvalue
together with an associated eigenvector are said to form an eigenpair, (λ, z). The Spectral Theo-
rem [24] ensures the existence of n eigenpairs (λi, zi), i ∈ {1, 2, . . . , n}, such that the eigenvectors
form a complete orthonormal set; that is, for all i, j ∈ {1, 2, . . . , n},

z∗j zi =

{
1 if j = i ,
0 if j 6= i .
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Since all eigenvalues are real, they can be ordered:

λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . ≤ λn ,

where λi is the i-th smallest eigenvalue of T . In this paper, whenever the underlying matrix is not
clear, we write λi[T ] explicitly. The set of all eigenvalues of T is denoted spec[T ] and the spectral
diameter is defined as spdiam[T ] = λn − λ1. For a given index set I ⊆ {1, 2, . . . , n},

ZI = span{zi : i ∈ I}

denotes the invariant subspace associated with I. As with the eigenvalues, whenever the underlying
matrix is not understood from context, we write ZI [T ] explicitly.

In many applications, only a subset of eigenpairs are of interest and need to be computed. For
the computed eigenpairs, (λ̂i, ẑi), ‖ẑi‖ = 1 and i ∈ I ⊆ {1, 2, . . . , n}, the accuracy of the results
can be quantified by the largest residual norm and the orthogonality, respectively defined as

R = max
i∈I

‖T ẑi − λ̂iẑi‖1
‖T ‖1

and O = max
i∈I

max
j∈I
j 6=i

|ẑ∗j ẑi| . (1.1)

A number of excellent algorithms for the STEP have been discovered. Among them, Bisection
and Inverse Iteration (BI) [8, 19], the QR algorithm (QR) [15, 20], Divide & Conquer (DC) [4, 16, 17],
and the focus of this study, MRRR [7, 10, 9, 26, 27, 37]. These methods differ in various aspects:
the number of floating point operations (flops) they perform, the flop-rate at which the operations
are executed, the amount of memory required, the possibility of computing subsets of eigenpairs at
reduced cost, the attainable accuracy, the simplicity and robustness of the code, and the suitability
for parallel computations. Thus, the “best” algorithm is influenced by factors such as the problem
(e.g., dimension, subset, spectral distribution), the architecture (e.g., cache sizes, parallelism),
external libraries (e.g., Basic Linear Algebra Subprograms), and the specific implementation of the
algorithm (e.g., thresholds, optimizations).

Demmel et al. [6] provide a detailed study of the performance and accuracy of LAPACK’s [1]
implementations of these four methods on various architectures. They conclude that (i) DC and
QR are the most accurate algorithms; (ii) DC requires O(n2) additional memory and therefore
much more than all the other algorithms;1 (iii) DC and MRRR are much faster than QR and BI;
despite the fact that MRRR uses the fewest flops, DC is faster on certain classes of matrices. If
the full eigendecomposition is desired, DC is generally the method of choice, but whether DC or
MRRR is faster depends on the spectral distribution of the input matrix; and (iv) if only a subset of
eigenpairs is desired, MRRR is the method of choice. The study is limited to sequential executions
and does not take into account the degree of parallelism the algorithms provide. However, various
studies [3, 36, 32, 34, 31] of the performance and accuracy of parallel implementations come to
similar conclusions.

To summarize, if all eigenpairs are computed, depending on the spectral distribution of the
input matrix, either DC or MRRR is the fastest method. If only a subset of eigenpairs is desired,
MRRR is the method of choice. Unfortunately, MRRR delivers generally the least accurate results.
These observations carry over to direct methods for the dense eigenproblem based on a reduction

1Here and in the following, we use the notation O(x) informally as “of the order of x in magnitude.” The notion
is used to hide moderate constants that are of no particular interest to our discussion.
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to tridiagonal form. It is natural to ask whether the accuracy of the MRRR-based routines can
be improved to levels of other methods like QR or DC. Unfortunately, a general analysis of any
MRRR implementation shows that, even if all requirements of the algorithm are fulfilled, one needs
to expect orthogonality ofO(1000nε) – with unit roundoff ε [38]. Methods like QR and DC, however,
attain superior results with orthogonality of O(ε

√
n). In this paper, we present a practical solution

that improves the accuracy of MRRR. As a result, it becomes equally or more accurate than QR
and DC.

Our solution resorts to the use of higher precision arithmetic. The motivation is twofold: (i)
MRRR is frequently the fastest algorithm and it might be possible to trade (some of) its performance
to obtain higher accuracy; (ii) often MRRR is used in the context of direct methods for Hermitian
eigenproblems. While the tridiagonal stage is responsible for much of the “loss” of orthogonality in
the final result, it has a lower complexity than the reduction to tridiagonal form. Thus, even if it
is necessary to spend more time in the tridiagonal stage to improve accuracy, for sufficiently large
matrices, the overall run time will not be affected significantly. As MRRR does not make use of any
level-3 Basic Linear Algebra Subprograms (BLAS) [13], we do not require in our mixed precision
approach any optimized BLAS library for high precision, which might not be available.

For any MRRR solver, we present how the use of mixed precisions leads to more accurate
results at very little or even no extra costs in terms of performance. As a consequence, MRRR is
not only one of the fastest methods, but also becomes as accurate or even more accurate than the
competition. Moreover, for direct methods based on a reduction to tridiagonal form and MRRR, the
tridiagonal eigensolver is responsible for the inferior orthogonality compared with other methods.
These solvers benefit directly from our approach.

1.1. Related work and outline. The term mixed precision algorithm is sometimes synony-
mously used for the following procedure: First solve the problem using a fast low-precision arith-
metic, and then refine the result to high accuracy using a high-precision arithmetic. This mixed
precision iterative refinement approach exploits the fact that there might exist a low-precision arith-
metic faster than that of the input/output data format. The larger the performance gap between
the two arithmetic, the more beneficial the approach. Iterative refinement (with and without using
mixed precisions) has been most extensively studied for the solution of linear systems of equa-
tions [18], but other operations such as the solution of Lyapunov equations also benefit from it [2].

We use of the term mixed precision in its more general form; that is, using two or more different
precisions for solving a problem. In particular, we use a higher precision in the more sensitive parts
of an algorithm to obtain accuracy, which otherwise could not be achieved. This approach is
especially effective if the sensitive portion of the algorithm and/or the performance gap between
the two arithmetic is small. Similarly to the mixed precision ideas for iterative refinement, the
approach is quite general and we believe it can benefit computations in numerous areas.

The rest of the paper is organized as follows: In Section 2, we present the MRRR algorithm
and its accuracy limitations. The section mainly serves as a vehicle to introduce the factors that
influence accuracy, which are summarized in Theorem 2.1. The derivation of the error bounds,
which can be found in [38], is not important for the understanding of our discussion. In Section 3,
we detail our mixed precision approach in a general setting. Besides presenting a way to improve
accuracy, we investigate the effects on memory usage, robustness, and scalability. In Section 4,
we comment on an actual implementation of our approach and elaborate on a number of practical
issues. Finally, we present experimental results of our mixed precision solvers in Section 5.
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2. The MRRR algorithm. In this section, we present the MRRR algorithm to the detail
necessary for the later discussion. Our exposition is largely based on [38, 40, 9] and a high-level
description of the method given in Algorithm 1. We comment more thoroughly on various parts
of the computation in the following. The goal is to present Theorem 2.1 – i.e., the factors that
influence the accuracy of any implementation of MRRR.

Preprocessing. Algorithm 1 assumes that the necessary preprocessing is already performed;
this includes the scaling of the entries, and the so called splitting of the input matrix into principal
submatrices if off-diagonal entries are sufficiently small in magnitude [24]. In this section, without
any loss is generality, we assume that the input matrix is (numerically) irreducible, i.e., no off-
diagonal entry is “small enough” in magnitude that warrants setting it to zero. The exact criterion
is specified later.

Algorithm 1 MRRR

Input: Irreducible symmetric tridiagonal T ∈ R
n×n; index set Iin ⊆ {1, . . . , n}.

Output: Eigenpairs (λ̂i, ẑi) with i ∈ Iin.

1: Select shift µ ∈ R and compute Mroot = T − µI .
2: Perturb Mroot by a “random” relative amount bounded by a small multiple of ε.
3: Compute λ̂i[Mroot] with i ∈ Iin to relative accuracy sufficient for classification.
4: Form a work queue Q and enqueue task {Mroot, Iin, µ}.
5: while Q not empty do

6: Dequeue a task {M, I, σ}.
7: Partition I =

⋃R

r=1
Ir according to the separation of the eigenvalues.

8: for r = 1 to R do

9: if Ir = {i} then

10: // process well-separated eigenvalue associated with singleton Ir //
11: Perform Rayleigh quotient iteration (guarded by bisection) to obtain eigenpair (λ̂i[M ], ẑi)

with sufficiently small residual norm, ‖Mẑi − λ̂i[M ] ẑi‖.
12: Return λ̂i[T ] = λ̂i[M ] + σ and ẑi.
13: else

14: // process cluster associated with Ir //
15: Select shift τ ∈ R and compute Mshifted = M − τI .
16: Refine λ̂i[Mshifted] with i ∈ Ir to sufficient relative accuracy.
17: Enqueue {Mshifted, Ir, σ + τ}.
18: end if

19: end for

20: end while

Choice of representations. In order for Algorithm 1 to work, the representation of tridiagonals
(i.e., Mroot and Mshifted) by their diagonal and off-diagonal entries must be abandoned and alter-
native representations must be used. Any 2n − 1 (or less) scalars together with a mapping that
define the entries of a symmetric tridiagonal is called a representation [38]. We distinguish between
the data of the representation, which are floating point numbers, and the underlying tridiagonal,
which is generally not exactly representable in the same finite precision format. There are multiple
candidates – existence assumed – for providing representations of tridiagonals:

1. Lower bidiagonal factorizations of the form T = LDL∗, and upper bidiagonal factor-
izations of the form T = UΩU∗, where D = diag(d1, d2, . . . , dn) ∈ R

n×n and Ω =
diag(ω1, ω2, . . . , ωn) ∈ R

n×n are diagonal, L ∈ R
n×n and U ∈ R

n×n are respectively unit
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lower bidiagonal and unit upper bidiagonal.
2. A generalization of the above are the so called twisted factorizations or BABE-

factorizations [26], T = Nk∆kN
∗
k , where k denotes the twist index. The k × k leading

principle submatrix of Nk ∈ R
n×n is unit lower bidiagonal (determined by the non-trivial

entries ℓ1, . . . , ℓk−1), and the (n − k + 1)× (n − k + 1) trailing principle submatrix of Nk

is unit upper bidiagonal (determined by the non-trivial entries uk, . . . , un−1); the matrix
∆k = diag(d1, . . . , dk−1, γk, ωk+1, . . . , ωn) ∈ R

n×n is diagonal. Although it was known that
these factorizations can additionally serve as representations of the intermediate matri-
ces [7, 10], their benefits were only demonstrated recently [37, 40]. Due to their additional
degree of freedom in choosing k, the twisted factorizations are superior to lower or upper
bidiagonal factorizations. Besides representing intermediate tridiagonals, twisted factoriza-
tions are essential in computing accurate eigenvectors [26, 10].

3. Blocked factorizations are further generalizations of bidiagonal and twisted factorizations.
The quantities D, Ω, and ∆k are block diagonal, with blocks of size 1 × 1 or 2 × 2. The
other factors – L, U , and Nk – are partitioned conformally, with one or the 2 × 2 identity
as diagonals. These types of factorizations contain the unblocked bidiagonal and twisted
factorizations as special cases. With their great flexibility, the blocked factorizations have
been used very successfully within the MRRR algorithm [37, 39].

All these factorizations are determined by 2n−1 scalars, the data. For instance, for lower bidiagonal
factorizations, the 2n−1 floating point numbers d1, . . . , dn, ℓ1, . . . , ℓn−1 determine a tridiagonal; such
representation by the non-trivial entries of the factorization is called anN -representation. Similarly,
the floating point numbers d1, . . . , dn, e1, . . . , en−1 represent a tridiagonal – with ei = diℓi, 1 ≤ i ≤
n − 1, being T ’s off-diagonal elements; such representation, including T ’s off-diagonal elements,
is called an e-representation. Besides the N - and the e-representation, the Z-representation is
introduced in [40] for bidiagonal and twisted factorizations. For blocked factorizations, a variant of
the e-representation is commonly used [39]. Other quantities that are computed using the (primary)
data are called secondary or derived data. For instance, T ’s off-diagonal elements are secondary
for an N -representation while being primary for an e-representation. While the details are not
relevant for our discussion, it is important to note that there are different variants to represent
tridiagonals – each one with slightly different properties. Subsequently, we do not distinguish
between the representation of a tridiagonal and the tridiagonal itself; that is, it is always implied
that tridiagonals are represented in one of the above forms.

The representation tree. The unfolding of Algorithm 1 is best described as a tree of representa-
tions [7, 9, 38]. Each task {M, I, σ} or just {M, I} (Line 6 of Algorithm 1) is connected to a node
in the tree; that is, all nodes consist of a representation and an index set. {Mroot, Iin} is associated
with the root node (hence the name). All other tasks are connected to ordinary nodes. Each node
has a depth associated with it: the number of edges on the unique path to it from the root. The
maximum depth for all nodes is denoted dmax. The edges connecting internal nodes are associated
with the spectrum shifts τ that are performed in Line 15 of Algorithm 1.

Factors influencing MRRR’s accuracy. The analysis in [38] – a streamlined version of the proofs
in [9, 10] – shows that, if suitable representations are found, the computed eigenpairs enjoy a small
residual norm and are mutually (numerically) orthogonal.

Theorem 2.1 (Accuracy). Let λ̂i[Mroot] be computed (exactly)2 by applying the spectrum shifts

to eigenvalue λ̂i[M ] obtained by the Rayleigh quotient iteration in Line 11 of Algorithm 1. Provided

2The assumption can be removed; we simply stated the theorem as it can be found in [37, 38].
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all the requirements, which are discussed below, are satisfied, it holds

‖Mroot ẑi − λ̂i[Mroot] ẑi‖ ≤
(
‖r(local)‖+ γ spdiam[Mroot]

) 1 + η

1− η

with γ = kelgn (dmax(ξ ↓ + ξ↑) + α) + 2(dmax +1)η. Furthermore, we have for any computed eigen-
vectors ẑi and ẑj, i 6= j,

|ẑ∗i ẑj | ≤ 2

(
Rnε+

krrn(ξ ↓ + ξ↑)dmax

gaptol

)
.

where Rnε = krrnα/gaptol+ krsnε/gaptol+ η. A proof of the theorem can be found in [37, 38].
Provided the representation of Mroot is computed in a backward stable manner, a small residual
norm with respect to Mroot implies a small residual, O(nε‖T ‖), with respect to the input matrix
T .

The rest of this section serves to convey the meaning of all the parameters involved in the
theorem. In Section 3, we furthermore discuss their effects on performance, robustness, and parallel
scalability.

Shifting the spectrum (ξ ↓, ξ↑). The spectrum shifts of Line 15 leave the eigenvectors unchanged
in exact arithmetic; this invariance is lost in finite precision. An essential ingredient of MRRR
is the use of special forms of Rutishauser’s Quotienten-Differenzen (qd) algorithm to perform the
shifts. Given a representation for M , we require that the representation for Mshifted = M − τI is

computed in an element-wise mixed relative stable way, i.e., M̃shifted = M̃ − τI holds exactly for
small element-wise relative perturbations of the data for Mshifted and M . For all shifts performed
in the algorithm, these perturbations must be bounded by ξ↑ = O(ε) and ξ ↓ = O(ε), respectively.
Algorithms that implement the spectrum shifts for different forms of representations are presented
in [10, 40, 39].

Requirements on the representations (krr, kelg). In order to ensure that the computed eigen-
pairs enjoy small residual norms with respect to the input matrix and that the eigenvectors are
numerically orthogonal, the representations in Line 15, Mshifted = M − τI, need to be chosen
with care. By selecting appropriate shifts τ , representations that are relatively robust and exhibit
conditional element growth are selected. Before we define the meaning of these two concepts, we
give a brief definition of a relative gap.

Definition 2.2 (Relative gap). Let T ∈ R
n×n be an irreducible symmetric tridiagonal matrix

with eigenvalues {λi : 1 ≤ i ≤ n} and let I ⊂ {1, 2, . . . , n} be an index set. The relative gap
connected to I is defined as

relgap(I) = min

{ |λj − λi|
|λi|

: i ∈ I, j /∈ I
}

where quantities |λj − λi|/|λi| are ∞ if λi = 0.
Definition 2.3 (Relative robustness). Let T (given by any representation), λi and I be as in

the previous definition. Furthermore, let ZI be the invariant subspace associated with I. We say
that the representation of T is relatively robust for I if for all element-wise relative perturbation in
the data bounded by ξ ≪ 1 and for all i ∈ I, we have

|λ̃i − λi| ≤ krrnξ|λi| ,

sin∠(Z̃I ,ZI) ≤
krrnξ

relgap(I) ,
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where λ̃i and Z̃I denote the eigenvalues and the corresponding invariant subspaces of the perturbed
matrices, respectively; ∠(Z̃I ,ZI) denotes the largest principle angle; and krr is moderate constant,
say about 10.3

Definition 2.4 (Conditional element growth). A representation for a real symmetric tridiag-
onal, M , exhibits conditional element growth with respect to the index set I ⊂ {1, . . . , n}, if for any
element-wise relative perturbation in the data bounded by ξ ≪ 1 (leading to a perturbed tridiagonal

M̃) and each i ∈ I, it holds

‖M̃ −M‖ ≤ spdiam[Mroot] , and

‖(M̃ −M)ẑi‖ ≤ kelgnξ · spdiam[Mroot] ,

where ẑi are the computed eigenvectors, and kelg is a moderate constant, say about 10.
In Line 15 of Algorithm 1, we need to ensure that Mshifted as well as M are relatively robust

for Ir and that Mshifted features conditional element growth for Ir. In this paper, we are not
concerned how to ensure that the involved representations satisfy the requirements; this is the topic
of [25, 27, 10, 38].4 We remark however that there exist the danger that no suitable representation
that passes the test for the requirements can be found. In this case, it is common to select a
promising representation, which might not fulfill the requirements. As a consequence, the accuracy
of Theorem 2.1 is not guaranteed anymore.

Classification of the eigenvalues (gaptol). While the above requirements on the representations
pose a restriction on the choice of shifts µ and τ in Lines 1 and 15, the main goal is to chose shifts
such that, in the next iteration, the partitioning I =

⋃R

r=1 Ir, splits the index set into at least two
subsets so that progress in the algorithm is guaranteed. The partitioning is done according to the
separation of the eigenvalues and must ensure two requirements: For a given tolerance gaptol, say
10−3, (i) relgap(Ir) ≥ gaptol , and (ii) whenever Ir = {i} is a singleton, relgap(λ̂i) ≥ gaptol. The
latter relative gap is thereby defined as

relgap(λ̂i) =
gap(λ̂i)

|λi|
with gap(λ̂i) = min

j 6=i

{
|λ̂i − λj |

}
.

For all i ∈ I, let λ̂i denote the midpoint point of a computed interval of uncertainty [λi, λi]
containing eigenvalue λi. To achieve the desired partitioning of I, let j, j + 1 ∈ I and define

reldist(j, j + 1) =
λj+1 − λj

max{|λj |, |λj |, |λj+1|, |λj+1|}

as a measure of the relative gap. If reldist(j, j + 1) ≥ gaptol, then j and j + 1 belong to different
subsets of the partition. Additionally, this criterion based on the relative separation can be amended
by a criterion based on the absolute separation of the eigenvalues [35]. After partitioning, each index

set Ir with |Ir| > 1 is associated with a cluster of eigenvalues, {λ̂i : i ∈ Ir}. Similarly, each singleton

Ir = {i} is associated with a well-separated eigenvalue λ̂i.

3According to [37, 38], the requirement on the eigenvalues can be removed entirely: for I = {i}, by Theorem 2.5
stated below, the second condition implies the first up to a small constant provided gap(λ̃i) ≈ gap({i}). Similarly,
if I = {p, . . . , q} is not a singleton, the second term implies that λ̃i ∈ [λp − krrnξ|λp|, λq − krrnξ|λq|] for all i ∈ I.

4In particular, it is not necessary to compute the eigenvectors in order to give bounds on the conditional element
growth.
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In order to reliably classify the eigenvalues, they should be approximated in Lines 3 and 16 to
relative accuracy of about gaptol: that is, at least

|λ̂i − λi| . gaptol · |λi| . (2.1)

The above criterion can be relaxed for eigenvalues with a large gap to the rest of the spectrum [12].
Commonly, the eigenvalues are computed by some form of bisection [24]. In particular, in Line 16,
we already have good approximations to the eigenvalues, which can be refined by bisection to the
desired accuracy.

The parameter gaptol is so important that it influences almost all parts of the algorithm.
Since the error bounds in Theorem 2.1 are proportional to 1/gaptol, the value indicates how much
accuracy we are willing to lose in the computation. For many applications, this limits the choice to
values larger than about 10−3. However, we cannot use values much larger than 10−3 as otherwise
it becomes impossible to make progress by breaking clusters.

As a side note: the condition relgap(Ir) ≥ gaptol, together with the mixed relatively stable
computation of the spectrum shifts, implies that the associated invariant subspaces are not per-
turbed too much due to rounding errors, i.e., sin∠(ZIr

[Mshifted],ZIr
[M ]) ≤ krrn(ξ ↓ + ξ↑)/gaptol.

After shifting, we can therefore hope to compute an orthonormal basis for such a subspace, which
is automatically numerically orthogonal to the subspace spanned by the other eigenvectors. This is
the main idea behind the MRRR algorithm.

Rayleigh quotient iteration (krs, α, η). Finally, in Line 11 of Algorithm 1, eigenpairs of well-
separated eigenvalues are computed via the Rayleigh quotient iteration (RQI). Given an approxima-

tion λ̂i[M ] and a representationM that is relatively robust for {i}, a key ingredient of MRRR is the
ability to compute an accurate eigenvector approximation ẑi such that sin∠(ẑi, zi) = O(nε/gaptol);
see [10] for a proof. This is certainly achieved by driving the local residual norm below a specified
threshold

‖r(local)‖ = ‖Mẑi − λ̂i[M ] ẑi‖ ≤ krs · gap
(
λ̂i[M ]

)
· nε

gaptol
, (2.2)

where krs is O(1). In this case, the so called Gap Theorem gives the desired bound on the error
angle ∠(ẑi, zi).

Theorem 2.5 (Gap Theorem). Given a symmetric matrix T ∈ R
n×n and an approximation

(λ̂, ẑ), ‖ẑ‖ = 1, to the eigenpair (λ, z), with λ̂ closer to λ than to any other eigenvalue, let r be the

residual T ẑ − λ̂ẑ; then

sin∠(ẑ, z) ≤ ‖r‖
gap(λ̂)

. (2.3)

The residual norm is minimized if λ̂ is the Rayleigh quotient of ẑ, λ̂ = ẑ∗T ẑ. In this case,

‖r‖
spdiam[T ]

≤ sin∠(ẑ, z) and |λ̂− λ| ≤ min

{
‖r‖, ‖r‖2

gap(λ̂)

}
. (2.4)

A proof of the theorem can be found for instance in [24, 37].
In general, a residual norm such as in (2.2) cannot be guaranteed; it is only possible to show

that it holds for a small element-wise relative perturbation of the data of M bounded by α and
the computed eigenvector ẑi bounded by η – with α = O(ε) and η = O(nε). For our purposes,
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this detail is not important. Nonetheless, Theorem 2.1 takes this fact into account. Note that
even in rare cases where (2.2) is not fulfilled, the small error angle together with (2.4) imply
‖r(local)‖ = O(spdiam[M ] · nε/gaptol).

In the RQI, the j-th iteration consists of four steps: (i) For all 1 ≤ k ≤ n, compute the

twisted factorizations Nk∆kNk = M − λ̂
(j)
i I; (ii) determine s = argmink |γk|, where γk is the k-th

element of ∆k (see above); (iii) solve the linear system Ns∆sN
∗
s ẑ

(j)
i = γses, which is equivalent to

the system N∗
s ẑ

(j)
i = es; (iv) use the Rayleigh quotient correction term to update the eigenvalue

λ̂
(j+1)
i = λ̂

(j)
i + γs/‖ẑ(j)i ‖2. The residual norm is approximated by |γs|/‖ẑ(j)i ‖ and the process

is stopped if (2.2) is satisfied. In order to always converge, the stopping criterion is amended

and the iteration stopped when λ̂i is not improved anymore, i.e., |γs|/‖ẑ(j)i ‖2 = O(ε|λ̂i|) [22].
An alternative approach to RQI is to refine the eigenvalue approximation to full precision (i.e.,

|λ̂i−λi| = O(nε|λi|)), and then perform only a single step of RQI. This approach is used whenever
RQI fails to converge to the correct eigenvalue [12].

3. Mixed precision MRRR. The exact values of the parameters in Theorem 2.1 differ
slightly for various implementations of the algorithm and need not to be known exactly in the
following analysis. The bounds on the residual norm and orthogonality are theoretical. It is useful
to translate what the bounds mean in practice: with reasonable parameters, realistic practical
bounds on the residual norm and on the orthogonality are nε and 1000nε, respectively. In order to
obtain accuracy similar to that of the best available methods, we need to trade the dependence on
n by a dependence on

√
n. Furthermore, it is necessary to reduce the orthogonality by about three

orders of magnitude.

3.1. A solver using mixed precisions. The technique is simple, yet powerful: Inside the
algorithm, we use a precision higher than of the input/output in order to improve accuracy. A
similar idea was already mentioned in [7], in relation to a preliminary version of the MRRR algo-
rithm, but was never pursued further. With many implementation and algorithmic advances since
then (e.g., [22, 11, 3, 40, 39]), it is appropriate to investigate the approach in detail. To this end,
we build a tridiagonal eigensolver that differentiates between two precisions: (i) the input/output
precision, say binary x, and (ii) the working precision, binary y, with y ≥ x. If y = x, we have
the original situation of a solver based on one precision; in this case, the following analysis is easily
adapted to situations in which we are satisfied with less accuracy than achievable by MRRR in x-bit
arithmetic. Since we are interested in accuracy that cannot be accomplished in x-bit arithmetic,
we restrict ourselves to the case y > x. Provided the unit roundoff of the y-bit format is sufficiently
smaller than the unit roundoff of the x-bit format, say four or five orders of magnitude, we show
how to obtain, for practical matrix sizes, improved accuracy to the desired level.

Although any x-bit and y-bit floating point format might be chosen, in practice, only those
shown in Table 3.1 are used in high-performance libraries. For example, for a binary32 input/output
format (single precision), we might use a binary64 working format (double precision). Similarly,
for a binary64 input/output format, we might use a binary80 or binary128 working format (ex-
tended or quadruple precision). For these three configurations, we use the terms single/double,
double/extended, and double/quadruple. Practical issues for their implementation are discussed in
Section 4. In this section, however, we concentrate on the generic case of binary x/binary y. In
general, when we refer to binary x, we mean both the x-bit data type and its unit roundoff εx.

In principle, we could perform the entire computation in y-bit arithmetic and, at the end,
cast the results to form the x-bit output; for all practical purposes, we would obtain improved
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Name IEEE-754 Precision Support

single binary32 εs = 2−24 Hardware
double binary64 εd = 2−53 Hardware
extended binary80 εe = 2−64 Hardware
quadruple binary128 εq = 2−113 Software

Table 3.1
The various floating point formats used and their support on common hardware. The ε-terms denote the unit

roundoff error (for rounding to nearest). We use the letters s, d, e and q synonymously with 32, 64, 80, and 128.
For instance, ε

32
= εs.

results as desired. This naive approach, however, is not satisfactory for two reasons: (i) since
the eigenvectors need to be stored explicitly in the binary y format, the memory requirement is
increased; and more importantly, (ii) if the y-bit floating point arithmetic is much slower than
the x-bit one, the performance suffers severely. While the first issue is addressed rather easily
(as discussed Section 3.3), the latter requires more care. The key insight is that it is unnecessary
to compute eigenpairs with residual norms and orthogonality bounded by O(nεy); instead, these
bounds are relaxed to O(εx

√
n) (for example, think of εx ≈ 10−16, εy ≈ 10−34, and n ≈ 10,000).

While in a conventional implementation the choice of parameters is very restricted, as we show
below, we gain enormous freedom in their choice. In particular, while meeting our new accuracy
goals, we are able to select values such that the amount of necessary computation is reduced,
the robustness is increased, and parallelism is improved. As our following analysis shows, we can
emphasize the importance of any of those features.

3.2. Adjusting the algorithm. Consider the input/output being in a x-bit format and
the entire computation being performed in y-bit arithmetic. Starting from this configuration, we
expose the new freedom in the choice of several parameters and justify other changes made to the
algorithm. For example, we identify parts that can be executed in x-bit arithmetic, which might
be considerably faster.

Assuming εy ≪ εx (again, think of εx ≈ 10−16 and εy ≈ 10−34), we simplify Theorem 2.1 by
canceling terms that are insignificant even with adjusted parameters (i.e., terms that are comparable
to εy in magnitude5). In our argumentation, we hide all constants, which anyway correspond to
the bounds attainable for a solver purely based on binary y. For any reasonable implementation of
the algorithm, we have the following: α = O(εy), η = O(nεy), ξ ↓ = O(εy), ξ↑ = O(εy). Thus, the
orthogonality of the final result is given by

|ẑ∗i ẑj | = O
(
krs

nεy
gaptol

+ krr dmax

nεy
gaptol

)
. (3.1)

Similarly, for the bound on the residual norm, we get

‖Mroot ẑi − λ̂i[Mroot] ẑi‖ = O
(
‖r(local)‖+ γ spdiam[Mroot]

)
(3.2)

with ‖r(local)‖ ≤ krs gap
(
λ̂i[M ]

)
nεy

gaptol
and γ = O(kelg dmax nεy).

We now provide a list of changes that can be done to the algorithm. We discuss their effects
on performance, parallelism, and memory requirement.

5In particular, we require that nεy ≤ εx
√
n.
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Preprocessing. We assume scaling and splitting is done as in a solver purely based on x-bit
floating point arithmetic. In particular, off-diagonal element ei of the input, 1 ≤ i ≤ n − 1, is set
to zero whenever

|ei| ≤ εx‖T ‖ ,

where n and T refer to the unreduced input.6 We remark that this criterion is less strict than setting
elements to zero whenever |ei| ≤ εy‖T ‖. Splitting the input matrix into submatrices is beneficial
for both performance and accuracy as these are mainly determined by the largest submatrix. In
the rest of this section, we assume that the preprocessing has been done and each subproblem is
treated independently by invoking Algorithm 1. In particular, whenever we refer to matrix T , it
is assumed to be irreducible; whenever we reference the matrix size n in the context of parameter
settings, it refers to the size of the processed block.

Choice of representations. For different forms of representing tridiagonals (e.g., bidiagonal,
twisted, or blocked factorizations) and their data (e.g., N -, e-, or Z-representation), different algo-
rithms implement the shift operation: Mshifted = M − τI. All these algorithms are stable in the
sense that the relation holds exactly if the data for Mshifted and M are perturbed element-wise
by a relative amount bounded by O(εy). The implied constants for the perturbation bounds vary
slightly. As εy ≪ εx, instead of concentrating on accuracy issues, we make our choice based on
robustness and performance. A discussion of performance issues related to different forms of the
representations can be found in [40, 37]. Based on this discussion, it appears that twisted factor-
izations with e-representation seem to be a reasonable choice. As the off-diagonal entries of all
the matrices stay the same, they only need to be stored once and are reused during the entire
computation.

Random perturbations. In Line 2 of Algorithm 1, to break up tight clusters, the data of Mroot,
{x1, ..., x2n−1}, is perturbed element-wise by small random relative amounts:7 x̃i = xi(1 + ξi) with
|ξi| ≤ ξ for all 1 ≤ i ≤ 2n− 1. In practice, a value like ξ = 8ε is used. Although our data is in
binary y, we are quite aggressive and adopt ξ = εx or a small multiple of it. Thus, for y = 2x,
about half of the digits in each entry of the representation are chosen randomly; therefore, with
high probability, eigenvalues do not agree to many more than −⌈log10 εx⌉ digits. This has two
major effects: (i) together with the changes in gaptol (see below), in practice, the probability
to encounter dmax > 1 becomes very low, and (ii) it becomes easier to find suitable shifts such
that the resulting representation satisfies the requirements of relative robustness and conditional
element growth. The positive impact of small dmax on the accuracy is apparent from (3.1) and
(3.2). Furthermore, as discussed below, due to limiting dmax, the computation can be reorganized
for efficiency. Although it might look innocent, the more aggressive random perturbations lead to
much improved robustness: A detailed discussion can be found in [11].8

Classification of the eigenvalues. Due to the importance of the gaptol-parameter, adjusting it
to our requirements is key to the success of our approach. The parameter influences nearly all
stages of the algorithm; most importantly, the classification of eigenvalues into well-separated and
clustered. As already discussed, the choice of gaptol is restricted by the loss of orthogonality that
we are willing to accept; in practice, the value is often chosen to be 10−3 [9].9 As we merely require
orthogonality of εx

√
n, we accept more than three orders of magnitude loss of orthogonality. Both

6We can relax the condition further and use |ei| ≤ εx
√
n‖T‖.

7True randomness is not necessary; any (fixed) sequence of pseudo-random numbers can be used.
8For a quantitative assessment of robustness, see [29].
9For instance, LAPACK’s DSTEMR uses 10−3, while SSTEMR uses 3 · 10−3.
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terms in (3.1) (and the in practice observed orthogonality) are proportional to nεy/gaptol. This
means that the value of gaptol can be chosen as small as εy

√
n/εx. As a consequence, we might

select any value satisfying

min

{
10−3,

εy
√
n

εx

}
≤ gaptol ≤ 10−3 , (3.3)

where the 10−3 terms are derived from practice and might be altered slightly. Note that gaptol
potentially becomes as small as 10−9√n in the single/double case and 10−18√n in the dou-
ble/quadruple one. If we restrict the analysis to matrices with size n ≤ 106, we can choose a
constant gaptol as small as 10−6 and 10−15 respectively for the single/double and double/quadruple
cases.

With any choice of gaptol complying (3.3), accuracy to the desired level is guaranteed, and there
is room to choose the specific value of gaptol, as well as other parameters, to optimize performance
or parallelism. In particular, by generally reducing the clustering of the eigenvalues, the smallest
possible value of gaptol provides the greatest parallelism. To quantify this statement, for any matrix,
we define clustering ρ ∈ [1/n, 1] formally as the size of the largest cluster divided by the matrix
size. There are two main advantages in decreasing ρ: (i) the work is reduced as processing the
largest cluster introduces O(ρn2) flops extra work, and (ii) the potential parallelism is increased.
A conservative estimate of the parallelism of a problem is provided by ρ−1. For instance, ρ = 1/n
implies that the problem is embarrassingly parallel. The estimate of parallelism assumes that
clusters are processed sequentially, while in reality the bulk of the work (the refinement of the
eigenvalues and the final computation of eigenpairs) can be parallelized. Nonetheless, matrices
with high clustering still pose difficulties to MRRR as they introduce load-balancing issues and
communication, which considerably reduce the parallel scalability [36, 35, 29]. Therefore, even
if we did not have the desire to guarantee improved accuracy of the method, we could use the
mixed precision approach to significantly enhance parallelism. In this case, the

√
n-dependence on

the lower bound for the value of gaptol would be removed and the bound could be loosened by
another three orders of magnitude; that is, we could choose a value of 10−12 and 10−21 for the
single/double and double/quadruple case, respectively.10 Consequently, almost all computations
become embarrassingly parallel.

As an example, Table 3.2 shows the clustering for double precision Hermite type11 test matrices
of various sizes with four distinct classification criteria:12 (I) gaptol = 10−3, (II) gaptol = 10−3,
combined with splitting based on the absolute gap as proposed in [35] to enhance parallelism,
(III) gaptol = 10−10, and (IV) gaptol = 10−15. For the latter two criteria, the computations are
embarrassingly parallel. As with this example, experience shows that, thanks to a reduced value
of gaptol as in criteria III or IV, many problems become embarrassingly parallel and guarantee
improved accuracy. In case ρ = 1/n, dmax = 0, which not only benefits accuracy by (3.1) and
(3.2), but also has a more dramatic effect: the danger of not finding representations that satisfy the
requirements is entirely removed. This follows from the fact that a satisfactory root representation
is always found (e.g., by making T −µI definite) and no other representation needs to be computed.

10If we select values 10−9 and 10−18, we improve the bounds by three orders of magnitude.
11See [23] for information on test matrices.
12Criterion I is used in LAPACK [12] and in results of mr3smp in [31], which usually uses II. Criterion II is used

in ScaLAPACK [36] and Elemental [32]. In massively parallel computing environments, criteria III and IV can (and
should) additionally complemented with the splitting based on absolute gaps; see also [33].
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Criterion Matrix size
2,500 5,000 10,000 20,000

I 0.70 0.86 0.93 0.97
II 0.57 0.73 0.73 0.73
III 4.00e-4 2.00e-4 1.00e-4 5.00e-5
IV 4.00e-4 2.00e-4 1.00e-4 5.00e-5

Table 3.2
The gaptol-parameter effect on clustering ρ ∈ [1/n, 1].

Even in cases with dmax > 0, the number of times Line 15 of Algorithm 1 needs to be executed is
often considerably reduced.

On the downside, selecting a smaller gaptol can result in more work in the initial approxima-
tion13 and later refinements – in both cases, eigenvalues must be approximated to relative accuracy
of about gaptol, see (2.1); hence, optimal performance is often not achieved for the smallest possible
value of gaptol. Moreover, as we discuss below, if one is willing to limit the choice of gaptol, the
computation and refinement of eigenvalues can be done (almost) entirely in x-bit arithmetic.14 If
y-bit arithmetic is slow, it might be best to take advantage of the faster x-bit arithmetic. And,
as we see below as well, if not the smallest possible value is chosen for gaptol, the requirements
the intermediate representations must fulfill are relaxed, thereby increasing the robustness of the
method.

Another corollary of adjusting gaptol is slightly hidden: in Line 15 of Algorithm 1, we gain
more freedom in selecting τ such that, at the next iteration, the index set Ir splits into two or more
subsets. For instance, when choosing τ close to one end of the cluster, we are able to “back off”
further away than usual from the end of the cluster in cases where, in a previous attempt, we did
not find a representation satisfying the requirements [12].

We cannot overemphasize the positive effects an adjusted gaptol has on robustness and parallel
scalability. In particular, in a massively parallel computing environment, the smallest value for
gaptol significantly improves the parallel scalability. And since many problems become embarrass-
ingly parallel, the danger of failing to find suitable representations is entirely removed.

Arithmetic used to approximate eigenvalues. In Lines 3 and 16 of Algorithm 1, eigenvalues are
respectively computed and refined to a specified relative accuracy. In both cases, we are given
a representation, which we call My henceforth, and an index set I that indicates the eigenvalues
that need to be approximated. When the y-bit arithmetic is much slower than the x-bit one (say
a factor 10 or more), the use of the latter is preferred: One creates a temporary copy of My in
binary x – called Mx henceforth – that is used for the eigenvalue computation in x-bit arithmetic.
The creation of Mx corresponds to an element-wise relative perturbation of My bounded by εx. By
the relative robustness of the representation,

|λi[Mx]− λi[My]| ≤ krrnεx|λi[My]| . (3.4)

For instance, bisection can be used to compute eigenvalue approximations λ̂i[Mx] to high relative
accuracy, after which Mx is discarded. As casting the result back to binary y causes no additional

13For instance, if bisection is used to obtain initial approximations to the eigenvalues.
14For the refinement of extreme eigenvalues prior to selecting shifts, we still need to resort to y-bit arithmetic.



16 M. Petschow, E. S. Quintana-Ort́ı, and P. Bientinesi

error, it is λ̂i[My] = λ̂i[Mx] and

|λ̂i[My]− λi[Mx]| ≤ kbinεx|λi[Mx]| ,

where kbi is a moderate constant given by the bisection method. To first order, by the triangle
inequality, it holds

|λ̂i[My]− λi[My]| ≤ (krr + kbi)nεx|λi[My]| . (3.5)

Provided (krr + kbi)nεx . gaptol, by (2.1), x-bit arithmetic can be used to approximate the eigen-
values. Thus, an additional constraint on both the size n and gaptol arises: Given a gaptol, we
must limit the matrix size up to which we do the computation purely in x-bit arithmetic. Similarly,
for a given matrix size, we need to adjust the lower bound on gaptol in (3.3). As an example, if say
krr ≤ 10, kbi ≤ 10, n ≤ 106, and εx = εd = 2−53, it is required that that gaptol & 10−10. When
resorting to x-bit arithmetic or if gaptol is chosen too small, one might respectively verify or refine
the result of the x-bit eigenvalue computation using y-bit arithmetic without significant costs.15

Requirements on the representations. As long as kelgnεy ≪ εx
√
n, by (3.2), the residual with

respect the Mroot is mainly influenced by the local residual. In our mixed precision approach,
without loss of accuracy, it is possible to allow for

kelg ≤ max

{
10,

εx
εy
√
n

}
, (3.6)

where we assumed 10 was the original value of kelg . As a result, the requirement on the conditional
element growth is considerably relaxed. For instance, in the single/double and double/quadruple
cases, assuming n ≤ 106, bounds on kelg of about 106 and 1015 are sufficient, respectively. If gaptol
is not chosen as small as possible, the bound on krr is loosened in a similar fashion:

krr ≤ max

{
10,

εx
εy
√
n
· gaptol

}
. (3.7)

As an example, in the double/quadruple case, assuming n ≤ 106 and gaptol set to 10−10, krr ≤ 105

would be sufficient to ensure accuracy.
Rayleigh quotient iteration. Our willingness to lose orthogonality up to a certain level, which is

noticeable in the lower bound on gaptol, is also reflected in (2.2). As nεy/gaptol ≤ εx
√
n, we stop

the RQI when

‖r(local)‖ ≤ krs · gap
(
λ̂i[M ]

)
εx
√
n , (3.8)

where krs is O(1). In practice, we take krs = 1 (or even krs = 1/
√
n). As a consequence, the

iteration is stopped earlier on, thereby reducing the overall work.
As a side note: In the rare cases where RQI fails to converge (or as a general alternative to

RQI), we commonly resort to bisection to approximate the eigenvalue λi and then use only one step
of RQI (with or without applying the correction term). In the worst case, we require the eigenvalue

to be approximated to high relative accuracy, |λ̂i−λi| = O(nεy |λi|) [10]. With mixed precision, we

15If the first requirement in Definition 2.3 is removed, we can still make use of x-bit arithmetic although (3.5)
might not always be satisfied anymore.
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relax the condition to |λ̂i−λi| = O(εx
√
n|λi| gaptol), which is less restrictive if gaptol is not chosen

as small as possible.16 If relgap(λ̂i) ≫ gaptol, the restriction on the accuracy of the approximated
eigenvalue is lifted even further [37].

The representation tree. Thanks to the random perturbation of the root representation and a
properly adjusted gaptol-parameter, we rarely expect to see large values for dmax. For all practical
purposes, in the case of y = 2x, we may assume dmax ≤ 2. As a result, the computation can be rear-
ranged, as discussed in [38] and summarized in the following: To bound the memory consumption,
a breath-first strategy such as in Algorithm 1 is used; see for instance in [12, 31]. This means that,
at any level of the representation tree, all singletons are processed before the clusters. A depth-first
strategy would instead process entire clusters, with the only disadvantage that meanwhile up to
dmax representations need to be kept in memory. If dmax is limited as in our case, the depth-first
strategy can be used without disadvantage. In fact, a depth-first strategy brings two advantages:
(i) copying representations to and from the eigenvector matrix is avoided entirely (see Section 3.3
on the benefit for the mixed precision approach) and (ii) if no suitable representation is found, there
is the possibility of backtracking, that is, we process the cluster again by choosing different shifts
at a higher level of the representation tree. For these reasons, in the mixed precision approach, a
depth-first strategy is preferred.

3.3. Memory cost. We stress that in our approach, both input and output are in binary x
format; only internally (i.e., hidden to a user) y-bit arithmetic is used. The memory management
of an actual implementation of MRRR is affected by the fact that matrix Z ∈ R

n×k, which on
output contains the desired eigenvectors, is commonly used as intermediate work space. Since Z
is in binary x format, whenever y > x, the work space is not sufficient anymore for its customary
use: For each index set Ir with |Ir| > 1, a representation, Mshifted, is stored in the corresponding
columns of Z [12, 31]. As these representations consist of 2n− 1 binary y numbers, this approach is
generally not applicable. However, if we restrict to y ≤ 2x, we can store the 2n binary y numbers
whenever a cluster of size four and more is encountered. Thus, the computation must be reorganized
so that at least clusters containing less than four eigenvalues are processed without storing any data
in Z temporarily. In fact, using a depth-first strategy, we remove the need to use Z as temporary
storage entirely. Immediately after computing an eigenvector in binary y, it is converted to binary x,
written into Z, and discarded. While our approach slightly increases the memory usage, we do not
require much more memory: with p denoting the number of computational threads, our mixed
precision solver still needs only O(pn) binary x floating point numbers extra work space.

4. Practical aspects. We have implemented the mixed precision approach for three cases:
single/double, double/extended, and double/quadruple. The first solver accepts single precision input
and produces single precision output, but internally uses (hidden to the user) double precision. The
other two are for double precision input/output. The performance of the solvers, compared with the
traditional implementation, depends entirely on the difference in speed between the two involved
arithmetic. If the higher precision arithmetic is not much slower (say less than a factor four), the
approach is expected to always work well, even for sequential executions and relatively small matri-
ces. If the higher precision arithmetic is considerably slower, the mixed precision approach might
still perform well for large matrices. Due to increased parallelism, our approach is also expected

16The implied constants being the same and given by the requirement of a regular solver based on y-bit arithmetic.
In a similar way, we could say that the Rayleigh quotient correction does not improve the eigenvalue essentially
anymore if |γs|/‖ẑi‖ = O(εx|λ̂i| gaptol/

√
n), instead of |γs|/‖ẑi‖ = O(εy |λ̂i|). We never employed it as such a

change will hardly have any effect on the computation time.
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to perform generally well on highly parallel systems. Our target application is the computation
of a subset of eigenpairs of large-scale dense Hermitian matrices. For such a scenario, we tolerate
a slowdown of the tridiagonal eigensolver due to mixed precisions without affecting performance
significantly as the reduction to tridiagonal form is the performance bottleneck [32, 33].

4.1. Implementations. In Section 5, we present experimental results of our implementations.
All mixed precision implementations are based on a multi-threaded variant of MRRR, mr3smp,
presented in [31, 30], which is built on top of LAPACK’s routine DSTEMR (version 3.2). All codes
use N -representations of lower bidiagonal factorizations. Bisection is used for the initial eigenvalue
computation if a small subset of k eigenpairs is requested or if the number of executing threads
exceeds 12k/n [12, 31]. If all eigenpairs are requested and the number of threads is less than 12,
the fast sequential dqds algorithm [14, 28] is used instead of bisection. As a consequence, speedups
compared with the sequential execution appear less than perfect even for an embarrassingly parallel
computation.

We did not relax the requirements on the representations according to (3.6) and (3.7); we only
benefit from the possibility of doing so indirectly: If no suitable representation is found, the best
candidate is chosen, which might still fulfill the relaxed requirements.

In the following, we provide additional comments to all of the mixed precision solvers indi-
vidually. As parameters can take a wide range of values (in particular, gaptol, but also krr and
kelg) and several design decisions can be made, optimizing a code for performance is non-trivial
as it generally depends on both the specific input and the architecture. While we cannot expect
to create an “optimal” design for all input matrices and architectures, we make design decisions
in a way that in general yields good performance. For instance, on a highly parallel machine one
would select a small value for gaptol to increase parallelism. For testing purposes, we disabled the
classification criterion based on the absolute gaps of the eigenvalues proposed in [35], which might
reduce clustering even further (it has no consequences for our test cases shown in the next section).

Single/double. With widespread language and hardware support for double precision, the mixed
precision approach is most easily implemented for the single/double case. In our test implemen-
tation, we fixed gaptol to 10−5. When bisection is used, the initial eigenvalue approximation is
done to a relative accuracy of 10−2 · gaptol. As on most machines the double precision arithmetic
is not more than a factor two slower than the single precision one, we carry out all computations
in the former. Data conversion is only necessary when reading the input and writing the output.
As a result, compared with a double precision solver using a depth-first strategy, merely a number
of convergence criteria and thresholds must be adjusted, and the RQI must be performed using a
temporary vector that is, after convergence, written into the output eigenvector matrix. The mixed
precision code closely resembles a conventional double precision implementation of MRRR.

Double/extended. Many current architectures have hardware support for a 80-bit extended
floating point format (see Table 3.1). As the unit roundoff εe is only about three orders of magnitude
smaller than εd, we can improve the accuracy of MRRR by this amount. For matrices of moderate
size, this means that the accuracy becomes comparable to that of the best methods. The main
advantage of the extended format is that, compared with double precision, its arithmetic comes
without any or only a small loss in speed. However, we cannot make any further adjustments in
the algorithm, which positively effect its robustness and parallelism. We do not include results for
the double/extended case in the next section; however, we tested the approach and experimental
results can be found in [29, 33].

Double/quadruple. As quadruple precision arithmetic is not widely supported by today’s proces-
sors or languages, we had to resort to software-simulated arithmetic, which is rather slow. For this
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reason, we used double precision for the initial approximation and for the refinement of the eigen-
values. The necessary intermediate data conversions make the mixed precision approach slightly
more complicated to implement than the single/double one. We used the value 10−10 for gaptol in
our tests. Further details can be found in [33].

4.2. Portability. The biggest problem of the mixed precision approach is a potential lack of
support for the involved data types. As single and double precisions are supported by virtually
all machines, languages, and compilers, the mixed precision approach can be incorporated to any
linear algebra library for single precision input/output. However, for double precision input/output,
we need to resort to either extended or quadruple precision. Not all architectures, languages, and
compiler support these formats. For instance, the 80-bit floating point format is not supported by
all processors. Futhermore, while the FORTRAN REAL*10 data type is a non-standard feature of
the language and is not supported by all compilers, a C/C++ code can use the standardized long

double data type (introduced in ISO C99) that achieves the desired result on most architectures
that support 80-bit arithmetic. For the use of quadruple precision, there are presently two major
drawbacks: (i) it is usually not supported in hardware, which means that one has to resort to a
rather slow software-simulated arithmetic, and (ii) the support from compilers and languages is
rather limited. While FORTRAN has a REAL*16 data type, the quadruple precision data type
in C/C++ is compiler-dependent: for instance, there exist the float128 and Quad data types
for the GNU and Intel compilers, respectively. An external library implementing the software
arithmetic might be used for portability. In all cases, the performance of quadruple arithmetic
depends on its specific implementation. It is however likely that the hardware/software support for
quadruple precision will be improved in the near future.

5. Experimental Results. All tests, in this section, were run on a multi-processors system
comprising four eight-core Intel Xeon X7550 Beckton processors, with a nominal clock speed of
2.0 GHz. Subsequently, we refer to this machine as Beckton. We used LAPACK version 3.4.2
and linked the library with the vendor-tuned MKL BLAS version 12.1. In addition to the results
for LAPACK’s routines and our mixed precision solvers, we also include results for mr3smp [31].
All routines were compiled with Intel’s compiler version 12.1 and optimization level -O3 enabled.
Although we present only results for computing all eigenpairs (LAPACK’s DC does not allow
the computation of subsets), we mention that MRRR’s strength and main application lies in the
computation of subsets of eigenpairs.

For our tests, we used matrices of size ranging from 2,500 to 20,000 (in steps of 2,500) of six
different types: uniform eigenvalue distribution, geometric eigenvalue distribution, 1–2–1, Clement,
Wilkinson, and Hermite. The dimension of the Wilkinson type matrices is n+ 1, as they are only
defined for odd sizes. Details on these matrix types can be found in [23]. To help the exposition of
the results, in the accuracy plots, the matrices are sorted by type first and then by size; vice versa,
in the plots relative to timings, the matrices are sorted by size first and then by type.

Figure 5.1 shows timings and accuracy for single precision inputs. As a reference, we include
results for LAPACK’s SSTEMR (MRRR) and SSTEDC (Divide & Conquer). As shown in Fig. 5.1(a),
even in a sequential execution, our mixed precision approach is up to an order of magnitude faster
than LAPACK’s SSTEMR. For one type of matrices, SSTEDC is considerably faster than for all the
others. These are the Wilkinson matrices, which represent a class of matrices that allow for heavy
deflation within the Divide & Conquer approach. For all other matrices, which do not allow such
extensive deflation, our solver is faster than SSTEDC. As seen in Fig. 5.1(b), in a parallel execution,
the performance gap for theWilkinson matrices almost entirely vanishes, while for the other matrices
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Figure 5.1. Time and accuracy on Beckton. Timings are presented in a logarithmic scale. The largest
residual norm and the orthogonality are measured as in (1.1). The dotted black line corresponds to unit round-off
εs. As there exist no parallel MRRR for single precision, we show timings for our mixed precision approach and
SSTEDC only.

our solver remains up to an order of magnitude faster than SSTEDC. As depicted in Figs. 5.1(c)–(d),
our routine is not only as accurate as desired but it is the most accurate one. For single precision
input/output arguments, we obtain a solver that is more accurate and faster than the original single
precision solver. In addition, the solver is more scalable, and more robust. In 38 out of the 48 test
cases, SSTEMR accepted representations that did not pass the test for relative robustness, thereby
jeopardizing the accuracy of the result. In contrast, using mixed precisions, our solver was able to
find suitable representations in all cases.

We now turn our attention to double precision inputs/outputs, for which timings and accuracy
are presented in Fig. 5.2. We included the results for the multi-threaded solver mr3smp, which in
the sequential case is just a wrapper to DSTEMR. In general, mr3smp obtains accuracy equivalent to
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LAPACK’s DSTEMR.
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Figure 5.2. Time and accuracy on Beckton. Timings are presented in a logarithmic scale. The largest
residual and the orthogonality are measured as in (1.1). The dotted black line corresponds to unit round-off εd and
the accuracy of mr3smp is equivalent to the one obtained by LAPACK’s DSTEMR.

Figure 5.2(a) shows the timings for sequential executions. Our mixed precision solver is slower
than DSTEMR, which is not a surprise, as we make use of software-simulated quadruple precision
arithmetic. What might be a surprise is that, even with the use of such slow arithmetic, for large
matrices, our solver is usually as fast as DSTEDC. As in the single precision case, only for matrices
that allow for substantial deflation, DSTEDC is considerably faster. As Fig. 5.2(b) shows, for a
parallel execution, the performance difference reduces and is expected to eventually vanish as it
does already for the a regular MRRR implementation [32]. For matrices that do not allow for
extensive deflation, our solver is about a factor two faster than DSTEDC.

While DSTEMR accepted in 29 out of the 48 test cases representations that did not pass the
test for relative robustness, our mixed precision solver found suitable representations in all cases.
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In fact, for all but the Wilkinson type matrices, we have dmax = 0 and as a consequence: no
danger of failing to find suitable representations and embarrassingly parallel computation. Even for
Wilkinson type matrices, dmax was limited to one and clustering ρ was limited to 2/n. For DSTEMR,
dmax was as high as 21 and clustering ρ was about 0.7 on average, which should be compared with
the value of about 1.6 ·10−4 for the mixed precision solver. Therefore, we believe that our approach
is especially well-suited for highly parallel systems. In particular, solvers for distributed-memory
systems should greatly benefit from better load-balancing and reduced communication.

For single precision inputs [Figs. 5.1(a)–(b)] or in a parallel stetting [Fig. 5.2(b)], our tridiagonal
eigensolver is highly competitive in terms of execution time – often faster – compared with Divide &
Conquer and the conventional MRRR. As a consequence, when used in context of dense Hermitian
eigenproblems, the accuracy improvement of the tridiagonal stage carry over to the overall accuracy
without any penalty in terms of performance. Such a behavior is illustrated by Fig. 5.3, where we
present timings and orthogonality for dense, real symmetric input matrices. The inputs were
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Figure 5.3. Time and orthogonality for computing all eigenpairs of dense, real symmetric matrices. Timings
are presented in a logarithmic scale and are dominated by the reduction to tridiagonal form.

generated by applying random orthogonal similarity transformations to the tridiagonal matrices
of the previous experiments: A = QTQ∗, with random orthogonal matrix Q ∈ R

n×n. For small
matrices in a sequential execution, our approach introduces extra overhead – see Fig. 5.2(a). Since
the tridiagonal solver only requiresO(kn) operations to compute k eigenpairs, while the reduction to
tridiagonal form requires O(n3) operations, for sufficiently large matrices the overhead is completely
negligible. Such a statement would even more apply if the matrices were complex-valued and/or
only a subset of eigenpairs were computed, since the reduction to tridiagonal form would carry
even more weight relative to the tridiagonal stage. In a parallel execution, the mixed precision
approach is competitive even for relatively small matrices [Fig. 5.3(a)]; at the same time, the
approach significantly improves orthogonality [Fig. 5.3(b)]. Further experiments, including subset
computations and complex-valued inputs, can be found in [29, 33].

6. Conclusions. We presented a mixed precision variant of the MRRR algorithm, which ad-
dresses a number potential weaknesses of MRRR such as (i) inferior accuracy compared with the
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Divide & Conquer method or the QR algorithm; (ii) the danger of not finding suitable representa-
tions; and (iii) for distributed-memory architectures, load-balancing and communication problems
for matrices with large clustering of the eigenvalues. Our approach provides a new perspective:
Given input/output arguments in a binary x floating point format, we use a higher precision bi-
nary y arithmetic to obtain the desired accuracy. As our analysis shows, the use of higher precision
provides us with freedom in setting important parameters of the algorithm. In particular, we select
these parameters to reduce the operation count, increase robustness, and improve parallelism; at
the same time, we meet more stringent accuracy goals. Due to these changes, our mixed precision
approach is not only as accurate as the Divide & Conquer method or the QR algorithm but –
under many circumstances – is also faster than these methods or even faster than a conventional
implementation of MRRR.

This work was mainly motivated by the results of MRRR-based eigensolvers for dense Hermitian
problems [32]. In the context of dense eigenproblems, the tridiagonal stage is often completely
negligible in terms of execution time: to compute k eigenpairs of a tridiagonal matrix, it only
requires O(kn) operations; the reduction to tridiagonal form requires O(n3) operations and is the
performance bottleneck. In terms of accuracy, the tridiagonal stage is responsible for most of the
loss of orthogonality. The natural question was whether it is possible to improve the accuracy to
the level of the best methods without sacrificing too much performance. As our results show, this
is indeed possible. In fact, our mixed precision solvers are even more accurate than the ones based
on Divide & Conquer and QR, and remain as fast, or faster, than the classical MRRR. Finally,
an important feature of the mixed precision approach is a considerably increased robustness and
parallel scalability.
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