
International Journal of Antimicrobial Agents 63 (2024) 107115 

Contents lists available at ScienceDirect 

International Journal of Antimicrobial Agents 

journal homepage: www.elsevier.com/locate/ijantimicag 

Enterobacterales carrying chromosomal AmpC β-lactamases in Europe 

(EuESCPM): Epidemiology and antimicrobial resistance burden from a 

cohort of 27 hospitals, 2020–2022 

Matteo Boattini a , b , c , ∗, Gabriele Bianco 

a , b , Laura Iglesias Llorente 

d , Laura Alonso Acero 

d , 
Daniel Nunes e , Miguel Seruca 

f , Vasco Santos Mendes f , André Almeida 

g , h , Paulo Bastos i , 
Ángel Rodríguez-Villodres j , Adelina Gimeno Gascón 

j , Ana Verónica Halperin 

k , 
Rafael Cantón 

k , l , Maria Nieves Larrosa Escartín 

m , n , o , p , Juan José González-López 

m , n , o , p , 
Pauline Floch 

q , Clémence Massip 

q , Delphine Chainier r , Olivier Barraud 

r , Laurent Dortet s , t , u , 
Gaëlle Cuzon 

t , Clément Zancanaro 

v , Assaf Mizrahi v , w , Rogier Schade 

x , 
Asger Nellemann Rasmussen 

y , Kristian Schønning 

y , z , Axel Hamprecht aa , ab , 
Lukas Schaffarczyk 

aa , ab , Stef an Glöckner ac , Jürgen Rödel ac , Katalin Kristóf ad , 
Ágnes Balonyi ad , Stefano Mancini ae , Chantal Quiblier ae , Teresa Fasciana 

af , 
Anna Giammanco 

af , Bianca Paglietti ag , Salvatore Rubino ag , Ana Budimir ah , 
Branka Bedenić 
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. Introduction 

Several reports have highlighted how the SARS-CoV-2 pandemic 

as exacerbated a long-standing antimicrobial resistance crisis, set- 

ing back progress and challenging planned mitigation effort s [ 1,2 ]. 

he overreliance on empirical antibiotic use, even in the face of 

 low prevalence of bacterial coinfections and superinfections in 

OVID-19 patients, constant hospital reorganizations to accommo- 
2
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 ( Enterobacter species including Klebsiella aerogenes - formerly Enterobacter

bacter freundii complex, Providencia species and Morganella morganii ) has

systematic surveillance programs. 

ticentre retrospective observational study analysing all ESCPM strains iso-

7 European hospitals over a 3-year period (2020–2022). Diagnostic ap-

icrobial susceptibility were investigated. 

 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was

 bacterial identification. Susceptibility to new β-lactam/ β-lactamase in-

rmation of AmpC overproduction were routinely tested in 33.3% and

ely. The most prevalent species were E. cloacae complex (44.8%) and

, third-generation cephalosporins (3GC), combined third- and fourth-

 + 4GC) and carbapenems resistance phenotypes were observed in 15.7%,

spectively. AmpC overproduction was the most prevalent resistance mech-

 carbapenemase-producers, carbapenemase type was provided in 44.4% of

XA-48-enzyme (16%) being the most frequently detected. E. cloacae com-

ia species exhibited the most notable cumulative antimicrobial resistance

ying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes

 isolates, respectively. K. aerogenes showed the highest rate of both 3GC

d AmpC overproduction (32.1%), while Providencia species those of both

ype (42.7%) and carbapenemase production (29.4%). ESCPM isolates ex-

d 3GC + 4GC resistance phenotypes displayed high susceptibility to cef-

 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin

ug against ESCPM species (except those intrinsically resistant) displaying

enotype (85.8%) and carbapenemase production (97.8%). 

ed a current analysis of ESCPM species epidemiology in Europe, providing

biotic treatments and guide strategies for antimicrobial stewardship and

© 2024 The Author(s). Published by Elsevier Ltd. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

ate COVID-19 cases, and disruptions to antimicrobial stewardship 

rograms emerged as the primary drivers behind the surge in an- 

imicrobial resistance during the pandemic [3] . The response to 

his resurgence in antimicrobial resistance demanded a transna- 

ional approach with actions at various levels, including a criti- 

al focus on strengthening antimicrobial resistance surveillance [2] . 

n Europe, the European Antimicrobial Resistance Surveillance Net- 

ork (EARS-Net) plays a pivotal role in monitoring the antimicro- 

ial susceptibility of eight bacterial pathogens commonly associ- 

http://creativecommons.org/licenses/by/4.0/
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ted with human infections, which include Escherichia coli, Kleb- 

iella pneumoniae, Pseudomonas aeruginosa, Acinetobacter species, 

treptococcus pneumoniae, Staphylococcus aureus, Enterococcus fae- 

alis , and Enterococcus faecium [4] . Within Enterobacterales , the ES- 

PM species ( Enterobacter species including Klebsiella aerogenes - 

ormerly Enterobacter aerogenes, Serratia species, Citrobacter freundii 

omplex, Providencia species and Morganella morganii ) are notably 

bsent from systematic surveillance programs, despite their in- 

olvement in a wide spectrum of community- and healthcare- 

ssociated infections. However, understanding their antimicrobial 

esistance mechanisms is recognised as imperative [5] . Indeed, 

SCPM species harbour chromosomally-encoded inducible AmpC 

-lactamases and can easily segregate stably de-repressed mu- 

ants able to overexpress these β-lactamases and hydrolyse mul- 

iple antibiotics [5–7] . The optimal approach to treat infections 

aused by these pathogens remains a subject of ongoing debate 

 8,9 ], with carbapenems and cefepime emerging as the most fre- 

uently recommended options [ 5,10–16 ]. Furthermore, multiple re- 

istance mechanisms can coexist, including the production of β- 

actamases (such as extended-spectrum β-lactamases - ESBLs and 

arbapenemases) and compromised outer membrane permeability 

17] . Notably, Enterobacter species featured among the top three 

pecies displaying reduced carbapenem susceptibility in a French 

pidemiological study based on 2012–2014 data [18] . Additionally, 

 recent global surveillance program revealed an increasing preva- 

ence of metallo β-lactamase (MBL) producers among meropenem- 

on-susceptible Enterobacter species and Citrobacter species iso- 

ates [19–21] . Furthermore, antibiotic prescribing practices and the 

esulting selective pressure on bacteria may have influenced epi- 

emiological shifts. This was evidenced in studies where the use 

f ceftazidime/avibactam may have contributed to the emergence 

f MBL producers in Enterobacterales [22] . The utilization of third- 

eneration cephalosporins (3GC) also poses a non-negligible risk 

or resistance development, particularly in Enterobacter species, K. 

erogenes , and C. freundii complex [ 7,16 ]. Recognizing the chal- 

enges in reporting antimicrobial susceptibility and treating ES- 

PM infections, our study sought to provide insights to address 

he issue of antimicrobial resistance in Europe. We investigated the 

pidemiology and antimicrobial susceptibility of ESCPM organisms 

solated from blood cultures (BCs) during the initial three years of 

he SARS-CoV-2 pandemic in a large cohort of European hospitals. 

. Methods 

.1. Study design 

We conducted a multicentre retrospective observational study, 

ncompassing all consecutive ESCPM species isolates detected from 

Cs of hospitalised patients in 27 European hospitals across 14 

ountries, with a cumulative bed capacity of 35 0 0 0 ( Figure 1 ).

ata were collected between 1 January, 2020, and 31 December, 

022. Duplicate isolates obtained within a 20-day interval from the 

ame patient and with the same antibiotic susceptibility testing re- 

ults were considered as part of a single positive BC episode and 

hus excluded from the analysis. 

.2. Survey on the diagnostic approach to ESCPM species 

We conducted a survey to assess microbiological diagnostic 

ractices for ESCPM species in the European centres participating 

n the study. The study coordinating centre designed a question- 

aire, which was distributed to all laboratories involved. The ques- 

ionnaire comprised 21 questions, categorised into 2 sections (refer 

o Tables S1 and S2). These questions covered various aspects, in- 

luding the type of centre (e.g., hospital type, number of hospital 

eds), laboratory activities (such as the number of ESCPM species 
3

solates tested and the methods used for antimicrobial suscepti- 

ility testing), and technical details like the antimicrobial agents 

outinely tested for ESCPM species and the screening methods for 

GC and/or combined third- and fourth-generation cephalosporins 

3GC + 4GC) and/or carbapenem-resistant ESCPM species isolates. 

.3. ESCPM species identification and susceptibility testing 

For each ESCPM species-positive BC episode, we documented 

he clinical setting in which the pathogen was isolated, includ- 

ng emergency, medical, surgical, COVID-19 wards, ICU, and COVID- 

9 ICU. We recorded the results of susceptibility testing along 

ith the species identification method and the clinical breakpoints 

sed by each institution during the study period. Antimicrobial 

usceptibility testing results (MICs or inhibition zone diameters) 

ere interpreted in accordance with the guidelines provided by 

he European Committee on Antimicrobial Susceptibility Testing 

EUCAST, version 13.1) and the Clinical & Laboratory Standards 

nstitute (CLSI, M100Ed33: 2023 Performance Standards for An- 

imicrobial Susceptibility Testing) [ 23,24 ]. These guidelines were 

lso applied to identify ESBL-producing, AmpC overproducing-, and 

arbapenemase-producing ESCPM strains, with confirmatory tests 

or resistance mechanisms performed once the conventional an- 

imicrobial susceptibility testing results became available. 

.4. Definitions 

We defined the following susceptibility patterns based on EU- 

AST v. 13.1 breakpoints. 3GC susceptibility phenotype was de- 

ned as a susceptibility pattern characterised by susceptibility to 

GC (cefotaxime or ceftriaxone and ceftazidime), cefepime, and 

arbapenems (ertapenem, imipenem, and meropenem). 3GC resis- 

ance phenotype was defined as a susceptibility pattern charac- 

erised by resistance to at least one antimicrobial agent among ce- 

otaxime or ceftriaxone and ceftazidime and susceptibility to ce- 

epime and carbapenems (ertapenem, imipenem, and meropenem). 

ombined 3GC + 4GC resistance phenotype was defined as a 

usceptibility pattern characterised by resistance to cefepime, at 

east one antimicrobial agent among cefotaxime or ceftriaxone 

nd ceftazidime and susceptibility to carbapenems (ertapenem, 

mipenem, and meropenem). Carbapenems resistance phenotype 

as defined as a susceptibility pattern characterised by resistance 

o at least one antimicrobial agent among ertapenem, imipenem, 

nd meropenem. Susceptibility to aminoglycosides was defined as 

 susceptibility pattern characterised by susceptibility to at least 

ne antimicrobial agent among gentamicin and amikacin. Suscep- 

ibility to fluoroquinolones was defined as a susceptibility pat- 

ern characterised by susceptibility to either ciprofloxacin or both 

iprofloxacin and levofloxacin. 

.5. Statistics 

We presented descriptive data using absolute counts (n) and 

elative percentages (%) for categorical variables. Summary statis- 

ics for MIC values included the MIC50 and MIC90 . Summary statis- 

ics for inhibition zone diameters included range and median. Data 

nalysis was performed using Microsoft Excel (Office 365) and 

ython 3.10. 

. Results 

.1. Diagnostic approach to ESCPM species around Europe 

ESCPM species identification was primarily conducted using 

itek-2 (bioMérieux, Marcy l’Étoile, France) for biochemical iden- 

ification, Vitek MS (bioMérieux, Marcy l’Étoile, France), or Bruker 
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Fig. 1. EuESCPM collaborative centres: geography, bed capacity, and number of isolates. 
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OF mass spectrometry-based identification (refer to Table S1). 

usceptibility testing results were obtained through various meth- 

ds, including broth microdilution commercial systems (Vitek-2, 

ioMérieux, Marcy l’Étoile, France; Microscan WalkAway 96 Plus, 

eckman Coulter, Switzerland; BD PhoenixTM Becton Dickinson, 

SA), gradient diffusion strip method (Etest, bioMérieux, Marcy 

’Étoile, France), and disk diffusion, following the recommendations 

rovided by the respective manufacturers. 

Regarding antibiotic activity on ESCPM species, most cen- 

res reported routinely testing susceptibility to 3GC (100%), 

efepime (81.5%), and fosfomycin (88.9%), while susceptibility 

o new β-lactam/ β-lactamase inhibitor combinations such as 

eftolozane/tazobactam and ceftazidime/avibactam was carried out 

y 33.3% of them (Table S2). Fosfomycin susceptibility test was 

redominantly carried out using automated broth microdilution 

62.5%) while colistin testing was primarily conducted using man- 

al broth microdilution (87%) with various kits (UMIC Colistin kit, 

iocentric, Bandol, France; MICRONAUT MIC-Strip colistin, MERLIN 

iagnostika Gmbh, Bornheim-Hersel, Germany; ComASP Colistin, 

iofilchem, Roseto degli Abbruzzi, Italy). Testing for ESBL produc- 

ion based on the in vitro inhibition of ESBL activity by clavulanic 

cid was carried out in 77.7% of the centres, mainly by a pheno- 

ypic test alone (74.1%) including combination disk test or double- 

isk synergy test (65%) and automated broth microdilution (35%). 

esting for AmpC overproduction was routinely performed in 29.6% 

f the centres using cloxacillin supplemented agar (bioMérieux). 

esting for carbapenemase production was carried out in 96.3% 

f the centres, mainly by a phenotypic followed by genotypic test 

44.4%) or a phenotypic test alone (40.7%) as the lateral flow im- 

unochromatographic assays (63.6%) targeting the main carbapen- 

mase enzymes KPC, NDM, VIM, IMP and OXA-48-like (RESIST-5 

.O.K.N.V, Coris Bioconcept, Gembloux, Belgium and NG-test Carba 

, NG Biotech, Guipry, France). 

.2. Epidemiology of ESCPM species isolated from positive blood 

ultures 

In this study, 6774 ESCPM isolates met the inclusion criteria 

see Table 1 ). Almost half of these isolates (43.9%) were identi- 

ed in centres from France and Spain (refer to Table S3). The 

ost prevalent species were E. cloacae complex (44.8%) and S. 

arcescens (22.7%) (refer to Table 1 ). When comparing countries, 

he most frequently isolated species varied (Table S3). Overall, ES- 

PM species were predominantly identified in patients admitted 

o medical wards (37.2%) and ICUs (30.9%) ( Figure 2 ). Some cen- 

res provided data on ESCPM species identification in patients with 

OVID-19 admitted to dedicated wards (refer to Figure S1). This 

nalysis of 3656 ESCPM isolates revealed that among COVID-19 

atients, the most frequently encountered species were E. cloacae 

omplex, K. aerogenes , and S. marcescens in COVID-19 ICUs, and E. 

loacae complex and S. marcescens in COVID-19 wards. 

.3. Burden of antimicrobial resistance in ESCPM species 

Detailed susceptibility testing results were shown in Ta- 

le S4. Overall, ESCPM species were highly susceptible to ce- 

epime (MIC50 −MIC90 1–4 mg/L; EUCAST 87.3%; CLSI 92.3%), cef- 

azidime/avibactam (MIC50 −MIC90 2–8 mg/L; EUCAST 90.4%; CLSI 

5.6%), ertapenem (MIC50 −MIC90 0.19–0.5 mg/L; EUCAST 90.6%; 

LSI 95.5%), imipenem (MIC50 −MIC90 1–2 mg/L; EUCAST 95.6%; 

LSI 93.6%), meropenem (MIC50 −MIC90 0.25–0.25 mg/L; EUCAST 

7.3%; CLSI 96.4%), colistin (MIC50 −MIC90 1–2 mg/L; EUCAST 

5.4%; CLSI 95.6%), gentamicin (MIC50 −MIC90 2–2 mg/L; EUCAST 

1%; CLSI 93.4%), and amikacin (MIC −MIC 2–8 mg/L; EUCAST 
50 90 

5
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Fig. 2. Distribution of ESCPM species according to hospital ward (Marimekko plot: the width of each column represents the proportion of the ESCPM species within the 

entire collection. The height of each bar represents the proportion of each ESCPM species within each hospital ward). 
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6%; CLSI 96.8%). Among E. cloacae complex isolates, over 90% sus- 

eptibility was achieved by imipenem (MIC50 −MIC90 0.5–2 mg/L; 

UCAST 96.5%; CLSI 96.2%), meropenem (MIC50 −MIC90 0.25–

.25 mg/L; EUCAST 97.2%; CLSI 96.3%), colistin (MIC50 −MIC90 0.5–

 mg/L; EUCAST 94.3%; CLSI 94.5%), and amikacin (MIC50 −MIC90 

–8 mg/L; EUCAST 96.5%; CLSI 96.9%). Providencia species showed 

he most resistant cumulative antimicrobial susceptibility profile, 

ith higher percentages for most antimicrobials tested. Of note, 

1% of Providencia species isolates were detected in a Roma- 

ian centre and characterised as carbapenemase-producers. The 

ost active in vitro antimicrobials against Providencia species iso- 

ates were ertapenem (MIC50 −MIC90 0.5–8 mg/L; EUCAST 69.1%; 

LSI 70.4%), meropenem (MIC50 −MIC90 0.5–16 mg/L; EUCAST 

0.2%; CLSI 65.1%), and amikacin (MIC50 −MIC90 8–64 mg/L; EU- 

AST 60.5%; CLSI 59.6%). Of note, among all ESCPM isolates, 

igh susceptibility rates to cefepime were observed in K. aero- 

enes (MIC50 −MIC90 1–8 mg/L; EUCAST 90.6%; CLSI 95.8%), S. 

arcescens (MIC50 −MIC90 1–1 mg/L; EUCAST 96.8%; CLSI 98.5%), 

. freundii complex (MIC50 −MIC90 1–1 mg/L; EUCAST 93.4%; CLSI 

6%) and M. morganii (MIC50 −MIC90 1–1 mg/L; EUCAST 97%; CLSI 

8.1%) while lower values were observed in E. cloacae complex 

MIC50 −MIC90 1–8 mg/L; EUCAST 82.3%; CLSI 88%) and Providencia 

pecies (MIC50 −MIC90 8–64 mg/L; EUCAST 57.1%; CLSI 62.1%). Like- 

ise, over 90% susceptibility rates to piperacillin/tazobactam were 

bserved in S. marcescens (MIC50 −MIC90 4–8 mg/L; EUCAST 92.3%; 

LSI 95.5%) and M. morganii (MIC50 −MIC90 4–8 mg/L; EUCAST 95%; 

LSI 97%). 

Overall, ESCPM species displayed 3GC, combined 3GC + 4GC, 

nd carbapenems resistance phenotypes in 15.7%, 4.6%, and 9.5% 

f the isolates, respectively ( Table 2 ). ESBL expression, AmpC 

verproduction, and carbapenemase production were detected in 

.4%, 15.8%, and 3.1% of the isolates, respectively. Among ES- 

PM species displaying carbapenems resistance phenotypes, 70.1% 

 n = 451/643) was non-carbapenemase-producer (data not shown). 

mong carbapenemase-producers, the laboratories involved in the 

roject did not provide the type of enzyme involved in the resis- 

ance mechanism in the majority of the cases (55.6%, n = 114/205). 

hen information was available ( n = 91/205), the most frequent 

ere VIM- (22.9%, n = 47) and OXA-48- enzymes (16%, n = 33). 

PC-, NDM-, IMI-, and multiple-carbapenemases-producers were 

ery rarely identified (1.5%, 2.5%, 0.5%, and 1%, respectively). E. 
6

loacae complex displayed ESBL production, AmpC overproduc- 

ion and carbapenemase production in 11.4%, 17.1%, and 3.5% of 

he isolates, respectively. K. aerogenes showed the highest rate 

f both 3GC resistant phenotype (29.8%) and AmpC overproduc- 

ion (32.1%), while Providencia species those of both carbapen- 

ms resistance phenotype (42.7%) and carbapenemase production 

29.4%). 

Among ESCPM isolates exhibiting 3GC susceptibility phenotype, 

ver 90% activity was shown by piperacillin/tazobactam (98.1%), 

eftolozane/tazobactam (99.6%), ceftazidime/avibactam (100%), col- 

stin (93.4%), aminoglycosides (98%), fluoroquinolones (95.9%), and 

ulfamethoxazole/trimethoprim (93.7%) ( Table 3 ). Among those ex- 

ibiting 3GC resistance phenotype, over 90% activity was observed 

or ceftazidime/avibactam (98.2%), colistin (90.3%) as well as ce- 

epime (100%) by definition. The most active drugs against ES- 

PM isolates exhibiting combined 3GC + 4GC resistance phe- 

otype were ceftazidime/avibactam (95.7%) and colistin (90.7%) 

s well as carbapenems (100%) by definition, whereas suscep- 

ibility to aminoglycosides, fluoroquinolones, and sulfamethoxa- 

ole/trimethoprim (44.3%, 32.9%, and 36.4%, respectively) signifi- 

antly decreased in comparison with both 3GC susceptible (98%, 

5.9%, and 93.7%, respectively) and resistant strains (89.6%, 87.1%, 

nd 84.9%, respectively). Among ESCPM isolates exhibiting car- 

apenems resistance phenotype, the most active drugs were col- 

stin (85.8%) followed by ceftazidime/avibactam (66%) and amino- 

lycosides (65.8%). These agents showed higher activity against 

trains displaying carbapenems resistance phenotype due to a 

echanism other than the production of carbapenemase (92.9%, 

2.8% and 91.1%, respectively). Among ESBL-producers, the most 

ctive drugs were carbapenems (99.2%), ceftazidime/avibactam 

94.3%), and colistin (93%), whereas susceptibility rates to ce- 

epime, piperacillin/tazobactam, and ceftolozane/tazobactam were 

0.9%, 32.2%, and 58.3%, respectively. Among AmpC overproduc- 

rs, over 90% activity was shown by carbapenems (99.2%), cef- 

azidime/avibactam (98.1%), and colistin (93.8%), whereas signifi- 

antly higher activity in comparison with those observed against 

SBL-producers was shown by cefepime (84.4% vs. 20.9%), amino- 

lycosides (89.9% vs. 41%), fluoroquinolones (86.7% vs. 29.3), 

nd sulfamethoxazole/trimethoprim (88.1% vs. 26.8%). Among 

arbapenemase-producers, the most active drug was colistin 

97.8%). Among KPC-, IMI- and OXA-48 producers, the most ac- 
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Table 2 

Antibiotic resistance phenotypes in ESCPM species isolates according to EUCAST v. 13.1 breakpoints. 

Phenotype Overall % (n) Enterobacter 

cloacae complex 1 

% (n) 

Klebsiella 

aerogenes % (n) 

Enterobacter 

non -cloacae 

complex 2 % (n) 

Serratia 

marcescens % (n) 

Citrobacter 

freundii complex 3 

% (n) 

Providencia 

species % (n) 

Morganella 

morganii % (n) 

3GC susceptible 4 70.2 (4740/6754) 64.6 (1955/3028) 55.5 (497/895) 66.9 (109/163) 88.5 (1356/1532) 72.8 (294/404) 46.2 (79/171) 80.2 (450/561) 

3GC resistant 4 15.7 (1059/6754) 15.2 (459/3028) 29.8 (267/895) 15.3 (25/163) 8.1 (124/1532) 20.5 (83/404) 9.9 (17/171) 15 (84/561) 

3GC + 4GC resistant 5 4.6 (312/6754) 7.4 (225/3028) 3.5 (31/895) 5.5 (9/163) 1.8 (28/1532) 2.7 (11/404) 1.2 (2/171) 1.1 (6/561) 

Carbapenems resistant 9.5 (643/6754) 12.8 (389/3028) 11.2 (100/895) 12.3 (20/163) 1.6 (24/1532) 4 (16/404) 42.7 (73/171) 3.7 (21/561) 

ESBL-producer 6.4 (374/5832) 11.4 (297/2618) 3.1 (24/779) 4.4 (7/159) 1.9 (25/1296) 3.4 (12/349) 2.9 (4/140) 1 (5/491) 

AmpC overproducers 15.8 (641/4056) 17.1 (318/1859) 32.1 (176/549) 17.7 (20/113) 4.8 (43/901) 16.5 (38/230) 13.3 (8/60) 11.1 (38/344) 

Carbapenemase- 

producer 

3.1 (205/6713) 3.5 (104/3009) 2.3 (21/896) 1.3 (2/154) 1.1 (16/1521) 2.5 (10/402) 29.4 (50/170) 0.4 (2/561) 

KPC-producer 1.5 (3/205) 1 (1/104) – 50 (1/2) – 10 (1/10) – –

VIM-producer 22.9 (47/205) 39.4 (41/104) – – 25 (4/16) 10 (1/10) 2 (1/50) –

NDM-producer 2.5 (5/205) 3.8 (4/104) 4.8 (1/21) – – – – –

IMI-producer 0.5 (1/205) 1 (1/104) – – – – – –

OXA-48-producer 16 (33/205) 11.5 (12/104) 33.3 (7/21) – 18.8 (3/16) 60 (6/10) 6 (3/50) 100 (2/2) 

KPC + VIM-producer 0.5 (1/205) 1 (1/104) – – – – – –

KPC + NDM-producer 0.5 (1/205) – – – – 10 (1/10) – –

Not characterised 55.6 (114/205) 42.3 (44/104) 61.9 (13/21) 50 (1/2) 56.2 (9/16) 10 (1/10) 92 (46/50) –

Abbreviations: 3GC, third-generation cephalosporins; 4GC, fourth-generation cephalosporins. 
1 Enterobacter cloacae complex corresponds to E. cloacae, E. asburiae, E. hormaechei, E. kobei, E. ludwigii, E. mori , and E. Nimipressuralis . 
2 Enterobacter non-cloacae complex corresponds to Enterobacter species not included in the Enterobacter cloacae complex. 
3 Citrobacter freundii complex corresponds to C. freundii, C. braakii, C. youngae, C. portucalentis, C.gillenii, C. murliniae, C. sedlakii, and C. wekmenii . 
4 Cefepime-and-carbapenem-susceptible. 
5 Carbapenem-susceptible. 

Table 3 

Antibiotic susceptibility of resistance phenotypes in ESCPM species isolates according to EUCAST v. 13.1. 

Phenotype Antimicrobial susceptibility% (n) 

FEP PTZ C/T CZA CARB CL 1 AM FQ SMX/TMP 

3GC susceptible 2 – 98.1 

(4135/4215) 

99.6 

(508/510) 

100 

(554/554) 

– 93.4 

(653/699) 

98 

(4419/4508) 

95.9 

(4540/4734) 

93.7 

(4095/4370) 

3GC resistant 2 – 29.8 

(272/914) 

67.6 

(115/170) 

98.2 

(222/226) 

– 90.3 

(187/207) 

89.6 

(859/959) 

87.1 

(907/1041) 

84.9 

(830/978) 

3GC + 4GC 

resistant 3 
– 31.7 (78/246) 66 (35/53) 95.7 (67/70) – 90.7 (49/54) 44.3 

(110/248) 

32.9 

(102/310) 

36.4 

(100/275) 

Carbapenems 

resistant 

48.8 

(300/615) 

10.4 (65/623) 15.4 (21/136) 66 (138/209) – 85.8 

(176/205) 

65.8 

(414/629) 

53.8 

(343/637) 

53.2 

(313/588) 

Non- 

carbapenemase- 

producer 

52.9 

(227/429) 

14.7 (64/437) 25.7 (18/70) 82.8 

(106/128) 

– 92.9 (92/99) 91.1 

(401/440) 

74.8 

(302/404) 

67.3 

(280/416) 

ESBL-producer 20.9 (71/340) 32.2 (97/301) 58.3 (28/48) 94.3 (83/88) 99.2 

(368/371) 

93 (53/57) 41 (126/307) 29.3 

(109/372) 

26.8 (94/351) 

AmpC 

overproducer 

84.4 

(521/617) 

22.1 

(118/534) 

45.5 (25/55) 98.1 

(105/107) 

99.2 

(636/641) 

93.8 (76/81) 89.9 

(490/545) 

86.7 

(556/641) 

88.1 

(534/606) 

Carbapenemase- 

producer 

20.6 (40/194) 1 (2/198) 6.7 (7/105) 33 (37/112) 27.8 (57/205) 97.8 (88/90) 36.6 (74/202) 25 (51/204) 22.4 (41/183) 

KPC-/IMI- 

/OXA-48- 

producer 

44.4 (12/27) - (0/35) 41.7 (5/12) 100 (22/22) 70.3 (26/37) 93.3 (14/15) 73 (27/37) 37.8 (14/37) 51.7 (15/29) 

MBL-producer 34 (18/53) - (0/52) - (0/19) - (0/54) 7.4 (4/54) 96.2 (25/26) 38.5 (20/52) 35.2 (19/54) 22.5 (11/49) 

Abbreviations: FEP, cefepime; PTZ, piperacillin/tazobactam; C/T, ceftolozane/tazobactam; CZA, ceftazidime/avibactam; CARB, at least one carbapenem among ertapenem, 

imipenem and meropenem; CL, colistin; AM, at least one aminoglycoside among gentamycin and amikacin; FQ, either ciprofloxacin or both ciprofloxacin and levofloxacin; 

SMX/TMP, sulfamethoxazole/trimethoprim; 3GC, third-generation cephalosporins; 4GC, fourth-generation cephalosporins; MBL, metallo- β-lactamases. 
1 Excluding colistin intrinsically resistant species. 
2 Cefepime-and-carbapenem-susceptible. 
3 Carbapenem-susceptible. 
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ive drugs were ceftazidime/avibactam (100%) and colistin (93.3%), 

hile colistin displayed the highest activity against MBL-producers 

96.2%). 

ESCPM isolates exhibiting 3GC susceptibility phenotype, 3GC 

nd combined 3GC + 4GC resistance phenotypes were detected 

ostly from patients admitted in medical wards (37.3%, 35.2% and 

2.3%, respectively), whereas carbapenems resistance phenotype 

as more frequent in critically ill patients (39.2%) (Table S5). The 

ame proportion was maintained in the distribution of resistance 

echanisms, as ESBL-producers and AmpC overproducers were 

ore frequently detected in medical ward patients (42.3% and 

7.9%, respectively) while carbapenemase-producers were more 
7

requently detected in ICU patients (47.3%). When comparing coun- 

ries, the highest rates of carbapenems resistance phenotypes were 

bserved in Romania, Switzerland, and Greece (39.2%, 19.9%, and 

8.2% respectively) (Figure S2). The highest rates of 3GC resistance 

henotype were observed in Denmark, Italy and The Netherlands 

23.4%, 22.7%, and 21.8% respectively), whereas those of combined 

GC + 4GC resistance phenotype were mostly detected in Poland, 

roatia, and France (9.9%, 9.9%, and 7.9% respectively). Of note, the 

articipating centres from Germany, Denmark, and the Netherlands 

id not test cefepime in their clinical routine due to internal pro- 

ocols. 
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. Discussion 

This study offers a contemporary insight into the diagnos- 

ic approach and epidemiology of ESCPM species in Europe dur- 

ng the SARS-CoV-2 pandemic. Its findings may provide sup- 

ort for the development of antimicrobial and diagnostic stew- 

rdship strategies, as well as the optimization of current an- 

ibiotic treatments. Notable observations that can serve as a 

oundation for future comparative analyses include: 1) A snap- 

hot of microbiological diagnostics for ESCPM species in Europe, 

ith MALDI-TOF coupled to mass spectrometry being the preva- 

ent method for identification. Limited routine testing for sus- 

eptibility to recently approved drugs like ceftazidime/avibactam 

nd ceftolozane/tazobactam, AmpC overproduction characteriza- 

ion, and carbapenemase type identification in some centres. Fos- 

omycin susceptibility was predominantly determined using broth 

icrodilution although there are no defined recommendations 

n how to test and report susceptibility to this antibiotic for 

his group of bacteria. 2) E. cloacae complex and S. marcescens 

merged as the most frequently detected species, a trend also 

bserved among COVID-19 patients. Given the larger bed capac- 

ty the overall burden of ESCPM species was most pronounced 

mong medical ward patients. 3) Notably, we identified relevant 

ntimicrobial susceptibility findings, including data on susceptibil- 

ty to new β-lactam/ β-lactamase inhibitor combinations but also 

o piperacillin/tazobactam and fluoroquinolones. 

We observed substantial rates of 3GC and carbapenems resis- 

ance phenotypes, while the combined 3GC + 4GC resistance phe- 

otype was less frequent. Although not characterised in all centres, 

mpC overproduction emerged as the most frequently detected 

esistance mechanism, and strains with this characteristic dis- 

layed high susceptibility to carbapenems, ceftazidime/avibactam, 

nd colistin. Carbapenemase types contributing to carbapenems 

esistance were provided in low number, with VIM and OXA-48 

nzymes being the most frequently identified. E. cloacae complex 

nd Providencia species exhibited the most resistant cumulative an- 

imicrobial susceptibility profiles, while K. aerogenes showed the 

ighest rate of both 3GC resistant phenotype and AmpC overpro- 

uction. ESCPM isolates exhibiting 3GC susceptibility phenotype 

isplayed high susceptibility to piperacillin/tazobactam, aminogly- 

osides, and fluoroquinolones. In contrast, those displaying 3GC, 

ombined 3GC + 4GC resistance phenotypes and ESBL produc- 

ion exhibited high susceptibility to ceftazidime/avibactam and col- 

stin, besides carbapenems. Colistin was the most active agent 

gainst ESCPM isolates (except those intrinsically resistant such as 

erratia, Providencia and Morganella ) both displaying carbapenems 

esistance phenotype and carbapenemase production, with these 

trains being predominantly isolated in ICU patients. 

Infections caused by Enterobacterales with the potential for high 

mpC β-lactamase expression pose significant challenges for diag- 

ostic and antimicrobial stewardship efforts. Our survey revealed 

elays in implementing susceptibility tests for recently introduced 

ntibiotics in clinical practice probably also due to local antimicro- 

ial stewardship programs and guidelines. A probable sub-optimal 

ost-effectiveness in adapting to ESCPM epidemiology the use of 

orkflows including lateral flow immunochromatographic assays, 

hich may be more suitable for the epidemiology of K. pneumo- 

iae and E. coli [25] was also observed. Furthermore, the adoption 

f time-consuming susceptibility tests for agents like fosfomycin or 

-lactamase characterization tests, specifically AmpC overproduc- 

ion, appeared to be undervalued. This practice resulted in incom- 

lete and sometimes inaccurate information [26] , limiting treat- 

ent options [ 27 ], emphasizing the need for guidelines in this 

eld. To address this, it is imperative to promptly incorporate sus- 

eptibility testing for cefiderocol [ 28,29 ] and formulations contain- 

ng aztreonam and novel β-lactamase inhibitors, especially for MBL 
8

roducers [ 30,31 ], into laboratory workflows. This proactive ap- 

roach aligns with therapeutic recommendations [15] and facili- 

ates the monitoring of emerging resistance trends. 

EUCAST expert rules recommend microbiologists to either dis- 

ourage the use of 3GC (alone or in combination with aminogly- 

osides) in their reports or suppress susceptibility testing results 

or ESCPM species susceptible to cefotaxime, ceftriaxone, or cef- 

azidime. This is due to the high risk of selecting AmpC dere- 

ressed cephalosporin-resistant mutants during therapy. The risk 

aries, classified as “high” for Enterobacter species, K. aerogenes , 

nd C. freundii complex, “low” or “infrequent” for M. morganii, 

erratia , and Providencia species, and “absent” when cefepime is 

sed [ 32 ]. It’s worth noting that broad-spectrum antibiotics, in- 

luding carbapenems and cefepime, recommended for ESCPM in- 

ections, have a substantial ecological impact [8] and potential tox- 

city [ 33 ]. Selecting ESCPM species may be a multifactorial process 

nfluenced by antibiotic concentration at the infection site and the 

nvolved species. As a result, in case of good diffusion of the an- 

ibiotic on the infected site, M. morganii, Serratia , and Providencia 

pecies might be considered candidates for definitive therapy with 

GC, which could significantly impact antibiotic consumption [8] . 

his has been corroborated for S. marcescens in a recent publica- 

ion [9] but is still a topic of wide debate given the increased risk 

f treatment failure compared with cefepime/carbapenem [22] . 

ur study revealed that approximately 40% of strains exhibiting 

GC susceptibility phenotype belonged to these “low risk” species. 

urthermore, E. cloacae complex, K. aerogenes , and C. freundii 

omplex displayed low susceptibility to cefotaxime, ceftazidime, 

eftolozane/tazobactam, and piperacillin/tazobactam. This may be 

ttributed to various resistance mechanisms, including decreased 

uter-membrane permeability and concurrent β-lactamase synthe- 

is [ 34 ], adding complexity to the empirical selection of these 

ntibiotics against these species. Our study also brought atten- 

ion to Providencia species and its significant burden of antimi- 

robial resistance. It is worth noting that a substantial portion 

f these strains might be linked to an uncharacterised outbreak 

f carbapenemase-producing strains in one of the participating 

entres. 

Given the substantial rates of 3GC and carbapenems resis- 

ance phenotypes observed in our study, some considerations must 

e also made about cefepime and new approved β-lactam/ β- 

actamase inhibitor combinations as key components of the 

arbapenem-sparing strategy. Cefepime exhibited potent activity 

 > 90%) against most ESCPM species, except for the E. cloacae com- 

lex (MIC50 −MIC90 1–8 mg/L, EUCAST 82.3%; CLSI 88%), drawing 

ttention to its use against these species, especially when sus- 

eptibility is dose dependent (EUCAST clinical breakpoint: sus- 

eptible ≤1 mg/L; resistant > 4 mg/L) [10] . Ceftazidime/avibactam 

emonstrated broader activity against ESCPM species compared to 

eftolozane/tazobactam, in particular against both ESBL-producers 

nd AmpC overproducers. This finding is noteworthy, as a recent 

eta-analysis have suggested its effectiveness in ESBL-producing 

nterobacterales infections and less so in those caused by AmpC 

roducers as compared to carbapenem [ 35 ]. Also, our study re- 

ealed that the in vitro activity of ceftazidime/avibactam was sig- 

ificantly reduced in isolates displaying both carbapenems resis- 

ance phenotype and carbapenemase production. Although its use 

s monotherapy is discouraged by EUCAST [ 36 ], colistin was the 

ost active drug against these strains except for naturally resistant 

acterial species, i.e. Serratia species, Morganella morganii and Prov- 

dencia species. This observation was affected by the prevalence 

f MBL-producing strains, particularly VIM-type. Other resistance 

echanisms, such as N346 Y substitutions and deletions in AmpC β- 

actamases, were also reported to play a role, leading to resistance 

o 4GC and reduced susceptibility to cefiderocol, especially follow- 

ng cefepime exposure [ 37,38 ]. Additionally, production of minor 
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arbapenemases, like GIM-1, should not be overlooked [ 39 ]. GIM-1 

s a MBL identified in Germany in S. marcescens [ 40 ], E. cloacae [ 41 ],

nd C. freundii complex [ 42 ]. Like other MBLs, it is not inhibited by

vibactam [ 43 ] and may not be readily characterised by common 

iagnostic workflows targeting the main carbapenemases. 

The present study successfully gathered data from a large mul- 

icentre surveillance study, addressing critical gaps in European 

pidemiological knowledge about these species. 

However, some limitations should be acknowledged. Firstly, the 

tudy did not assess the incidence of ESCPM species from BCs. This 

imitation was due to the varied protocols for requesting and per- 

orming BCs in different centres, making it challenging to calculate 

nd interpret incidence values. Secondly, susceptibility testing and 

pecies identification reported were performed by various meth- 

ds and this could have affected the integrity of the data since 

he accuracy of the methods may vary widely [ 44,45 ]. Thirdly, the 

verrepresentation of isolates from France and Spain might skew 

he regional contribution, as well as the fact that some countries 

re represented by only one hospital, which could create a bias in 

ase of a local breakthrough. Fourthly, the study faced challenges 

n reinterpreting MIC values according to both EUCAST and CLSI 

reakpoints given the automated systems provided results within 

 limited range (e.g. MIC value > 8 mg/L and breakpoint for resis- 

ant > 32 mg/L) and discrepancies in guidelines for disk antibiotic 

oncentration, particularly for piperacillin/tazobactam, ceftazidime, 

efotaxime, and ceftazidime/avibactam. Finally, the reduced num- 

er of isolates restricts the generalizability of results, particularly 

oncerning Providencia species and its contribution to antimicro- 

ial resistance. 

In summary, our study revealed that only a subset of Euro- 

ean centres routinely conducted susceptibility testing for new an- 

ibiotics, characterised the AmpC overproduction resistance mech- 

nism, and provided identification of carbapenemase enzymes in 

SCPM species. We observed a notable burden of E. cloacae com- 

lex positive BC episodes and antimicrobial resistance. Providen- 

ia species also exhibited a significant cumulative antimicrobial re- 

istance profile, warranting ongoing and vigilant monitoring. Fur- 

hermore, our findings highlighted substantial rates of 3GC and 

arbapenems resistance phenotypes. Although probably underes- 

imated, AmpC overproduction was the most detected resistance 

echanism, with strains featuring this characteristic showing high 

usceptibility to carbapenems, ceftazidime/avibactam, and colistin. 

mong carbapenemases, VIM and OXA-48 enzymes were the most 

requently identified in ESCPM species. Colistin emerged as the 

ost active drug against ESCPM species (except those intrinsi- 

ally resistant) displaying both carbapenem resistance phenotype 

nd carbapenemase production. Future European studies should 

enefit from a centralised characterization of the isolates in or- 

er to reduce variability related to the different methods used 

or species identification and antimicrobial susceptibility testing. 

t will be then required to address crucial clinical questions, in- 

luding the impact of rapid diagnostics for ESCPM species on clin- 

cal outcomes, the establishment of acceptable risk thresholds for 

sing 3GC against multi-susceptible ESCPM species infections, and 

he role of carbapenem-sparing antibiotic therapy, especially with 

ew β-lactam/ β-lactamase inhibitor combinations. 
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