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Abstract 

Due to its capital role in drug seeking, consumption and addictive behaviour there is a 

growing interest in identifying the neural circuits and molecular mechanisms underlying 

the formation, maintenance and retrieval of drug related memories. Human studies 

focused on neuronal systems that store and control drug-conditioned memories have 

found cerebellar activations during the retrieval of drug-associated cues memory. 

However, at the preclinical level, almost no attention has been paid to a possible role of 

the cerebellum in drug-related memories. In the present study, we ought to fill this gap 

by aiming to investigate the pattern of neuronal activation (as revealed by cFos 

expression) in different regions of the prefrontal cortex and cerebellum of mice trained 

to develop conditioned preference for an olfactory stimulus (CS+) paired with cocaine. 

Our results indicate that CS+ preference was directly associated with cFos expression in 

cells at the apical region of the granule cell layer of the cerebellar vermis, this 

relationship being more prominent in some specific lobules. Conversely, cFos+ 

immunostaining in other cerebellar regions seems unrelated to CS+ preference but to 

other aspects of the conditioning procedure. At the prefrontal cortex, cFos expression 

seemed to be related to cocaine administration rather than to its ability to establish 

conditioned preference. The present results suggest that as it has been observed in some 

clinical studies, the cerebellum might be an important and largely overlooked part of the 

neural circuits involved in generating, maintaining and/or retrieving drug memories.  

 

Key words: cocaine, preference, conditioning, cerebellum, vermis, mice.  
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Introduction 

Several processes underlie motivational alterations in drug seeking and taking 

behaviour. Indeed, conditioned reinforcement, incentive motivation, behavioural 

sensitization and maladaptive stimulus–response learning, all contribute to orienting the 

response toward drug-related stimuli (Kalivas & Volkow 2005; Hyman, Malenka & 

Nestler 2006; Everitt et al. 2008; Robinson & Berridge 2008; Koob & Volkow 2010). 

Specifically, Pavlovian conditioning tunes the motivational impact of drug-associated 

stimuli by strengthening memory of drug-related cues and thus, boosting the importance 

of stimuli and contexts that enclose drug seeking and taking (Everitt & Robbins 2005). 

Drug associated cues and contexts guide drug-seeking and have an important effect on 

drug intake, gaining progressively more control over an individual’s behaviour as some 

of them transit through successive behavioural stages towards habitual consumption and 

ultimately reaching the addicted state.  

Due to the relevance for drug seeking and taking, there has been a growing 

interest in identifying the neural circuits and molecular mechanisms underlying the 

formation, maintenance and retrieval of drug related memories. It has been argued that 

Pavlovian and instrumental conditioned memories are controlled and stored by 

dopamine-glutamate interactions into the nucleus accumbens, basolateral amygdala, 

hippocampus and prefrontal cortex (Bower & Parson 2003). Chronic drug abuse 

produces a re-organization of these prefronto-striatal-limbic networks via their effects 

on neurotransmitter systems (Nestler 2005), neuronal morphology (Nestler 2005) and 

functional interactions within and between neuronal assemblies that belong to this 

circuitry (Belin & Everitt 2008; Noorin et al. 2012).   

Over the past decades, it has become clear that the cerebellum constitutes 

functional loop circuits with different brain areas previously involved in drug effects 
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and addictive behaviour such as prefrontal and associative non-motor cortices, the basal 

ganglia (Bostan, Dum & Strick 2010) and limbic system (Heath et al. 1978). 

Remarkably, several cerebellar regions have bidirectional connections with the 

prefrontal and sensorimotor cortices (Dum & Strick 2003; Kelly & Strick 2003), and the 

striatum (Hoshi et al. 2005; Bostan et al. 2010). Additionally, the medial part of the 

cerebellum (vermis) connects to dopamine neurons in the ventral Tegmental Area 

(VTA) and substantia nigra (Snider, Maiti & Snider 1976; Middleton & Strick 2000) 

and the VTA sends dopaminergic projections to the vermis (Snider & Maiti 1976; Ikai 

et al. 1992; Schweighofer, Doya & Koroda 2004), forming a reciprocal midbrain-

cerebellar circuit. Moreover, activation of the prelimbic subdivision of the medial 

prefrontal cortex produces electrophysiological responses in the contralateral vermis 

(Watson, Jones & Apps 2009) and electrical stimulation of the fastigial nucleus, which 

receives projections from the vermis, evoking neuronal activity in the amygdala and 

hippocampus (Heath et al. 1978). All of these anatomical findings challenge the 

traditional view of the cerebellum as a subcortical isolated motor structure and support 

its involvement in functional networks affected by addictive drugs (Miquel et al. 2009). 

Indeed, psychostimulant administration increases cFos-like immunoreactivity in the rat 

granule cell layer of the vermis at a wide range of doses (Klitenick, Tham & Fibiger 

1995). Also, sensitization of cFos and jun-B mRNA has been demonstrated in the 

cerebellar cortex of cocaine sensitized rats (Couceyro et al. 1994). After cocaine 

administration, Purkinje soma and dendrites augment the expression of Homer 1b/c and 

3a/b (Jimenez-Rivera et al. 2000). These long homer isoforms are a crucial link between 

mGluR and IP3-dependent intracellular Ca2+ signalling, and they are considered as an 

important step of synaptic remodelling and spine morphogenesis (Skumlinski, Kalivas 

& Worley 2006). Furthermore, elevations in the relative cerebral blood volume in the 
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cerebellar dentate nucleus have been demonstrated in nonhuman primate studies 

mapping DA function with amphetamine (Jenkins et al. 2004).  From these findings, it 

is clear that molecular and cellular actions of addictive drugs in the cerebellum involve 

long-term adaptive changes in receptors, neurotransmitters and intracellular signalling 

transduction pathways. 

At the clinical level, human studies have found cerebellar activations during the 

exposure to drug-associated cues (Grant et al. 1996; Schneider et al. 2001; Bonson et al. 

2002; Volkow et al. 2003). Furthermore, Anderson and co-workers (2006) have 

suggested that the relevance of the cerebellum in modulating incentive drug-related 

stimuli would be increased when the prefrontal lobule is compromised by disease or 

chronic drug use. However, probably because there are no experimental animal studies 

aimed at the involvement of the cerebellum in drug-associated memories, almost no 

attention has been paid to these findings and so, to date, the cerebellum has not been 

considered as part of the circuitry that sustains addictive behaviour.  

Therefore, by trying to fill this gap, the main objective of the present study was 

to investigate the pattern of neuronal activation as revealed by cFos immunoreactivity in 

the cerebellum and prefrontal cortex in mice trained to develop conditioned preference 

to an olfactory stimulus paired with cocaine. We proposed that repeated experience with 

cocaine would produce a different pattern of cFos expression in the vermis to that 

observed in the prefrontal cortex. Also, we expected the pattern of cFos expression to be 

related to cocaine-induced conditioned preference. 
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Methods 

Subjects 

Three-week-old Swiss male mice were purchased from Janvier S.A. and 

maintained in our colony room (Jaume I University. Spain) for 30 days prior to 

experiments (N=55). Handling was carried out daily for 5 minutes for 21 days before 

the experiments began. The colony room was kept at a temperature of 22 + 2 ºC with 

lights on from 08:00 to 20:00 hours. Animals were housed in standard conditions with 

laboratory rodent chow and tap water ad libitum. At the age of seven-weeks 

experimental procedures began. Behavioural tests were conducted within the first five 

hours of the light cycle. All animal procedures were performed in accordance with the 

European Community Council directive (86/609/ECC), Real Decreto 1201/2005 and the 

local directive DOGV 13/2007. 

 

Pharmacological agents 

All drugs were administered intraperitoneally (IP). Cocaine hydrochloride 

(2mg/ml) (Alcaliber S.A., Spain) was dissolved in 0.9% w/v saline and injected 

immediately before each conditioning trial. Saline solution 0.9% w/v was used as the 

vehicle control.   

 

Behavioural procedures and experimental design 

In a first step, the effect of the number of pairing sessions (2, 4 or 8) between an 

odour (lavender or papaya) and cocaine (20 mg/kg) was evaluated in three separate 

groups of mice (n=12, 16 and 15, respectively). These daily-pairing sessions took place 

in a specific conditioning environment (a rectangular Plexiglass box of 30x15x20 cm) 

and the odours used as CS+ and CS- were counterbalanced between animals and 
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sessions following an ABAB schedule. Thus, one of the odours acted as CS+ and was 

associated with IP cocaine (20 mg/kg). On alternate days, mice were exposed to a 

different odour (CS-) associated with saline administration. Cocaine-induced odour 

preference was assessed in a 30 minutes drug-free test using a T-maze in which CS+ 

and CS- were presented simultaneously but in opposite arms. The preference test took 

place 24 hours after the last cocaine administration. All test sessions were videotaped 

and the time spent (TS) in each arm of the maze was registered manually from the 

recorded test sessions during the last 20 minutes by a blind observer. Preference score 

was calculated as TS in CS+ / (TS in CS+ + TS in CS-). 

In a second step, regardless of their number of pairings at the training phase, 

tissue samples from individuals having CS+ preference scores higher or lower than the 

arbitrary cut off point of 60% were randomly picked out to conform the thereafter-

called “conditioned” (n=7) and “non-conditioned” (n=6) groups, respectively. In these 

subjects appropriate samples (see following sections) were collected to evaluate cFos 

staining on cerebellar and prefrontal areas. For identical purpose, two additional groups 

of mice were generated. First, the “saline” group members (n=6) received saline 

injections associated with both odours. Second, the “unpaired” group members (n=7) 

received cocaine (20 mg/kg) injections randomly associated with any of those odours. 

Both groups were designed to match the number of pairings of those received by the 

members of the “conditioned group”.  

 

Perfusion and dissection protocol  

Animals were deeply anesthetized with sodium pentobarbital (30mg/kg) 70 

minutes after the preference test and perfused transcardially, first with 0.9% saline 

solution and then with 4% paraformaldehyde. After perfusion, the frontal cortex and the 
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vermis cerebellum were quickly dissected and placed in a container with 4% 

paraformaldehyde for 24 hours. After this time, tissue was cryoprotected in 30% 

sucrose solution until complete immersion.  

 

Tissue sections 

Brain tissue was rapidly frozen by immersion in liquid nitrogen and sections 

were performed at 40 µm with a cryostat microtome (Microm HM560. ThermoFisher 

Scientific). Six series of tissue sections were collected and stored at -80oC in 

cryoprotectant solution. Sagittal sections of the cerebellum were selected according to 

the lateral coordinates -0.04 mm and 0.72 mm, comprising the vermis cerebellum 

(Paxinos and Franklin, 2008). Coronal sections from bregma 2.22 mm to 1.94 mm 

(Paxinos and Franklin, 2008) were considered as the prefrontal cortex. 

 

cFos Immunohistochemistry 

Immunohistochemistry was performed on free-floating sections. For 

peroxidative immunostaining, tissue peroxidases were eliminated with 0.3% of H2O2 

and methanol 20%, during a period of 30 minutes. Tissue was incubated for 48 h with 

a polyclonal primary antibody, rabbit anti-cFos (1:500, Santa Cruz Biotechnology) 

or overnight with rabbit anti-DAT (dopamine transporter) (Abcam) in smooth 

agitation at 4°C. In a second step, sections were exposed to an affinity-purified 

secondary biotinylated antibody, donkey anti-rabbit (1:400) (Vector Labs, BA-2000) for 

120 minutes at room temperature. For magnification, we used preassembled biotin-

avidin peroxidase complex according to the Vector Labs recommendations (ABC Elite, 

Vector Labs). Sections were exposed to DAB solution free of nickel component until 

the tissue developed an intense brown staining. Then, the tissue was rinsed and mounted.  

Page 9 of 50 Addiction Biology



For Review
 O

nly

 9 

To obtain a clear view of cFos cellular expression, some additional tissue 

obtained from the same mice was rinsed and pre-blocked with 5% donkey serum and 

0.3% triton X-100 for one hour. Cerebellar sections were incubated at 4°C for 48 hours 

with primary antibody rabbit anti-cFos (1:500 Santa Cruz Biothechnology). Thereafter, 

samples were exposed in the dark to AlexaFluor 647 dye anti-rabbit (1:500; Vector Lab) 

for two hours. To stain Purkinje neurons, sections reacted with rabbit anti-calbindin 

(1:500; Chemicon, Millipore) for 48 hours, and then with AlexaFluor 488 donkey anti-

rabbit (1:500; Invitrogen) for two hours. Tissues were rinsed with PBS and mounted 

with fluorsave reagent (Calbiochem).  

 

Immunostaining Analysis 

Images were captured in an optical microscope (Nikon E-800) with 40x lens for 

the cerebellum and 20x lens for the prefrontal cortex. We considered cFos positive 

(cFos+) peroxidase staining those cells showing a brown labelling in the nucleus (see 

figure 1A). 

 We counted the first plane of 3 sagittal sections at the granule cell layer of the 

vermis cerebellum (L -0.04 to 0.72mm) (Paxinos and Franklin, 2008) in selected ROIs 

of 20,000 µm2 at the apical (external surface of the internal granular layer) and medial 

zone (deep portions of lobule) of each cerebellar lobule, for a total area of 40,000 µm2 

per lobule and section. Purkinje neurons were counted in an area of 20,000 µm2 in the 

apical and medial regions and they were considered cFos+ when exhibiting a uniform 

and constant staining in the soma (see Figure 1A). For the prefrontal cortex, we counted 

cFos+ neurons in ROIs of 20,000 µm2 of the cingulate, prelimbic, infralimbic and 

orbitofrontal medial cortex (from bregma 2.22 mm to bregma 1.94 mm) (Figure 7). Cell 

count was performed automatically with ImageJ (now FIJI) software. Fluorescent 
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microphotographs were taken with an Olympus FV1000 confocal microscope with 60x 

oil lens (Figure 1B).  

 

Statistics 

All statistical analyses were conducted using the Statistica 6.0 software package 

(Statsoft, Inc). Behavioural data were analysed by means of one-way ANOVA followed 

by Tukey HSD post-hoc tests and by means of Kruskal-Wallis ANOVA by ranks and 

chi-squared tests for dyadic comparisons. Differences between groups on cFos staining 

at different brain regions were analysed using separate one-way (group) MANOVAs 

followed up by univariate ANOVAs and Tukey HSD tests, when possible. In all these 

analyses, the number of pairings at the training phase was used as a covariate.  Finally, 

Pearson’s r correlation index was used to ascertain the degree of correlation between 

preference for the CS+ preference and cFos staining in particular brain regions. The 

level of significance was set at p<0.05. 

 

Results 

A one-way ANOVA revealed that the number of pairings during the training 

phase had a significant effect on the group-averaged preference scores on the test day 

[F2,36=3,97, p<0.05]. Tukey HSD based comparisons revealed that a training protocol 

consisting of 8 cocaine-odour pairings produced a statistically significant higher group 

preference than that observed at the 2 pairings group (p<0.05). These results are 

displayed in figure 2A. On the other hand, Figure 2B depicts individual preference 

scores subjected to 2, 4 and 8 conditioning trials. From these data it is readily 

observable that almost half of the individuals treated with 2 pairings during the training 

phase showed preference scores below the theoretical indifference critical point (50%) 
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whereas this only occurred in one subject (out of 13) of the 8 pairings group. 

Furthermore, a larger number of cocaine-odour pairings seems to increase the minimum, 

but less clearly maximal, preference scores within each group. Thus, it seems that the 

number of pairings at the training phase displaced the preference scores distribution 

upwards rather than changing the highest preference values reached by a subset of 

individuals of each group. Accordingly, a Kruskal-Wallis ANOVA by ranks comparing 

the proportion of individuals above and below the overall median revealed a significant 

effect of the number of pairings [H(2, n=39)=7.31, p<0.05]. Subsequent dyadic Chi-

square based comparisons revealed that on the 8 pairings group the proportion of 

subjects displaying preference scores higher than the overall median value was higher 

than expected [Chi-square= 11.39, p<0.01]. Taken as a whole, these results seem to 

indicate that the higher the number of pairings, the higher the proportion of subjects 

surpassing the indifference scores range and, therefore, the higher the group-averaged 

preference.  

In a second step, regardless of their number of pairings at the training phase, 

these individuals’ samples were divided into two groups having CS+ preference scores 

higher or lower than the arbitrary cut off point of 60%. From each one of these two new 

groups, mice were randomly picked out to conform the thereafter-called “conditioned” 

(n=7) and “non-conditioned” (n=6) groups, respectively. For subsequent analysis, these 

two groups were compared against the “saline” and the “unpaired” groups (see methods 

section for further details). As expected, an ANCOVA comparing the preference scores 

of all four treatment groups revealed a significant effect of the treatment factor (F3,33= 

21.53; p<0.001) whereas the number of pairings, which had been used as covariate, did 

not affect those scores (F2,33= 1.39; p=0.24). Post-hoc mean comparisons were 

performed using the Tukey HSD test, which showed that the “conditioned” group was 
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different from all the other treatment groups (p<0.01 in all cases) and that the 

preference scores of the “saline”, “unpaired” and “non-conditioned” groups had no 

difference among them (p>0.05 in all cases). These results are depicted in Figure 3. 

When comparing locomotor activity recorded during the preference test, no 

significant differences were seen among any of the four groups (F2,19= 1,76; p=0.18). 

Means and standard error of the mean were as follow: the saline group = 8352.74+966; 

the unpaired group =13935.11+2735; the non-conditioned group = 9266.08+1465; the 

conditioned group = 8277.34+2717.67. 

Trying to identify evidence for a differential involvement of fronto-cerebellar 

networks on subjects exhibiting CS+ preference, we examined cFos expression on 

several cortical and cerebellar regions in each one of these four experimental groups.  

Regarding the cerebellum, we first analysed cFos expression in the granule cell layer of 

different vermal lobules. As revealed by a one-way MANCOVA, the treatment group 

produced an effect that approached, but did not reach, statistical significance [Wilk’s= 

0.14; F24,41=1.61, p=0.08], whereas the number of pairings did not even have a trend 

towards producing any relevant effect [Wilk’s=0.59; F8,14=1.20, p=0.36].  

These results prompted us to analyse cFos expression in further detail, then 

separating the functionally distinct apical and medial regions of the granule cell layer of 

different cerebellar lobules (Fig1, 4, 5). A one-way MANCOVA revealed a significant 

effect of the group [Wilk’s= 0.11; F24,41=1.93, p<0.05] but not of the number of pairings, 

which was used as covariate [Wilk’s= 0.56; F8,14=1.35, p=0.29]. Subsequent univariate 

analyses showed a significant effect of the group in all cerebellar vermis lobules 

(p<0.01 in all cases, see Table 1 for further details). Interestingly, as revealed by Tukey 

HSD post-hoc comparisons, in all cases the “conditioned” group displayed a 

significantly higher (p<0.01) number of cFos positive neurons than the “saline”, the 
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“unpaired” and the “non-conditioned” groups, which did not differ among themselves 

regarding cFos staining. These results are depicted on the different panels of Figure 4. 

Furthermore, as summarized in Table 2, individual levels of cFos staining were 

significantly and positively correlated to their corresponding CS+ preference scores at 

lobules, being the correlation indexes highest at lobules VIII, IX and X. Taken together, 

these results seem to indicate that CS+ preference is related to the activity of cells in the 

apical region of the granule cell layer of the cerebellar vermis and that this relationship 

might be more prominent in some specific lobules. 

On the other hand, a separate one-way MANCOVA comparing cFos expression 

in the medial region of the granule cell layer also revealed an effect of the group 

[Wilk’s= 0.11; F24,41=1.94, p<0.05] but not of the number of pairings [Wilk’s= 0.63; 

F8,14=1.00, p=0.47], which was used as a covariate. Follow-up univariate analyses 

yielded a significant group effect at all cerebellar vermis lobules (p<0.01 in all cases, 

see Table 4 for further details). However, when post-hoc mean comparisons for each 

dependent variable were performed, statistically significant differences were focused on 

the “unpaired” group, which exhibit significantly lower (p<0.01) cFos staining levels 

than the other groups in most of these comparisons. These results are presented in detail 

on the different panels of Figure 5 and, conversely to what was observed for the apical 

region, they seem to suggest that cellular activity in the medial region of the granular 

layer of the cerebellar vermis is related to contingent CS-US administration during the 

training phase rather to the preference exhibited on the test day. In fact, as can be seen 

in Table 5, individual correlations between CS+ preference and cFos staining levels in 

this region were lower than those observed for the apical zone and no longer reached 

statistical significance in lobules VIII and X.  

Page 14 of 50Addiction Biology



For Review
 O

nly

 14 

We also analysed the number of cFos+ Purkinje neurons in the apical and medial 

regions of the cerebellar vermis for each lobule (for a summary of the results, see Table 

6, Fig 6). A one-way MANCOVA in the apical region did not yield any significant 

effect of the group [Wilk’s= 0.18; F24,41=1.34, p=0.20] or the number of pairings 

[Wilk’s= 0.50; F8,14=1.72, p=0.17]. However, univariate comparisons (Table 7) yielded 

a significant effect of the treatment group factor on the number of cFos positive 

Purkinje neurons at lobules V, VI, VIII and IX. A more detailed study of those effects 

conducted by Tukey HSD tests revealed that the “conditioned” group showed a higher 

number of cFos staining than the “non-conditioned group” on lobule V (p<0.05) and 

than the “saline”, “unpaired” and “non-conditioned” groups in lobule VIII (p<0.05 in all 

cases; see Table 7 and Figure 6). Furthermore, moderate but statistically significant 

correlation (r=0.45, p<0.05) between the number of cFos positive Purkinje neurons in 

this lobule and the preference for the CS+ was also found (see Table 6). 

On the other hand, a similar one-way MANCOVA comparing the number of 

cFos positive Purkinje neurons in the medial region of the cerebellar vermis lobules 

yielded a significant group effect [Wilk’s= 0.10; F24,41=2.01, p<0.05] but not a 

covariation with the number of pairings [Wilk’s= 0.72; F8,14=0.65, p=0.72]. Univariate 

comparisons revealed that this general effect was due to between group differences on 

lobule VI [F3,21=5.05, p<0.01] and, to a lesser extent, lobule VII [F3,21=3.38, p<0.05] 

(Tables 6 and 7). Mean comparisons showed that in both lobules, the “conditioned” 

group exhibited a higher number of cFos positive Purkinje neurons than the other 

groups but this difference only reached statistical significance at some, but not all, 

between group comparisons. More specifically, as depicted in Figure 6, the 

“conditioned” group had more Purkinje cFos positive neurons than the “saline” and 

“non-conditioned” groups in the medial region of lobule VI (p<0.05 in both cases) as 
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well as than the “saline” group at lobule VII (p<0.05). No significant correlations 

between CS+ preference and Purkinje cFos staining were found.  

Finally, we also analysed the number of cFos positively stained neurons in 

several regions of the prefrontal cortex (Fig 7). A one-way MANCOVA revealed a 

significant group effect [Wilk’s=0.12; F12,50= 4.55, p<0.001] but not a covariation with 

the number of pairings [Wilk’s=0.97; F4,19= 0.45, p=0.77]. Univariate comparisons 

showed that the group effect was observable in all tested regions [cingulate F3,21=12.68, 

p<0.001; prelimbic F3,21=5.77, p<0.001; infralimbic F3,21=3.73, p<0.01; orbitofrontal 

F3,21=7.08, p<0.01] whereas the number of pairings did not reach statistical significance 

in any of them [cingulate F1,21 =0.23, P=0.63; prelimbic F1,21 =0.06, p=0.80; infralimbic 

F1,21 =0.002, p=0.96; orbitofrontal F1,21 =0.87, p=0.36] (Table 8). Tukey HSD post-hoc 

based comparisons demonstrated that between group differences were largely due to the 

differences between saline- and all cocaine-treated groups. These results are depicted in 

Figure 7 and seem to indicate that cFos expression in those frontal areas were related to 

the pharmacological actions of cocaine rather than to the acquisition/ expression of 

conditioned odour preference. In fact, no significant correlations were found between 

CS+ preference and cFos expression at the cingulate (r=0.03, p=0.87), the prelimbic 

(r=-0.27, p=0.172), the infralimbic (r=-0.35, p=0.07) or the orbitofrontal (r=-0.31, 

p=0.12) cortices.  

Examples of correlations between CS+ preference and cFos expression in the 

cerebellum and prefrontal cortex are shown in Figure 8. 

 

Discussion 

The general purpose of the present research was to address the question as to 

whether the cerebellum is a part of the neuronal systems that sustain processes 
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underlying drug seeking and taking behaviours. Specifically, we studied whether 

cerebellar neuronal activity is related to cocaine-induced conditioned preference 

memories. Although it has been largely ignored in preclinical research of the drug abuse 

field, human neuroimaging studies have systematically found enhancements of glucose 

metabolism in the cerebellum when cocaine and alcohol addicts are exposed to drug-

associated cues (Grant et al. 1996; Wang et al. 1999; Schneider et al. 2001; Bonson et al. 

2002; Volkow et al. 2003; Anderson et al. 2006). This cerebellar over-activity 

concurred with reductions in neuronal metabolism of the prefrontal cortex and 

substantia nigra (Anderson et al. 2006). So, the role of the cerebellum in drug-oriented 

behaviour deserves more attention and further research, a conclusion further stressed 

when attending to the fundamental role of this structure for consolidation and storage of 

long-term emotional and instrumental memories (Sacchetti et al. 2002; Sacchetti et al. 

2004; Callu et al. 2007). 

For this attempt, we trained mice to acquire a conditioned preference response to 

an odour associated with cocaine injections. We found that four and eight cocaine-odour 

pairings produced a robust conditioning in most of the animals, hence allowing us to 

validate this odour conditioning protocol for cocaine. Remarkably, enhancing the 

number of odour-cocaine pairings pushed the preference scores distribution up rather 

than increasing the individual highest preference values (Figure 3). Brabant, 

Quertemont & Tirelli (2005) observed similar results regarding the magnitude of 

cocaine-induced place preference. Both findings fit with current notions of conditioning 

as mediated by an evidence-based decision process, becoming an all-or-nothing 

phenomenon at the individual level (Gallistel et al. 2004). 

Because we observed individual differences in the susceptibility for developing 

conditioned preference for cocaine, in a second step, regardless of their number of 
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pairings during the training phase, we randomly selected mice either expressing a clear 

CS+ preference (>60%, conditioned group) or not showing such an acquired preference  

(<55%, non-conditioned group). We also included two additional control groups: the 

saline group and the unpaired group.  They allowed us to dissect the pharmacological 

effects of cocaine administration and to provide the most proper control for the 

acquisition of a Pavlovian association between the CS and the unconditioned stimulus 

(UCS). We then explored the relationship between the acquired preference for the CS+ 

and neuronal activation (as measured by cFos expression) in cerebellar and 

prefrontocortical areas. The most remarkable result is the higher cerebellar neuronal 

activity in animals expressing cocaine-induced conditioned preference as compared to 

that observed in subjects from all the other groups. This effect was more clearly 

observed in the apical region of the granule cell layer in all lobules, but it was especially 

prominent in the posterior lobules VIII, IX and X. The cFos expression in these neurons 

in the apical region correlated with cocaine-induced odour preference (Fig 8, 9). 

Interestingly, these cerebellar lobules received dopamine projections from VTA 

(Ikai et al 1992; Melchitzky and Lewis 2000). Moreover, supporting a functional 

relevance of DA transmission, dopamine-signalling proteins have also been found 

in the same cerebellar areas (Delis et al. 2008; Kim et al. 2009). In accordance, in a 

representative sample of conditioned animals we observed about a 280% increase 

in DAT expression in lobule X as compared to saline mice. However, the non-

conditioned group showed smaller increase (56%). 

The medial region yielded less consistent results. Nevertheless, it is worth noting that 

neuronal activity in the medial region seems to be related to contingent CS-US 

administration as lower activity was seen in medial neurons of the unpaired group as 

compared to the other groups, which always received cocaine or saline contingently 
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associated with the same odour.  We also evaluated activity in Purkinje neurons and 

observed a higher number of cFos+ Purkinje nuclei in posterior vermal lobules of the 

conditioned group. Moreover, activity of Purkinje cells in the apical region moderately 

correlated with the preference for the cocaine-paired stimulus in the same lobules. To 

date there is not available information describing the specific role of apical and medial 

regions in the cerebellar cortex or showing cellular differences between these two areas. 

Further research is needed to elucidate this functional specificity.   

Previous work has identified the pattern of cFos expression in the rat cerebellum after a 

repeated treatment with cocaine (Klitenick, Tham & Hans 1995) or amphetamine (Yin 

et al 2010). Both psychostimulant drugs produced an increase in Fos+ immunoreactivity 

at the granule cell layer of the vermis, although cFos+ immunostaining in Purkinje cells 

was sparse. The special relevance of our results is upheld for the finding that this 

neuronal activity was related to emotional and sensory memories (olfactory) acquired 

during repeated experience with cocaine, rather than cocaine treatment itself. In this 

regard, olfactory stimulation with ethanol in alcoholic patients under detoxification, but 

not in normal healthy controls, activates the cerebellum, right amygdala, hippocampus 

and insula (Schneider et al. 2001). This cerebellar activation was not observed in 

response to neutral cues, which is important because it precludes the possibility that the 

cerebellar activations are due to sensorial or motor processing not related to drug 

experience. Similarly, Anderson et al. (2006) found that cocaine-associated cues 

induced an enhancement of neuronal activity in the vermal lobules of human cocaine 

addicts, this increase being especially noteworthy in the lobules VIII and IX (but also in 

lobules II and III).  

Unlike the cerebellum, neuronal activity in the prefrontal cortex only allowed to 

distinguish saline treated groups from cocaine-treated groups, no matter if cocaine-
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induced preference was acquired or not. Thus, subjects belonging to each one of the 

different cocaine-treated groups showed a similar number of cFos positive neurons in 

different cortical regions, being in all cases higher than that observed in saline-treated 

animals and not showing any statistically significant correlation towards their CS+ 

preference scores. This pattern of results was especially clear in the cingulate cortex and 

seems to be in agreement with previous data indicating that activity in this brain area is 

higher in cocaine than in saline-treated animals subjected to a conditioned place 

preference paradigm (CPP) (Zombek et al. 2008), but it is not different between paired 

and unpaired groups of mice trained in a Pavlovian conditioning protocol (Nordquist et 

al. 2003). Data indicating that lesions of the cingulate cortex do not affect cocaine, 

amphetamine or morphine-induced CPP (Tzschentke & Schmidt 1999) seem to provide 

further support to the notion that the observed differences between groups on cFos 

staining at the cingulate cortex are probably unrelated to the acquisition/ retrieval of 

CS+ preference. On the other hand, a similar pattern of results was also reproduced in 

the prelimbic cortex, although in this case, entering in apparent contradiction with the 

results observed at the lesional study of Tzschentke and Schmidt (1999). Finally, in the 

infralimbic and orbitofrontal cortex a non-significant trend towards reduced cFos 

staining was observed in the conditioned group as compared to the non-conditioned and 

the unpaired group as well as a trend towards an inverse correlation between the number 

of cFos positive neurons and the preference for the CS+. Although these trends did not 

reach statistical significance these observations seem to be in agreement with the 

inverse correlation between cocaine-induced CPP preference and cFos in different 

regions of the prefrontal lobe, including the orbitofrontal cortex, found by Zombek et al. 

(2008) as well as with the proposed inhibitory role of the infralimbic cortex in drug-

seeking behaviours (Peters, LaLumiere &  Kalivas  2008). Nevertheless, it should be 
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taken into account that the last cocaine injection took place 48 hours before the 

preference test. Hence, cFos expression showed by the cocaine-treated groups could be 

induced by reactivation of memories about cocaine effects other than those contingently 

connected to preference. Also, it could be related to withdrawal symptoms after 

cessation of cocaine regimen. 

Supporting the present findings, previous evidence suggests that the vermis 

cerebellum might be a key structure for rewarding and aversive memory. Indeed, in a 

previous study, we observed higher cFos expression in the granule cell layer of female 

rats allowed to pace copulate (rewarding condition) as compared to females that 

copulated in nonpaced conditions (non rewarding) or females in pacing chambers with 

no male to copulate with (Paredes-Ramos et al. 2011). Moreover, consolidation and 

expression of emotional memories, which are reactivated in an automatic or implicit 

mode, seem to be controlled by a circuit that includes the vermis cerebellum (Sacchetti 

et al. 2002; Sacchetti et al. 2004; Anderson et al. 2006; Bonson et al. 2002). 

Accordingly, vermal connectivity situates the cerebellum within the circuitry 

responsible for acquiring, maintaining and expressing drug-induced conditioned 

memories (Snider et al. 1976; Heath et al. 1978; 2010; Ikai et al. 1992; Ikai et al. 1994; 

Schweighofer et al. 2004; Rossi et al. 2008; Bostan et al. 2010; Zhu et al. 2011; Bernard 

et al. 2012). The involvement of the cerebellum in emotional behaviour has raised the 

question of whether this structure is also a site for storage of plasticity related to 

learning and memory of emotional processes (Sacchetti, Scelfo & Strata 2005; Strata, 

Scelfo & Sacchetti 2011). It is very likely that the pattern of cFos expression observed 

in the vermis indicates the activation of local neuroplasticity mechanisms required for 

consolidation and automaticity. Studies on fear memory have supported this conclusion 

as plasticity changes described within the vermal cerebellar cortex domains strictly 
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correlated with associative processes, but they were absent in unpaired groups 

(Sacchetti et al. 2005, Zhu et al. 2006; Zhu et al. 2007). 

Why is the vermis cerebellum important for conditioning?  Conditioning is a 

type of learning which, in order to be adaptive, has to allow subjects to predict the 

occurrence of UCS and to advance the goal-oriented response (Domhan 2005). Thus, 

what has to be learnt is not only the relationship between stimuli but also a precise 

temporal relationship between them (Ivry et al. 2002). Interestingly, it seems that one of 

the main functions of the vermis is related to the ability to provide correct predictions 

about the temporal relationship between sensory stimuli (Timmann et al. 2010). The 

vermis cerebellum processes multimodal sensory inputs (Molinari, Filippini & Leggio 

2002) and that multimodal sensory processing seems to be closely related to selective 

attention (Allen et al. 1997), involving context-dependent changes in sensorimotor sets 

to facilitate motor outputs (Bischoff-Grethe & Ivry & Grafton 2002). These capacities 

may be very relevant for drug seeking and taking, since a ‘hyperattentive state’ towards 

the salient drug-related stimuli is a core characteristic of the drug-induced behaviour, 

especially once an addictive state has been instituted (Franken et al. 2003).  

Nevertheless, other explanations for the cerebellar cFos expression might arise 

from the present data and should not be overlooked. On one hand, mice showing 

cocaine-induced conditioned preference could present a conditioned locomotor response 

during the preference test that increased cerebellar cFos expression. Studies on 

functional topography in the cerebellum have suggested that the vermis, which has 

bidirectional projections to motor cortices and the spinal cord, is mainly involved in 

balance and head and eye movements (Cerminara & Apps 2011). In addition, posterior 

cerebellar vermal lobules control locomotor functions (Barik & Beaurepaire 2005). 

However, when we compared locomotion scores during the test day we did not find any 
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significant difference between groups. On the other hand, it seems that repeated long-

term cocaine treatment induced Purkinje morphological alterations (Barroso-Moguel et 

al. 2002), probably due to hypoperfusion and ischemic lesions that could be 

accompanied by over-activity of the granule cells. Nonetheless, if it supposes to be the 

case, we should have found no differences in cFos+ expression between cocaine-treated 

groups, as there is no reason to assume any relationship between conditioning and 

Purkinje alterations.  

In summary, the relevance of incentive salience gained by a stimulus associated 

with cocaine is accompanied by an increase in activity of the apical regions of the 

vermal cerebellar cortex (Fig 9). The present results show similar findings to those of 

human neuroimaging studies and provide a further description of cerebellar 

involvement in circuitry that has sustained drug-associated plasticity changes. Future 

causal research will be essential to elucidate the role of the cerebellum in plasticity 

alterations leading to compulsive behaviour and addiction-like behaviour.  
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 Treatment Group Number of   Pairings 

 

Cerebellar lobules 

 

 

F3,21 

 

p value 

 

F1,21 

 

p value 

II 5.84 .004 1.51 .231(NS) 
III 8.78 <.001 0.67 .423 (NS) 
V 10.22 <.001 0.36 .556 (NS) 

VI 15.28 <.001 0.41 .521 (NS) 
VII 10.73 <.001 2.59 .128 (NS) 
VIII 15.03 <.001 0.002 .962 (NS) 
IX 17.14 <.001 6.27 .022  

X 17.29 <.001 0.68 0.416 (NS) 
 

Table 1.- Main outcomes of univariate ANOVAs assessing the levels of the cFos+ 

staining in the apical region of the granule cell layer in each cerebellar lobule. As can be 

seen, the treatment group factor had a significant effect on the number of cFos positive 

neurons in all lobules, whereas the number of parings received at the training phase 

(which was used as a covariate in all statistical analyses) only yielded a significant 

effect at lobe 9. Significant p values are in bold; NS stands for non-significant effects. 
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Table 2.- Correlational analysis between the CS+ preference and the number of cFos 

positive neurons at the apical region of the granule cell layer in each cerebellar lobule. 

As can be seen, CS+ preference was significantly and positively correlated to the levels 

of cFos expression in all cases, reaching maximal correlation and statistical significance 

at lobules VI, VIII, IX and X. Significant p values are in bold. 

 

Cerebellar lobules 

 

 

Pearson’s r 

 

p value 

II .48 .012 

III .59 <.001 

V .50 .009 

VI .63 .001 

VII .60 .001 

VIII .68 <.001 

IX .66 <.001 

X .64 <.001 
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Table 3.- Main outcomes of univariate ANOVAs estimating the levels of the cFos 

expression in the medial region of the granule cell layer in each cerebellar lobule. As 

can be seen, the treatment group factor had a significant effect on the number of cFos 

positive neurons in all lobules. However, the number of parings at the training phase 

(which was used as a co-variate in all statistical analyses) did not yield any significant 

effect. Significant p values are in bold; NS stands for non-significant differences. 

 

 

 Treatment Group Number of   Pairings 

 

Cerebellar lobules 

 

 

F3,21 

 

p value 

 

F1,21 

 

p value 

II 4.53 .012 1.61 .216 (NS) 
III 8.77 <.001 2.99 .098 (NS) 

V 8.82 <.001 1.60 .218 (NS) 
VI 8.75  <.001 0.40 .531 (NS) 
VII 14.05 <.001 0.44 .511 (NS) 
VIII 8.95 <.001 1.47 .238 (NS) 
IX 11.13 <.001 0.001 .933 (NS) 

X 5.49 .005 0.79 .382 (NS) 
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Table 4.- Descriptive statistics (mean + SEM) corresponding to the levels of the cFos+ 

labeling at the apical (top) and medial (bottom) regions of the granule cell layer in each 

lobule in the vermis cerebellum. Capital letters indicate a significant difference (p<0.01), 

whereas lowercase letters (a, b, c, d) were used when the same differences were reached 

at a lower significance level (p<0.05). These differences were assessed by means of a 

one-way MANOVA, followed by univariate ANOVAs and Tukey HSD tests when 

corresponding (see text for details). At the apical region (top), the conditioned group 

showed significantly higher cFos+ expression than the other groups, thus indicating a 

clear relationship with the CS+ preference that was corroborated with the results of the 

correlational analysis provided at Table 2. On the other hand at the medial region, 

differences seem to separate the unpaired group from all the others, suggesting that 

cFos+ staining in this region could be more related to CS-US contingency than to CS+ 

preference (see discussion section).  

 SALINE 

(n=6) 

UNPAIRED 

(n=7) 

NON-

CONDITIONED 

(n=6) 

CONDITIONED 

(n=7) 

Lobule II 16.41 + 2.60 13.41 + 3.93 14.50 + 2.66 30.83 + 3.97ABC 
Lobule III 14.92 + 4.20 14.57 + 4.73 13.50 + 1.31 37.67 + 4.34ABC  
Lobule V 14.83 + 2.75 12.14 + 4.87 13.00 + 1.67 36.00 + 3.80ABC 
Lobule VI 16.00 + 2.12 10.30 + 3.51 16.00 + 3.44 38.00 + 3.39ABC 
Lobule VII 16.5 + 4.24 8.00 + 3.01 17.17 + 5.36 36.00 + 2.21ABC 
Lobule VIII 17.00 + 2.69 3.85 + 1.38 15.83 + 3.44 37.10 + 5.53ABC 
Lobule IX 17.33 + 2.62 5.64 + 2.04 14.33 + 1.70 33.85 + 4.29ABC 
Lobule X 14.33 + 2.75 7.42 + 2.95 13.33 + 2.30 36.17 + 3.92ABC 

 SALINE 

(n=6) 

UNPAIRED 

(n=7) 

NON-

CONDITIONED 

(n=6) 

CONDITIONED 

(n=7) 

Lobule II 25.75 + 3.39  12.41 + 3.36D 25.83 + 5.48 33.17 + 4.56  
Lobule III 28.08+ 2.53 9.15 +3.18ACD 23.83 + 2.93 29.41  + 3.80 
Lobule V 20.33+ 2.07d 10.29 +4.06cD 26.00 + 4.18 35.67 + 3.79 
Lobule VI 26.00 + 1.59 7.43 +2.42ACD 24.5 + 3.98 28.83 + 4.43 
Lobule VII 27.33 + 4.63 3.07 +1.10ACD 26.17 + 4.21 34.20 + 4.27 
Lobule VIII 26.00 + 5.57 3.57 +2.05ACD 24.17 + 2.34 24.33 + 3.85 
Lobule IX 23.83+ 4.17 3.71 +1.57ACD 25.00 + 3.22 26.22 + 3.82 
Lobule X 25.17+ 2.38 6.57 +2.62ACD 20.58 + 5.05 23.00 + 4.02 
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Table 5.- Correlations between the CS+ preference and the number of cFos+ neurons in 

the medial region of the granule cell layer in each cerebellar lobule. As can be observed, 

CS+ preference was significantly and positively correlated to the levels of cFos 

expression in most of the lobules, although the correlation indexes were in general 

lower to those observed in table 2 and, in this case, the maximal correlation was found 

at lobe 3. Significant p values are in bold; NS stands for non-significant differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cerebellar lobules 

 

 

Pearson’s r 

 

p value 

II .47 .014 

III .61 .001 

V .53 .005 

VI .46 .016 

VII .54 .004 

VIII .36      .066 (NS) 
IX .49 .010 

X .35    .075(NS) 
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 Treatment Group Number of   Pairings Preference Correlation 

 

Cerebellar 

lobules 

 

 

F3,21 

 

p value 

 

F1,21 

 

p value 

 

Pearson’s r 

 

p value 

II 
Apical 
Medial 

 
2.21 
1.44 

 
.116 (NS) 
.257 (NS) 

 
0.35 

0.0001 

 
.559 (NS) 
.989 (NS) 

 
-.14 
-.20 

 
.478(NS) 
.316 (NS) 

III 
Apical 
Medial 

 
3.03 
0.87 

 
.051 (NS) 
.469 (NS) 

 
0.007 
0.058 

 
.933 (NS) 
.811 (NS) 

 
.07 
-.10 

 
.700(NS) 
.595 (NS) 

V 
Apical 
Medial 

 
4.09 
1.93 

 
.019 

.155 (NS) 

 
1.43 
0.09 

 
.244 (NS) 
.760 (NS) 

 
-.04 
-.14 

 
.844(NS) 
.481(NS) 

VI 
Apical 
Medial 

 
3.91 
5.01 

 
.022 

.008 

 
0.08 
0.99 

 
.771 (NS) 
.330 (NS) 

 
.009 
.22 

 
.967(NS) 
.273 (NS) 

VII 
Apical 
Medial 

 
1.88 
0.504 

 
.162 (NS) 
.683 (NS) 

 
0.04 
0.02 

 
.162 (NS) 
.876 (NS) 

 
.25 

.078 

 
.201(NS) 
.708 (NS) 

VIII 
Apical 
Medial 

 
4.85 
1.71 

 
.010 

.683 (NS) 

 
0.97 

0.342 

 
.333 (NS) 
.564 (NS) 

 
.45 

-.242 

 
.021 

.232 (NS) 
IX 

Apical 
Medial 

 
3.38 
1.45 

 
.037 

.256 (NS) 

 
1.03 
0.34 

 
.319 (NS) 
.564 (NS) 

 
-.08 
.049 

 
.682(NS) 
.810(NS) 

X 
Apical 
Medial 

 
2.26 
2.23 

 
.110(NS) 
.113(NS) 

 
0.04 
0.41 

 
.429(NS) 
.524(NS) 

 
-.05 
-.20 

 
.775(NS) 
.316(NS) 

 

Table 6.- Results of univariate ANOVAs assessing the levels of the Purkinje cFos+ labeling in 

the apical and medial regions in each cerebellar vermis lobule. The treatment group factor 

produced a significant effect on the number of cFos+ neurons in the apical regions of lobules V, 

VI, VIII and IX as well as in the medial region of lobe VI. Conversely, the number of pairings 

(which was used as a co-variate in all these analyses) did not yield any significant effect. The 

table also shows that cFos+ expression in Purkinje neurons was not clearly correlated with 

preference for the CS+ and only a moderate correlation was found when considering the number 

of cFos+ neurons in the apical region of lobe VIII. Significant p values are in bold; NS stands for 

non-significant effects. 
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 SALINE 

(n=6) 

UNPAIRED 

(n=7) 

NON-

CONDITIONED 

(n=6) 

CONDITIONED 

(n=7) 

Lobule II 6.00 + 1.48 13.13 + 3.93 4.33 + 2.06 11.41 + 2.47 
Lobule III 7.08 + 1.81 14.57 + 4.73 3.67 + 1.81 14.41 + 2.05 
Lobule V 2.67 + 1.25 12.14 + 4.87 1.33 + 0.95 13.58 + 2.60c 
Lobule VI 3.00 + 1.29 10.3 + 3.51 1.83 + 1.13 11.86 + 2.63 
Lobule VII 2.33 + 1.49 8.00 + 3.01 1.33 + 0.98  5.58 + 2.17 
Lobule VIII 3.50 + 0.84 3.85 + 1.38 2.83 + 1.60 9.40 + 1.65abc 
Lobule IX 1.17 + 0.65 5.64 + 2.04 0.5 + 0.34 5.32 + 1.58 
Lobule X 0.83 + 0.54 7.42 + 2.95 1.33 + 0.88 6.83 + 2.79 

 

 SALINE 

(n=6) 

UNPAIRED 

(n=7) 

NON-

CONDITIONED 

(n=6) 

CONDITIONED 

(n=7) 

Lobule II 8.33 + 2.67 12.14 + 3.36 3.67 + 3.08 8.75 + 1.87 
Lobule III 4.41 + 2.25 9.14 + 3.18 4.5 + 2.39 5.25 + 1.28 
Lobule V 2.83 + 1.79 10.28 + 4.06 2.17 + 1.24 8.58 + 2.86 
Lobule VI 2.83 + 1.37 7.42 + 2.42 3.00  + 1.50 13.33 + 2.92ac 
Lobule VII 0.17 + 0.16 3.07 + 1.10 1.00 + 1.00 3.81 + 0.89a 
Lobule VIII 2.17 + 0.79 3.57 + 2.05 1.33 + 0.80 2.57 + 0.75 
Lobule IX 1.48 + 0.79 3.71 + 1.56 0.83 +  0.83 4.39 + 1.85 
Lobule X 1.17 + 0.83 6.57 + 2.62 1.00 + 0.81 3.43 + 1.52 

 

Table 7.- Descriptive statistics (mean + SEM) corresponding to the number of cFos+ 

Purkinje neurons at the apical (top) and medial (bottom) regions of each lobule. Capital 

letters indicate a significant difference (p<0.01) towards the saline (A), unpaired (B), 

non-conditioned (C) or conditioned group, whereas lowercase letters (a, b, c, d) were 

used when the same differences were reached at a lower significance level (p<0.05). 

These differences were assessed by means of a one-way MANOVA, followed by 

univariate ANOVAs and Tukey HSD tests when corresponding (see text for details). In 

this case, very few statistically significant differences between groups were found and, 

accordingly, no clear association between cFos+ Purkinje cells and preference for CS+ 

could be found. 
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 SALINE 

(n=6) 

UNPAIRED 

(n=8) 

NON-

CONDITIONED 

(n=6) 

CONDITIONED 

(n=7) 

CINGULATE 23.71 +5.79BCD 101.26 +13.13 145.96 + 17.77 97.62 + 12.94 
PRELIMBIC 54.58 + 14.60B 149.87 + 19.63 109.14  + 16.86 95.83 + 10.28 

INFRALIMBIC 50.22 + 14.11b 146.78 +32.30 114.30 + 18.10 69.09 + 10.41 
ORBITOFRONTAL 42.58 + 3.74b 138.65 + 25.79 120.17  + 17.02 71.07 + 22.00 

 

Table 8.- Descriptive statistics (mean + SEM) corresponding to the levels of the cFos+ 

staining at different cortical areas of subjects belonging to each treatment group. Capital 

letters indicate a significant difference (p<0.01) towards the saline (A), unpaired (B), 

non-conditioned (C) or conditioned group, whereas lowercase letters (a, b, c, d) refers to 

lower significance level (p<0.05). These differences were assessed by means of a one-

way MANOVA, followed by univariate ANOVAs and Tukey HSD tests (see text for 

details). As is readily observable from the table, differences in cFos+ expression were 

mainly associated with differences between the saline- vs. the cocaine-treated groups 

(this pattern is clearly observable at the cingulate cortex and more inconsistently present 

in the rest of cortical areas). Accordingly, no clear association towards CS+ preference 

was found (see results section for further details).  
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Figure 1A: Examples of microphotographs of cFos+ peroxidative staining in the 

cerebellum (panels A-H) (40x; scale bar = 50 µm) and the infralimbic cortex (I-L) (20x; 

scale bar = 50 µm). Saline (A-E-I), unpaired (B-F-J), non-conditioned (C-G-K), or 

conditioned (D-H-L). As the figure depicts cFos immunoreactivity was greater in the 

granule cell layer in the conditioned group (A-D). High-magnification image (100x) 

depicting cFos+ immunostaining in Purkinje nucleus (scale bar = 10 µm) (E-H). ML: 

molecular layer; GCL: granule cell layer; PL; Purkinje layer; PN: Purkinje neuron. 

Figure 1B: Confocal images showing an example of cerebellar cFos 

immunofluorescence from conditioned and non-conditioned animals (magnification 

150x). According to what is shown in peroxidative immunostainig, double staining 

(yellow) for cFos (red) and calbindin (green) was observed in Purkinje soma and 

dendrites but axons devoid of cFos immunoreactivity. Also, cFos (red) was presented in 

granule cells (GC), which did not express calbindin. As expected, cFos 

immunoreactivity seems to be greater in the conditioned than in the non-conditioned 

animal. GC: granule cell; PN: Purkinje neuron. Figure1C: Representative 

immunolabelling for dopamine transporter (DAT) in lobule X (magnification 20x; 

scale bar= 50 µm). 

 

Figure 2: Effect of the number of pairings on the acquired preference for an odour 

associated with cocaine administration. Panel A depicts the mean + SEM of the 

percentual preference for cocaine-associated odour on the test day as a function of the 

number of cocaine pairings at the training phase (*p<0.05). Panel B represents the 

distribution of the individual scores of the percentual CS+ preference on the test day. As 

can be readily observed, a higher number of pairings was associated with an upward 
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displacement of the subjects’ distribution and with a reduction of variability in their 

preference scores rather than with a change of the maximal values.  

 

Figure 3: Preference for the CS+ in the experimental groups used for the study of the 

cFos staining in prefronto-cortical and cerebellar regions. The “conditioned” and “non-

conditioned” groups were randomly picked up from those having a preference higher/ 

lower than the arbitrary 60% cut off point, respectively. The “saline” and the “unpaired” 

groups were specifically designed to provide matched controls for drug and contingency 

effects (see text for further details). Capital letters indicate a significant difference 

(p<0.01) towards the saline (A), unpaired (B), non-conditioned (C) or conditioned 

group. 

 

Figure 4: Group effects on cFos+ staining in the apical region of the granule cell layer 

(black square) for each cerebellar vermis lobule. Each panel corresponds to a different 

lobule for which the mean + SEM of cFos positive neurons is depicted. Capital letters 

indicate a significant difference (p<0.01) towards the saline (A), unpaired (B), non-

conditioned (C) or conditioned group, whereas lowercase letters (a, b, c, d) were used 

when the same differences were reached at a lower significance level (p<0.05). 

Additional details on these data can be found at the top panel of table 4. 

 

Figure 5: Group effects on cFos staining at the medial region of at the granule cell layer 

(black square) for each cerebellar vermis lobule. Each panel corresponds to a cerebellar 

lobule for which the mean + SEM of cFos positive neurons is depicted. Capital letters 

indicate a significant difference (p<0.01) towards the saline (A), unpaired (B), non-

conditioned (C) or conditioned group, whereas lowercase letters (a, b, c, d) were used 
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when the same differences were reached at a lower significance level (p<0.05). 

Additional details on these data can be found at the bottom panel of table 4. 

 

Figure 6: Group effects on cFos expression in the apical and medial regions of the 

Purkinje cell layer of the lobule VI (panel A) and lobe VII (panel B) of the vermis 

cerebellum. The results for these two lobules are shown because they were the only 

ones at which statistically significant differences between groups were found (see table 

3 for further details). Capital letters indicate a significant difference (p<0.01) towards 

the saline (A), unpaired (B), non-conditioned (C) or conditioned group, whereas 

lowercase letters (a, b, c, d) were used when the same differences were reached at a 

lower significance level (p<0.05) (see tables 6, 7). 

 

Figure 7: Group effects on cFos+ staining in the different cortical regions of the 

prefrontal cortex. Panels display the mean + SEM of cFos positive neurons at the 

cingulate (A), prelimbic (B), infralimbic (C) and orbitofrontal (D) cortices of each 

treatment group. Capital letters indicate a significant difference (p<0.01) towards the 

saline (A), unpaired (B), non-conditioned (C) or conditioned group, whereas lowercase 

letters (a, b, c, d) were used when the same differences were reached at a lower 

significance level (p<0.05). Additional details on these data can be found table 8. 

  

Figure 8: Representative correlations between c-Fos expression in the apical region of 

the granule cell layer and preference for CS+ obtained. (A) Lobule III, (B) Lobule VIII,  

(C) cingulate cortex, (D) infralimbic cortex.  
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Figure 9: Schematic representation of the hypothetical functional role of different 

regions in the cerebellar cortex.   
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Fig 1 
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