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ABSTRACT

Introduction: The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter
aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has
not yet been incorporated into systematic surveillance programs.
Methods: We conducted a multicentre retrospective observational study analysing all ESCPM strains iso-
lated from blood cultures in 27 European hospitals over a 3-year period (2020-2022). Diagnostic ap-
proach, epidemiology, and antimicrobial susceptibility were investigated.
Results: Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was
the predominant technique for bacterial identification. Susceptibility to new B-lactam/g-lactamase in-
hibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and
29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and
S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-
generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%,
4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mech-
anism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of
the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae com-
plex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance
profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes
in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC
resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both
carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates ex-
hibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to cef-
tazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin
emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying
both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%).
Conclusions: This study presented a current analysis of ESCPM species epidemiology in Europe, providing
insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and
diagnostics.
© 2024 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

date COVID-19 cases, and disruptions to antimicrobial stewardship
programs emerged as the primary drivers behind the surge in an-
timicrobial resistance during the pandemic [3]. The response to

Several reports have highlighted how the SARS-CoV-2 pandemic
has exacerbated a long-standing antimicrobial resistance crisis, set-
ting back progress and challenging planned mitigation efforts [1,2].
The overreliance on empirical antibiotic use, even in the face of
a low prevalence of bacterial coinfections and superinfections in
COVID-19 patients, constant hospital reorganizations to accommo-

this resurgence in antimicrobial resistance demanded a transna-
tional approach with actions at various levels, including a criti-
cal focus on strengthening antimicrobial resistance surveillance [2].
In Europe, the European Antimicrobial Resistance Surveillance Net-
work (EARS-Net) plays a pivotal role in monitoring the antimicro-
bial susceptibility of eight bacterial pathogens commonly associ-
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ated with human infections, which include Escherichia coli, Kleb-
siella pneumoniae, Pseudomonas aeruginosa, Acinetobacter species,
Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus fae-
calis, and Enterococcus faecium [4]. Within Enterobacterales, the ES-
CPM species (Enterobacter species including Klebsiella aerogenes -
formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii
complex, Providencia species and Morganella morganii) are notably
absent from systematic surveillance programs, despite their in-
volvement in a wide spectrum of community- and healthcare-
associated infections. However, understanding their antimicrobial
resistance mechanisms is recognised as imperative [5]. Indeed,
ESCPM species harbour chromosomally-encoded inducible AmpC
B-lactamases and can easily segregate stably de-repressed mu-
tants able to overexpress these f-lactamases and hydrolyse mul-
tiple antibiotics [5-7]. The optimal approach to treat infections
caused by these pathogens remains a subject of ongoing debate
[8,9], with carbapenems and cefepime emerging as the most fre-
quently recommended options [5,10-16]. Furthermore, multiple re-
sistance mechanisms can coexist, including the production of S-
lactamases (such as extended-spectrum S-lactamases - ESBLs and
carbapenemases) and compromised outer membrane permeability
[17]. Notably, Enterobacter species featured among the top three
species displaying reduced carbapenem susceptibility in a French
epidemiological study based on 2012-2014 data [18]. Additionally,
a recent global surveillance program revealed an increasing preva-
lence of metallo B-lactamase (MBL) producers among meropenem-
non-susceptible Enterobacter species and Citrobacter species iso-
lates [19-21]. Furthermore, antibiotic prescribing practices and the
resulting selective pressure on bacteria may have influenced epi-
demiological shifts. This was evidenced in studies where the use
of ceftazidime/avibactam may have contributed to the emergence
of MBL producers in Enterobacterales [22]. The utilization of third-
generation cephalosporins (3GC) also poses a non-negligible risk
for resistance development, particularly in Enterobacter species, K.
aerogenes, and C. freundii complex [7,16]. Recognizing the chal-
lenges in reporting antimicrobial susceptibility and treating ES-
CPM infections, our study sought to provide insights to address
the issue of antimicrobial resistance in Europe. We investigated the
epidemiology and antimicrobial susceptibility of ESCPM organisms
isolated from blood cultures (BCs) during the initial three years of
the SARS-CoV-2 pandemic in a large cohort of European hospitals.

2. Methods
2.1. Study design

We conducted a multicentre retrospective observational study,
encompassing all consecutive ESCPM species isolates detected from
BCs of hospitalised patients in 27 European hospitals across 14
countries, with a cumulative bed capacity of 35 000 (Figure 1).
Data were collected between 1 January, 2020, and 31 December,
2022. Duplicate isolates obtained within a 20-day interval from the
same patient and with the same antibiotic susceptibility testing re-
sults were considered as part of a single positive BC episode and
thus excluded from the analysis.

2.2. Survey on the diagnostic approach to ESCPM species

We conducted a survey to assess microbiological diagnostic
practices for ESCPM species in the European centres participating
in the study. The study coordinating centre designed a question-
naire, which was distributed to all laboratories involved. The ques-
tionnaire comprised 21 questions, categorised into 2 sections (refer
to Tables S1 and S2). These questions covered various aspects, in-
cluding the type of centre (e.g., hospital type, number of hospital
beds), laboratory activities (such as the number of ESCPM species
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isolates tested and the methods used for antimicrobial suscepti-
bility testing), and technical details like the antimicrobial agents
routinely tested for ESCPM species and the screening methods for
3GC and/or combined third- and fourth-generation cephalosporins
(3GC + 4GC) and/or carbapenem-resistant ESCPM species isolates.

2.3. ESCPM species identification and susceptibility testing

For each ESCPM species-positive BC episode, we documented
the clinical setting in which the pathogen was isolated, includ-
ing emergency, medical, surgical, COVID-19 wards, ICU, and COVID-
19 ICU. We recorded the results of susceptibility testing along
with the species identification method and the clinical breakpoints
used by each institution during the study period. Antimicrobial
susceptibility testing results (MICs or inhibition zone diameters)
were interpreted in accordance with the guidelines provided by
the European Committee on Antimicrobial Susceptibility Testing
(EUCAST, version 13.1) and the Clinical & Laboratory Standards
Institute (CLSI, M100Ed33: 2023 Performance Standards for An-
timicrobial Susceptibility Testing) [23,24]. These guidelines were
also applied to identify ESBL-producing, AmpC overproducing-, and
carbapenemase-producing ESCPM strains, with confirmatory tests
for resistance mechanisms performed once the conventional an-
timicrobial susceptibility testing results became available.

2.4. Definitions

We defined the following susceptibility patterns based on EU-
CAST v. 13.1 breakpoints. 3GC susceptibility phenotype was de-
fined as a susceptibility pattern characterised by susceptibility to
3GC (cefotaxime or ceftriaxone and ceftazidime), cefepime, and
carbapenems (ertapenem, imipenem, and meropenem). 3GC resis-
tance phenotype was defined as a susceptibility pattern charac-
terised by resistance to at least one antimicrobial agent among ce-
fotaxime or ceftriaxone and ceftazidime and susceptibility to ce-
fepime and carbapenems (ertapenem, imipenem, and meropenem).
Combined 3GC + 4GC resistance phenotype was defined as a
susceptibility pattern characterised by resistance to cefepime, at
least one antimicrobial agent among cefotaxime or ceftriaxone
and ceftazidime and susceptibility to carbapenems (ertapenem,
imipenem, and meropenem). Carbapenems resistance phenotype
was defined as a susceptibility pattern characterised by resistance
to at least one antimicrobial agent among ertapenem, imipenem,
and meropenem. Susceptibility to aminoglycosides was defined as
a susceptibility pattern characterised by susceptibility to at least
one antimicrobial agent among gentamicin and amikacin. Suscep-
tibility to fluoroquinolones was defined as a susceptibility pat-
tern characterised by susceptibility to either ciprofloxacin or both
ciprofloxacin and levofloxacin.

2.5. Statistics

We presented descriptive data using absolute counts (n) and
relative percentages (%) for categorical variables. Summary statis-
tics for MIC values included the MICsq and MICgg. Summary statis-
tics for inhibition zone diameters included range and median. Data
analysis was performed using Microsoft Excel (Office 365) and
Python 3.10.

3. Results
3.1. Diagnostic approach to ESCPM species around Europe
ESCPM species identification was primarily conducted using

Vitek-2 (bioMérieux, Marcy I'Etoile, France) for biochemical iden-
tification, Vitek MS (bioMérieux, Marcy I'Etoile, France), or Bruker
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Fig. 1. EuESCPM collaborative centres: geography, bed capacity, and number of isolates.
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Biotyper (Bruker Daltonics GmbH, Bremen, Germany) for MALDI-
TOF mass spectrometry-based identification (refer to Table S1).
Susceptibility testing results were obtained through various meth-
ods, including broth microdilution commercial systems (Vitek-2,
bioMérieux, Marcy I'Etoile, France; Microscan WalkAway 96 Plus,
Beckman Coulter, Switzerland; BD Phoenix™ Becton Dickinson,
USA), gradient diffusion strip method (Etest, bioMérieux, Marcy
I'Etoile, France), and disk diffusion, following the recommendations
provided by the respective manufacturers.

Regarding antibiotic activity on ESCPM species, most cen-
tres reported routinely testing susceptibility to 3GC (100%),
cefepime (81.5%), and fosfomycin (88.9%), while susceptibility
to new pB-lactam/B-lactamase inhibitor combinations such as
ceftolozane/tazobactam and ceftazidime/avibactam was carried out
by 33.3% of them (Table S2). Fosfomycin susceptibility test was
predominantly carried out using automated broth microdilution
(62.5%) while colistin testing was primarily conducted using man-
ual broth microdilution (87%) with various kits (UMIC Colistin kit,
Biocentric, Bandol, France; MICRONAUT MIC-Strip colistin, MERLIN
Diagnostika Gmbh, Bornheim-Hersel, Germany; ComASP Colistin,
Liofilchem, Roseto degli Abbruzzi, Italy). Testing for ESBL produc-
tion based on the in vitro inhibition of ESBL activity by clavulanic
acid was carried out in 77.7% of the centres, mainly by a pheno-
typic test alone (74.1%) including combination disk test or double-
disk synergy test (65%) and automated broth microdilution (35%).
Testing for AmpC overproduction was routinely performed in 29.6%
of the centres using cloxacillin supplemented agar (bioMérieux).
Testing for carbapenemase production was carried out in 96.3%
of the centres, mainly by a phenotypic followed by genotypic test
(44.4%) or a phenotypic test alone (40.7%) as the lateral flow im-
munochromatographic assays (63.6%) targeting the main carbapen-
emase enzymes KPC, NDM, VIM, IMP and OXA-48-like (RESIST-5
0.0.K.N.V, Coris Bioconcept, Gembloux, Belgium and NG-test Carba
5, NG Biotech, Guipry, France).

Morganella
morganii % (n)

species % (n)

Providencia
2.6 (53)
2.3 (55)
2.7 (63)
2.5 (171)

Citrobacter freundii
complex® % (n)
6.1 (126)

5.5 (133)

6.4 (146)

6 (405)

Serratia marcescens
21.7 (452)
24.2 (582)

22 (503)
22.7 (1537)

Enterobacter non-cloacae

complex? % (n)
2.7 (57)
2.1 (51)
2.4 (55)
2.4 (163)

3.2. Epidemiology of ESCPM species isolated from positive blood
cultures

In this study, 6774 ESCPM isolates met the inclusion criteria
(see Table 1). Almost half of these isolates (43.9%) were identi-
fied in centres from France and Spain (refer to Table S3). The
most prevalent species were E. cloacae complex (44.8%) and S.
marcescens (22.7%) (refer to Table 1). When comparing countries,
the most frequently isolated species varied (Table S3). Overall, ES-
CPM species were predominantly identified in patients admitted
to medical wards (37.2%) and ICUs (30.9%) (Figure 2). Some cen-
tres provided data on ESCPM species identification in patients with
COVID-19 admitted to dedicated wards (refer to Figure S1). This
analysis of 3656 ESCPM isolates revealed that among COVID-19
patients, the most frequently encountered species were E. cloacae
complex, K. aerogenes, and S. marcescens in COVID-19 ICUs, and E.
cloacae complex and S. marcescens in COVID-19 wards.

Klebsiella aerogenes

% (n)
14.2 (296)

12.8 (307)
12.9 (295)
13.3 (898)

Enterobacter cloacae

complex! % (n)
44,5 (926)
443 (1062)
45.7 (1048)
44.8 (3036)

3.3. Burden of antimicrobial resistance in ESCPM species

Detailed susceptibility testing results were shown in Ta-
ble S4. Overall, ESCPM species were highly susceptible to ce-
fepime (MIC59—MICyg 1-4 mg/L; EUCAST 87.3%; CLSI 92.3%), cef-
tazidime/avibactam (MIC59—MICqg 2-8 mg/L; EUCAST 90.4%; CLSI
85.6%), ertapenem (MIC5o—MICgy 0.19-0.5 mg/L; EUCAST 90.6%;
CLSI 95.5%), imipenem (MICs59—MICyg 1-2 mg/L; EUCAST 95.6%;
CLSI 93.6%), meropenem (MIC59—MICqy 0.25-0.25 mg/L; EUCAST
97.3%; CLSI 96.4%), colistin (MIC50—MICqy 1-2 mg/L; EUCAST
95.4%; CLSI 95.6%), gentamicin (MICso—MICgqy 2-2 mg/L; EUCAST
91%; CLSI 93.4%), and amikacin (MIC59—MICyg 2-8 mg/L; EUCAST

ESCPM species positive
BC episode, n

2080
2402

2292
6774
3 Citrobacter freundii complex corresponds to C. freundii, C. braakii, C. youngae, C. portucalentis, C.gillenii, C.murliniae, C. sedlakii and C. wekmenii.Abbreviations: BC, blood culture.

1 Enterobacter cloacae complex corresponds to E. cloacae, E. asburiae, E. hormaechei, E. kobei, E. ludwigii, E. mori, and E. nimipressuralis.

2 Enterobacter non-cloacae complex corresponds to Enterobacter species not included in the Enterobacter cloacae complex.

Year

2020
2021
2022
Total

Distribution of ESCPM species positive blood culture episodes.

Table 1
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Fig. 2. Distribution of ESCPM species according to hospital ward (Marimekko plot: the width of each column represents the proportion of the ESCPM species within the
entire collection. The height of each bar represents the proportion of each ESCPM species within each hospital ward).

96%; CLSI 96.8%). Among E. cloacae complex isolates, over 90% sus-
ceptibility was achieved by imipenem (MICs9—MICgy 0.5-2 mg|/L;
EUCAST 96.5%; CLSI 96.2%), meropenem (MICso—MICqy 0.25-
0.25 mg/L; EUCAST 97.2%; CLSI 96.3%), colistin (MIC5q—MICgq 0.5-
2 mg/L; EUCAST 94.3%; CLSI 94.5%), and amikacin (MIC59—MICqq
2-8 mg/L; EUCAST 96.5%; CLSI 96.9%). Providencia species showed
the most resistant cumulative antimicrobial susceptibility profile,
with higher percentages for most antimicrobials tested. Of note,
31% of Providencia species isolates were detected in a Roma-
nian centre and characterised as carbapenemase-producers. The
most active in vitro antimicrobials against Providencia species iso-
lates were ertapenem (MIC59—MICqy 0.5-8 mg/L; EUCAST 69.1%;
CLSI 70.4%), meropenem (MIC5q—MICqy 0.5-16 mg/L; EUCAST
70.2%; CLSI 65.1%), and amikacin (MIC59—MICyg 8-64 mg/L; EU-
CAST 60.5%; CLSI 59.6%). Of note, among all ESCPM isolates,
high susceptibility rates to cefepime were observed in K. aero-
genes (MIC50—MICqg 1-8 mg/L; EUCAST 90.6%; CLSI 95.8%), S.
marcescens (MICso—MICqq 1-1 mg/L; EUCAST 96.8%; CLSI 98.5%),
C. freundii complex (MICso—MICgqy 1-1 mg/L; EUCAST 93.4%; CLSI
96%) and M. morganii (MIC5o—MICqg 1-1 mg/L; EUCAST 97%; CLSI
98.1%) while lower values were observed in E. cloacae complex
(MIC5¢g—MICgq 1-8 mg/L; EUCAST 82.3%; CLSI 88%) and Providencia
species (MICsg—MICqg 8-64 mg/L; EUCAST 57.1%; CLSI 62.1%). Like-
wise, over 90% susceptibility rates to piperacillin/tazobactam were
observed in S. marcescens (MICso—MICqy 4-8 mg/L; EUCAST 92.3%;
CLSI 95.5%) and M. morganii (MICsg—MICyg 4-8 mg/L; EUCAST 95%;
CLSI 97%).

Overall, ESCPM species displayed 3GC, combined 3GC + 4GC,
and carbapenems resistance phenotypes in 15.7%, 4.6%, and 9.5%
of the isolates, respectively (Table 2). ESBL expression, AmpC
overproduction, and carbapenemase production were detected in
6.4%, 15.8%, and 3.1% of the isolates, respectively. Among ES-
CPM species displaying carbapenems resistance phenotypes, 70.1%
(n = 451/643) was non-carbapenemase-producer (data not shown).
Among carbapenemase-producers, the laboratories involved in the
project did not provide the type of enzyme involved in the resis-
tance mechanism in the majority of the cases (55.6%, n = 114/205).
When information was available (n = 91/205), the most frequent
were VIM- (22.9%, n = 47) and OXA-48- enzymes (16%, n = 33).
KPC-, NDM-, IMI-, and multiple-carbapenemases-producers were
very rarely identified (1.5%, 2.5%, 0.5%, and 1%, respectively). E.

cloacae complex displayed ESBL production, AmpC overproduc-
tion and carbapenemase production in 11.4%, 17.1%, and 3.5% of
the isolates, respectively. K. aerogenes showed the highest rate
of both 3GC resistant phenotype (29.8%) and AmpC overproduc-
tion (32.1%), while Providencia species those of both carbapen-
ems resistance phenotype (42.7%) and carbapenemase production
(29.4%).

Among ESCPM isolates exhibiting 3GC susceptibility phenotype,
over 90% activity was shown by piperacillin/tazobactam (98.1%),
ceftolozane/tazobactam (99.6%), ceftazidime/avibactam (100%), col-
istin (93.4%), aminoglycosides (98%), fluoroquinolones (95.9%), and
sulfamethoxazole/trimethoprim (93.7%) (Table 3). Among those ex-
hibiting 3GC resistance phenotype, over 90% activity was observed
for ceftazidime/avibactam (98.2%), colistin (90.3%) as well as ce-
fepime (100%) by definition. The most active drugs against ES-
CPM isolates exhibiting combined 3GC + 4GC resistance phe-
notype were ceftazidime/avibactam (95.7%) and colistin (90.7%)
as well as carbapenems (100%) by definition, whereas suscep-
tibility to aminoglycosides, fluoroquinolones, and sulfamethoxa-
zole/trimethoprim (44.3%, 32.9%, and 36.4%, respectively) signifi-
cantly decreased in comparison with both 3GC susceptible (98%,
95.9%, and 93.7%, respectively) and resistant strains (89.6%, 87.1%,
and 84.9%, respectively). Among ESCPM isolates exhibiting car-
bapenems resistance phenotype, the most active drugs were col-
istin (85.8%) followed by ceftazidime/avibactam (66%) and amino-
glycosides (65.8%). These agents showed higher activity against
strains displaying carbapenems resistance phenotype due to a
mechanism other than the production of carbapenemase (92.9%,
82.8% and 91.1%, respectively). Among ESBL-producers, the most
active drugs were carbapenems (99.2%), ceftazidime/avibactam
(94.3%), and colistin (93%), whereas susceptibility rates to ce-
fepime, piperacillin/tazobactam, and ceftolozane/tazobactam were
20.9%, 32.2%, and 58.3%, respectively. Among AmpC overproduc-
ers, over 90% activity was shown by carbapenems (99.2%), cef-
tazidime/avibactam (98.1%), and colistin (93.8%), whereas signifi-
cantly higher activity in comparison with those observed against
ESBL-producers was shown by cefepime (84.4% vs. 20.9%), amino-
glycosides (89.9% vs. 41%), fluoroquinolones (86.7% vs. 29.3),
and sulfamethoxazole/trimethoprim (88.1% vs. 26.8%). Among
carbapenemase-producers, the most active drug was colistin
(97.8%). Among KPC-, IMI- and OXA-48 producers, the most ac-
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Table 2
Antibiotic resistance phenotypes in ESCPM species isolates according to EUCAST v. 13.1 breakpoints.
Phenotype Overall % (n) Enterobacter Klebsiella Enterobacter Serratia Citrobacter Providencia Morganella
cloacae complex' aerogenes % (n)  non-cloacae marcescens % (n) freundii complex® species % (n) morganii % (n)
% (n) complex? % (n) % (n)

3GC susceptible*
3GC resistant*

70.2 (4740/6754) 64.6 (1955/3028) 55.5 (497/895)
15.7 (1059/6754) 15.2 (459/3028) 29.8 (267/895)

66.9 (109/163)
15.3 (25/163)

88.5 (1356/1532) 72.8 (294/404)
8.1 (124/1532)  20.5 (83/404)

46.2 (79/171)
9.9 (17/171)

80.2 (450/561)
15 (84/561)

3GC + 4GC resistant® 4.6 (312/6754) 7.4 (225/3028) 3.5 (31/895) 5.5 (9/163) 1.8 (28/1532) 2.7 (11/404) 1.2 (2/171) 1.1 (6/561)
Carbapenems resistant 9.5 (643/6754) 12.8 (389/3028) 11.2 (100/895) 12.3 (20/163) 1.6 (24/1532) 4 (16/404) 42.7 (73/171) 3.7 (21/561)
ESBL-producer 6.4 (374/5832) 11.4 (297/2618) 3.1 (24/779) 4.4 (7/159) 1.9 (25/1296) 3.4 (12/349) 2.9 (4/140) 1 (5/491)
AmpC overproducers  15.8 (641/4056) 17.1 (318/1859) 32.1 (176/549) 17.7 (20/113) 4.8 (43/901) 16.5 (38/230)  13.3 (8/60) 11.1 (38/344)
Carbapenemase- 3.1 (205/6713) 3.5 (104/3009) 2.3 (21/896) 1.3 (2/154) 1.1 (16/1521) 2.5 (10/402) 29.4 (50/170) 0.4 (2/561)
producer
KPC-producer 1.5 (3/205) 1 (1/104) - 50 (1/2) - 10 (1/10) - -
VIM-producer 22.9 (47/205)  39.4 (41/104) - - 25 (4/16) 10 (1/10) 2 (1/50) -
NDM-producer 2.5 (5/205) 3.8 (4/104) 438 (1/21) - - - - -
IMI-producer 0.5 (1/205) 1(1/104) - - - - - -
OXA-48-producer 16 (33/205) 115 (12/104)  33.3 (7/21) - 18.8 (3/16) 60 (6/10) 6 (3/50) 100 (2/2)
KPC+VIM-producer 0.5 (1/205) 1(1/104) - - - - - -
KPC+NDM-producer 0.5 (1/205) - - - - 10 (1/10) - -
Not characterised ~ 55.6 (114/205) 42.3 (44/104)  61.9 (13/21) 50 (1/2) 56.2 (9/16) 10 (1/10) 92 (46/50) -
Abbreviations: 3GC, third-generation cephalosporins; 4GC, fourth-generation cephalosporins.
1 Enterobacter cloacae complex corresponds to E. cloacae, E. asburiae, E. hormaechei, E. kobei, E. ludwigii, E. mori, and E. Nimipressuralis.
2 Enterobacter non-cloacae complex corresponds to Enterobacter species not included in the Enterobacter cloacae complex.
3 Citrobacter freundii complex corresponds to C. freundii, C. braakii, C. youngae, C. portucalentis, C.gillenii, C. murliniae, C. sedlakii, and C. wekmenii.
4 Cefepime-and-carbapenem-susceptible.
5 Carbapenem-susceptible.
Table 3
Antibiotic susceptibility of resistance phenotypes in ESCPM species isolates according to EUCAST v. 13.1.
Phenotype Antimicrobial susceptibility% (n)
FEP PTZ CT CZA CARB CL! AM FQ SMX/TMP
3GC susceptible? - 98.1 99.6 100 - 93.4 98 95.9 93.7
(4135/4215)  (508/510) (554/554) (653/699) (4419/4508)  (4540/4734)  (4095/4370)
3GC resistant? - 29.8 67.6 98.2 - 90.3 89.6 87.1 84.9
(272/914) (115/170) (222/226) (187/207) (859/959) (907/1041) (830/978)
3GC + 4GC - 31.7 (78/246) 66 (35/53) 95.7 (67/70) - 90.7 (49/54) 443 32,9 36.4
resistant? (110/248) (102/310) (100/275)
Carbapenems 48.8 10.4 (65/623) 15.4 (21/136) 66 (138/209) - 85.8 65.8 53.8 53.2
resistant (300/615) (176/205) (414/629) (343/637) (313/588)
Non- 52.9 14.7 (64/437) 25.7 (18/70)  82.8 - 92.9 (92/99)  91.1 74.8 67.3
carbapenemase- (227/429) (106/128) (401/440) (302/404) (280/416)
producer
ESBL-producer 20.9 (71/340) 322 (97/301) 58.3 (28/48)  94.3 (83/88)  99.2 93 (53/57) 41 (126/307) 29.3 26.8 (94/351)
(368/371) (109/372)
AmpC 844 22.1 45.5 (25/55) 98.1 99.2 93.8 (76/81) 89.9 86.7 88.1
overproducer (521/617) (118/534) (105/107) (636/641) (490/545) (556/641) (534/606)
Carbapenemase-  20.6 (40/194) 1 (2/198) 6.7 (7/105) 33 (37/112)  27.8 (57/205) 97.8 (88/90)  36.6 (74/202) 25 (51/204)  22.4 (41/183)
producer
KPC-/IMI- 444 (12)27) - (0/35) 41.7 (5/12) 100 (22/22) 703 (26/37) 933 (14/15) 73 (27/37) 37.8 (14/37)  51.7 (15/29)
JOXA-48-
producer
MBL-producer 34 (18/53) - (0/52) - (0/19) - (0/54) 7.4 (4/54) 96.2 (25/26)  38.5 (20/52)  35.2 (19/54)  22.5 (11/49)

Abbreviations: FEP, cefepime; PTZ, piperacillin/tazobactam; C/T, ceftolozane/tazobactam; CZA, ceftazidime/avibactam; CARB, at least one carbapenem among ertapenem,
imipenem and meropenem; CL, colistin; AM, at least one aminoglycoside among gentamycin and amikacin; FQ, either ciprofloxacin or both ciprofloxacin and levofloxacin;
SMX/TMP, sulfamethoxazole/trimethoprim; 3GC, third-generation cephalosporins; 4GC, fourth-generation cephalosporins; MBL, metallo-8-lactamases.

1 Excluding colistin intrinsically resistant species.
2 Cefepime-and-carbapenem-susceptible.
3 Carbapenem-susceptible.

tive drugs were ceftazidime/avibactam (100%) and colistin (93.3%),
while colistin displayed the highest activity against MBL-producers
(96.2%).

ESCPM isolates exhibiting 3GC susceptibility phenotype, 3GC
and combined 3GC + 4GC resistance phenotypes were detected
mostly from patients admitted in medical wards (37.3%, 35.2% and
42.3%, respectively), whereas carbapenems resistance phenotype
was more frequent in critically ill patients (39.2%) (Table S5). The
same proportion was maintained in the distribution of resistance
mechanisms, as ESBL-producers and AmpC overproducers were
more frequently detected in medical ward patients (42.3% and
37.9%, respectively) while carbapenemase-producers were more

frequently detected in ICU patients (47.3%). When comparing coun-
tries, the highest rates of carbapenems resistance phenotypes were
observed in Romania, Switzerland, and Greece (39.2%, 19.9%, and
18.2% respectively) (Figure S2). The highest rates of 3GC resistance
phenotype were observed in Denmark, Italy and The Netherlands
(23.4%, 22.7%, and 21.8% respectively), whereas those of combined
3GC + 4GC resistance phenotype were mostly detected in Poland,
Croatia, and France (9.9%, 9.9%, and 7.9% respectively). Of note, the
participating centres from Germany, Denmark, and the Netherlands
did not test cefepime in their clinical routine due to internal pro-
tocols.



M. Boattini, G. Bianco, L.I. Llorente et al.
4. Discussion

This study offers a contemporary insight into the diagnos-
tic approach and epidemiology of ESCPM species in Europe dur-
ing the SARS-CoV-2 pandemic. Its findings may provide sup-
port for the development of antimicrobial and diagnostic stew-
ardship strategies, as well as the optimization of current an-
tibiotic treatments. Notable observations that can serve as a
foundation for future comparative analyses include: 1) A snap-
shot of microbiological diagnostics for ESCPM species in Europe,
with MALDI-TOF coupled to mass spectrometry being the preva-
lent method for identification. Limited routine testing for sus-
ceptibility to recently approved drugs like ceftazidime/avibactam
and ceftolozane/tazobactam, AmpC overproduction characteriza-
tion, and carbapenemase type identification in some centres. Fos-
fomycin susceptibility was predominantly determined using broth
microdilution although there are no defined recommendations
on how to test and report susceptibility to this antibiotic for
this group of bacteria. 2) E. cloacae complex and S. marcescens
emerged as the most frequently detected species, a trend also
observed among COVID-19 patients. Given the larger bed capac-
ity the overall burden of ESCPM species was most pronounced
among medical ward patients. 3) Notably, we identified relevant
antimicrobial susceptibility findings, including data on susceptibil-
ity to new B-lactam/B-lactamase inhibitor combinations but also
to piperacillin/tazobactam and fluoroquinolones.

We observed substantial rates of 3GC and carbapenems resis-
tance phenotypes, while the combined 3GC + 4GC resistance phe-
notype was less frequent. Although not characterised in all centres,
AmpC overproduction emerged as the most frequently detected
resistance mechanism, and strains with this characteristic dis-
played high susceptibility to carbapenems, ceftazidime/avibactam,
and colistin. Carbapenemase types contributing to carbapenems
resistance were provided in low number, with VIM and OXA-48
enzymes being the most frequently identified. E. cloacae complex
and Providencia species exhibited the most resistant cumulative an-
timicrobial susceptibility profiles, while K. aerogenes showed the
highest rate of both 3GC resistant phenotype and AmpC overpro-
duction. ESCPM isolates exhibiting 3GC susceptibility phenotype
displayed high susceptibility to piperacillin/tazobactam, aminogly-
cosides, and fluoroquinolones. In contrast, those displaying 3GC,
combined 3GC + 4GC resistance phenotypes and ESBL produc-
tion exhibited high susceptibility to ceftazidime/avibactam and col-
istin, besides carbapenems. Colistin was the most active agent
against ESCPM isolates (except those intrinsically resistant such as
Serratia, Providencia and Morganella) both displaying carbapenems
resistance phenotype and carbapenemase production, with these
strains being predominantly isolated in ICU patients.

Infections caused by Enterobacterales with the potential for high
AmpC B-lactamase expression pose significant challenges for diag-
nostic and antimicrobial stewardship efforts. Our survey revealed
delays in implementing susceptibility tests for recently introduced
antibiotics in clinical practice probably also due to local antimicro-
bial stewardship programs and guidelines. A probable sub-optimal
cost-effectiveness in adapting to ESCPM epidemiology the use of
workflows including lateral flow immunochromatographic assays,
which may be more suitable for the epidemiology of K. pneumo-
niae and E. coli [25] was also observed. Furthermore, the adoption
of time-consuming susceptibility tests for agents like fosfomycin or
B-lactamase characterization tests, specifically AmpC overproduc-
tion, appeared to be undervalued. This practice resulted in incom-
plete and sometimes inaccurate information [26], limiting treat-
ment options [27], emphasizing the need for guidelines in this
field. To address this, it is imperative to promptly incorporate sus-
ceptibility testing for cefiderocol [28,29] and formulations contain-
ing aztreonam and novel B-lactamase inhibitors, especially for MBL
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producers [30,31], into laboratory workflows. This proactive ap-
proach aligns with therapeutic recommendations [15] and facili-
tates the monitoring of emerging resistance trends.

EUCAST expert rules recommend microbiologists to either dis-
courage the use of 3GC (alone or in combination with aminogly-
cosides) in their reports or suppress susceptibility testing results
for ESCPM species susceptible to cefotaxime, ceftriaxone, or cef-
tazidime. This is due to the high risk of selecting AmpC dere-
pressed cephalosporin-resistant mutants during therapy. The risk
varies, classified as “high” for Enterobacter species, K. aerogenes,
and C. freundii complex, “low” or “infrequent” for M. morganii,
Serratia, and Providencia species, and “absent” when cefepime is
used [32]. It's worth noting that broad-spectrum antibiotics, in-
cluding carbapenems and cefepime, recommended for ESCPM in-
fections, have a substantial ecological impact [8] and potential tox-
icity [33]. Selecting ESCPM species may be a multifactorial process
influenced by antibiotic concentration at the infection site and the
involved species. As a result, in case of good diffusion of the an-
tibiotic on the infected site, M. morganii, Serratia, and Providencia
species might be considered candidates for definitive therapy with
3GC, which could significantly impact antibiotic consumption [8].
This has been corroborated for S. marcescens in a recent publica-
tion [9] but is still a topic of wide debate given the increased risk
of treatment failure compared with cefepime/carbapenem [22].
Our study revealed that approximately 40% of strains exhibiting
3GC susceptibility phenotype belonged to these “low risk” species.
Furthermore, E. cloacae complex, K. aerogenes, and C. freundii
complex displayed low susceptibility to cefotaxime, ceftazidime,
ceftolozane/tazobactam, and piperacillin/tazobactam. This may be
attributed to various resistance mechanisms, including decreased
outer-membrane permeability and concurrent B-lactamase synthe-
sis [34], adding complexity to the empirical selection of these
antibiotics against these species. Our study also brought atten-
tion to Providencia species and its significant burden of antimi-
crobial resistance. It is worth noting that a substantial portion
of these strains might be linked to an uncharacterised outbreak
of carbapenemase-producing strains in one of the participating
centres.

Given the substantial rates of 3GC and carbapenems resis-
tance phenotypes observed in our study, some considerations must
be also made about cefepime and new approved pS-lactam/g-
lactamase inhibitor combinations as key components of the
carbapenem-sparing strategy. Cefepime exhibited potent activity
(>90%) against most ESCPM species, except for the E. cloacae com-
plex (MIC59—MICgy 1-8 mg/L, EUCAST 82.3%; CLSI 88%), drawing
attention to its use against these species, especially when sus-
ceptibility is dose dependent (EUCAST clinical breakpoint: sus-
ceptible <1 mg/L; resistant >4 mg/L) [10]. Ceftazidime/avibactam
demonstrated broader activity against ESCPM species compared to
ceftolozane/tazobactam, in particular against both ESBL-producers
and AmpC overproducers. This finding is noteworthy, as a recent
meta-analysis have suggested its effectiveness in ESBL-producing
Enterobacterales infections and less so in those caused by AmpC
producers as compared to carbapenem [35]. Also, our study re-
vealed that the in vitro activity of ceftazidime/avibactam was sig-
nificantly reduced in isolates displaying both carbapenems resis-
tance phenotype and carbapenemase production. Although its use
as monotherapy is discouraged by EUCAST [36], colistin was the
most active drug against these strains except for naturally resistant
bacterial species, i.e. Serratia species, Morganella morganii and Prov-
idencia species. This observation was affected by the prevalence
of MBL-producing strains, particularly VIM-type. Other resistance
mechanisms, such as N346Y substitutions and deletions in AmpC S-
lactamases, were also reported to play a role, leading to resistance
to 4GC and reduced susceptibility to cefiderocol, especially follow-
ing cefepime exposure [37,38]. Additionally, production of minor
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carbapenemases, like GIM-1, should not be overlooked [39]. GIM-1
is a MBL identified in Germany in S. marcescens [40], E. cloacae [41],
and C. freundii complex [42]. Like other MBLs, it is not inhibited by
avibactam [43] and may not be readily characterised by common
diagnostic workflows targeting the main carbapenemases.

The present study successfully gathered data from a large mul-
ticentre surveillance study, addressing critical gaps in European
epidemiological knowledge about these species.

However, some limitations should be acknowledged. Firstly, the
study did not assess the incidence of ESCPM species from BCs. This
limitation was due to the varied protocols for requesting and per-
forming BCs in different centres, making it challenging to calculate
and interpret incidence values. Secondly, susceptibility testing and
species identification reported were performed by various meth-
ods and this could have affected the integrity of the data since
the accuracy of the methods may vary widely [44,45]. Thirdly, the
overrepresentation of isolates from France and Spain might skew
the regional contribution, as well as the fact that some countries
are represented by only one hospital, which could create a bias in
case of a local breakthrough. Fourthly, the study faced challenges
in reinterpreting MIC values according to both EUCAST and CLSI
breakpoints given the automated systems provided results within
a limited range (e.g. MIC value >8 mg/L and breakpoint for resis-
tant >32 mg/L) and discrepancies in guidelines for disk antibiotic
concentration, particularly for piperacillin/tazobactam, ceftazidime,
cefotaxime, and ceftazidime/avibactam. Finally, the reduced num-
ber of isolates restricts the generalizability of results, particularly
concerning Providencia species and its contribution to antimicro-
bial resistance.

In summary, our study revealed that only a subset of Euro-
pean centres routinely conducted susceptibility testing for new an-
tibiotics, characterised the AmpC overproduction resistance mech-
anism, and provided identification of carbapenemase enzymes in
ESCPM species. We observed a notable burden of E. cloacae com-
plex positive BC episodes and antimicrobial resistance. Providen-
cia species also exhibited a significant cumulative antimicrobial re-
sistance profile, warranting ongoing and vigilant monitoring. Fur-
thermore, our findings highlighted substantial rates of 3GC and
carbapenems resistance phenotypes. Although probably underes-
timated, AmpC overproduction was the most detected resistance
mechanism, with strains featuring this characteristic showing high
susceptibility to carbapenems, ceftazidime/avibactam, and colistin.
Among carbapenemases, VIM and OXA-48 enzymes were the most
frequently identified in ESCPM species. Colistin emerged as the
most active drug against ESCPM species (except those intrinsi-
cally resistant) displaying both carbapenem resistance phenotype
and carbapenemase production. Future European studies should
benefit from a centralised characterization of the isolates in or-
der to reduce variability related to the different methods used
for species identification and antimicrobial susceptibility testing.
It will be then required to address crucial clinical questions, in-
cluding the impact of rapid diagnostics for ESCPM species on clin-
ical outcomes, the establishment of acceptable risk thresholds for
using 3GC against multi-susceptible ESCPM species infections, and
the role of carbapenem-sparing antibiotic therapy, especially with
new f-lactam/B-lactamase inhibitor combinations.
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