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a b s t r a c t

In the literature, the log-logistic distribution is commonly presented with two param-
eters: one that governs the shape of the model, and the other that governs its scale.
However, to make this model more suitable for data analysis, an additional location
parameter can be added, resulting in the three-parameter or shifted log-logistic model. In
this paper, we introduce a new estimator for the shape parameter of a three-parameter
log-logistic distribution that reduces bias. We also derive various properties of the
proposed estimator. Additionally, a simulation study and an application example to
a real data set are conducted to examine the efficiency for finite sample sizes. The
theoretical and simulated results confirm that our proposed estimation method performs
significantly better than other estimation methods found in the literature.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The log-logistic distribution has been successfully applied in different fields of research, including income distribu-
ion [1], medicine [2], environmental science [3], survival analysis [4], demographic data [5], forestry [6] or hydrology [7,8].
n the economic field, this probability model is known as the Fisk [1] distribution. The log-logistic model is related to the
ell-known logistic distribution. Specifically, let us consider two random variables X and T , which are related by the
quation T = α ln(X/σ ), α, σ > 0 and T has a logistic distribution with probability density function (p.d.f.)

g(t) =
et

(1 + et )2
, t ∈ R. (1)

Then, X has a two-parameter log-logistic distribution with p.d.f. given by

f (x) =

α
σ

( x
σ

)α−1(
1 +

( x
σ

)α)2 , x > 0, (2)

where α is the shape parameter and σ is the scale parameter. Note that this model can also be derived from the quotient
of two independent generalized gamma variables (Malik [9]). Additionally, the log-logistic distribution is a member of
Burr’s type XII [10] and Dagum’s [11] family of distributions. For the special case where the scale parameter σ is equal
to 1, Balakrishnan et al. [12] noticed the following relation

xf (x) = αF (x)(1 − F (x)), α > 0,
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Fig. 1. Probability density function of the log-logistic distribution for α = 0.5, 1, µ = 0, σ = 1, 4 (left) and α = 2, 4, µ = 0, σ = 1, 4 (right).

here F is the distribution function (d.f.). The log-logistic p.d.f. in (2) is right skewed and can take different shapes. If
≤ 1, f is decreasing, while if α > 1, f is unimodal with a mode at the value σ ( α−1

α+1 )
1/α . Moreover, the p.d.f. can have a

imilar shape to the log-normal d.f., however it has heavier tails and the advantage of being mathematically more tractable
Singh et al. [13]). The rth order moments about the origin only exists if r < α and are given by

E(X r ) = σ rB
(
1 −

r
α

, 1 +
r
α

)
,

where B(a, b) = Γ (a)Γ (b)/Γ (a+b) and Γ (a) =
∫

∞

0 xa−1e−xdx represents, respectively, the Beta and the Gamma functions
and a and b are positive real values. Thus, the mean of X only exist if α > 1. Regarding the distribution of order statistics,
the density function of the ith ascending order statistic from a random sample of size n, Xi:n, has a simple closed form.
Clearly, the p.d.f. is

fXi:n (x) =

α
σ

( x
σ

)αi−1

B(i, n − i + 1)
(
1 +

( x
σ

)α)n+1 , x > 0,

which corresponds to the p.d.f. of a generalized beta distribution of the second kind (McDonald [14]).
Recent research has focused on new extensions of the two-parameter log-logistic model, in order to generate more

suitable probability distributions for data modeling. One easy way to develop a new generalized distribution is by adding
one or more parameters to an existing distribution. For a survey on generalizations of the log-logistic distribution see
Muse et al. [15]. The primary focus of the current study will be directed towards one of these generalizations, namely, the
three-parameter log-logistic distribution, which is alternatively referred to as the shifted log-logistic distribution or Pareto
type III distribution (see Arnold [16]). A random variable X is said to have a three-parameter log-logistic distribution with
he shape parameter α > 0, the location parameter µ ∈ R, and with the scale parameter σ > 0, if its d.f. is given by

F (x|α, µ, σ ) = 1 −
1

1 +
( x−µ

σ

)α =
1

1 +
( x−µ

σ

)−α
, x > µ. (3)

and we denote this by X ∼ LL(α, µ, σ ). The corresponding quantile function is

QX (p|α, µ, σ ) = µ + σ

(
p

1 − p

)1/α

, 0 ≤ p < 1. (4)

The p.d.f. associated to the distribution function in (3) is then expressed as

f (x|α, µ, σ ) =
α
( x−µ

σ

)α−1(
1 +

( x−µ

σ

)α)2 , x > µ, (5)

If α = 1, X has a location and scale beta prime distribution. Additionally, a three-parameter log-logistic model with α = 1
and µ = σ is a Pareto type I model with shape parameter equal to 1 and scale parameter σ . Fig. 1 illustrate the p.d.f. in
5) for selected values of the shape and scale parameters. The location parameter is always equal to zero.

The estimation of the parameters of the log-logistic distribution has been discussed by many authors. For the two-
arameter model we mention the papers [17–22], among others. Despite the fact that the two-parameter case has received
reater attention, several estimation techniques for the three-parameter log-logistic model are presently available in
2
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the literature. Ahmad et al. [7] discussed several methods to estimate the three-parameter log-logistic distribution for
flood frequency analysis and presented a new estimation method based on generalized least squares. Singh et al. [13]
employed the principle of maximum entropy (POME) to derive a new method to estimate the three-parameter log-
logistic distribution. El-Rahman and El Genidy [23] developed an algorithm of percentile roots which combine percentile
equations with a measures of central tendency. Balakrishnan et al. [12] derived the best linear unbiased estimators (BLUE)
for the location and scale parameters of log-logistic model, with a known shape parameter. In real data applications, it
is unrealistic to assume that the shape parameter α is known, and it should be estimated. Recently, Ahsanullah and
Alzaatreh [24] considered the BLUE for the location and scale parameters and estimated the shape parameter using the
reciprocal of a location-invariant Hill-type estimator. This estimator achieves location-invariant property by shifting it
by the sample minimum. Based on empirical studies, the same authors proposed a threshold of 10% of the sample size.
More recently, Mateus and Caeiro [25] improved the estimation of the shape parameter of the log-logistic model with
alternative reduced bias estimators. Such bias reduction results from the well-known trade-off between bias and variance.
The main goal of this paper is to further improve the trade-off between bias and variance and introduce a more efficient
estimator of the parameter α.

The organization of this paper is as follows. In the next section we review several competitive estimators and define a
new reduced bias estimator for the shape parameter of a log-logistic distribution. In Section 3 we establish the asymptotic
behavior of the shape estimators under consideration. In addition, we discuss the optimal sample fraction to be used by
each estimator. Section 4 is devoted to a small Monte-Carlo simulation study. To illustrate the use of the new reduced
bias estimator, an application to a real data set is provided in Section 5. Finally, some conclusions of the main results
achieved with this research are presented in Section 6.

2. Estimation of the shape parameter

Let (X1, X2, . . . , Xn) be a sample of n independent and identically distributed random variables with a common three-
parameter log-logistic d.f., given in (3). Let (X1:n ≤ X2:n ≤ · · · ≤ Xn:n) denote the associated sample of non-decreasing
order statistics.

2.1. Location invariant Hill-type estimator

Ahsanullah and Alzaatreh [24] noted that the reduced log-logistic distribution, F (x|α, 0, 1), has a Pareto-type tail (see
lso Fisk [1]). More precisely,

1 − F (x|α, 0, 1) = x−α l(x), (6)

with α the tail or Pareto index and l(x) = (1 + x−α)−1, x > 0 a slowly varying function at infinity that measures the
departure of F to the Pareto Type I distribution. Moreover, since l(x) admits the Taylor expansion l(x) = 1− x−α

+ o(x−α),
as x → ∞, the reduced log-logistic model belongs to Hall’s class (see [26], Eq. (1)) of Pareto-type models with survival
function,

1 − F (x) =

( x
c

)−1/ξ
(
1 + d

( x
c

)ρ/ξ

+ o
(
xρ/ξ

))
, x → ∞ (7)

with ξ = 1/α > 0, c = 1, d = −1 and ρ = −1. The class of models verifying (6) or (7) plays an important role
n tail inference. Such models are in the domain of attraction for maxima of the Fréchet extreme value distribution.
he shape parameter ξ in (7) is known as the extreme value index and is a crucial parameter in tail inference. In the
tatistics literature, numerous estimators have been proposed for ξ , or equivalently, for the shape parameter α. For a
eneral overview of the available estimators we refer to [27–30]. When dealing with Pareto-type models, one of the most
opular estimator for the extreme value index is the one introduced by Hill [31]. This estimator is defined as the average
f the log-excesses over the threshold u = Xn−k:n > 0,

H(k) =
1
k

k∑
i=1

ln Xn−i+1:n − ln Xn−k:n, k = 1, 2, . . . , n − 1. (8)

where k + 1 represents the number of upper order statistics used in the estimation. Due to theoretical motives, the
threshold k is often assumed to be intermediate, i.e., k = kn ∈ [1, n − 1] is assumed to be a sequence of positive integers
satisfying

k → ∞ and k/n → 0, as n → ∞. (9)

Many of the estimators that have been suggested to estimate the parameter ξ , including the one in (8), are only scale-
invariant. A change in the location can modify the estimator behavior (for more information see papers [32–34]). The
properties of the Hill estimator and the fact that the d.f. in (3) has a location parameter, lead Ahsanullah and Alzaatreh [24]
to propose the estimation of the shape parameter α with the following location-invariant Hill-type estimator,

α̂H (k) =
1

, (10)

H̃(k)

3
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with

H̃(k) =
1
k

k∑
i=1

ln
Xn−i+1:n − X1:n

Xn−k:n − X1:n
, 1 ≤ k ≤ n − 2. (11)

ote that the estimator H̃(k) in (10) belongs to the class of estimators discussed in [32,35,36]. Furthermore, the estimator
n (10) share some properties with α̂H (k) in (8). In particular, the variance decreases and the absolute bias increases, as
he value k increases. Therefore, the choice of k leads to a trade-off between the bias and the variance of the estimator.
egarding the choice of the parameter k, Ahsanullah and Alzaatreh [24] proposed k = ⌊n/10⌋, if n > 100, where ⌊x⌋
enotes the integer part of x.

.2. A generalized Jackknife estimator

Despite its wide use, the Hill estimator is difficult to apply in real-world data situations due to its significant bias.
his issue motivated several researchers to construct alternative reduced bias estimators, less sensitive to the choice of
he threshold k. We refer to the first reduced bias estimators of the extreme value index in papers [37,38] (see also the
apers [39,40] for a general overview on bias reduction). Bias reduction of tail parameter estimators typically requires the
stimation of tail second order parameters such as ρ in (7). Several authors identify challenges in the estimation of ρ and
ssume ρ = −1 (see [41], section 4.5 for related discussions), which also corresponds to the value of ρ for the log-logistic
odel. In the context of Pareto Type tails, Gomes et al. [42] (see also [43]) considered the following Generalized Jackknife

GJ) estimator of the extreme value index

GJ(k) = 2MR(k) − H(k) =
M (2)(k)
M (1)(k)

− M (1)(k), k = 1, 2, . . . , n − 1, (12)

and

M (j)(k) =
1
k

k∑
i=1

(ln Xn−i+1:n − ln Xn−k:n)
j , j > 0, (M (1)(k) ≡ H(k)), (13)

re the moments of order j of the log-excesses. The estimator in (12) belongs to the class of GJ statistic introduced in
eng [38] and is based on the Hill and the moments ratio (MR) estimators (Danielsson et al. [44]). Moreover, both H(k) and
R(k) are members of Lehmer’s mean-of-order-p class of extreme value index estimators studied in papers [30,45,46].
ateus and Caeiro [25] modified the generalized Jackknife statistic in (12) and proposed the following location invariant
J estimator for the shape parameter of a log-logistic model

α̂GJ (k) =
M̃ (1)(k)

M̃ (2)(k) − (M̃ (1)(k))2
, k = 1, 2, . . . , n − 2, (14)

ith

M̃ (j)(k) =
1
k

k∑
i=1

(
ln

Xn−i+1:n − X1:n

Xn−k:n − X1:n

)j

, j > 0, (15)

he moments of order j of the shifted log-excesses. The estimator α̂GJ (k) has a null dominant component of asymptotic
ias and a higher asymptotic variance than α̂H (k) in (10) (Mateus and Caeiro [25]).

.3. A new reduced bias estimator

Although the GJ estimator in (14) is asymptotically unbiased, it has the side effect of having a much higher variance than
he estimator α̂H (k) in Eq. (10). Therefore, it seems relevant to study more efficient estimators for the shape parameter α.
ateus and Caeiro ([25], Proposition 1) derived the non-degenerated asymptotic behavior of H̃(k) and computed the first-
rder term of the asymptotic bias. Hence, a simple reduced-bias estimator of the shape parameter can then be constructed
s

α̂RBH (k) =
1

H̃RB(k)
, (16)

here

H̃RB(k) =
1
k

k∑
i=1

ln
Xn−i+1:n − X1:n

Xn−k:n − X1:n
×

(
1 −

k
2n

)
, 1 ≤ k ≤ n − 2 (17)

is a reduced-bias estimator of 1/α.
4
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3. Asymptotic properties of the estimators

In this section, we present the asymptotic results for all estimators of the shape parameter under consideration. Higher-
rder bias terms will be computed to evaluate the asymptotic bias of the reduced-bias estimators. We achieve this goal
y assuming that k is an intermediate sequence of integer values, satisfying (9).

.1. Asymptotic normality of the estimators

The following two theorems extends the results in Proposition 1 and Proposition 2 from Mateus and Caeiro [25].

heorem 3.1. Assume that k is an intermediate sequence of integers satisfying (9). Then, the following distributional
epresentation

α̂H (k) d
= α

(
1 −

Zk
√
k

+ Op

(√
k

n

)
−

k
2n

−
1
12

(
k
n

)2

(1 + op(1))

)
+

(
k
n

) 1
α

op (1) (18)

is valid, where Zk is an asymptotically standard normal random variable. Consequently, the asymptotic variance of α̂H (k) is
α2/k and the dominant term of asymptotic bias is always negative and equal to −k/(2n). Moreover, if

√
k(k/n) → c, then

√
k(α̂H (k) − α)

d
−→ N

(
−αc/2, α2) . (19)

heorem 3.2. Assume the conditions of Theorem 3.1. Then, the following distributional representation

α̂GJ (k) d
= α

(
1 −

√
5ZGJ

k
√
k

+ Op

(√
k

n

)
+

1
36

(
k
n

)2

(1 + op(1))

)
+

(
k
n

) 1
α

op (1) . (20)

olds, where ZGJ
k is an asymptotically standard normal random variable. Consequently, the asymptotic variance of α̂GJ (k) is

α2/k and the dominant term of asymptotic bias is positive and equal to 1
36

( k
n

)2
. Additionally, if

√
k(k/2n) → c, then

√
k(α̂GJ (k) − α)

d
−→ N

(αc
36

, 5α2
)

. (21)

learly, the best rate of convergence is achieved when c ̸= 0.

Finally, we establish the asymptotic normality of the proposed new estimator for the shape parameter in (16).

heorem 3.3. Assume the conditions of Theorem 3.1. Then, we have the following distributional representation

α̂RBH (k) d
= α

(
1 −

Zk
√
k

+ Op

(√
k

n

)
−

1
12

(
k
n

)2

(1 + op(1))

)
+

(
k
n

) 1
α

op (1) , (22)

where Zk is an asymptotically standard normal random variable. If
√
k(k/n) → c, then

√
k(α̂H (k) − α)

d
−→ N

(
0, α2) . (23)

This implies that α̂RBH (k) has lower order bias terms and the same asymptotic variance as α̂H (k) in (10). Thus, we
xpect α̂RBH (k) to be superior to α̂H (k), for every k, with respect to mean squared error.

.2. Selection of the threshold

In practical applications, the threshold is fundamental to yield accurate estimates and it must be chosen before applying
ny of the aforementioned shape parameter estimators. Let us denote the optimal threshold by

k0(n) = argmin
k

MSE(α̂(k)),

ith MSE standing for mean squared error. When the MSE is unknown, a typical approach is to choose the threshold
hrough the minimization of the asymptotic mean squared error (AMSE),

k̂0 = k̂0(n) = argmin
k

AMSE(α̂(k)) = k0(n)(1 + o(1)).

ince such choice depends on asymptotic arguments, it may only be reliable when the sample size becomes large.
lternative methods for selecting the threshold can be found in Refs. [47–49]. From (18) it follows that the AMSE of

ˆ
H (k) is given by

AMSE(α̂H (k)) = α2
(
1

+
k2

2

)
. (24)
k 4n
5
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Fig. 2. Empirical optimal sample fraction for α̂GJ (k) and α̂RBH (k) and the corresponding power regression curves.

hen, the level kA that minimizes the AMSE in Eq. (24) is

k̂HA = argmin[AMSE(α̂H (k))] = (2n2)1/3. (25)

Regarding the reduced-bias estimators in (14) and (16), research shows that the optimal level that minimizes the
orresponding AMSE is often unreliable for small sample sizes. This poor approximation can be justified by the difference
etween exact and asymptotic distributional behaviour of the estimators. We propose a more reliable approximation,
ased on empirical results. We follow the approach of Mateus and Caeiro [25] and propose the following algorithm.

lgorithm 3.1 (Empirical Threshold Selection).

1. Generate 5000 samples of size n from a log-logistic distribution, with n taking values between 50 and 2000, with
step 50.

2. Let α̂(k, i, n) denote the estimates based on the ith sample of size n. For each sample size,

• compute α̂(k, i, n), k = 1, 2, . . . , n − 2, i = 1, . . . , 5000.
• compute the empirical Mean Squared Error as a function of k.
• Obtain the level k̂(n) that minimizes the empirical Mean Squared Error.

3. Finally, perform a Power Regression with k̂0(n) the response variable and the sample size as the predictor variable.
The regression coefficients are the vector values (a1, a2). The empirical threshold is then given by

k̂E = k̂E(n) = ⌊a1na2⌋, (26)

where ⌊x⌋ denotes the integer part of x.

Remark 3.1. The agreement between the empirical threshold and the fitted curve, given in Algorithm 3.1, can be changed
with the modification of the values in step 1.

We applied Algorithm 3.1 to samples of the log-logistic model with parameters (α, µ, σ ) = (1,1,1) and the aforemen-
tioned reduced bias estimators α̂GJ (k) and α̂RBH (k). The algorithm provided the empirical thresholds

kGJE = ⌊1.11n0.92
⌋ for α̂GJ (k) and k̂RBHE = ⌊1.09n0.86

⌋ for α̂RBH (k). (27)

Fig. 2 presents the empirical optimal sample fraction and the corresponding regression curve for both estimators. The
overall agreement between empirical and fitted curves is quite good.

3.3. Proofs

We first provide several Lemmas that are useful in the derivation of the main results. Let E1:n ≤ E2:n ≤ · · · ≤ En:n be
the order statistics from n mutually independent and identically distributed exponential random variables E1, E2, . . . , En,
with a common d.f. F (x) = 1 − e−x, x > 0.
E

6
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Lemma 3.1 (Balakrishnan and Basu [50]). Considering the convention that E0:n ≡ 0, we have

Ej:n − Ei:n
d
= Ej−i:n−i, 1 ≤ i ≤ j ≤ n.

Lemma 3.2 (Girard [51]). Suppose k is an intermediate sequence, i.e., (9) holds. Then,
En−i+1:n

ln(n/i)
p

−→ 1, i = 1, . . . , k.

emma 3.3 (Araújo et al. [36]). Assume that the quantile function Q satisfies the following second order regular variation
ondition

lim
t→∞

Q (1−1/tx)
Q (1−1/t) − xξ

A(t)
= xξ x

ρ
− 1
ρ

, (28)

or all x > 1, where ξ > 0 and ρ are, respectively, positive and negative real numbers and the function A(t) satisfies for any
> 0,

lim
t→∞

A(tx)
A(t)

= xρ .

hen, for any intermediate sequence k, such that (9) holds,

1
k

k∑
i=1

(
ln

Xn−i+1:n − X[np]+1:n

Xn−k:n − X[np]+1:n

)r

−
1
k

k∑
i=1

(
ln

Xn−i+1:n − χp

Xn−k:n − χp

)r

= op

(
1

Q (1 − k/n)

)
, r = 1, 2,

where χp denotes the quantile of order p (0 ≤ p < 1) for the random variable X.

Lemma 3.4 (Gomes et al. [42]). Suppose (9) holds and define

Pk =
√
k
1
k

k∑
i=1

(Ei − 1) (29)

nd

Qk =
√
k
1
k

k∑
i=1

(E2
i − 2). (30)

hen, (Pk,Qk) is asymptotically bivariate normal distributed with null mean, with variances 1 and 20, respectively, and
ovariance equal to 4.

.4. Proof of Theorem 3.1

Consider first the random variable

T1(k) =
1
k

k∑
i=1

ln
Xn−i+1:n − µ

Xn−k:n − µ
. (31)

ext, define the random variable X̃ = (X − µ)/σ ∼ LL(α, 0, 1) with quantile function denoted by Q̃ (p) = QX (p|α, 0, 1),
≤ p < 1. From the inverse probability integral transform we have that X̃ d

= Q̃ (1 − e−E) = (eE(1 − e−E))1/α . Also, since
˜ is monotonically increasing, X̃i:n

d
= Q̃ (1 − e−Ei:n ), 1 ≤ i ≤ n. Consequently

T1(k)
d
=

1
k

k∑
i=1

ln
Q̃ (1 − e−En−i+1:n )

Q̃ (1 − e−En−k:n )

=
1
kα

k∑
i=1

ln
eEn−i+1:n (1 − e−En−i+1:n )
eEn−k:n (1 − e−En−k:n )

=
1
α

(
1
k

k∑
i=1

(En−i+1:n − En−k:n) +
1
k

k∑
i=1

ln
1 − e−En−i+1:n

1 − e−En−k:n

)
.

Using Lemma 3.1 and the Taylor expansion ln(1 + x) ∼ x− x2
2 , as x → 0,

T1(k)
d
=

1
α

(
1
k

k∑
Ek−i+1:k +

1
k

k∑
(e−En−k:n +

1
2
e−2En−k:n − e−En−i+1:n −

1
2
e−2En−i+1:n )

)
(1 + op(1))
i=1 i=1

7
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a

R

w

T

d
=

1
α

(
1
k

k∑
i=1

Ei + e−En−k:n
1
k

k∑
i=1

(1 − e−Ek−i+1:k ) +
1
2
e−2En−k:n

1
k

k∑
i=1

(1 − e−2Ek−i+1:k )(1 + op(1))

)

=
1
α

(
1
k

k∑
i=1

Ei + e−En−k:n (1 −
1
k

k∑
i=1

e−Ei ) +
1
2
e−2En−k:n (1 −

1
k

k∑
i=1

e−2Ei )(1 + op(1))

)

From the weak law of large numbers for independent and identically distributed random variables, 1
k

∑k
i=1 e

−tEi
p

−→
1

1+t ,
t = 1, 2. Also by Lemmas 3.1, 3.2 and 3.4 we have

T1(k)
d
=

1
α

(
1 +

Zk
√
k

+
1
2
e− ln(n/k)

+
1
3
e−2 ln(n/k)(1 + op(1))

)
where Zk = Pk is an asymptotic standard normal random variable by the central limit theorem.

Note that condition (28) holds for the quantile function in (4) and X1:n
p

−→ χ0 = µ. Then, by Lemma 3.3,

H̃(k) = M̃ (1)(k) =
1
k

k∑
i=1

ln
Xn−i+1:n − X1:n

Xn−k:n − X1:n

d
= T1(k) +

(
k
n

) 1
α

op (1) , (32)

nd using a second order Taylor expansion for (1 − x)−1, x → 0, (18) and (19) follows straightforwardly.

3.5. Proof of Theorem 3.2

Let us introduce the random variable

T2(k) =
1
k

k∑
i=1

(
ln

Xn−i+1:n − µ

Xn−k:n − µ

)2

. (33)

epeating the same arguments, presented in the proof of Theorem 3.1 we have

T2(k)
d
=

2
α2

(
1 +

√
5Z (2)

k
√
k

+ Op

(√
k

n

)
+

3
4

(
k
n

)
+

11
18

(
k
n

)2

(1 + op(1))

)
here Z (2)

k = Qk/
√
20, with Qk defined in Lemma 3.4, is an asymptotic standard normal random variable. Then, by

Lemma 3.3,

M̃ (2)(k) d
= T2(k) +

(
k
n

) 1
α

op (1) .

Next, it follows

1

M̃ (2)(k) − (M̃ (1)(k))2
d
= α2

(
1 −

2
√
5Z (2)

k − 2Zk
√
k

+ Op

(√
k

n

)
−

1
2

(
k
n

)
−

1
18

(
k
n

)2
)
(1 + op(1))

+

(
k
n

) 1
α

op (1) .

(34)

heorem 3.2 now follows by combining the results in Eqs. (32) and (34) and denoting

ZGJ
k =

2
√
5Z (2)

k − 3Zk
√
5k

.

3.6. Proof of Theorem 3.3

First, from Theorem 3.1 we have

H̃RB(k) d
= T1(k)

(
1 −

k
2n

)
+

(
k
n

) 1
α

op (1)

d
=

1
α

(
1 +

Zk
√
k

+
1
12

(
k
n

)−2

(1 + op(1))

)
+

(
k
n

) 1
α

op (1)

with T1(k) given in (31). Now, an application of Taylor expansion to 1/(1− x) gives the result in (18) and the (23) follows
straightforwardly.
8
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d
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o
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d
v

α

Fig. 3. Simulated bias (left) and standard deviation (right) of the estimators of α, versus k, for samples of size n = 500 from the log-logistic
istribution with (α, µ, σ ) = (0.5, 1, 1).

. Simulation study

In this section, we use Monte Carlo simulation to evaluate and compare the finite sample performance of the proposed
ew estimator of the shape parameter α in (16) with the estimators in (10) and (14). All the computations were done using
[52] software. We generated 10000 samples, with sample sizes n = 20, 50, 75, 100, 200, 500, 750, 1000, 2000, 5000, from

the three-parameter log-logistic model, through the inverse-transform method. The following parameter combinations
were considered

• Case 1: (α, µ, σ ) = (0.5, 1, 1);
• Case 2: (α, µ, σ ) = (1.5, 1, 1);
• Case 3: (α, µ, σ ) = (2, 1, 1);
• Case 4: (α, µ, σ ) = (3, 1, 1);

Let α̂•(k), with • ∈ {H,GH, RBH}, denote any of the aforementioned estimators under study. Since the three estimators
are all location and scale invariant, the choice of those two parameters is irrelevant. For each sample, the estimates of α

are first computed for every k. We then computed the simulated bias and the root mean squared error (RMSE) for each
k, where

Bias(α̂•(k)) = ᾱ•(k) − α, SD(α̂•(k)) =
1

10 000

10 000∑
i=1

(α̂•(k) − ᾱ•(k))2 (35)

with ᾱ•(k) =
1

10 000

∑10 000
i=1 α̂•(k) and the root mean squared error (RMSE)

RMSE(α̂•(k)) =
1

10 000

10 000∑
i=1

(α̂•(k) − α)2.

We have further computed the simulated optimum level

k̂(•)0 = argmin
k

RMSE[α̂•(k)], (36)

nd the simulated characteristics in (35) at the optimal level in (36). Furthermore, since in practical applications the
ptimal value of k is unknown, we also obtained the simulated bias, SD and RMSE of the estimators at the adaptive level
roposed in Eqs. (25) and (27). For simplicity of notation, hereafter we shall denote

α̂H
0 = α̂H (k̂H0 ), α̂

GJ
0 = α̂GJ (k̂GJ0 ), and α̂RBH

0 = α̂GJ (k̂RBH0 ), (37)

α̂H
A = α̂H (k̂HA ), α̂

GJ
E = α̂RBH (k̂GJE ), and α̂RBH

E = α̂RBH (k̂RBHE ). (38)

In Figs. 3 to 6, we present the Monte Carlo estimates of the bias (left) and SD (right), with respect to k, for the three
ifferent estimators and samples of size n = 500. A good performance is assessed by the flatness of the curve of the mean
alue in a large continuous region of values of k, close to the true value of α, as well as by a small SD.
For the four parameters combination here considered, α̂GJ (k) and α̂RBH (k) always yields a smaller (absolute) bias than

ˆ
H (k). In addition, α̂GJ (k) provides a much wider region of estimates with near zero bias. Regarding the SD, we have
9
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d

d

d

Fig. 4. Simulated bias (left) and standard deviation (right) of the estimators of α, versus k, for samples of size n = 500 from the log-logistic
istribution with (α, µ, σ ) = (1, 1, 1).

Fig. 5. Simulated bias (left) and standard deviation (right) of the estimators of α, versus k, for samples of size n = 500 from the log-logistic
istribution with (α, µ, σ ) = (2, 1, 1).

Fig. 6. Simulated bias (left) and standard deviation (right) of the estimators of α, versus k, for samples of size n = 500 from the log-logistic
istribution with (α, µ, σ ) = (3, 1, 1).
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Fig. 7. Simulated RMSE of the estimators of α, versus k, for samples of size n = 500 from the log-logistic distribution for several parameter
ombinations.

D(α̂RBH (k)) ≤ SD(α̂H (k)) < SD(α̂GJ (k)), for every k. Moreover, Fig. 7 shows that the new estimator α̂RBH (k), in (16), perform
etter than α̂H (k) for all values of α here considered and than α̂GJ (k) if α < 3.
We now compare the performance of the estimators at their simulated optimal level. The simulated optimal value

f k provides a benchmark of the best possible performance obtainable with each estimator of α. However, in practical
pplications such optimal level may not be achieved. The simulated values of the mean value, SD and RMSE, computed at
he simulated optimal threshold are presented in Table 1. It appears that the proposed estimator α̂RBH (k) has usually the
mallest (absolute) bias, SD and RMSE, except when α = 3. In Table 2 we provide the simulated values of the mean value,
D and RMSE, computed at the level provided by the adaptive selection procedure. Notice that such simulated values are
ot very far from the corresponding values in Table 1, specially if α ≤ 1. This confirms the efficiency of our approach to
btain the value of the parameter k.

. Data analysis

We now analyze one data set to illustrate the use of the proposed estimation method α̂RBH (k), for the shape parameter
of the log-logistic model. Based on the estimated value of α, we computed the estimated values of the location and

cale parameters using the BLUE estimators discussed in detail in Balakrishnan et al. [12]. The product moments needed
o for the covariance between Xi:n and Xj:n, i < j were computed using the integrate() function in R. The data set, taken
rom Hall et al. [53], represents the peak concentration of a toxic gas cloud released into the ambient flow, measured at
fixed location and are as follows:
11
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Table 1
Simulated mean values, SD and RMSE of the estimators α̂H , α̂GJ and α̂RBH , at their simulated optimal threshold, for a log-logistic distribution.
n 20 50 75 100 200 500 750 1000 2000 5000

(α, µ, σ ) = (0.5, 1, 1)

Bias(α̂H
0 ) −0.1023 −0.0746 −0.0634 −0.0588 −0.0463 −0.0353 −0.0328 −0.0277 −0.0236 −0.0179

Bias(α̂GJ
0 ) 0.1993 0.0927 0.0720 0.0617 0.0411 0.0252 0.0208 0.0187 0.0131 0.0093

Bias(α̂RBH
0 ) −0.0372 −0.0359 −0.0271 −0.0231 −0.0198 −0.0118 −0.0121 −0.0105 −0.0079 −0.0055

SD(α̂H
0 ) 0.1334 0.1024 0.0899 0.0815 0.0676 0.0509 0.0436 0.0419 0.0329 0.0246

SD(α̂GJ
0 ) 0.3010 0.1564 0.1232 0.1052 0.0759 0.0501 0.0416 0.0362 0.0274 0.0182

SD(α̂RBH
0 ) 0.1199 0.0748 0.0643 0.0570 0.0424 0.0302 0.0247 0.0222 0.0166 0.0116

RMSE(α̂H
0 ) 0.1681 0.1267 0.1100 0.1005 0.0819 0.0619 0.0546 0.0502 0.0405 0.0304

RMSE(α̂GJ
0 ) 0.3610 0.1818 0.1427 0.1220 0.0863 0.0561 0.0465 0.0408 0.0304 0.0204

RMSE(α̂RBH
0 ) 0.1255 0.0830 0.0697 0.0615 0.0468 0.0324 0.0275 0.0246 0.0184 0.0128

(α, µ, σ ) = (1, 1, 1)

Bias(α̂H
0 ) −0.2214 −0.1537 −0.1293 −0.1192 −0.0933 −0.0707 −0.0657 −0.0555 −0.0473 −0.0359

Bias(α̂GJ
0 ) 0.4148 0.1904 0.1477 0.1230 0.0809 0.0507 0.0418 0.0375 0.0262 0.0186

Bias(α̂RBH
0 ) −0.0826 −0.0668 −0.0568 −0.0517 −0.0383 −0.0242 −0.0240 −0.0213 −0.0160 −0.0110

SD(α̂H
0 ) 0.2603 0.2034 0.1791 0.1626 0.1350 0.1017 0.0872 0.0838 0.0657 0.0491

SD(α̂GJ
0 ) 0.6106 0.3127 0.2465 0.2122 0.1530 0.1001 0.0832 0.0725 0.0548 0.0364

SD(α̂RBH
0 ) 0.2454 0.1570 0.1299 0.1134 0.0863 0.0604 0.0498 0.0444 0.0331 0.0231

RMSE(α̂H
0 ) 0.3417 0.2549 0.2209 0.2017 0.1641 0.1238 0.1092 0.1005 0.0810 0.0608

RMSE(α̂GJ
0 ) 0.7382 0.3661 0.2874 0.2452 0.1731 0.1122 0.0931 0.0816 0.0608 0.0409

RMSE(α̂RBH
0 ) 0.2590 0.1706 0.1418 0.1246 0.0944 0.0651 0.0552 0.0492 0.0368 0.0256

(α, µ, σ ) = (2, 1, 1)

Bias(α̂H
0 ) −0.5092 −0.3348 −0.2908 −0.2558 −0.2100 −0.1462 −0.1219 −0.1116 −0.0906 −0.0762

Bias(α̂GJ
0 ) 0.6637 0.3010 0.2368 0.2051 0.1366 0.0874 0.0729 0.0681 0.0523 0.0329

Bias(α̂RBH
0 ) −0.2928 −0.1892 −0.1704 −0.1497 −0.1115 −0.0697 −0.0626 −0.0564 −0.0363 −0.0261

SD(α̂H
0 ) 0.5463 0.4264 0.3695 0.3461 0.2740 0.2113 0.1901 0.1741 0.1394 0.0980

SD(α̂GJ
0 ) 1.1492 0.5862 0.4671 0.4016 0.2934 0.1945 0.1624 0.1408 0.1051 0.0723

SD(α̂RBH
0 ) 0.5097 0.3418 0.2819 0.2489 0.1873 0.1300 0.1076 0.0950 0.0732 0.0497

RMSE(α̂H
0 ) 0.7468 0.5421 0.4702 0.4303 0.3452 0.2570 0.2258 0.2068 0.1662 0.1241

RMSE(α̂GJ
0 ) 1.3271 0.6589 0.5236 0.4509 0.3236 0.2133 0.1780 0.1563 0.1174 0.0794

RMSE(α̂RBH
0 ) 0.5878 0.3907 0.3294 0.2905 0.2179 0.1475 0.1245 0.1105 0.0817 0.0561

(α, µ, σ ) = (3, 1, 1)

Bias(αH
0 ) −0.8949 −0.6212 −0.4997 −0.4607 −0.3522 −0.2819 −0.2381 −0.2166 −0.1613 −0.1253

Bias(αGJ
0 ) 0.5721 0.1805 0.1562 0.1033 0.0959 0.0773 0.0525 0.0486 0.0386 0.0247

Bias(αRBH
0 ) −0.6246 −0.4483 −0.3998 −0.3489 −0.2718 −0.1863 −0.1671 −0.1554 −0.1144 −0.0806

SD(αH
0 ) 0.8547 0.6656 0.6216 0.5595 0.4653 0.3335 0.2992 0.2752 0.2296 0.1668

SD(αGJ
0 ) 1.5579 0.7956 0.6300 0.5551 0.3967 0.2596 0.2202 0.1933 0.1451 0.0988

SD(αRBH
0 ) 0.8182 0.5623 0.4697 0.4289 0.3276 0.2338 0.1944 0.1692 0.1347 0.0934

RMSE(αH
0 ) 1.2374 0.9105 0.7975 0.7247 0.5836 0.4366 0.3823 0.3502 0.2806 0.2086

RMSE(αGJ
0 ) 1.6596 0.8158 0.6491 0.5646 0.4082 0.2708 0.2264 0.1993 0.1501 0.1019

RMSE(αRBH
0 ) 1.0293 0.7191 0.6168 0.5528 0.4256 0.2990 0.2563 0.2297 0.1767 0.1234

12.100, 8.757, 6.678, 5.702, 5.796 11.280 16.160 10.550, 5.072, 9.010, 1.701, 5.670, 3.026, 7.262, 3.497, 6.804 11.500,
7.655, 6.045, 3.215, 9.074 12.890, 6.806, 6.086, 7.087, 5.292, 5.072, 5.229, 6.458, 5.859, 7.056, 7.119 11.750, 7.568 15.800,
6.273, 9.041 14.900, 4.993 10.020, 7.025, 2.523, 5.742, 7.941, 4.316, 10.840, 8.927, 7.087, 7.403, 6.962, 4.777, 9.055, 4.007
14.030, 7.591, 6.587, 7.560, 2.646 13.480 11.440, 8.870, 7.341, 7.340, 7.844 13.990, 8.757, 4.694, 3.704 11.530, 5.765, 7.656,
3.938, 2.849, 3.150, 9.185, 9.344, 6.832, 9.293, 9.926, 6.928 10.920 10.460, 6.418, 7.818, 6.286, 5.513 15.380, 6.117, 3.451,
5.171, 6.806 11.050, 8.456, 8.554 11.040 11.040 10.250 13.650 16.910, 7.825.
12
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Table 2
Simulated mean values, SD and RMSE of the estimators α̂H

A , α̂
GJ
E and α̂RBH

E , for a log-logistic distribution.

n 20 50 75 100 200 500 750 1000 2000 5000

(α, µ, σ ) = (0.5, 1, 1)

Bias(α̂H
A ) −0.1023 −0.0746 −0.0634 −0.0588 −0.0479 −0.0364 −0.0324 −0.0295 −0.0235 −0.0177

Bias(α̂GJ
E ) 0.2202 0.0961 0.0703 0.0590 0.0395 0.0242 0.0203 0.0177 0.0140 0.0101

Bias(α̂RBH
E ) −0.0372 −0.0267 −0.0244 −0.0231 −0.0180 −0.0134 −0.0117 −0.0107 −0.0084 −0.0065

SD(α̂H
A ) 0.1334 0.1024 0.0899 0.0815 0.0665 0.0502 0.0439 0.0407 0.0330 0.0248

SD(α̂GJ
E ) 0.3053 0.1547 0.1245 0.1070 0.0770 0.0508 0.0420 0.0369 0.0270 0.0179

SD(α̂RBH
E ) 0.1199 0.0795 0.0655 0.0570 0.0432 0.0296 0.0249 0.0221 0.0163 0.0112

RMSE(α̂H
A ) 0.1681 0.1267 0.1100 0.1005 0.0820 0.0620 0.0546 0.0503 0.0405 0.0304

RMSE(α̂GJ
E ) 0.3764 0.1821 0.1430 0.1222 0.0865 0.0562 0.0466 0.0409 0.0304 0.0205

RMSE(α̂RBH
E ) 0.1255 0.0839 0.0699 0.0615 0.0468 0.0325 0.0275 0.0246 0.0184 0.0129

(α, µ, σ ) = (1, 1, 1)

Bias(α̂H
A ) −0.2214 −0.1537 −0.1293 −0.1192 −0.0964 −0.0730 −0.0649 −0.0590 −0.0470 −0.0354

Bias(α̂GJ
E ) 0.4773 0.1984 0.1438 0.1202 0.0798 0.0485 0.0407 0.0354 0.0281 0.0201

Bias(α̂RBH
E ) −0.1180 −0.0668 −0.0568 −0.0517 −0.0383 −0.0275 −0.0238 −0.0218 −0.0170 −0.0130

SD(α̂H
A ) 0.2603 0.2034 0.1791 0.1626 0.1329 0.1003 0.0878 0.0814 0.0660 0.0495

SD(α̂GJ
E ) 0.6393 0.3096 0.2489 0.2138 0.1539 0.1015 0.0839 0.0738 0.0540 0.0358

SD(α̂RBH
E ) 0.2311 0.1570 0.1299 0.1134 0.0863 0.0592 0.0499 0.0442 0.0327 0.0224

RMSE(α̂H
A ) 0.3417 0.2549 0.2209 0.2017 0.1642 0.1241 0.1092 0.1006 0.0810 0.0609

RMSE(α̂GJ
E ) 0.7978 0.3677 0.2875 0.2453 0.1733 0.1125 0.0932 0.0818 0.0608 0.0410

RMSE(α̂RBH
E ) 0.2595 0.1706 0.1418 0.1246 0.0944 0.0653 0.0553 0.0493 0.0368 0.0259

(α, µ, σ ) = (2, 1, 1)

Bias(α̂H
A ) −0.6085 −0.4028 −0.3317 −0.2989 −0.2311 −0.1668 −0.1457 −0.1310 −0.1022 −0.0753

Bias(α̂GJ
E ) 0.8065 0.3175 0.2289 0.1933 0.1297 0.0802 0.0681 0.0596 0.0485 0.0357

Bias(α̂RBH
E ) −0.5043 −0.2980 −0.2440 −0.2140 −0.1499 −0.0979 −0.0813 −0.0720 −0.0530 −0.0370

SD(α̂H
A ) 0.4682 0.3828 0.3423 0.3139 0.2596 0.1980 0.1739 0.1616 0.1314 0.0988

SD(α̂GJ
E ) 1.2474 0.5818 0.4715 0.4081 0.2975 0.1988 0.1649 0.1455 0.1069 0.0712

SD(α̂RBH
E ) 0.4238 0.2986 0.2505 0.2212 0.1703 0.1177 0.0994 0.0883 0.0654 0.0448

RMSE(α̂H
A ) 0.7677 0.5557 0.4767 0.4335 0.3476 0.2589 0.2268 0.2080 0.1664 0.1242

RMSE(α̂GJ
E ) 1.4854 0.6628 0.5242 0.4515 0.3246 0.2143 0.1784 0.1572 0.1174 0.0796

RMSE(α̂RBH
E ) 0.6587 0.4218 0.3497 0.3077 0.2268 0.1531 0.1283 0.1139 0.0842 0.0581

(α, µ, σ ) = (3, 1, 1)

Bias(α̂H
A ) −1.1872 −0.8273 −0.6956 −0.6290 −0.4895 −0.3527 −0.3064 −0.2751 −0.2136 −0.1545

Bias(α̂GJ
E ) 0.7705 0.2018 0.1154 0.0885 0.0420 0.0126 0.0094 0.0060 0.0072 0.0063

Bias(α̂RBH
E ) −1.1141 −0.7495 −0.6396 −0.5749 −0.4325 −0.3039 −0.2594 −0.2331 −0.1791 −0.1278

SD(α̂H
A ) 0.6244 0.5280 0.4785 0.4432 0.3714 0.2873 0.2538 0.2368 0.1942 0.1468

SD(α̂GJ
E ) 1.7222 0.7918 0.6461 0.5639 0.4174 0.2839 0.2374 0.2107 0.1567 0.1055

SD(α̂RBH
E ) 0.5792 0.4269 0.3648 0.3269 0.2576 0.1820 0.1550 0.1386 0.1046 0.0726

RMSE(α̂H
A ) 1.3414 0.9814 0.8443 0.7694 0.6144 0.4549 0.3978 0.3630 0.2887 0.2131

RMSE(α̂GJ
E ) 1.8866 0.8170 0.6563 0.5708 0.4195 0.2842 0.2376 0.2108 0.1569 0.1057

RMSE(α̂RBH
E ) 1.2557 0.8625 0.7363 0.6613 0.5034 0.3542 0.3022 0.2712 0.2074 0.1470

Randomness of the sample values was not rejected with the runs test, available in randtests software package [54].
Hankin and Lee [55] considered for this data the Davies distribution, defined by the quantile function

QD(p|c, λ1, λ2) =
c pλ1

(1 − p)λ2
, 0 ≤ p < 1, c, λ1, λ2 > 0.

For this data set, Hankin and Lee computed the maximum likelihood estimates ĉ = 8.326, λ̂1 = 0.319 and λ̂2 = 0.181. The
Kolmogorov–Smirnov (K–S) distance between the fitted and empirical d.f. is 0.0637. For the three-parameter log-logistic
distribution, we considered the shape parameter estimator α̂RBH in (38) and the BLUE estimators of the location and scale
E

13
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Fig. 8. Histogram and fitted p.d.f. of the Davies and log-logistic distributions.

parameters. The estimated parameters values are α̂ = 3.363, µ̂ = 0.501 and σ̂ = 6.872. The corresponding K–S distance
is 0.0578. Fig. 8 displays the histogram and the Davies and log-logistic estimated p.d.f.’s. Therefore, based on the K–S
values and Fig. 8, the log-logistic distribution provided a good fit to this data set and a closer fit to the empirical d.f. than
the Davies distribution.

6. Conclusion

In this research, we present a new reduced-bias estimator of the shape parameter of the three-parameter log-logistic
model. Its asymptotic normality has been demonstrated, and an adaptive selection procedure for the parameter k has
been provided. The efficiency of our approach was illustrated in a simulation study. The results given here show that the
new reduced-bias estimator usually outperforms the other estimators studied, in terms of bias and RMSE. The usefulness
of this novel estimator was illustrated by applying it to a real-world data set.
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